1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs commonEmitCXXMemberOrOperatorCall( 28 CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) { 31 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 32 isa<CXXOperatorCallExpr>(CE)); 33 assert(MD->isInstance() && 34 "Trying to emit a member or operator call expr on a static method!"); 35 36 // C++11 [class.mfct.non-static]p2: 37 // If a non-static member function of a class X is called for an object that 38 // is not of type X, or of a type derived from X, the behavior is undefined. 39 SourceLocation CallLoc; 40 if (CE) 41 CallLoc = CE->getExprLoc(); 42 CGF.EmitTypeCheck( 43 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall 44 : CodeGenFunction::TCK_MemberCall, 45 CallLoc, This, CGF.getContext().getRecordType(MD->getParent())); 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(CGF.getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 if (CE) { 60 // Special case: skip first argument of CXXOperatorCall (it is "this"). 61 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 62 CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(), 63 CE->getDirectCallee()); 64 } else { 65 assert( 66 FPT->getNumParams() == 0 && 67 "No CallExpr specified for function with non-zero number of arguments"); 68 } 69 return required; 70 } 71 72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 73 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 75 const CallExpr *CE) { 76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 77 CallArgList Args; 78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 79 *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE, 80 Args); 81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 82 Callee, ReturnValue, Args, MD); 83 } 84 85 RValue CodeGenFunction::EmitCXXStructorCall( 86 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 87 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 88 const CallExpr *CE, StructorType Type) { 89 CallArgList Args; 90 commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This, 91 ImplicitParam, ImplicitParamTy, CE, Args); 92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type), 93 Callee, ReturnValue, Args, MD); 94 } 95 96 static CXXRecordDecl *getCXXRecord(const Expr *E) { 97 QualType T = E->getType(); 98 if (const PointerType *PTy = T->getAs<PointerType>()) 99 T = PTy->getPointeeType(); 100 const RecordType *Ty = T->castAs<RecordType>(); 101 return cast<CXXRecordDecl>(Ty->getDecl()); 102 } 103 104 // Note: This function also emit constructor calls to support a MSVC 105 // extensions allowing explicit constructor function call. 106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 107 ReturnValueSlot ReturnValue) { 108 const Expr *callee = CE->getCallee()->IgnoreParens(); 109 110 if (isa<BinaryOperator>(callee)) 111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 112 113 const MemberExpr *ME = cast<MemberExpr>(callee); 114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 115 116 if (MD->isStatic()) { 117 // The method is static, emit it as we would a regular call. 118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 120 ReturnValue); 121 } 122 123 bool HasQualifier = ME->hasQualifier(); 124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 125 bool IsArrow = ME->isArrow(); 126 const Expr *Base = ME->getBase(); 127 128 return EmitCXXMemberOrOperatorMemberCallExpr( 129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 130 } 131 132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 135 const Expr *Base) { 136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 137 138 // Compute the object pointer. 139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 140 141 const CXXMethodDecl *DevirtualizedMethod = nullptr; 142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 145 assert(DevirtualizedMethod); 146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 147 const Expr *Inner = Base->ignoreParenBaseCasts(); 148 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 149 MD->getReturnType().getCanonicalType()) 150 // If the return types are not the same, this might be a case where more 151 // code needs to run to compensate for it. For example, the derived 152 // method might return a type that inherits form from the return 153 // type of MD and has a prefix. 154 // For now we just avoid devirtualizing these covariant cases. 155 DevirtualizedMethod = nullptr; 156 else if (getCXXRecord(Inner) == DevirtualizedClass) 157 // If the class of the Inner expression is where the dynamic method 158 // is defined, build the this pointer from it. 159 Base = Inner; 160 else if (getCXXRecord(Base) != DevirtualizedClass) { 161 // If the method is defined in a class that is not the best dynamic 162 // one or the one of the full expression, we would have to build 163 // a derived-to-base cast to compute the correct this pointer, but 164 // we don't have support for that yet, so do a virtual call. 165 DevirtualizedMethod = nullptr; 166 } 167 } 168 169 llvm::Value *This; 170 if (IsArrow) 171 This = EmitScalarExpr(Base); 172 else 173 This = EmitLValue(Base).getAddress(); 174 175 176 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 178 if (isa<CXXConstructorDecl>(MD) && 179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 180 return RValue::get(nullptr); 181 182 if (!MD->getParent()->mayInsertExtraPadding()) { 183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 184 // We don't like to generate the trivial copy/move assignment operator 185 // when it isn't necessary; just produce the proper effect here. 186 // Special case: skip first argument of CXXOperatorCall (it is "this"). 187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 188 llvm::Value *RHS = 189 EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress(); 190 EmitAggregateAssign(This, RHS, CE->getType()); 191 return RValue::get(This); 192 } 193 194 if (isa<CXXConstructorDecl>(MD) && 195 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 196 // Trivial move and copy ctor are the same. 197 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 198 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 199 EmitAggregateCopy(This, RHS, CE->arg_begin()->getType()); 200 return RValue::get(This); 201 } 202 llvm_unreachable("unknown trivial member function"); 203 } 204 } 205 206 // Compute the function type we're calling. 207 const CXXMethodDecl *CalleeDecl = 208 DevirtualizedMethod ? DevirtualizedMethod : MD; 209 const CGFunctionInfo *FInfo = nullptr; 210 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 211 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 212 Dtor, StructorType::Complete); 213 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 214 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 215 Ctor, StructorType::Complete); 216 else 217 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 218 219 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 220 221 // C++ [class.virtual]p12: 222 // Explicit qualification with the scope operator (5.1) suppresses the 223 // virtual call mechanism. 