1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static RequiredArgs commonEmitCXXMemberOrOperatorCall(
28     CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee,
29     ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam,
30     QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) {
31   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
32          isa<CXXOperatorCallExpr>(CE));
33   assert(MD->isInstance() &&
34          "Trying to emit a member or operator call expr on a static method!");
35 
36   // C++11 [class.mfct.non-static]p2:
37   //   If a non-static member function of a class X is called for an object that
38   //   is not of type X, or of a type derived from X, the behavior is undefined.
39   SourceLocation CallLoc;
40   if (CE)
41     CallLoc = CE->getExprLoc();
42   CGF.EmitTypeCheck(
43       isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
44                                   : CodeGenFunction::TCK_MemberCall,
45       CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
46 
47   // Push the this ptr.
48   Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
49 
50   // If there is an implicit parameter (e.g. VTT), emit it.
51   if (ImplicitParam) {
52     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53   }
54 
55   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57 
58   // And the rest of the call args.
59   if (CE) {
60     // Special case: skip first argument of CXXOperatorCall (it is "this").
61     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
62     CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(),
63                      CE->getDirectCallee());
64   } else {
65     assert(
66         FPT->getNumParams() == 0 &&
67         "No CallExpr specified for function with non-zero number of arguments");
68   }
69   return required;
70 }
71 
72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
73     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
74     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
75     const CallExpr *CE) {
76   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
77   CallArgList Args;
78   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
79       *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE,
80       Args);
81   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
82                   Callee, ReturnValue, Args, MD);
83 }
84 
85 RValue CodeGenFunction::EmitCXXStructorCall(
86     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
87     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
88     const CallExpr *CE, StructorType Type) {
89   CallArgList Args;
90   commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This,
91                                     ImplicitParam, ImplicitParamTy, CE, Args);
92   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type),
93                   Callee, ReturnValue, Args, MD);
94 }
95 
96 static CXXRecordDecl *getCXXRecord(const Expr *E) {
97   QualType T = E->getType();
98   if (const PointerType *PTy = T->getAs<PointerType>())
99     T = PTy->getPointeeType();
100   const RecordType *Ty = T->castAs<RecordType>();
101   return cast<CXXRecordDecl>(Ty->getDecl());
102 }
103 
104 // Note: This function also emit constructor calls to support a MSVC
105 // extensions allowing explicit constructor function call.
106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
107                                               ReturnValueSlot ReturnValue) {
108   const Expr *callee = CE->getCallee()->IgnoreParens();
109 
110   if (isa<BinaryOperator>(callee))
111     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
112 
113   const MemberExpr *ME = cast<MemberExpr>(callee);
114   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
115 
116   if (MD->isStatic()) {
117     // The method is static, emit it as we would a regular call.
118     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
119     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
120                     ReturnValue);
121   }
122 
123   bool HasQualifier = ME->hasQualifier();
124   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
125   bool IsArrow = ME->isArrow();
126   const Expr *Base = ME->getBase();
127 
128   return EmitCXXMemberOrOperatorMemberCallExpr(
129       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
130 }
131 
132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
133     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
134     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
135     const Expr *Base) {
136   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
137 
138   // Compute the object pointer.
139   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
140 
141   const CXXMethodDecl *DevirtualizedMethod = nullptr;
142   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
143     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
144     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
145     assert(DevirtualizedMethod);
146     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
147     const Expr *Inner = Base->ignoreParenBaseCasts();
148     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
149         MD->getReturnType().getCanonicalType())
150       // If the return types are not the same, this might be a case where more
151       // code needs to run to compensate for it. For example, the derived
152       // method might return a type that inherits form from the return
153       // type of MD and has a prefix.
154       // For now we just avoid devirtualizing these covariant cases.
155       DevirtualizedMethod = nullptr;
156     else if (getCXXRecord(Inner) == DevirtualizedClass)
157       // If the class of the Inner expression is where the dynamic method
158       // is defined, build the this pointer from it.
159       Base = Inner;
160     else if (getCXXRecord(Base) != DevirtualizedClass) {
161       // If the method is defined in a class that is not the best dynamic
162       // one or the one of the full expression, we would have to build
163       // a derived-to-base cast to compute the correct this pointer, but
164       // we don't have support for that yet, so do a virtual call.
165       DevirtualizedMethod = nullptr;
166     }
167   }
168 
169   llvm::Value *This;
170   if (IsArrow)
171     This = EmitScalarExpr(Base);
172   else
173     This = EmitLValue(Base).getAddress();
174 
175 
176   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
177     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
178     if (isa<CXXConstructorDecl>(MD) &&
179         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
180       return RValue::get(nullptr);
181 
182     if (!MD->getParent()->mayInsertExtraPadding()) {
183       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
184         // We don't like to generate the trivial copy/move assignment operator
185         // when it isn't necessary; just produce the proper effect here.
186         // Special case: skip first argument of CXXOperatorCall (it is "this").
187         unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
188         llvm::Value *RHS =
189             EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
190         EmitAggregateAssign(This, RHS, CE->getType());
191         return RValue::get(This);
192       }
193 
194       if (isa<CXXConstructorDecl>(MD) &&
195           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
196         // Trivial move and copy ctor are the same.
197         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
198         llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
199         EmitAggregateCopy(This, RHS, CE->arg_begin()->getType());
200         return RValue::get(This);
201       }
202       llvm_unreachable("unknown trivial member function");
203     }
204   }
205 
206   // Compute the function type we're calling.
207   const CXXMethodDecl *CalleeDecl =
208       DevirtualizedMethod ? DevirtualizedMethod : MD;
209   const CGFunctionInfo *FInfo = nullptr;
210   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
211     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
212         Dtor, StructorType::Complete);
213   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
214     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
215         Ctor, StructorType::Complete);
216   else
217     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
218 
219   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
220 
221   // C++ [class.virtual]p12:
222   //   Explicit qualification with the scope operator (5.1) suppresses the
223   //   virtual call mechanism.
224   //
225   // We also don't emit a virtual call if the base expression has a record type
226   // because then we know what the type is.
227   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
228   llvm::Value *Callee;
229 
230   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
231     assert(CE->arg_begin() == CE->arg_end() &&
232            "Destructor shouldn't have explicit parameters");
233     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
234     if (UseVirtualCall) {
235       CGM.getCXXABI().EmitVirtualDestructorCall(
236           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
237     } else {
238       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
239         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
240       else if (!DevirtualizedMethod)
241         Callee =
242             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
243       else {
244         const CXXDestructorDecl *DDtor =
245           cast<CXXDestructorDecl>(DevirtualizedMethod);
246         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
247       }
248       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
249                                   /*ImplicitParam=*/nullptr, QualType(), CE);
250     }
251     return RValue::get(nullptr);
252   }
253 
254   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
255     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
256   } else if (UseVirtualCall) {
257     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
258                                                        CE->getLocStart());
259   } else {
260     if (SanOpts.has(SanitizerKind::CFINVCall) &&
261         MD->getParent()->isDynamicClass()) {
262       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy);
263       EmitVTablePtrCheckForCall(MD, VTable, CFITCK_NVCall, CE->getLocStart());
264     }
265 
266     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
267       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
268     else if (!DevirtualizedMethod)
269       Callee = CGM.GetAddrOfFunction(MD, Ty);
270     else {
271       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
272     }
273   }
274 
275   if (MD->isVirtual()) {
276     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
277         *this, MD, This, UseVirtualCall);
278   }
279 
280   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
281                                      /*ImplicitParam=*/nullptr, QualType(), CE);
282 }
283 
284 RValue
285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
286                                               ReturnValueSlot ReturnValue) {
287   const BinaryOperator *BO =
288       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
289   const Expr *BaseExpr = BO->getLHS();
290   const Expr *MemFnExpr = BO->getRHS();
291 
292   const MemberPointerType *MPT =
293     MemFnExpr->getType()->castAs<MemberPointerType>();
294 
295   const FunctionProtoType *FPT =
296     MPT->getPointeeType()->castAs<FunctionProtoType>();
297   const CXXRecordDecl *RD =
298     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
299 
300   // Get the member function pointer.
