1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 41 isa<CXXOperatorCallExpr>(CE)); 42 assert(MD->isInstance() && 43 "Trying to emit a member or operator call expr on a static method!"); 44 ASTContext &C = CGF.getContext(); 45 46 // Push the this ptr. 47 const CXXRecordDecl *RD = 48 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 49 Args.add(RValue::get(This), 50 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 51 52 // If there is an implicit parameter (e.g. VTT), emit it. 53 if (ImplicitParam) { 54 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 55 } 56 57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 58 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 59 unsigned PrefixSize = Args.size() - 1; 60 61 // And the rest of the call args. 62 if (RtlArgs) { 63 // Special case: if the caller emitted the arguments right-to-left already 64 // (prior to emitting the *this argument), we're done. This happens for 65 // assignment operators. 66 Args.addFrom(*RtlArgs); 67 } else if (CE) { 68 // Special case: skip first argument of CXXOperatorCall (it is "this"). 69 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 70 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 71 CE->getDirectCallee()); 72 } else { 73 assert( 74 FPT->getNumParams() == 0 && 75 "No CallExpr specified for function with non-zero number of arguments"); 76 } 77 return {required, PrefixSize}; 78 } 79 80 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 81 const CXXMethodDecl *MD, const CGCallee &Callee, 82 ReturnValueSlot ReturnValue, 83 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 84 const CallExpr *CE, CallArgList *RtlArgs) { 85 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 86 CallArgList Args; 87 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 88 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 89 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 90 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 91 return EmitCall(FnInfo, Callee, ReturnValue, Args); 92 } 93 94 RValue CodeGenFunction::EmitCXXDestructorCall( 95 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 97 StructorType Type) { 98 CallArgList Args; 99 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 100 ImplicitParamTy, CE, Args, nullptr); 101 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 102 Callee, ReturnValueSlot(), Args); 103 } 104 105 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 106 const CXXPseudoDestructorExpr *E) { 107 QualType DestroyedType = E->getDestroyedType(); 108 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 109 // Automatic Reference Counting: 110 // If the pseudo-expression names a retainable object with weak or 111 // strong lifetime, the object shall be released. 112 Expr *BaseExpr = E->getBase(); 113 Address BaseValue = Address::invalid(); 114 Qualifiers BaseQuals; 115 116 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 117 if (E->isArrow()) { 118 BaseValue = EmitPointerWithAlignment(BaseExpr); 119 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 120 BaseQuals = PTy->getPointeeType().getQualifiers(); 121 } else { 122 LValue BaseLV = EmitLValue(BaseExpr); 123 BaseValue = BaseLV.getAddress(); 124 QualType BaseTy = BaseExpr->getType(); 125 BaseQuals = BaseTy.getQualifiers(); 126 } 127 128 switch (DestroyedType.getObjCLifetime()) { 129 case Qualifiers::OCL_None: 130 case Qualifiers::OCL_ExplicitNone: 131 case Qualifiers::OCL_Autoreleasing: 132 break; 133 134 case Qualifiers::OCL_Strong: 135 EmitARCRelease(Builder.CreateLoad(BaseValue, 136 DestroyedType.isVolatileQualified()), 137 ARCPreciseLifetime); 138 break; 139 140 case Qualifiers::OCL_Weak: 141 EmitARCDestroyWeak(BaseValue); 142 break; 143 } 144 } else { 145 // C++ [expr.pseudo]p1: 146 // The result shall only be used as the operand for the function call 147 // operator (), and the result of such a call has type void. The only 148 // effect is the evaluation of the postfix-expression before the dot or 149 // arrow. 150 EmitIgnoredExpr(E->getBase()); 151 } 152 153 return RValue::get(nullptr); 154 } 155 156 static CXXRecordDecl *getCXXRecord(const Expr *E) { 157 QualType T = E->getType(); 158 if (const PointerType *PTy = T->getAs<PointerType>()) 159 T = PTy->getPointeeType(); 160 const RecordType *Ty = T->castAs<RecordType>(); 161 return cast<CXXRecordDecl>(Ty->getDecl()); 162 } 163 164 // Note: This function also emit constructor calls to support a MSVC 165 // extensions allowing explicit constructor function call. 166 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 167 ReturnValueSlot ReturnValue) { 168 const Expr *callee = CE->getCallee()->IgnoreParens(); 169 170 if (isa<BinaryOperator>(callee)) 171 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 172 173 const MemberExpr *ME = cast<MemberExpr>(callee); 174 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 175 176 if (MD->isStatic()) { 177 // The method is static, emit it as we would a regular call. 178 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 179 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 180 ReturnValue); 181 } 182 183 bool HasQualifier = ME->hasQualifier(); 184 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 185 bool IsArrow = ME->isArrow(); 186 const Expr *Base = ME->getBase(); 187 188 return EmitCXXMemberOrOperatorMemberCallExpr( 189 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 190 } 191 192 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 193 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 194 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 195 const Expr *Base) { 196 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 197 198 // Compute the object pointer. 199 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 200 201 const CXXMethodDecl *DevirtualizedMethod = nullptr; 202 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 203 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 204 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 205 assert(DevirtualizedMethod); 206 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 207 const Expr *Inner = Base->ignoreParenBaseCasts(); 208 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 209 MD->getReturnType().getCanonicalType()) 210 // If the return types are not the same, this might be a case where more 211 // code needs to run to compensate for it. For example, the derived 212 // method might return a type that inherits form from the return 213 // type of MD and has a prefix. 214 // For now we just avoid devirtualizing these covariant cases. 215 DevirtualizedMethod = nullptr; 216 else if (getCXXRecord(Inner) == DevirtualizedClass) 217 // If the class of the Inner expression is where the dynamic method 218 // is defined, build the this pointer from it. 219 Base = Inner; 220 else if (getCXXRecord(Base) != DevirtualizedClass) { 221 // If the method is defined in a class that is not the best dynamic 222 // one or the one of the full expression, we would have to build 223 // a derived-to-base cast to compute the correct this pointer, but 224 // we don't have support for that yet, so do a virtual call. 225 DevirtualizedMethod = nullptr; 226 } 227 } 228 229 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 230 // operator before the LHS. 231 CallArgList RtlArgStorage; 232 CallArgList *RtlArgs = nullptr; 233 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 234 if (OCE->isAssignmentOp()) { 235 RtlArgs = &RtlArgStorage; 236 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 237 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 238 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 239 } 240 } 241 242 Address This = Address::invalid(); 243 if (IsArrow) 244 This = EmitPointerWithAlignment(Base); 245 else 246 This = EmitLValue(Base).getAddress(); 247 248 249 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 250 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 251 if (isa<CXXConstructorDecl>(MD) && 252 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 253 return RValue::get(nullptr); 254 255 if (!MD->getParent()->mayInsertExtraPadding()) { 256 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 257 // We don't like to generate the trivial copy/move assignment operator 258 // when it isn't necessary; just produce the proper effect here. 259 LValue RHS = isa<CXXOperatorCallExpr>(CE) 260 ? MakeNaturalAlignAddrLValue( 261 (*RtlArgs)[0].RV.getScalarVal(), 262 (*(CE->arg_begin() + 1))->getType()) 263 : EmitLValue(*CE->arg_begin()); 264 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 265 return RValue::get(This.getPointer()); 266 } 267 268 if (isa<CXXConstructorDecl>(MD) && 269 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 270 // Trivial move and copy ctor are the same. 271 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 272 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 273 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 274 return RValue::get(This.getPointer()); 275 } 276 llvm_unreachable("unknown trivial member function"); 277 } 278 } 279 280 // Compute the function type we're calling. 281 const CXXMethodDecl *CalleeDecl = 282 DevirtualizedMethod ? DevirtualizedMethod : MD; 283 const CGFunctionInfo *FInfo = nullptr; 284 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 285 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 286 Dtor, StructorType::Complete); 287 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 288 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 289 Ctor, StructorType::Complete); 290 else 291 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 292 293 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 294 295 // C++11 [class.mfct.non-static]p2: 296 // If a non-static member function of a class X is called for an object that 297 // is not of type X, or of a type derived from X, the behavior is undefined. 