224 // 225 // We also don't emit a virtual call if the base expression has a record type 226 // because then we know what the type is. 227 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 228 llvm::Value *Callee; 229 230 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 231 assert(CE->arg_begin() == CE->arg_end() && 232 "Destructor shouldn't have explicit parameters"); 233 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 234 if (UseVirtualCall) { 235 CGM.getCXXABI().EmitVirtualDestructorCall( 236 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 237 } else { 238 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 239 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 240 else if (!DevirtualizedMethod) 241 Callee = 242 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 243 else { 244 const CXXDestructorDecl *DDtor = 245 cast<CXXDestructorDecl>(DevirtualizedMethod); 246 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 247 } 248 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This, 249 /*ImplicitParam=*/nullptr, QualType(), CE); 250 } 251 return RValue::get(nullptr); 252 } 253 254 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 255 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 256 } else if (UseVirtualCall) { 257 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 258 CE->getLocStart()); 259 } else { 260 if (SanOpts.has(SanitizerKind::CFINVCall) && 261 MD->getParent()->isDynamicClass()) { 262 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy); 263 EmitVTablePtrCheckForCall(MD, VTable, CFITCK_NVCall, CE->getLocStart()); 264 } 265 266 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 267 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 268 else if (!DevirtualizedMethod) 269 Callee = CGM.GetAddrOfFunction(MD, Ty); 270 else { 271 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 272 } 273 } 274 275 if (MD->isVirtual()) { 276 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 277 *this, MD, This, UseVirtualCall); 278 } 279 280 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This, 281 /*ImplicitParam=*/nullptr, QualType(), CE); 282 } 283 284 RValue 285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 286 ReturnValueSlot ReturnValue) { 287 const BinaryOperator *BO = 288 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 289 const Expr *BaseExpr = BO->getLHS(); 290 const Expr *MemFnExpr = BO->getRHS(); 291 292 const MemberPointerType *MPT = 293 MemFnExpr->getType()->castAs<MemberPointerType>(); 294 295 const FunctionProtoType *FPT = 296 MPT->getPointeeType()->castAs<FunctionProtoType>(); 297 const CXXRecordDecl *RD = 298 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 299 300 // Get the member function pointer. 301 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 302 303 // Emit the 'this' pointer. 304 llvm::Value *This; 305 306 if (BO->getOpcode() == BO_PtrMemI) 307 This = EmitScalarExpr(BaseExpr); 308 else 309 This = EmitLValue(BaseExpr).getAddress(); 310 311 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 312 QualType(MPT->getClass(), 0)); 313 314 // Ask the ABI to load the callee. Note that This is modified. 315 llvm::Value *Callee = 316 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT); 317 318 CallArgList Args; 319 320 QualType ThisType = 321 getContext().getPointerType(getContext().getTagDeclType(RD)); 322 323 // Push the this ptr. 324 Args.add(RValue::get(This), ThisType); 325 326 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 327 328 // And the rest of the call args 329 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee()); 330 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 331 Callee, ReturnValue, Args); 332 } 333 334 RValue 335 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 336 const CXXMethodDecl *MD, 337 ReturnValueSlot ReturnValue) { 338 assert(MD->isInstance() && 339 "Trying to emit a member call expr on a static method!"); 340 return EmitCXXMemberOrOperatorMemberCallExpr( 341 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 342 /*IsArrow=*/false, E->getArg(0)); 343 } 344 345 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 346 ReturnValueSlot ReturnValue) { 347 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 348 } 349 350 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 351 llvm::Value *DestPtr, 352 const CXXRecordDecl *Base) { 353 if (Base->isEmpty()) 354 return; 355 356 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 357 358 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 359 CharUnits Size = Layout.getNonVirtualSize(); 360 CharUnits Align = Layout.getNonVirtualAlignment(); 361 362 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 363 364 // If the type contains a pointer to data member we can't memset it to zero. 365 // Instead, create a null constant and copy it to the destination. 366 // TODO: there are other patterns besides zero that we can usefully memset, 367 // like -1, which happens to be the pattern used by member-pointers. 368 // TODO: isZeroInitializable can be over-conservative in the case where a 369 // virtual base contains a member pointer. 370 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 371 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 372 373 llvm::GlobalVariable *NullVariable = 374 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 375 /*isConstant=*/true, 376 llvm::GlobalVariable::PrivateLinkage, 377 NullConstant, Twine()); 378 NullVariable->setAlignment(Align.getQuantity()); 379 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 380 381 // Get and call the appropriate llvm.memcpy overload. 382 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 383 return; 384 } 385 386 // Otherwise, just memset the whole thing to zero. This is legal 387 // because in LLVM, all default initializers (other than the ones we just 388 // handled above) are guaranteed to have a bit pattern of all zeros. 389 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 390 Align.getQuantity()); 391 } 392 393 void 394 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 395 AggValueSlot Dest) { 396 assert(!Dest.isIgnored() && "Must have a destination!"); 397 const CXXConstructorDecl *CD = E->getConstructor(); 398 399 // If we require zero initialization before (or instead of) calling the 400 // constructor, as can be the case with a non-user-provided default 401 // constructor, emit the zero initialization now, unless destination is 402 // already zeroed. 403 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 404 switch (E->getConstructionKind()) { 405 case CXXConstructExpr::CK_Delegating: 406 case CXXConstructExpr::CK_Complete: 407 EmitNullInitialization(Dest.getAddr(), E->getType()); 408 break; 409 case CXXConstructExpr::CK_VirtualBase: 410 case CXXConstructExpr::CK_NonVirtualBase: 411 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 412 break; 413 } 414 } 415 416 // If this is a call to a trivial default constructor, do nothing. 417 if (CD->isTrivial() && CD->isDefaultConstructor()) 418 return; 419 420 // Elide the constructor if we're constructing from a temporary. 421 // The temporary check is required because Sema sets this on NRVO 422 // returns. 423 if (getLangOpts().ElideConstructors && E->isElidable()) { 424 assert(getContext().hasSameUnqualifiedType(E->getType(), 425 E->getArg(0)->getType())); 426 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 427 EmitAggExpr(E->getArg(0), Dest); 428 return; 429 } 430 } 431 432 if (const ConstantArrayType *arrayType 433 = getContext().getAsConstantArrayType(E->getType())) { 434 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E); 435 } else { 436 CXXCtorType Type = Ctor_Complete; 437 bool ForVirtualBase = false; 438 bool Delegating = false; 439 440 switch (E->getConstructionKind()) { 441 case CXXConstructExpr::CK_Delegating: 442 // We should be emitting a constructor; GlobalDecl will assert this 443 Type = CurGD.getCtorType(); 444 Delegating = true; 445 break; 446 447 case CXXConstructExpr::CK_Complete: 448 Type = Ctor_Complete; 449 break; 450 451 case CXXConstructExpr::CK_VirtualBase: 452 ForVirtualBase = true; 453 // fall-through 454 455 case CXXConstructExpr::CK_NonVirtualBase: 456 Type = Ctor_Base; 457 } 458 459 // Call the constructor. 460 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 461 E); 462 } 463 } 464 465 void 466 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 467 llvm::Value *Src, 468 const Expr *Exp) { 469 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 470 Exp = E->getSubExpr(); 471 assert(isa<CXXConstructExpr>(Exp) && 472 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 473 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 474 const CXXConstructorDecl *CD = E->getConstructor(); 475 RunCleanupsScope Scope(*this); 476 477 // If we require zero initialization before (or instead of) calling the 478 // constructor, as can be the case with a non-user-provided default 479 // constructor, emit the zero initialization now. 480 // FIXME. Do I still need this for a copy ctor synthesis? 481 if (E->requiresZeroInitialization()) 482 EmitNullInitialization(Dest, E->getType()); 483 484 assert(!getContext().getAsConstantArrayType(E->getType()) 485 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 486 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 487 } 488 489 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 490 const CXXNewExpr *E) { 491 if (!E->isArray()) 492 return CharUnits::Zero(); 493 494 // No cookie is required if the operator new[] being used is the 495 // reserved placement operator new[]. 