301   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
302 
303   // Emit the 'this' pointer.
304   llvm::Value *This;
305 
306   if (BO->getOpcode() == BO_PtrMemI)
307     This = EmitScalarExpr(BaseExpr);
308   else
309     This = EmitLValue(BaseExpr).getAddress();
310 
311   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
312                 QualType(MPT->getClass(), 0));
313 
314   // Ask the ABI to load the callee.  Note that This is modified.
315   llvm::Value *Callee =
316     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
317 
318   CallArgList Args;
319 
320   QualType ThisType =
321     getContext().getPointerType(getContext().getTagDeclType(RD));
322 
323   // Push the this ptr.
324   Args.add(RValue::get(This), ThisType);
325 
326   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
327 
328   // And the rest of the call args
329   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee());
330   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
331                   Callee, ReturnValue, Args);
332 }
333 
334 RValue
335 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
336                                                const CXXMethodDecl *MD,
337                                                ReturnValueSlot ReturnValue) {
338   assert(MD->isInstance() &&
339          "Trying to emit a member call expr on a static method!");
340   return EmitCXXMemberOrOperatorMemberCallExpr(
341       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
342       /*IsArrow=*/false, E->getArg(0));
343 }
344 
345 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
346                                                ReturnValueSlot ReturnValue) {
347   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
348 }
349 
350 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
351                                             llvm::Value *DestPtr,
352                                             const CXXRecordDecl *Base) {
353   if (Base->isEmpty())
354     return;
355 
356   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
357 
358   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
359   CharUnits Size = Layout.getNonVirtualSize();
360   CharUnits Align = Layout.getNonVirtualAlignment();
361 
362   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
363 
364   // If the type contains a pointer to data member we can't memset it to zero.
365   // Instead, create a null constant and copy it to the destination.
366   // TODO: there are other patterns besides zero that we can usefully memset,
367   // like -1, which happens to be the pattern used by member-pointers.
368   // TODO: isZeroInitializable can be over-conservative in the case where a
369   // virtual base contains a member pointer.
370   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
371     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
372 
373     llvm::GlobalVariable *NullVariable =
374       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
375                                /*isConstant=*/true,
376                                llvm::GlobalVariable::PrivateLinkage,
377                                NullConstant, Twine());
378     NullVariable->setAlignment(Align.getQuantity());
379     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
380 
381     // Get and call the appropriate llvm.memcpy overload.
382     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
383     return;
384   }
385 
386   // Otherwise, just memset the whole thing to zero.  This is legal
387   // because in LLVM, all default initializers (other than the ones we just
388   // handled above) are guaranteed to have a bit pattern of all zeros.
389   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
390                            Align.getQuantity());
391 }
392 
393 void
394 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
395                                       AggValueSlot Dest) {
396   assert(!Dest.isIgnored() && "Must have a destination!");
397   const CXXConstructorDecl *CD = E->getConstructor();
398 
399   // If we require zero initialization before (or instead of) calling the
400   // constructor, as can be the case with a non-user-provided default
401   // constructor, emit the zero initialization now, unless destination is
402   // already zeroed.
403   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
404     switch (E->getConstructionKind()) {
405     case CXXConstructExpr::CK_Delegating:
406     case CXXConstructExpr::CK_Complete:
407       EmitNullInitialization(Dest.getAddr(), E->getType());
408       break;
409     case CXXConstructExpr::CK_VirtualBase:
410     case CXXConstructExpr::CK_NonVirtualBase:
411       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
412       break;
413     }
414   }
415 
416   // If this is a call to a trivial default constructor, do nothing.
417   if (CD->isTrivial() && CD->isDefaultConstructor())
418     return;
419 
420   // Elide the constructor if we're constructing from a temporary.
421   // The temporary check is required because Sema sets this on NRVO
422   // returns.
423   if (getLangOpts().ElideConstructors && E->isElidable()) {
424     assert(getContext().hasSameUnqualifiedType(E->getType(),
425                                                E->getArg(0)->getType()));
426     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
427       EmitAggExpr(E->getArg(0), Dest);
428       return;
429     }
430   }
431 
432   if (const ConstantArrayType *arrayType
433         = getContext().getAsConstantArrayType(E->getType())) {
434     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E);
435   } else {
436     CXXCtorType Type = Ctor_Complete;
437     bool ForVirtualBase = false;
438     bool Delegating = false;
439 
440     switch (E->getConstructionKind()) {
441      case CXXConstructExpr::CK_Delegating:
442       // We should be emitting a constructor; GlobalDecl will assert this
443       Type = CurGD.getCtorType();
444       Delegating = true;
445       break;
446 
447      case CXXConstructExpr::CK_Complete:
448       Type = Ctor_Complete;
449       break;
450 
451      case CXXConstructExpr::CK_VirtualBase:
452       ForVirtualBase = true;
453       // fall-through
454 
455      case CXXConstructExpr::CK_NonVirtualBase:
456       Type = Ctor_Base;
457     }
458 
459     // Call the constructor.
460     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
461                            E);
462   }
463 }
464 
465 void
466 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
467                                             llvm::Value *Src,
468                                             const Expr *Exp) {
469   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
470     Exp = E->getSubExpr();
471   assert(isa<CXXConstructExpr>(Exp) &&
472          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
473   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
474   const CXXConstructorDecl *CD = E->getConstructor();
475   RunCleanupsScope Scope(*this);
476 
477   // If we require zero initialization before (or instead of) calling the
478   // constructor, as can be the case with a non-user-provided default
479   // constructor, emit the zero initialization now.
480   // FIXME. Do I still need this for a copy ctor synthesis?
481   if (E->requiresZeroInitialization())
482     EmitNullInitialization(Dest, E->getType());
483 
484   assert(!getContext().getAsConstantArrayType(E->getType())
485          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
486   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
487 }
488 
489 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
490                                         const CXXNewExpr *E) {
491   if (!E->isArray())
492     return CharUnits::Zero();
493 
494   // No cookie is required if the operator new[] being used is the
495   // reserved placement operator new[].