298 SourceLocation CallLoc; 299 ASTContext &C = getContext(); 300 if (CE) 301 CallLoc = CE->getExprLoc(); 302 303 SanitizerSet SkippedChecks; 304 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 305 auto *IOA = CMCE->getImplicitObjectArgument(); 306 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 307 if (IsImplicitObjectCXXThis) 308 SkippedChecks.set(SanitizerKind::Alignment, true); 309 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 310 SkippedChecks.set(SanitizerKind::Null, true); 311 } 312 EmitTypeCheck( 313 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 314 : CodeGenFunction::TCK_MemberCall, 315 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 316 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 317 318 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 319 // 'CalleeDecl' instead. 320 321 // C++ [class.virtual]p12: 322 // Explicit qualification with the scope operator (5.1) suppresses the 323 // virtual call mechanism. 324 // 325 // We also don't emit a virtual call if the base expression has a record type 326 // because then we know what the type is. 327 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 328 329 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 330 assert(CE->arg_begin() == CE->arg_end() && 331 "Destructor shouldn't have explicit parameters"); 332 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 333 if (UseVirtualCall) { 334 CGM.getCXXABI().EmitVirtualDestructorCall( 335 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 336 } else { 337 CGCallee Callee; 338 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 339 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 340 else if (!DevirtualizedMethod) 341 Callee = CGCallee::forDirect( 342 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 343 Dtor); 344 else { 345 const CXXDestructorDecl *DDtor = 346 cast<CXXDestructorDecl>(DevirtualizedMethod); 347 Callee = CGCallee::forDirect( 348 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 349 DDtor); 350 } 351 EmitCXXMemberOrOperatorCall( 352 CalleeDecl, Callee, ReturnValue, This.getPointer(), 353 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 354 } 355 return RValue::get(nullptr); 356 } 357 358 CGCallee Callee; 359 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 360 Callee = CGCallee::forDirect( 361 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 362 Ctor); 363 } else if (UseVirtualCall) { 364 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 365 CE->getLocStart()); 366 } else { 367 if (SanOpts.has(SanitizerKind::CFINVCall) && 368 MD->getParent()->isDynamicClass()) { 369 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 370 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 371 CE->getLocStart()); 372 } 373 374 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 375 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 376 else if (!DevirtualizedMethod) 377 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 378 else { 379 Callee = CGCallee::forDirect( 380 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 381 DevirtualizedMethod); 382 } 383 } 384 385 if (MD->isVirtual()) { 386 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 387 *this, CalleeDecl, This, UseVirtualCall); 388 } 389 390 return EmitCXXMemberOrOperatorCall( 391 CalleeDecl, Callee, ReturnValue, This.getPointer(), 392 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 393 } 394 395 RValue 396 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 397 ReturnValueSlot ReturnValue) { 398 const BinaryOperator *BO = 399 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 400 const Expr *BaseExpr = BO->getLHS(); 401 const Expr *MemFnExpr = BO->getRHS(); 402 403 const MemberPointerType *MPT = 404 MemFnExpr->getType()->castAs<MemberPointerType>(); 405 406 const FunctionProtoType *FPT = 407 MPT->getPointeeType()->castAs<FunctionProtoType>(); 408 const CXXRecordDecl *RD = 409 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 410 411 // Emit the 'this' pointer. 412 Address This = Address::invalid(); 413 if (BO->getOpcode() == BO_PtrMemI) 414 This = EmitPointerWithAlignment(BaseExpr); 415 else 416 This = EmitLValue(BaseExpr).getAddress(); 417 418 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 419 QualType(MPT->getClass(), 0)); 420 421 // Get the member function pointer. 422 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 423 424 // Ask the ABI to load the callee. Note that This is modified. 