496 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 497 return CharUnits::Zero(); 498 499 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 500 } 501 502 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 503 const CXXNewExpr *e, 504 unsigned minElements, 505 llvm::Value *&numElements, 506 llvm::Value *&sizeWithoutCookie) { 507 QualType type = e->getAllocatedType(); 508 509 if (!e->isArray()) { 510 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 511 sizeWithoutCookie 512 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 513 return sizeWithoutCookie; 514 } 515 516 // The width of size_t. 517 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 518 519 // Figure out the cookie size. 520 llvm::APInt cookieSize(sizeWidth, 521 CalculateCookiePadding(CGF, e).getQuantity()); 522 523 // Emit the array size expression. 524 // We multiply the size of all dimensions for NumElements. 525 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 526 numElements = CGF.EmitScalarExpr(e->getArraySize()); 527 assert(isa<llvm::IntegerType>(numElements->getType())); 528 529 // The number of elements can be have an arbitrary integer type; 530 // essentially, we need to multiply it by a constant factor, add a 531 // cookie size, and verify that the result is representable as a 532 // size_t. That's just a gloss, though, and it's wrong in one 533 // important way: if the count is negative, it's an error even if 534 // the cookie size would bring the total size >= 0. 535 bool isSigned 536 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 537 llvm::IntegerType *numElementsType 538 = cast<llvm::IntegerType>(numElements->getType()); 539 unsigned numElementsWidth = numElementsType->getBitWidth(); 540 541 // Compute the constant factor. 542 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 543 while (const ConstantArrayType *CAT 544 = CGF.getContext().getAsConstantArrayType(type)) { 545 type = CAT->getElementType(); 546 arraySizeMultiplier *= CAT->getSize(); 547 } 548 549 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 550 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 551 typeSizeMultiplier *= arraySizeMultiplier; 552 553 // This will be a size_t. 554 llvm::Value *size; 555 556 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 557 // Don't bloat the -O0 code. 558 if (llvm::ConstantInt *numElementsC = 559 dyn_cast<llvm::ConstantInt>(numElements)) { 560 const llvm::APInt &count = numElementsC->getValue(); 561 562 bool hasAnyOverflow = false; 563 564 // If 'count' was a negative number, it's an overflow. 565 if (isSigned && count.isNegative()) 566 hasAnyOverflow = true; 567 568 // We want to do all this arithmetic in size_t. If numElements is 569 // wider than that, check whether it's already too big, and if so, 570 // overflow. 571 else if (numElementsWidth > sizeWidth && 572 numElementsWidth - sizeWidth > count.countLeadingZeros()) 573 hasAnyOverflow = true; 574 575 // Okay, compute a count at the right width. 576 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 577 578 // If there is a brace-initializer, we cannot allocate fewer elements than 579 // there are initializers. If we do, that's treated like an overflow. 580 if (adjustedCount.ult(minElements)) 581 hasAnyOverflow = true; 582 583 // Scale numElements by that. This might overflow, but we don't 584 // care because it only overflows if allocationSize does, too, and 585 // if that overflows then we shouldn't use this. 586 numElements = llvm::ConstantInt::get(CGF.SizeTy, 587 adjustedCount * arraySizeMultiplier); 588 589 // Compute the size before cookie, and track whether it overflowed. 590 bool overflow; 591 llvm::APInt allocationSize 592 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 593 hasAnyOverflow |= overflow; 594 595 // Add in the cookie, and check whether it's overflowed. 596 if (cookieSize != 0) { 597 // Save the current size without a cookie. This shouldn't be 598 // used if there was overflow. 599 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 600 601 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 602 hasAnyOverflow |= overflow; 603 } 604 605 // On overflow, produce a -1 so operator new will fail. 606 if (hasAnyOverflow) { 607 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 608 } else { 609 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 610 } 611 612 // Otherwise, we might need to use the overflow intrinsics. 613 } else { 614 // There are up to five conditions we need to test for: 615 // 1) if isSigned, we need to check whether numElements is negative; 616 // 2) if numElementsWidth > sizeWidth, we need to check whether 617 // numElements is larger than something representable in size_t; 618 // 3) if minElements > 0, we need to check whether numElements is smaller 619 // than that. 620 // 4) we need to compute 621 // sizeWithoutCookie := numElements * typeSizeMultiplier 622 // and check whether it overflows; and 623 // 5) if we need a cookie, we need to compute 624 // size := sizeWithoutCookie + cookieSize 625 // and check whether it overflows. 626 627 llvm::Value *hasOverflow = nullptr; 628 629 // If numElementsWidth > sizeWidth, then one way or another, we're 630 // going to have to do a comparison for (2), and this happens to 631 // take care of (1), too. 632 if (numElementsWidth > sizeWidth) { 633 llvm::APInt threshold(numElementsWidth, 1); 634 threshold <<= sizeWidth; 635 636 llvm::Value *thresholdV 637 = llvm::ConstantInt::get(numElementsType, threshold); 638 639 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 640 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 641 642 // Otherwise, if we're signed, we want to sext up to size_t. 643 } else if (isSigned) { 644 if (numElementsWidth < sizeWidth) 645 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 646 647 // If there's a non-1 type size multiplier, then we can do the 648 // signedness check at the same time as we do the multiply 649 // because a negative number times anything will cause an 650 // unsigned overflow. Otherwise, we have to do it here. But at least 651 // in this case, we can subsume the >= minElements check. 652 if (typeSizeMultiplier == 1) 653 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 654 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 655 656 // Otherwise, zext up to size_t if necessary. 657 } else if (numElementsWidth < sizeWidth) { 658 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 659 } 660 661 assert(numElements->getType() == CGF.SizeTy); 662 663 if (minElements) { 664 // Don't allow allocation of fewer elements than we have initializers. 665 if (!hasOverflow) { 666 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 667 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 668 } else if (numElementsWidth > sizeWidth) { 669 // The other existing overflow subsumes this check. 670 // We do an unsigned comparison, since any signed value < -1 is 671 // taken care of either above or below. 672 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 673 CGF.Builder.CreateICmpULT(numElements, 674 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 675 } 676 } 677 678 size = numElements; 679 680 // Multiply by the type size if necessary. This multiplier 681 // includes all the factors for nested arrays. 682 // 683 // This step also causes numElements to be scaled up by the 684 // nested-array factor if necessary. Overflow on this computation 685 // can be ignored because the result shouldn't be used if 686 // allocation fails. 687 if (typeSizeMultiplier != 1) { 688 llvm::Value *umul_with_overflow 689 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 690 691 llvm::Value *tsmV = 692 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 693 llvm::Value *result = 694 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 695 696 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 697 if (hasOverflow) 698 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 699 else 700 hasOverflow = overflowed; 701 702 size = CGF.Builder.CreateExtractValue(result, 0); 703 704 // Also scale up numElements by the array size multiplier. 