496   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
497     return CharUnits::Zero();
498 
499   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
500 }
501 
502 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
503                                         const CXXNewExpr *e,
504                                         unsigned minElements,
505                                         llvm::Value *&numElements,
506                                         llvm::Value *&sizeWithoutCookie) {
507   QualType type = e->getAllocatedType();
508 
509   if (!e->isArray()) {
510     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
511     sizeWithoutCookie
512       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
513     return sizeWithoutCookie;
514   }
515 
516   // The width of size_t.
517   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
518 
519   // Figure out the cookie size.
520   llvm::APInt cookieSize(sizeWidth,
521                          CalculateCookiePadding(CGF, e).getQuantity());
522 
523   // Emit the array size expression.
524   // We multiply the size of all dimensions for NumElements.
525   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
526   numElements = CGF.EmitScalarExpr(e->getArraySize());
527   assert(isa<llvm::IntegerType>(numElements->getType()));
528 
529   // The number of elements can be have an arbitrary integer type;
530   // essentially, we need to multiply it by a constant factor, add a
531   // cookie size, and verify that the result is representable as a
532   // size_t.  That's just a gloss, though, and it's wrong in one
533   // important way: if the count is negative, it's an error even if
534   // the cookie size would bring the total size >= 0.
535   bool isSigned
536     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
537   llvm::IntegerType *numElementsType
538     = cast<llvm::IntegerType>(numElements->getType());
539   unsigned numElementsWidth = numElementsType->getBitWidth();
540 
541   // Compute the constant factor.
542   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
543   while (const ConstantArrayType *CAT
544              = CGF.getContext().getAsConstantArrayType(type)) {
545     type = CAT->getElementType();
546     arraySizeMultiplier *= CAT->getSize();
547   }
548 
549   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
550   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
551   typeSizeMultiplier *= arraySizeMultiplier;
552 
553   // This will be a size_t.
554   llvm::Value *size;
555 
556   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
557   // Don't bloat the -O0 code.
558   if (llvm::ConstantInt *numElementsC =
559         dyn_cast<llvm::ConstantInt>(numElements)) {
560     const llvm::APInt &count = numElementsC->getValue();
561 
562     bool hasAnyOverflow = false;
563 
564     // If 'count' was a negative number, it's an overflow.
565     if (isSigned && count.isNegative())
566       hasAnyOverflow = true;
567 
568     // We want to do all this arithmetic in size_t.  If numElements is
569     // wider than that, check whether it's already too big, and if so,
570     // overflow.
571     else if (numElementsWidth > sizeWidth &&
572              numElementsWidth - sizeWidth > count.countLeadingZeros())
573       hasAnyOverflow = true;
574 
575     // Okay, compute a count at the right width.
576     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
577 
578     // If there is a brace-initializer, we cannot allocate fewer elements than
579     // there are initializers. If we do, that's treated like an overflow.
580     if (adjustedCount.ult(minElements))
581       hasAnyOverflow = true;
582 
583     // Scale numElements by that.  This might overflow, but we don't
584     // care because it only overflows if allocationSize does, too, and
585     // if that overflows then we shouldn't use this.
586     numElements = llvm::ConstantInt::get(CGF.SizeTy,
587                                          adjustedCount * arraySizeMultiplier);
588 
589     // Compute the size before cookie, and track whether it overflowed.
590     bool overflow;
591     llvm::APInt allocationSize
592       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
593     hasAnyOverflow |= overflow;
594 
595     // Add in the cookie, and check whether it's overflowed.
596     if (cookieSize != 0) {
597       // Save the current size without a cookie.  This shouldn't be
598       // used if there was overflow.
599       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
600 
601       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
602       hasAnyOverflow |= overflow;
603     }
604 
605     // On overflow, produce a -1 so operator new will fail.
606     if (hasAnyOverflow) {
607       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
608     } else {
609       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
610     }
611 
612   // Otherwise, we might need to use the overflow intrinsics.
613   } else {
614     // There are up to five conditions we need to test for:
615     // 1) if isSigned, we need to check whether numElements is negative;
616     // 2) if numElementsWidth > sizeWidth, we need to check whether
617     //   numElements is larger than something representable in size_t;
618     // 3) if minElements > 0, we need to check whether numElements is smaller
619     //    than that.
620     // 4) we need to compute
621     //      sizeWithoutCookie := numElements * typeSizeMultiplier
622     //    and check whether it overflows; and
623     // 5) if we need a cookie, we need to compute
624     //      size := sizeWithoutCookie + cookieSize
625     //    and check whether it overflows.
626 
627     llvm::Value *hasOverflow = nullptr;
628 
629     // If numElementsWidth > sizeWidth, then one way or another, we're
630     // going to have to do a comparison for (2), and this happens to
631     // take care of (1), too.
632     if (numElementsWidth > sizeWidth) {
633       llvm::APInt threshold(numElementsWidth, 1);
634       threshold <<= sizeWidth;
635 
636       llvm::Value *thresholdV
637         = llvm::ConstantInt::get(numElementsType, threshold);
638 
639       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
640       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
641 
642     // Otherwise, if we're signed, we want to sext up to size_t.
643     } else if (isSigned) {
644       if (numElementsWidth < sizeWidth)
645         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
646 
647       // If there's a non-1 type size multiplier, then we can do the
648       // signedness check at the same time as we do the multiply
649       // because a negative number times anything will cause an
650       // unsigned overflow.  Otherwise, we have to do it here. But at least
651       // in this case, we can subsume the >= minElements check.
652       if (typeSizeMultiplier == 1)
653         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
654                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
655 
656     // Otherwise, zext up to size_t if necessary.
657     } else if (numElementsWidth < sizeWidth) {
658       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
659     }
660 
661     assert(numElements->getType() == CGF.SizeTy);
662 
663     if (minElements) {
664       // Don't allow allocation of fewer elements than we have initializers.
665       if (!hasOverflow) {
666         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
667                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
668       } else if (numElementsWidth > sizeWidth) {
669         // The other existing overflow subsumes this check.
670         // We do an unsigned comparison, since any signed value < -1 is
671         // taken care of either above or below.
672         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
673                           CGF.Builder.CreateICmpULT(numElements,
674                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
675       }
676     }
677 
678     size = numElements;
679 
680     // Multiply by the type size if necessary.  This multiplier
681     // includes all the factors for nested arrays.
682     //
683     // This step also causes numElements to be scaled up by the
684     // nested-array factor if necessary.  Overflow on this computation
685     // can be ignored because the result shouldn't be used if
686     // allocation fails.
687     if (typeSizeMultiplier != 1) {
688       llvm::Value *umul_with_overflow
689         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
690 
691       llvm::Value *tsmV =
692         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
693       llvm::Value *result =
694           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
695 
696       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
697       if (hasOverflow)
698         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
699       else
700         hasOverflow = overflowed;
701 
702       size = CGF.Builder.CreateExtractValue(result, 0);
703 
704       // Also scale up numElements by the array size multiplier.
705       if (arraySizeMultiplier != 1) {
706         // If the base element type size is 1, then we can re-use the
707         // multiply we just did.
708         if (typeSize.isOne()) {
709           assert(arraySizeMultiplier == typeSizeMultiplier);
710           numElements = size;
711 
712         // Otherwise we need a separate multiply.
713         } else {
714           llvm::Value *asmV =
715             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
716           numElements = CGF.Builder.CreateMul(numElements, asmV);
717         }
718       }
719     } else {
720       // numElements doesn't need to be scaled.