705 if (arraySizeMultiplier != 1) { 706 // If the base element type size is 1, then we can re-use the 707 // multiply we just did. 708 if (typeSize.isOne()) { 709 assert(arraySizeMultiplier == typeSizeMultiplier); 710 numElements = size; 711 712 // Otherwise we need a separate multiply. 713 } else { 714 llvm::Value *asmV = 715 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 716 numElements = CGF.Builder.CreateMul(numElements, asmV); 717 } 718 } 719 } else { 720 // numElements doesn't need to be scaled. 721 assert(arraySizeMultiplier == 1); 722 } 723 724 // Add in the cookie size if necessary. 725 if (cookieSize != 0) { 726 sizeWithoutCookie = size; 727 728 llvm::Value *uadd_with_overflow 729 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 730 731 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 732 llvm::Value *result = 733 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 734 735 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 736 if (hasOverflow) 737 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 738 else 739 hasOverflow = overflowed; 740 741 size = CGF.Builder.CreateExtractValue(result, 0); 742 } 743 744 // If we had any possibility of dynamic overflow, make a select to 745 // overwrite 'size' with an all-ones value, which should cause 746 // operator new to throw. 747 if (hasOverflow) 748 size = CGF.Builder.CreateSelect(hasOverflow, 749 llvm::Constant::getAllOnesValue(CGF.SizeTy), 750 size); 751 } 752 753 if (cookieSize == 0) 754 sizeWithoutCookie = size; 755 else 756 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 757 758 return size; 759 } 760 761 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 762 QualType AllocType, llvm::Value *NewPtr) { 763 // FIXME: Refactor with EmitExprAsInit. 764 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 765 switch (CGF.getEvaluationKind(AllocType)) { 766 case TEK_Scalar: 767 CGF.EmitScalarInit(Init, nullptr, 768 CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false); 769 return; 770 case TEK_Complex: 771 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 772 Alignment), 773 /*isInit*/ true); 774 return; 775 case TEK_Aggregate: { 776 AggValueSlot Slot 777 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 778 AggValueSlot::IsDestructed, 779 AggValueSlot::DoesNotNeedGCBarriers, 780 AggValueSlot::IsNotAliased); 781 CGF.EmitAggExpr(Init, Slot); 782 return; 783 } 784 } 785 llvm_unreachable("bad evaluation kind"); 786 } 787 788 void CodeGenFunction::EmitNewArrayInitializer( 789 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 790 llvm::Value *BeginPtr, llvm::Value *NumElements, 791 llvm::Value *AllocSizeWithoutCookie) { 792 // If we have a type with trivial initialization and no initializer, 793 // there's nothing to do. 794 if (!E->hasInitializer()) 795 return; 796 797 llvm::Value *CurPtr = BeginPtr; 798 799 unsigned InitListElements = 0; 800 801 const Expr *Init = E->getInitializer(); 802 llvm::AllocaInst *EndOfInit = nullptr; 803 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 804 EHScopeStack::stable_iterator Cleanup; 805 llvm::Instruction *CleanupDominator = nullptr; 806 807 // If the initializer is an initializer list, first do the explicit elements. 808 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 809 InitListElements = ILE->getNumInits(); 810 811 // If this is a multi-dimensional array new, we will initialize multiple 812 // elements with each init list element. 813 QualType AllocType = E->getAllocatedType(); 814 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 815 AllocType->getAsArrayTypeUnsafe())) { 816 unsigned AS = CurPtr->getType()->getPointerAddressSpace(); 817 ElementTy = ConvertTypeForMem(AllocType); 818 llvm::Type *AllocPtrTy = ElementTy->getPointerTo(AS); 819 CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy); 820 InitListElements *= getContext().getConstantArrayElementCount(CAT); 821 } 822 823 // Enter a partial-destruction Cleanup if necessary. 824 if (needsEHCleanup(DtorKind)) { 825 // In principle we could tell the Cleanup where we are more 826 // directly, but the control flow can get so varied here that it 827 // would actually be quite complex. Therefore we go through an 828 // alloca. 829 EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end"); 830 CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit); 831 pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType, 832 getDestroyer(DtorKind)); 833 Cleanup = EHStack.stable_begin(); 834 } 835 836 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 837 // Tell the cleanup that it needs to destroy up to this 838 // element. TODO: some of these stores can be trivially 839 // observed to be unnecessary. 840 if (EndOfInit) 841 Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()), 842 EndOfInit); 843 // FIXME: If the last initializer is an incomplete initializer list for 844 // an array, and we have an array filler, we can fold together the two 845 // initialization loops. 846 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 847 ILE->getInit(i)->getType(), CurPtr); 848 CurPtr = Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1, 849 "array.exp.next"); 850 } 851 852 // The remaining elements are filled with the array filler expression. 853 Init = ILE->getArrayFiller(); 854 855 // Extract the initializer for the individual array elements by pulling 856 // out the array filler from all the nested initializer lists. This avoids 857 // generating a nested loop for the initialization. 858 while (Init && Init->getType()->isConstantArrayType()) { 859 auto *SubILE = dyn_cast<InitListExpr>(Init); 860 if (!SubILE) 861 break; 862 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 863 Init = SubILE->getArrayFiller(); 864 } 865 866 // Switch back to initializing one base element at a time. 867 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType()); 868 } 869 870 // Attempt to perform zero-initialization using memset. 871 auto TryMemsetInitialization = [&]() -> bool { 872 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 873 // we can initialize with a memset to -1. 874 if (!CGM.getTypes().isZeroInitializable(ElementType)) 875 return false; 876 877 // Optimization: since zero initialization will just set the memory 878 // to all zeroes, generate a single memset to do it in one shot. 879 880 // Subtract out the size of any elements we've already initialized. 881 auto *RemainingSize = AllocSizeWithoutCookie; 882 if (InitListElements) { 883 // We know this can't overflow; we check this when doing the allocation. 884 auto *InitializedSize = llvm::ConstantInt::get( 885 RemainingSize->getType(), 886 getContext().getTypeSizeInChars(ElementType).getQuantity() * 887 InitListElements); 888 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 889 } 890 891 // Create the memset. 892 CharUnits Alignment = getContext().getTypeAlignInChars(ElementType); 893 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, 894 Alignment.getQuantity(), false); 895 return true; 896 }; 897 898 // If all elements have already been initialized, skip any further 899 // initialization. 900 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 901 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 902 // If there was a Cleanup, deactivate it. 903 if (CleanupDominator) 904 DeactivateCleanupBlock(Cleanup, CleanupDominator); 905 return; 906 } 907 908 assert(Init && "have trailing elements to initialize but no initializer"); 909 910 // If this is a constructor call, try to optimize it out, and failing that 911 // emit a single loop to initialize all remaining elements. 912 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 913 CXXConstructorDecl *Ctor = CCE->getConstructor(); 914 if (Ctor->isTrivial()) { 915 // If new expression did not specify value-initialization, then there 916 // is no initialization. 917 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 918 return; 919 920 if (TryMemsetInitialization()) 921 return; 922 } 923 924 // Store the new Cleanup position for irregular Cleanups. 925 // 926 // FIXME: Share this cleanup with the constructor call emission rather than 927 // having it create a cleanup of its own. 928 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 929 930 // Emit a constructor call loop to initialize the remaining elements. 