721       assert(arraySizeMultiplier == 1);
722     }
723 
724     // Add in the cookie size if necessary.
725     if (cookieSize != 0) {
726       sizeWithoutCookie = size;
727 
728       llvm::Value *uadd_with_overflow
729         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
730 
731       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
732       llvm::Value *result =
733           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
734 
735       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
736       if (hasOverflow)
737         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
738       else
739         hasOverflow = overflowed;
740 
741       size = CGF.Builder.CreateExtractValue(result, 0);
742     }
743 
744     // If we had any possibility of dynamic overflow, make a select to
745     // overwrite 'size' with an all-ones value, which should cause
746     // operator new to throw.
747     if (hasOverflow)
748       size = CGF.Builder.CreateSelect(hasOverflow,
749                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
750                                       size);
751   }
752 
753   if (cookieSize == 0)
754     sizeWithoutCookie = size;
755   else
756     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
757 
758   return size;
759 }
760 
761 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
762                                     QualType AllocType, llvm::Value *NewPtr) {
763   // FIXME: Refactor with EmitExprAsInit.
764   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
765   switch (CGF.getEvaluationKind(AllocType)) {
766   case TEK_Scalar:
767     CGF.EmitScalarInit(Init, nullptr,
768                        CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false);
769     return;
770   case TEK_Complex:
771     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
772                                                            Alignment),
773                                   /*isInit*/ true);
774     return;
775   case TEK_Aggregate: {
776     AggValueSlot Slot
777       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
778                               AggValueSlot::IsDestructed,
779                               AggValueSlot::DoesNotNeedGCBarriers,
780                               AggValueSlot::IsNotAliased);
781     CGF.EmitAggExpr(Init, Slot);
782     return;
783   }
784   }
785   llvm_unreachable("bad evaluation kind");
786 }
787 
788 void CodeGenFunction::EmitNewArrayInitializer(
789     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
790     llvm::Value *BeginPtr, llvm::Value *NumElements,
791     llvm::Value *AllocSizeWithoutCookie) {
792   // If we have a type with trivial initialization and no initializer,
793   // there's nothing to do.
794   if (!E->hasInitializer())
795     return;
796 
797   llvm::Value *CurPtr = BeginPtr;
798 
799   unsigned InitListElements = 0;
800 
801   const Expr *Init = E->getInitializer();
802   llvm::AllocaInst *EndOfInit = nullptr;
803   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
804   EHScopeStack::stable_iterator Cleanup;
805   llvm::Instruction *CleanupDominator = nullptr;
806 
807   // If the initializer is an initializer list, first do the explicit elements.
808   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
809     InitListElements = ILE->getNumInits();
810 
811     // If this is a multi-dimensional array new, we will initialize multiple
812     // elements with each init list element.
813     QualType AllocType = E->getAllocatedType();
814     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
815             AllocType->getAsArrayTypeUnsafe())) {
816       unsigned AS = CurPtr->getType()->getPointerAddressSpace();
817       ElementTy = ConvertTypeForMem(AllocType);
818       llvm::Type *AllocPtrTy = ElementTy->getPointerTo(AS);
819       CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
820       InitListElements *= getContext().getConstantArrayElementCount(CAT);
821     }
822 
823     // Enter a partial-destruction Cleanup if necessary.
824     if (needsEHCleanup(DtorKind)) {
825       // In principle we could tell the Cleanup where we are more
826       // directly, but the control flow can get so varied here that it
827       // would actually be quite complex.  Therefore we go through an
828       // alloca.
829       EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
830       CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
831       pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
832                                        getDestroyer(DtorKind));
833       Cleanup = EHStack.stable_begin();
834     }
835 
836     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
837       // Tell the cleanup that it needs to destroy up to this
838       // element.  TODO: some of these stores can be trivially
839       // observed to be unnecessary.
840       if (EndOfInit)
841         Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
842                             EndOfInit);
843       // FIXME: If the last initializer is an incomplete initializer list for
844       // an array, and we have an array filler, we can fold together the two
845       // initialization loops.
846       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
847                               ILE->getInit(i)->getType(), CurPtr);
848       CurPtr = Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1,
849                                                   "array.exp.next");
850     }
851 
852     // The remaining elements are filled with the array filler expression.
853     Init = ILE->getArrayFiller();
854 
855     // Extract the initializer for the individual array elements by pulling
856     // out the array filler from all the nested initializer lists. This avoids
857     // generating a nested loop for the initialization.
858     while (Init && Init->getType()->isConstantArrayType()) {
859       auto *SubILE = dyn_cast<InitListExpr>(Init);
860       if (!SubILE)
861         break;
862       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
863       Init = SubILE->getArrayFiller();
864     }
865 
866     // Switch back to initializing one base element at a time.
867     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
868   }
869 
870   // Attempt to perform zero-initialization using memset.
871   auto TryMemsetInitialization = [&]() -> bool {
872     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
873     // we can initialize with a memset to -1.
874     if (!CGM.getTypes().isZeroInitializable(ElementType))
875       return false;
876 
877     // Optimization: since zero initialization will just set the memory
878     // to all zeroes, generate a single memset to do it in one shot.
879 
880     // Subtract out the size of any elements we've already initialized.
881     auto *RemainingSize = AllocSizeWithoutCookie;
882     if (InitListElements) {
883       // We know this can't overflow; we check this when doing the allocation.
884       auto *InitializedSize = llvm::ConstantInt::get(
885           RemainingSize->getType(),
886           getContext().getTypeSizeInChars(ElementType).getQuantity() *
887               InitListElements);
888       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
889     }
890 
891     // Create the memset.
892     CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
893     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
894                          Alignment.getQuantity(), false);
895     return true;
896   };
897 
898   // If all elements have already been initialized, skip any further
899   // initialization.
900   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
901   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
902     // If there was a Cleanup, deactivate it.
903     if (CleanupDominator)
904       DeactivateCleanupBlock(Cleanup, CleanupDominator);
905     return;
906   }
907 
908   assert(Init && "have trailing elements to initialize but no initializer");
909 
910   // If this is a constructor call, try to optimize it out, and failing that
911   // emit a single loop to initialize all remaining elements.
912   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
913     CXXConstructorDecl *Ctor = CCE->getConstructor();
914     if (Ctor->isTrivial()) {
915       // If new expression did not specify value-initialization, then there
916       // is no initialization.
917       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
918         return;
919 
920       if (TryMemsetInitialization())
921         return;
922     }
923 
924     // Store the new Cleanup position for irregular Cleanups.
925     //
926     // FIXME: Share this cleanup with the constructor call emission rather than
927     // having it create a cleanup of its own.
928     if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
929 
930     // Emit a constructor call loop to initialize the remaining elements.
931     if (InitListElements)
932       NumElements = Builder.CreateSub(
933           NumElements,
934           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
935     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
936                                CCE->requiresZeroInitialization());
937     return;
938   }
939 
940   // If this is value-initialization, we can usually use memset.
941   ImplicitValueInitExpr IVIE(ElementType);
942   if (isa<ImplicitValueInitExpr>(Init)) {
943     if (TryMemsetInitialization())
944       return;
945 
946     // Switch to an ImplicitValueInitExpr for the element type. This handles
947     // only one case: multidimensional array new of pointers to members. In
948     // all other cases, we already have an initializer for the array element.
949     Init = &IVIE;
950   }
951 
952   // At this point we should have found an initializer for the individual
953   // elements of the array.
954   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
955          "got wrong type of element to initialize");
956 
957   // If we have an empty initializer list, we can usually use memset.
958   if (auto *ILE = dyn_cast<InitListExpr>(Init))
959     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
960       return;
961 
962   // If we have a struct whose every field is value-initialized, we can
963   // usually use memset.
964   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
965     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
966       if (RType->getDecl()->isStruct()) {
967         unsigned NumFields = 0;
968         for (auto *Field : RType->getDecl()->fields())
969           if (!Field->isUnnamedBitfield())
970             ++NumFields;
971         if (ILE->getNumInits() == NumFields)
972           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
973             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
974               --NumFields;
975         if (ILE->getNumInits() == NumFields && TryMemsetInitialization())
976           return;
977       }
978     }
979   }
980 
981   // Create the loop blocks.
982   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
983   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
984   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
985 
986   // Find the end of the array, hoisted out of the loop.
987   llvm::Value *EndPtr =
988     Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
989 
990   // If the number of elements isn't constant, we have to now check if there is
991   // anything left to initialize.
992   if (!ConstNum) {
993     llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
994                                                 "array.isempty");
995     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
996   }
997 
998   // Enter the loop.
999   EmitBlock(LoopBB);
1000 
1001   // Set up the current-element phi.
1002   llvm::PHINode *CurPtrPhi =
1003     Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
1004   CurPtrPhi->addIncoming(CurPtr, EntryBB);
1005   CurPtr = CurPtrPhi;
1006 
1007   // Store the new Cleanup position for irregular Cleanups.
1008   if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
1009 
1010   // Enter a partial-destruction Cleanup if necessary.
1011   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1012     pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
1013                                    getDestroyer(DtorKind));
1014     Cleanup = EHStack.stable_begin();
1015     CleanupDominator = Builder.CreateUnreachable();
1016   }
1017 
1018   // Emit the initializer into this element.
1019   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1020 
1021   // Leave the Cleanup if we entered one.
1022   if (CleanupDominator) {
1023     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1024     CleanupDominator->eraseFromParent();
1025   }
1026 
1027   // Advance to the next element by adjusting the pointer type as necessary.
1028   llvm::Value *NextPtr =
1029       Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1, "array.next");
1030 
1031   // Check whether we've gotten to the end of the array and, if so,
1032   // exit the loop.
1033   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1034   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1035   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1036 
1037   EmitBlock(ContBB);
1038 }
1039 
1040 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1041                                QualType ElementType, llvm::Type *ElementTy,
1042                                llvm::Value *NewPtr, llvm::Value *NumElements,
1043                                llvm::Value *AllocSizeWithoutCookie) {
1044   ApplyDebugLocation DL(CGF, E);
1045   if (E->isArray())
1046     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1047                                 AllocSizeWithoutCookie);
1048   else if (const Expr *Init = E->getInitializer())
1049     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1050 }
1051 
1052 /// Emit a call to an operator new or operator delete function, as implicitly
1053 /// created by new-expressions and delete-expressions.
1054 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1055                                 const FunctionDecl *Callee,
1056                                 const FunctionProtoType *CalleeType,
1057                                 const CallArgList &Args) {
1058   llvm::Instruction *CallOrInvoke;
1059   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1060   RValue RV =
1061       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1062                        Args, CalleeType, /*chainCall=*/false),
1063                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1064 
1065   /// C++1y [expr.new]p10:
1066   ///   [In a new-expression,] an implementation is allowed to omit a call
1067   ///   to a replaceable global allocation function.
1068   ///
1069   /// We model such elidable calls with the 'builtin' attribute.
1070   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1071   if (Callee->isReplaceableGlobalAllocationFunction() &&
1072       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1073     // FIXME: Add addAttribute to CallSite.
1074     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1075       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1076                        llvm::Attribute::Builtin);
1077     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1078       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1079                        llvm::Attribute::Builtin);
1080     else
1081       llvm_unreachable("unexpected kind of call instruction");
1082   }
1083 
1084   return RV;
1085 }
1086 
1087 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1088                                                  const Expr *Arg,
1089                                                  bool IsDelete) {
1090   CallArgList Args;
1091   const Stmt *ArgS = Arg;
1092   EmitCallArgs(Args, *Type->param_type_begin(),
1093                ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
1094   // Find the allocation or deallocation function that we're calling.
1095   ASTContext &Ctx = getContext();
1096   DeclarationName Name = Ctx.DeclarationNames
1097       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1098   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1099     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1100       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1101         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1102   llvm_unreachable("predeclared global operator new/delete is missing");
1103 }
1104 
1105 namespace {
1106   /// A cleanup to call the given 'operator delete' function upon
1107   /// abnormal exit from a new expression.
1108   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1109     size_t NumPlacementArgs;
1110     const FunctionDecl *OperatorDelete;
1111     llvm::Value *Ptr;
1112     llvm::Value *AllocSize;
1113 
1114     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1115 
1116   public:
1117     static size_t getExtraSize(size_t NumPlacementArgs) {
1118       return NumPlacementArgs * sizeof(RValue);
1119     }
1120 
1121     CallDeleteDuringNew(size_t NumPlacementArgs,
1122                         const FunctionDecl *OperatorDelete,
1123                         llvm::Value *Ptr,
1124                         llvm::Value *AllocSize)
1125       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1126         Ptr(Ptr), AllocSize(AllocSize) {}
1127 
1128     void setPlacementArg(unsigned I, RValue Arg) {
1129       assert(I < NumPlacementArgs && "index out of range");
1130       getPlacementArgs()[I] = Arg;
1131     }
1132 
1133     void Emit(CodeGenFunction &CGF, Flags flags) override {
1134       const FunctionProtoType *FPT
1135         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1136       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1137              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1138 
1139       CallArgList DeleteArgs;
1140 
1141       // The first argument is always a void*.
1142       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1143       DeleteArgs.add(RValue::get(Ptr), *AI++);
1144 
1145       // A member 'operator delete' can take an extra 'size_t' argument.
1146       if (FPT->getNumParams() == NumPlacementArgs + 2)
1147         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1148 
1149       // Pass the rest of the arguments, which must match exactly.
1150       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1151         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1152 
1153       // Call 'operator delete'.
1154       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1155     }
1156   };
1157 
1158   /// A cleanup to call the given 'operator delete' function upon
1159   /// abnormal exit from a new expression when the new expression is
1160   /// conditional.