931 if (InitListElements) 932 NumElements = Builder.CreateSub( 933 NumElements, 934 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 935 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 936 CCE->requiresZeroInitialization()); 937 return; 938 } 939 940 // If this is value-initialization, we can usually use memset. 941 ImplicitValueInitExpr IVIE(ElementType); 942 if (isa<ImplicitValueInitExpr>(Init)) { 943 if (TryMemsetInitialization()) 944 return; 945 946 // Switch to an ImplicitValueInitExpr for the element type. This handles 947 // only one case: multidimensional array new of pointers to members. In 948 // all other cases, we already have an initializer for the array element. 949 Init = &IVIE; 950 } 951 952 // At this point we should have found an initializer for the individual 953 // elements of the array. 954 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 955 "got wrong type of element to initialize"); 956 957 // If we have an empty initializer list, we can usually use memset. 958 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 959 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 960 return; 961 962 // If we have a struct whose every field is value-initialized, we can 963 // usually use memset. 964 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 965 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 966 if (RType->getDecl()->isStruct()) { 967 unsigned NumFields = 0; 968 for (auto *Field : RType->getDecl()->fields()) 969 if (!Field->isUnnamedBitfield()) 970 ++NumFields; 971 if (ILE->getNumInits() == NumFields) 972 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 973 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 974 --NumFields; 975 if (ILE->getNumInits() == NumFields && TryMemsetInitialization()) 976 return; 977 } 978 } 979 } 980 981 // Create the loop blocks. 982 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 983 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 984 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 985 986 // Find the end of the array, hoisted out of the loop. 987 llvm::Value *EndPtr = 988 Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end"); 989 990 // If the number of elements isn't constant, we have to now check if there is 991 // anything left to initialize. 992 if (!ConstNum) { 993 llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr, 994 "array.isempty"); 995 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 996 } 997 998 // Enter the loop. 999 EmitBlock(LoopBB); 1000 1001 // Set up the current-element phi. 1002 llvm::PHINode *CurPtrPhi = 1003 Builder.CreatePHI(CurPtr->getType(), 2, "array.cur"); 1004 CurPtrPhi->addIncoming(CurPtr, EntryBB); 1005 CurPtr = CurPtrPhi; 1006 1007 // Store the new Cleanup position for irregular Cleanups. 1008 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 1009 1010 // Enter a partial-destruction Cleanup if necessary. 1011 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1012 pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType, 1013 getDestroyer(DtorKind)); 1014 Cleanup = EHStack.stable_begin(); 1015 CleanupDominator = Builder.CreateUnreachable(); 1016 } 1017 1018 // Emit the initializer into this element. 1019 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1020 1021 // Leave the Cleanup if we entered one. 1022 if (CleanupDominator) { 1023 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1024 CleanupDominator->eraseFromParent(); 1025 } 1026 1027 // Advance to the next element by adjusting the pointer type as necessary. 1028 llvm::Value *NextPtr = 1029 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1, "array.next"); 1030 1031 // Check whether we've gotten to the end of the array and, if so, 1032 // exit the loop. 1033 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1034 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1035 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1036 1037 EmitBlock(ContBB); 1038 } 1039 1040 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1041 QualType ElementType, llvm::Type *ElementTy, 1042 llvm::Value *NewPtr, llvm::Value *NumElements, 1043 llvm::Value *AllocSizeWithoutCookie) { 1044 ApplyDebugLocation DL(CGF, E); 1045 if (E->isArray()) 1046 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1047 AllocSizeWithoutCookie); 1048 else if (const Expr *Init = E->getInitializer()) 1049 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1050 } 1051 1052 /// Emit a call to an operator new or operator delete function, as implicitly 1053 /// created by new-expressions and delete-expressions. 1054 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1055 const FunctionDecl *Callee, 1056 const FunctionProtoType *CalleeType, 1057 const CallArgList &Args) { 1058 llvm::Instruction *CallOrInvoke; 1059 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1060 RValue RV = 1061 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1062 Args, CalleeType, /*chainCall=*/false), 1063 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1064 1065 /// C++1y [expr.new]p10: 1066 /// [In a new-expression,] an implementation is allowed to omit a call 1067 /// to a replaceable global allocation function. 1068 /// 1069 /// We model such elidable calls with the 'builtin' attribute. 1070 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1071 if (Callee->isReplaceableGlobalAllocationFunction() && 1072 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1073 // FIXME: Add addAttribute to CallSite. 1074 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1075 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1076 llvm::Attribute::Builtin); 1077 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1078 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1079 llvm::Attribute::Builtin); 1080 else 1081 llvm_unreachable("unexpected kind of call instruction"); 1082 } 1083 1084 return RV; 1085 } 1086 1087 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1088 const Expr *Arg, 1089 bool IsDelete) { 1090 CallArgList Args; 1091 const Stmt *ArgS = Arg; 1092 EmitCallArgs(Args, *Type->param_type_begin(), 1093 ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1)); 1094 // Find the allocation or deallocation function that we're calling. 1095 ASTContext &Ctx = getContext(); 1096 DeclarationName Name = Ctx.DeclarationNames 1097 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1098 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1099 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1100 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1101 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1102 llvm_unreachable("predeclared global operator new/delete is missing"); 1103 } 1104 1105 namespace { 1106 /// A cleanup to call the given 'operator delete' function upon 1107 /// abnormal exit from a new expression. 1108 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1109 size_t NumPlacementArgs; 1110 const FunctionDecl *OperatorDelete; 1111 llvm::Value *Ptr; 1112 llvm::Value *AllocSize; 1113 1114 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1115 1116 public: 1117 static size_t getExtraSize(size_t NumPlacementArgs) { 1118 return NumPlacementArgs * sizeof(RValue); 1119 } 1120 1121 CallDeleteDuringNew(size_t NumPlacementArgs, 1122 const FunctionDecl *OperatorDelete, 1123 llvm::Value *Ptr, 1124 llvm::Value *AllocSize) 1125 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1126 Ptr(Ptr), AllocSize(AllocSize) {} 1127 1128 void setPlacementArg(unsigned I, RValue Arg) { 1129 assert(I < NumPlacementArgs && "index out of range"); 1130 getPlacementArgs()[I] = Arg; 1131 } 1132 1133 void Emit(CodeGenFunction &CGF, Flags flags) override { 1134 const FunctionProtoType *FPT 1135 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1136 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1137 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1138 1139 CallArgList DeleteArgs; 1140 1141 // The first argument is always a void*. 1142 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1143 DeleteArgs.add(RValue::get(Ptr), *AI++); 1144 1145 // A member 'operator delete' can take an extra 'size_t' argument. 