1161   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1162     size_t NumPlacementArgs;
1163     const FunctionDecl *OperatorDelete;
1164     DominatingValue<RValue>::saved_type Ptr;
1165     DominatingValue<RValue>::saved_type AllocSize;
1166 
1167     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1168       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1169     }
1170 
1171   public:
1172     static size_t getExtraSize(size_t NumPlacementArgs) {
1173       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1174     }
1175 
1176     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1177                                    const FunctionDecl *OperatorDelete,
1178                                    DominatingValue<RValue>::saved_type Ptr,
1179                               DominatingValue<RValue>::saved_type AllocSize)
1180       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1181         Ptr(Ptr), AllocSize(AllocSize) {}
1182 
1183     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1184       assert(I < NumPlacementArgs && "index out of range");
1185       getPlacementArgs()[I] = Arg;
1186     }
1187 
1188     void Emit(CodeGenFunction &CGF, Flags flags) override {
1189       const FunctionProtoType *FPT
1190         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1191       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1192              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1193 
1194       CallArgList DeleteArgs;
1195 
1196       // The first argument is always a void*.
1197       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1198       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1199 
1200       // A member 'operator delete' can take an extra 'size_t' argument.
1201       if (FPT->getNumParams() == NumPlacementArgs + 2) {
1202         RValue RV = AllocSize.restore(CGF);
1203         DeleteArgs.add(RV, *AI++);
1204       }
1205 
1206       // Pass the rest of the arguments, which must match exactly.
1207       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1208         RValue RV = getPlacementArgs()[I].restore(CGF);
1209         DeleteArgs.add(RV, *AI++);
1210       }
1211 
1212       // Call 'operator delete'.
1213       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1214     }
1215   };
1216 }
1217 
1218 /// Enter a cleanup to call 'operator delete' if the initializer in a
1219 /// new-expression throws.
1220 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1221                                   const CXXNewExpr *E,
1222                                   llvm::Value *NewPtr,
1223                                   llvm::Value *AllocSize,
1224                                   const CallArgList &NewArgs) {
1225   // If we're not inside a conditional branch, then the cleanup will
1226   // dominate and we can do the easier (and more efficient) thing.
1227   if (!CGF.isInConditionalBranch()) {
1228     CallDeleteDuringNew *Cleanup = CGF.EHStack
1229       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1230                                                  E->getNumPlacementArgs(),
1231                                                  E->getOperatorDelete(),
1232                                                  NewPtr, AllocSize);
1233     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1234       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1235 
1236     return;
1237   }
1238 
1239   // Otherwise, we need to save all this stuff.
1240   DominatingValue<RValue>::saved_type SavedNewPtr =
1241     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1242   DominatingValue<RValue>::saved_type SavedAllocSize =
1243     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1244 
1245   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1246     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1247                                                  E->getNumPlacementArgs(),
1248                                                  E->getOperatorDelete(),
1249                                                  SavedNewPtr,
1250                                                  SavedAllocSize);
1251   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1252     Cleanup->setPlacementArg(I,
1253                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1254 
1255   CGF.initFullExprCleanup();
1256 }
1257 
1258 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1259   // The element type being allocated.
1260   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1261 
1262   // 1. Build a call to the allocation function.
1263   FunctionDecl *allocator = E->getOperatorNew();
1264   const FunctionProtoType *allocatorType =
1265     allocator->getType()->castAs<FunctionProtoType>();
1266 
1267   CallArgList allocatorArgs;
1268 
1269   // The allocation size is the first argument.
1270   QualType sizeType = getContext().getSizeType();
1271 
1272   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1273   unsigned minElements = 0;
1274   if (E->isArray() && E->hasInitializer()) {
1275     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1276       minElements = ILE->getNumInits();
1277   }
1278 
1279   llvm::Value *numElements = nullptr;
1280   llvm::Value *allocSizeWithoutCookie = nullptr;
1281   llvm::Value *allocSize =
1282     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1283                         allocSizeWithoutCookie);
1284 
1285   allocatorArgs.add(RValue::get(allocSize), sizeType);
1286 
1287   // We start at 1 here because the first argument (the allocation size)
1288   // has already been emitted.
1289   EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(),
1290                E->placement_arg_end(), /* CalleeDecl */ nullptr,
1291                /*ParamsToSkip*/ 1);
1292 
1293   // Emit the allocation call.  If the allocator is a global placement
1294   // operator, just "inline" it directly.
1295   RValue RV;
1296   if (allocator->isReservedGlobalPlacementOperator()) {
1297     assert(allocatorArgs.size() == 2);
1298     RV = allocatorArgs[1].RV;
1299     // TODO: kill any unnecessary computations done for the size
1300     // argument.
1301   } else {
1302     RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1303   }
1304 
1305   // Emit a null check on the allocation result if the allocation
1306   // function is allowed to return null (because it has a non-throwing
1307   // exception spec or is the reserved placement new) and we have an
1308   // interesting initializer.
1309   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1310     (!allocType.isPODType(getContext()) || E->hasInitializer());
1311 
1312   llvm::BasicBlock *nullCheckBB = nullptr;
1313   llvm::BasicBlock *contBB = nullptr;
1314 
1315   llvm::Value *allocation = RV.getScalarVal();
1316   unsigned AS = allocation->getType()->getPointerAddressSpace();
1317 
1318   // The null-check means that the initializer is conditionally
1319   // evaluated.
1320   ConditionalEvaluation conditional(*this);
1321 
1322   if (nullCheck) {
1323     conditional.begin(*this);
1324 
1325     nullCheckBB = Builder.GetInsertBlock();
1326     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1327     contBB = createBasicBlock("new.cont");
1328 
1329     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1330     Builder.CreateCondBr(isNull, contBB, notNullBB);
1331     EmitBlock(notNullBB);
1332   }
1333 
1334   // If there's an operator delete, enter a cleanup to call it if an
1335   // exception is thrown.
1336   EHScopeStack::stable_iterator operatorDeleteCleanup;
1337   llvm::Instruction *cleanupDominator = nullptr;
1338   if (E->getOperatorDelete() &&
1339       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1340     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1341     operatorDeleteCleanup = EHStack.stable_begin();
1342     cleanupDominator = Builder.CreateUnreachable();
1343   }
1344 
1345   assert((allocSize == allocSizeWithoutCookie) ==
1346          CalculateCookiePadding(*this, E).isZero());
1347   if (allocSize != allocSizeWithoutCookie) {
1348     assert(E->isArray());
1349     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1350                                                        numElements,
1351                                                        E, allocType);
1352   }
1353 
1354   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1355   llvm::Type *elementPtrTy = elementTy->getPointerTo(AS);
1356   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1357 
1358   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1359                      allocSizeWithoutCookie);
1360   if (E->isArray()) {
1361     // NewPtr is a pointer to the base element type.  If we're
1362     // allocating an array of arrays, we'll need to cast back to the
1363     // array pointer type.
1364     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1365     if (result->getType() != resultType)
1366       result = Builder.CreateBitCast(result, resultType);
1367   }
1368 
1369   // Deactivate the 'operator delete' cleanup if we finished
1370   // initialization.
1371   if (operatorDeleteCleanup.isValid()) {
1372     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1373     cleanupDominator->eraseFromParent();
1374   }
1375 
1376   if (nullCheck) {
1377     conditional.end(*this);
1378 
1379     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1380     EmitBlock(contBB);
1381 
1382     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1383     PHI->addIncoming(result, notNullBB);
1384     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1385                      nullCheckBB);
1386 
1387     result = PHI;
1388   }
1389 
1390   return result;
1391 }
1392 
1393 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1394                                      llvm::Value *Ptr,
1395                                      QualType DeleteTy) {
1396   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1397 
1398   const FunctionProtoType *DeleteFTy =
1399     DeleteFD->getType()->getAs<FunctionProtoType>();
1400 
1401   CallArgList DeleteArgs;
1402 
1403   // Check if we need to pass the size to the delete operator.
1404   llvm::Value *Size = nullptr;
1405   QualType SizeTy;
1406   if (DeleteFTy->getNumParams() == 2) {
1407     SizeTy = DeleteFTy->getParamType(1);
1408     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1409     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1410                                   DeleteTypeSize.getQuantity());
1411   }
1412 
1413   QualType ArgTy = DeleteFTy->getParamType(0);
1414   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1415   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1416 
1417   if (Size)
1418     DeleteArgs.add(RValue::get(Size), SizeTy);
1419 
1420   // Emit the call to delete.
1421   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1422 }
1423 
1424 namespace {
1425   /// Calls the given 'operator delete' on a single object.
1426   struct CallObjectDelete : EHScopeStack::Cleanup {
1427     llvm::Value *Ptr;
1428     const FunctionDecl *OperatorDelete;
1429     QualType ElementType;
1430 
1431     CallObjectDelete(llvm::Value *Ptr,
1432                      const FunctionDecl *OperatorDelete,
1433                      QualType ElementType)
1434       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1435 
1436     void Emit(CodeGenFunction &CGF, Flags flags) override {
1437       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1438     }
1439   };
1440 }
1441 
1442 void
1443 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1444                                              llvm::Value *CompletePtr,
1445                                              QualType ElementType) {
1446   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1447                                         OperatorDelete, ElementType);
1448 }
1449 
1450 /// Emit the code for deleting a single object.
1451 static void EmitObjectDelete(CodeGenFunction &CGF,
1452                              const CXXDeleteExpr *DE,
1453                              llvm::Value *Ptr,
1454                              QualType ElementType) {
1455   // Find the destructor for the type, if applicable.  If the
1456   // destructor is virtual, we'll just emit the vcall and return.
1457   const CXXDestructorDecl *Dtor = nullptr;
1458   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1459     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1460     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1461       Dtor = RD->getDestructor();
1462 
1463       if (Dtor->isVirtual()) {
1464         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1465                                                     Dtor);
1466         return;
1467       }
1468     }
1469   }
1470 
1471   // Make sure that we call delete even if the dtor throws.
1472   // This doesn't have to a conditional cleanup because we're going
1473   // to pop it off in a second.
1474   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1475   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1476                                             Ptr, OperatorDelete, ElementType);
1477 
1478   if (Dtor)
1479     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1480                               /*ForVirtualBase=*/false,
1481                               /*Delegating=*/false,
1482                               Ptr);
1483   else if (CGF.getLangOpts().ObjCAutoRefCount &&
1484            ElementType->isObjCLifetimeType()) {
1485     switch (ElementType.getObjCLifetime()) {
1486     case Qualifiers::OCL_None:
1487     case Qualifiers::OCL_ExplicitNone:
1488     case Qualifiers::OCL_Autoreleasing:
1489       break;
1490 
1491     case Qualifiers::OCL_Strong: {
1492       // Load the pointer value.
1493       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1494                                              ElementType.isVolatileQualified());
1495 
1496       CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1497       break;
1498     }
1499 
1500     case Qualifiers::OCL_Weak:
1501       CGF.EmitARCDestroyWeak(Ptr);
1502       break;
1503     }
1504   }
1505 
1506   CGF.PopCleanupBlock();
1507 }
1508 
1509 namespace {
1510   /// Calls the given 'operator delete' on an array of objects.
1511   struct CallArrayDelete : EHScopeStack::Cleanup {
1512     llvm::Value *Ptr;
1513     const FunctionDecl *OperatorDelete;
1514     llvm::Value *NumElements;
1515     QualType ElementType;
1516     CharUnits CookieSize;
1517 
1518     CallArrayDelete(llvm::Value *Ptr,
1519                     const FunctionDecl *OperatorDelete,
1520                     llvm::Value *NumElements,
1521                     QualType ElementType,
1522                     CharUnits CookieSize)
1523       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1524         ElementType(ElementType), CookieSize(CookieSize) {}
1525 
1526     void Emit(CodeGenFunction &CGF, Flags flags) override {
1527       const FunctionProtoType *DeleteFTy =
1528         OperatorDelete->getType()->getAs<FunctionProtoType>();
1529       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1530 
1531       CallArgList Args;
1532 
1533       // Pass the pointer as the first argument.
1534       QualType VoidPtrTy = DeleteFTy->getParamType(0);
1535       llvm::Value *DeletePtr
1536         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1537       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1538 
1539       // Pass the original requested size as the second argument.
1540       if (DeleteFTy->getNumParams() == 2) {
1541         QualType size_t = DeleteFTy->getParamType(1);
1542         llvm::IntegerType *SizeTy
1543           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1544 
1545         CharUnits ElementTypeSize =
1546           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1547 
1548         // The size of an element, multiplied by the number of elements.
1549         llvm::Value *Size
1550           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1551         if (NumElements)
1552           Size = CGF.Builder.CreateMul(Size, NumElements);
1553 
1554         // Plus the size of the cookie if applicable.
1555         if (!CookieSize.isZero()) {
1556           llvm::Value *CookieSizeV
1557             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1558           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1559         }
1560 
1561         Args.add(RValue::get(Size), size_t);
1562       }
1563 
1564       // Emit the call to delete.
1565       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1566     }
1567   };
1568 }
1569 
1570 /// Emit the code for deleting an array of objects.
1571 static void EmitArrayDelete(CodeGenFunction &CGF,
1572                             const CXXDeleteExpr *E,
1573                             llvm::Value *deletedPtr,
1574                             QualType elementType) {
1575   llvm::Value *numElements = nullptr;
1576   llvm::Value *allocatedPtr = nullptr;
1577   CharUnits cookieSize;
1578   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1579                                       numElements, allocatedPtr, cookieSize);
1580 
1581   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1582 
1583   // Make sure that we call delete even if one of the dtors throws.
1584   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1585   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1586                                            allocatedPtr, operatorDelete,
1587                                            numElements, elementType,
1588                                            cookieSize);
1589 
1590   // Destroy the elements.
1591   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1592     assert(numElements && "no element count for a type with a destructor!");
1593 
1594     llvm::Value *arrayEnd =
1595       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1596 
1597     // Note that it is legal to allocate a zero-length array, and we
1598     // can never fold the check away because the length should always
1599     // come from a cookie.
1600     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1601                          CGF.getDestroyer(dtorKind),
1602                          /*checkZeroLength*/ true,
1603                          CGF.needsEHCleanup(dtorKind));
1604   }
1605 
1606   // Pop the cleanup block.
1607   CGF.PopCleanupBlock();
1608 }
1609 
1610 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1611   const Expr *Arg = E->getArgument();
1612   llvm::Value *Ptr = EmitScalarExpr(Arg);
1613 
1614   // Null check the pointer.
1615   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1616   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1617 
1618   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1619 
1620   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1621   EmitBlock(DeleteNotNull);
1622 
1623   // We might be deleting a pointer to array.  If so, GEP down to the
1624   // first non-array element.