1146 if (FPT->getNumParams() == NumPlacementArgs + 2) 1147 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1148 1149 // Pass the rest of the arguments, which must match exactly. 1150 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1151 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1152 1153 // Call 'operator delete'. 1154 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1155 } 1156 }; 1157 1158 /// A cleanup to call the given 'operator delete' function upon 1159 /// abnormal exit from a new expression when the new expression is 1160 /// conditional. 1161 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1162 size_t NumPlacementArgs; 1163 const FunctionDecl *OperatorDelete; 1164 DominatingValue<RValue>::saved_type Ptr; 1165 DominatingValue<RValue>::saved_type AllocSize; 1166 1167 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1168 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1169 } 1170 1171 public: 1172 static size_t getExtraSize(size_t NumPlacementArgs) { 1173 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1174 } 1175 1176 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1177 const FunctionDecl *OperatorDelete, 1178 DominatingValue<RValue>::saved_type Ptr, 1179 DominatingValue<RValue>::saved_type AllocSize) 1180 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1181 Ptr(Ptr), AllocSize(AllocSize) {} 1182 1183 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1184 assert(I < NumPlacementArgs && "index out of range"); 1185 getPlacementArgs()[I] = Arg; 1186 } 1187 1188 void Emit(CodeGenFunction &CGF, Flags flags) override { 1189 const FunctionProtoType *FPT 1190 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1191 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1192 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1193 1194 CallArgList DeleteArgs; 1195 1196 // The first argument is always a void*. 1197 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1198 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1199 1200 // A member 'operator delete' can take an extra 'size_t' argument. 1201 if (FPT->getNumParams() == NumPlacementArgs + 2) { 1202 RValue RV = AllocSize.restore(CGF); 1203 DeleteArgs.add(RV, *AI++); 1204 } 1205 1206 // Pass the rest of the arguments, which must match exactly. 1207 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1208 RValue RV = getPlacementArgs()[I].restore(CGF); 1209 DeleteArgs.add(RV, *AI++); 1210 } 1211 1212 // Call 'operator delete'. 1213 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1214 } 1215 }; 1216 } 1217 1218 /// Enter a cleanup to call 'operator delete' if the initializer in a 1219 /// new-expression throws. 1220 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1221 const CXXNewExpr *E, 1222 llvm::Value *NewPtr, 1223 llvm::Value *AllocSize, 1224 const CallArgList &NewArgs) { 1225 // If we're not inside a conditional branch, then the cleanup will 1226 // dominate and we can do the easier (and more efficient) thing. 1227 if (!CGF.isInConditionalBranch()) { 1228 CallDeleteDuringNew *Cleanup = CGF.EHStack 1229 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1230 E->getNumPlacementArgs(), 1231 E->getOperatorDelete(), 1232 NewPtr, AllocSize); 1233 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1234 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1235 1236 return; 1237 } 1238 1239 // Otherwise, we need to save all this stuff. 1240 DominatingValue<RValue>::saved_type SavedNewPtr = 1241 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1242 DominatingValue<RValue>::saved_type SavedAllocSize = 1243 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1244 1245 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1246 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1247 E->getNumPlacementArgs(), 1248 E->getOperatorDelete(), 1249 SavedNewPtr, 1250 SavedAllocSize); 1251 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1252 Cleanup->setPlacementArg(I, 1253 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1254 1255 CGF.initFullExprCleanup(); 1256 } 1257 1258 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1259 // The element type being allocated. 1260 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1261 1262 // 1. Build a call to the allocation function. 1263 FunctionDecl *allocator = E->getOperatorNew(); 1264 const FunctionProtoType *allocatorType = 1265 allocator->getType()->castAs<FunctionProtoType>(); 1266 1267 CallArgList allocatorArgs; 1268 1269 // The allocation size is the first argument. 1270 QualType sizeType = getContext().getSizeType(); 1271 1272 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1273 unsigned minElements = 0; 1274 if (E->isArray() && E->hasInitializer()) { 1275 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1276 minElements = ILE->getNumInits(); 1277 } 1278 1279 llvm::Value *numElements = nullptr; 1280 llvm::Value *allocSizeWithoutCookie = nullptr; 1281 llvm::Value *allocSize = 1282 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1283 allocSizeWithoutCookie); 1284 1285 allocatorArgs.add(RValue::get(allocSize), sizeType); 1286 1287 // We start at 1 here because the first argument (the allocation size) 1288 // has already been emitted. 1289 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(), 1290 E->placement_arg_end(), /* CalleeDecl */ nullptr, 1291 /*ParamsToSkip*/ 1); 1292 1293 // Emit the allocation call. If the allocator is a global placement 1294 // operator, just "inline" it directly. 1295 RValue RV; 1296 if (allocator->isReservedGlobalPlacementOperator()) { 1297 assert(allocatorArgs.size() == 2); 1298 RV = allocatorArgs[1].RV; 1299 // TODO: kill any unnecessary computations done for the size 1300 // argument. 1301 } else { 1302 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1303 } 1304 1305 // Emit a null check on the allocation result if the allocation 1306 // function is allowed to return null (because it has a non-throwing 1307 // exception spec or is the reserved placement new) and we have an 1308 // interesting initializer. 1309 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1310 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1311 1312 llvm::BasicBlock *nullCheckBB = nullptr; 1313 llvm::BasicBlock *contBB = nullptr; 1314 1315 llvm::Value *allocation = RV.getScalarVal(); 1316 unsigned AS = allocation->getType()->getPointerAddressSpace(); 1317 1318 // The null-check means that the initializer is conditionally 1319 // evaluated. 1320 ConditionalEvaluation conditional(*this); 1321 1322 if (nullCheck) { 1323 conditional.begin(*this); 1324 1325 nullCheckBB = Builder.GetInsertBlock(); 1326 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1327 contBB = createBasicBlock("new.cont"); 1328 1329 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1330 Builder.CreateCondBr(isNull, contBB, notNullBB); 1331 EmitBlock(notNullBB); 1332 } 1333 1334 // If there's an operator delete, enter a cleanup to call it if an 1335 // exception is thrown. 1336 EHScopeStack::stable_iterator operatorDeleteCleanup; 1337 llvm::Instruction *cleanupDominator = nullptr; 1338 if (E->getOperatorDelete() && 1339 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1340 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1341 operatorDeleteCleanup = EHStack.stable_begin(); 1342 cleanupDominator = Builder.CreateUnreachable(); 1343 } 1344 1345 assert((allocSize == allocSizeWithoutCookie) == 1346 CalculateCookiePadding(*this, E).isZero()); 1347 if (allocSize != allocSizeWithoutCookie) { 1348 assert(E->isArray()); 1349 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1350 numElements, 1351 E, allocType); 1352 } 1353 1354 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1355 llvm::Type *elementPtrTy = elementTy->getPointerTo(AS); 1356 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1357 1358 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1359 allocSizeWithoutCookie); 1360 if (E->isArray()) { 1361 // NewPtr is a pointer to the base element type. If we're 1362 // allocating an array of arrays, we'll need to cast back to the 1363 // array pointer type. 1364 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1365 if (result->getType() != resultType) 1366 result = Builder.CreateBitCast(result, resultType); 1367 } 1368 1369 // Deactivate the 'operator delete' cleanup if we finished 1370 // initialization. 1371 if (operatorDeleteCleanup.isValid()) { 1372 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1373 cleanupDominator->eraseFromParent(); 1374 } 1375 1376 if (nullCheck) { 1377 conditional.end(*this); 1378 1379 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1380 EmitBlock(contBB); 1381 1382 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1383 PHI->addIncoming(result, notNullBB); 1384 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1385 nullCheckBB); 1386 1387 result = PHI; 1388 } 1389 1390 return result; 1391 } 1392 1393 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1394 llvm::Value *Ptr, 1395 QualType DeleteTy) { 1396 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1397 1398 const FunctionProtoType *DeleteFTy = 1399 DeleteFD->getType()->getAs<FunctionProtoType>(); 1400 1401 CallArgList DeleteArgs; 1402 1403 // Check if we need to pass the size to the delete operator. 1404 llvm::Value *Size = nullptr; 1405 QualType SizeTy; 1406 if (DeleteFTy->getNumParams() == 2) { 1407 SizeTy = DeleteFTy->getParamType(1); 1408 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1409 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1410 DeleteTypeSize.getQuantity()); 1411 } 1412 1413 QualType ArgTy = DeleteFTy->getParamType(0); 1414 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1415 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1416 1417 if (Size) 1418 DeleteArgs.add(RValue::get(Size), SizeTy); 1419 1420 // Emit the call to delete. 1421 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1422 } 1423 1424 namespace { 1425 /// Calls the given 'operator delete' on a single object. 1426 struct CallObjectDelete : EHScopeStack::Cleanup { 1427 llvm::Value *Ptr; 1428 const FunctionDecl *OperatorDelete; 1429 QualType ElementType; 1430 1431 CallObjectDelete(llvm::Value *Ptr, 1432 const FunctionDecl *OperatorDelete, 1433 QualType ElementType) 1434 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1435 1436 void Emit(CodeGenFunction &CGF, Flags flags) override { 1437 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1438 } 1439 }; 1440 } 1441 1442 void 1443 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1444 llvm::Value *CompletePtr, 1445 QualType ElementType) { 1446 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1447 OperatorDelete, ElementType); 1448 } 1449 1450 /// Emit the code for deleting a single object. 1451 static void EmitObjectDelete(CodeGenFunction &CGF, 1452 const CXXDeleteExpr *DE, 1453 llvm::Value *Ptr, 1454 QualType ElementType) { 1455 // Find the destructor for the type, if applicable. If the 1456 // destructor is virtual, we'll just emit the vcall and return. 1457 const CXXDestructorDecl *Dtor = nullptr; 1458 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1459 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1460 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1461 Dtor = RD->getDestructor(); 1462 1463 if (Dtor->isVirtual()) { 1464 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1465 Dtor); 1466 return; 1467 } 1468 } 1469 } 1470 1471 // Make sure that we call delete even if the dtor throws. 1472 // This doesn't have to a conditional cleanup because we're going 1473 // to pop it off in a second. 1474 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1475 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1476 Ptr, OperatorDelete, ElementType); 1477 1478 if (Dtor) 1479 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1480 /*ForVirtualBase=*/false, 1481 /*Delegating=*/false, 1482 Ptr); 1483 else if (CGF.getLangOpts().ObjCAutoRefCount && 1484 ElementType->isObjCLifetimeType()) { 1485 switch (ElementType.getObjCLifetime()) { 1486 case Qualifiers::OCL_None: 1487 case Qualifiers::OCL_ExplicitNone: 1488 case Qualifiers::OCL_Autoreleasing: 1489 break; 1490 1491 case Qualifiers::OCL_Strong: { 1492 // Load the pointer value. 1493 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1494 ElementType.isVolatileQualified()); 1495 1496 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 1497 break; 1498 } 1499 1500 case Qualifiers::OCL_Weak: 1501 CGF.EmitARCDestroyWeak(Ptr); 1502 break; 1503 } 1504 } 1505 1506 CGF.PopCleanupBlock(); 1507 } 1508 1509 namespace { 1510 /// Calls the given 'operator delete' on an array of objects. 1511 struct CallArrayDelete : EHScopeStack::Cleanup { 1512 llvm::Value *Ptr; 1513 const FunctionDecl *OperatorDelete; 1514 llvm::Value *NumElements; 1515 QualType ElementType; 1516 CharUnits CookieSize; 1517 1518 CallArrayDelete(llvm::Value *Ptr, 1519 const FunctionDecl *OperatorDelete, 1520 llvm::Value *NumElements, 1521 QualType ElementType, 1522 CharUnits CookieSize) 1523 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1524 ElementType(ElementType), CookieSize(CookieSize) {} 1525 1526 void Emit(CodeGenFunction &CGF, Flags flags) override { 1527 const FunctionProtoType *DeleteFTy = 1528 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1529 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 1530 1531 CallArgList Args; 1532 1533 // Pass the pointer as the first argument. 1534 QualType VoidPtrTy = DeleteFTy->getParamType(0); 1535 llvm::Value *DeletePtr 1536 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1537 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1538 1539 // Pass the original requested size as the second argument. 1540 if (DeleteFTy->getNumParams() == 2) { 1541 QualType size_t = DeleteFTy->getParamType(1); 1542 llvm::IntegerType *SizeTy 1543 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1544 1545 CharUnits ElementTypeSize = 1546 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1547 1548 // The size of an element, multiplied by the number of elements. 1549 llvm::Value *Size 1550 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1551 if (NumElements) 1552 Size = CGF.Builder.CreateMul(Size, NumElements); 1553 1554 // Plus the size of the cookie if applicable. 1555 if (!CookieSize.isZero()) { 1556 llvm::Value *CookieSizeV 1557 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1558 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1559 } 1560 1561 Args.add(RValue::get(Size), size_t); 1562 } 1563 1564 // Emit the call to delete. 1565 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1566 } 1567 }; 1568 } 1569 1570 /// Emit the code for deleting an array of objects. 1571 static void EmitArrayDelete(CodeGenFunction &CGF, 1572 const CXXDeleteExpr *E, 1573 llvm::Value *deletedPtr, 1574 QualType elementType) { 1575 llvm::Value *numElements = nullptr; 1576 llvm::Value *allocatedPtr = nullptr; 1577 CharUnits cookieSize; 1578 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1579 numElements, allocatedPtr, cookieSize); 1580 1581 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1582 1583 // Make sure that we call delete even if one of the dtors throws. 1584 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1585 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1586 allocatedPtr, operatorDelete, 1587 numElements, elementType, 1588 cookieSize); 1589 1590 // Destroy the elements. 1591 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1592 assert(numElements && "no element count for a type with a destructor!"); 1593 1594 llvm::Value *arrayEnd = 1595 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1596 1597 // Note that it is legal to allocate a zero-length array, and we 1598 // can never fold the check away because the length should always 1599 // come from a cookie. 1600 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1601 CGF.getDestroyer(dtorKind), 1602 /*checkZeroLength*/ true, 1603 CGF.needsEHCleanup(dtorKind)); 1604 } 1605 1606 // Pop the cleanup block. 1607 CGF.PopCleanupBlock(); 1608 } 1609 1610 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1611 const Expr *Arg = E->getArgument(); 1612 llvm::Value *Ptr = EmitScalarExpr(Arg); 1613 1614 // Null check the pointer. 1615 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1616 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1617 1618 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1619 1620 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1621 EmitBlock(DeleteNotNull); 1622 1623 // We might be deleting a pointer to array. If so, GEP down to the 1624 // first non-array element. 