1625   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1626   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1627   if (DeleteTy->isConstantArrayType()) {
1628     llvm::Value *Zero = Builder.getInt32(0);
1629     SmallVector<llvm::Value*,8> GEP;
1630 
1631     GEP.push_back(Zero); // point at the outermost array
1632 
1633     // For each layer of array type we're pointing at:
1634     while (const ConstantArrayType *Arr
1635              = getContext().getAsConstantArrayType(DeleteTy)) {
1636       // 1. Unpeel the array type.
1637       DeleteTy = Arr->getElementType();
1638 
1639       // 2. GEP to the first element of the array.
1640       GEP.push_back(Zero);
1641     }
1642 
1643     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1644   }
1645 
1646   assert(ConvertTypeForMem(DeleteTy) ==
1647          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1648 
1649   if (E->isArrayForm()) {
1650     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1651   } else {
1652     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1653   }
1654 
1655   EmitBlock(DeleteEnd);
1656 }
1657 
1658 static bool isGLValueFromPointerDeref(const Expr *E) {
1659   E = E->IgnoreParens();
1660 
1661   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1662     if (!CE->getSubExpr()->isGLValue())
1663       return false;
1664     return isGLValueFromPointerDeref(CE->getSubExpr());
1665   }
1666 
1667   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1668     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1669 
1670   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1671     if (BO->getOpcode() == BO_Comma)
1672       return isGLValueFromPointerDeref(BO->getRHS());
1673 
1674   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1675     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1676            isGLValueFromPointerDeref(ACO->getFalseExpr());
1677 
1678   // C++11 [expr.sub]p1:
1679   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1680   if (isa<ArraySubscriptExpr>(E))
1681     return true;
1682 
1683   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1684     if (UO->getOpcode() == UO_Deref)
1685       return true;
1686 
1687   return false;
1688 }
1689 
1690 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1691                                          llvm::Type *StdTypeInfoPtrTy) {
1692   // Get the vtable pointer.
1693   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1694 
1695   // C++ [expr.typeid]p2:
1696   //   If the glvalue expression is obtained by applying the unary * operator to
1697   //   a pointer and the pointer is a null pointer value, the typeid expression
1698   //   throws the std::bad_typeid exception.
1699   //
1700   // However, this paragraph's intent is not clear.  We choose a very generous
1701   // interpretation which implores us to consider comma operators, conditional
1702   // operators, parentheses and other such constructs.
1703   QualType SrcRecordTy = E->getType();
1704   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1705           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1706     llvm::BasicBlock *BadTypeidBlock =
1707         CGF.createBasicBlock("typeid.bad_typeid");
1708     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1709 
1710     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1711     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1712 
1713     CGF.EmitBlock(BadTypeidBlock);
1714     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1715     CGF.EmitBlock(EndBlock);
1716   }
1717 
1718   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1719                                         StdTypeInfoPtrTy);
1720 }
1721 
1722 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1723   llvm::Type *StdTypeInfoPtrTy =
1724     ConvertType(E->getType())->getPointerTo();
1725 
1726   if (E->isTypeOperand()) {
1727     llvm::Constant *TypeInfo =
1728         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1729     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1730   }
1731 
1732   // C++ [expr.typeid]p2:
1733   //   When typeid is applied to a glvalue expression whose type is a
1734   //   polymorphic class type, the result refers to a std::type_info object
1735   //   representing the type of the most derived object (that is, the dynamic
1736   //   type) to which the glvalue refers.
1737   if (E->isPotentiallyEvaluated())
1738     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1739                                 StdTypeInfoPtrTy);
1740 
1741   QualType OperandTy = E->getExprOperand()->getType();
1742   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1743                                StdTypeInfoPtrTy);
1744 }
1745 
1746 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1747                                           QualType DestTy) {
1748   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1749   if (DestTy->isPointerType())
1750     return llvm::Constant::getNullValue(DestLTy);
1751 
1752   /// C++ [expr.dynamic.cast]p9:
1753   ///   A failed cast to reference type throws std::bad_cast
1754   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1755     return nullptr;
1756 
1757   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1758   return llvm::UndefValue::get(DestLTy);
1759 }
1760 
1761 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1762                                               const CXXDynamicCastExpr *DCE) {
1763   QualType DestTy = DCE->getTypeAsWritten();
1764 
1765   if (DCE->isAlwaysNull())
1766     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1767       return T;
1768 
1769   QualType SrcTy = DCE->getSubExpr()->getType();
1770 
1771   // C++ [expr.dynamic.cast]p7:
1772   //   If T is "pointer to cv void," then the result is a pointer to the most
1773   //   derived object pointed to by v.
1774   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1775 
1776   bool isDynamicCastToVoid;
1777   QualType SrcRecordTy;
1778   QualType DestRecordTy;
1779   if (DestPTy) {
1780     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1781     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1782     DestRecordTy = DestPTy->getPointeeType();
1783   } else {
1784     isDynamicCastToVoid = false;
1785     SrcRecordTy = SrcTy;
1786     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1787   }
1788 
1789   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1790 
1791   // C++ [expr.dynamic.cast]p4:
1792   //   If the value of v is a null pointer value in the pointer case, the result
1793   //   is the null pointer value of type T.
1794   bool ShouldNullCheckSrcValue =
1795       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1796                                                          SrcRecordTy);
1797 
1798   llvm::BasicBlock *CastNull = nullptr;
1799   llvm::BasicBlock *CastNotNull = nullptr;
1800   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1801 
1802   if (ShouldNullCheckSrcValue) {
1803     CastNull = createBasicBlock("dynamic_cast.null");
1804     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1805 
1806     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1807     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1808     EmitBlock(CastNotNull);
1809   }
1810 
1811   if (isDynamicCastToVoid) {
1812     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
1813                                                   DestTy);
1814   } else {
1815     assert(DestRecordTy->isRecordType() &&
1816            "destination type must be a record type!");
1817     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
1818                                                 DestTy, DestRecordTy, CastEnd);
1819   }
1820 
1821   if (ShouldNullCheckSrcValue) {
1822     EmitBranch(CastEnd);
1823 
1824     EmitBlock(CastNull);
1825     EmitBranch(CastEnd);
1826   }
1827 
1828   EmitBlock(CastEnd);
1829 
1830   if (ShouldNullCheckSrcValue) {
1831     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1832     PHI->addIncoming(Value, CastNotNull);
1833     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1834 
1835     Value = PHI;
1836   }
1837 
1838   return Value;
1839 }
1840 
1841 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1842   RunCleanupsScope Scope(*this);
1843   LValue SlotLV =
1844       MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment());
1845 
1846   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1847   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1848                                          e = E->capture_init_end();
1849        i != e; ++i, ++CurField) {
1850     // Emit initialization
1851     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1852     if (CurField->hasCapturedVLAType()) {
1853       auto VAT = CurField->getCapturedVLAType();
1854       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1855     } else {
1856       ArrayRef<VarDecl *> ArrayIndexes;
1857       if (CurField->getType()->isArrayType())
1858         ArrayIndexes = E->getCaptureInitIndexVars(i);
1859       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1860     }
1861   }
1862 }
1863