1625 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1626 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1627 if (DeleteTy->isConstantArrayType()) { 1628 llvm::Value *Zero = Builder.getInt32(0); 1629 SmallVector<llvm::Value*,8> GEP; 1630 1631 GEP.push_back(Zero); // point at the outermost array 1632 1633 // For each layer of array type we're pointing at: 1634 while (const ConstantArrayType *Arr 1635 = getContext().getAsConstantArrayType(DeleteTy)) { 1636 // 1. Unpeel the array type. 1637 DeleteTy = Arr->getElementType(); 1638 1639 // 2. GEP to the first element of the array. 1640 GEP.push_back(Zero); 1641 } 1642 1643 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1644 } 1645 1646 assert(ConvertTypeForMem(DeleteTy) == 1647 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1648 1649 if (E->isArrayForm()) { 1650 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1651 } else { 1652 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1653 } 1654 1655 EmitBlock(DeleteEnd); 1656 } 1657 1658 static bool isGLValueFromPointerDeref(const Expr *E) { 1659 E = E->IgnoreParens(); 1660 1661 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1662 if (!CE->getSubExpr()->isGLValue()) 1663 return false; 1664 return isGLValueFromPointerDeref(CE->getSubExpr()); 1665 } 1666 1667 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1668 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1669 1670 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1671 if (BO->getOpcode() == BO_Comma) 1672 return isGLValueFromPointerDeref(BO->getRHS()); 1673 1674 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1675 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1676 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1677 1678 // C++11 [expr.sub]p1: 1679 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1680 if (isa<ArraySubscriptExpr>(E)) 1681 return true; 1682 1683 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1684 if (UO->getOpcode() == UO_Deref) 1685 return true; 1686 1687 return false; 1688 } 1689 1690 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1691 llvm::Type *StdTypeInfoPtrTy) { 1692 // Get the vtable pointer. 1693 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1694 1695 // C++ [expr.typeid]p2: 1696 // If the glvalue expression is obtained by applying the unary * operator to 1697 // a pointer and the pointer is a null pointer value, the typeid expression 1698 // throws the std::bad_typeid exception. 1699 // 1700 // However, this paragraph's intent is not clear. We choose a very generous 1701 // interpretation which implores us to consider comma operators, conditional 1702 // operators, parentheses and other such constructs. 1703 QualType SrcRecordTy = E->getType(); 1704 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1705 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1706 llvm::BasicBlock *BadTypeidBlock = 1707 CGF.createBasicBlock("typeid.bad_typeid"); 1708 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1709 1710 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1711 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1712 1713 CGF.EmitBlock(BadTypeidBlock); 1714 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1715 CGF.EmitBlock(EndBlock); 1716 } 1717 1718 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1719 StdTypeInfoPtrTy); 1720 } 1721 1722 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1723 llvm::Type *StdTypeInfoPtrTy = 1724 ConvertType(E->getType())->getPointerTo(); 1725 1726 if (E->isTypeOperand()) { 1727 llvm::Constant *TypeInfo = 1728 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1729 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1730 } 1731 1732 // C++ [expr.typeid]p2: 1733 // When typeid is applied to a glvalue expression whose type is a 1734 // polymorphic class type, the result refers to a std::type_info object 1735 // representing the type of the most derived object (that is, the dynamic 1736 // type) to which the glvalue refers. 1737 if (E->isPotentiallyEvaluated()) 1738 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1739 StdTypeInfoPtrTy); 1740 1741 QualType OperandTy = E->getExprOperand()->getType(); 1742 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1743 StdTypeInfoPtrTy); 1744 } 1745 1746 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1747 QualType DestTy) { 1748 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1749 if (DestTy->isPointerType()) 1750 return llvm::Constant::getNullValue(DestLTy); 1751 1752 /// C++ [expr.dynamic.cast]p9: 1753 /// A failed cast to reference type throws std::bad_cast 1754 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1755 return nullptr; 1756 1757 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1758 return llvm::UndefValue::get(DestLTy); 1759 } 1760 1761 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1762 const CXXDynamicCastExpr *DCE) { 1763 QualType DestTy = DCE->getTypeAsWritten(); 1764 1765 if (DCE->isAlwaysNull()) 1766 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1767 return T; 1768 1769 QualType SrcTy = DCE->getSubExpr()->getType(); 1770 1771 // C++ [expr.dynamic.cast]p7: 1772 // If T is "pointer to cv void," then the result is a pointer to the most 1773 // derived object pointed to by v. 1774 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1775 1776 bool isDynamicCastToVoid; 1777 QualType SrcRecordTy; 1778 QualType DestRecordTy; 1779 if (DestPTy) { 1780 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1781 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1782 DestRecordTy = DestPTy->getPointeeType(); 1783 } else { 1784 isDynamicCastToVoid = false; 1785 SrcRecordTy = SrcTy; 1786 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1787 } 1788 1789 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1790 1791 // C++ [expr.dynamic.cast]p4: 1792 // If the value of v is a null pointer value in the pointer case, the result 1793 // is the null pointer value of type T. 1794 bool ShouldNullCheckSrcValue = 1795 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 1796 SrcRecordTy); 1797 1798 llvm::BasicBlock *CastNull = nullptr; 1799 llvm::BasicBlock *CastNotNull = nullptr; 1800 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1801 1802 if (ShouldNullCheckSrcValue) { 1803 CastNull = createBasicBlock("dynamic_cast.null"); 1804 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1805 1806 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1807 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1808 EmitBlock(CastNotNull); 1809 } 1810 1811 if (isDynamicCastToVoid) { 1812 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy, 1813 DestTy); 1814 } else { 1815 assert(DestRecordTy->isRecordType() && 1816 "destination type must be a record type!"); 1817 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy, 1818 DestTy, DestRecordTy, CastEnd); 1819 } 1820 1821 if (ShouldNullCheckSrcValue) { 1822 EmitBranch(CastEnd); 1823 1824 EmitBlock(CastNull); 1825 EmitBranch(CastEnd); 1826 } 1827 1828 EmitBlock(CastEnd); 1829 1830 if (ShouldNullCheckSrcValue) { 1831 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1832 PHI->addIncoming(Value, CastNotNull); 1833 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1834 1835 Value = PHI; 1836 } 1837 1838 return Value; 1839 } 1840 1841 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1842 RunCleanupsScope Scope(*this); 1843 LValue SlotLV = 1844 MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment()); 1845 1846 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1847 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1848 e = E->capture_init_end(); 1849 i != e; ++i, ++CurField) { 1850 // Emit initialization 1851 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1852 if (CurField->hasCapturedVLAType()) { 1853 auto VAT = CurField->getCapturedVLAType(); 1854 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1855 } else { 1856 ArrayRef<VarDecl *> ArrayIndexes; 1857 if (CurField->getType()->isArrayType()) 1858 ArrayIndexes = E->getCaptureInitIndexVars(i); 1859 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1860 } 1861 } 1862 } 1863