425 llvm::Value *ThisPtrForCall = nullptr; 426 CGCallee Callee = 427 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 428 ThisPtrForCall, MemFnPtr, MPT); 429 430 CallArgList Args; 431 432 QualType ThisType = 433 getContext().getPointerType(getContext().getTagDeclType(RD)); 434 435 // Push the this ptr. 436 Args.add(RValue::get(ThisPtrForCall), ThisType); 437 438 RequiredArgs required = 439 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 440 441 // And the rest of the call args 442 EmitCallArgs(Args, FPT, E->arguments()); 443 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 444 /*PrefixSize=*/0), 445 Callee, ReturnValue, Args); 446 } 447 448 RValue 449 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 450 const CXXMethodDecl *MD, 451 ReturnValueSlot ReturnValue) { 452 assert(MD->isInstance() && 453 "Trying to emit a member call expr on a static method!"); 454 return EmitCXXMemberOrOperatorMemberCallExpr( 455 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 456 /*IsArrow=*/false, E->getArg(0)); 457 } 458 459 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 460 ReturnValueSlot ReturnValue) { 461 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 462 } 463 464 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 465 Address DestPtr, 466 const CXXRecordDecl *Base) { 467 if (Base->isEmpty()) 468 return; 469 470 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 471 472 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 473 CharUnits NVSize = Layout.getNonVirtualSize(); 474 475 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 476 // present, they are initialized by the most derived class before calling the 477 // constructor. 478 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 479 Stores.emplace_back(CharUnits::Zero(), NVSize); 480 481 // Each store is split by the existence of a vbptr. 482 CharUnits VBPtrWidth = CGF.getPointerSize(); 483 std::vector<CharUnits> VBPtrOffsets = 484 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 485 for (CharUnits VBPtrOffset : VBPtrOffsets) { 486 // Stop before we hit any virtual base pointers located in virtual bases. 487 if (VBPtrOffset >= NVSize) 488 break; 489 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 490 CharUnits LastStoreOffset = LastStore.first; 491 CharUnits LastStoreSize = LastStore.second; 492 493 CharUnits SplitBeforeOffset = LastStoreOffset; 494 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 495 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 496 if (!SplitBeforeSize.isZero()) 497 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 498 499 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 500 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 501 assert(!SplitAfterSize.isNegative() && "negative store size!"); 502 if (!SplitAfterSize.isZero()) 503 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 504 } 505 506 // If the type contains a pointer to data member we can't memset it to zero. 507 // Instead, create a null constant and copy it to the destination. 508 // TODO: there are other patterns besides zero that we can usefully memset, 509 // like -1, which happens to be the pattern used by member-pointers. 510 // TODO: isZeroInitializable can be over-conservative in the case where a 511 // virtual base contains a member pointer. 512 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 513 if (!NullConstantForBase->isNullValue()) { 514 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 515 CGF.CGM.getModule(), NullConstantForBase->getType(), 516 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 517 NullConstantForBase, Twine()); 518 519 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 520 DestPtr.getAlignment()); 521 NullVariable->setAlignment(Align.getQuantity()); 522 523 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 524 525 // Get and call the appropriate llvm.memcpy overload. 526 for (std::pair<CharUnits, CharUnits> Store : Stores) { 527 CharUnits StoreOffset = Store.first; 528 CharUnits StoreSize = Store.second; 529 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 530 CGF.Builder.CreateMemCpy( 531 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 532 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 533 StoreSizeVal); 534 } 535 536 // Otherwise, just memset the whole thing to zero. This is legal 537 // because in LLVM, all default initializers (other than the ones we just 538 // handled above) are guaranteed to have a bit pattern of all zeros. 539 } else { 540 for (std::pair<CharUnits, CharUnits> Store : Stores) { 541 CharUnits StoreOffset = Store.first; 542 CharUnits StoreSize = Store.second; 543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 544 CGF.Builder.CreateMemSet( 545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 546 CGF.Builder.getInt8(0), StoreSizeVal); 547 } 548 } 549 } 550 551 void 552 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 553 AggValueSlot Dest) { 554 assert(!Dest.isIgnored() && "Must have a destination!"); 555 const CXXConstructorDecl *CD = E->getConstructor(); 556 557 // If we require zero initialization before (or instead of) calling the 558 // constructor, as can be the case with a non-user-provided default 559 // constructor, emit the zero initialization now, unless destination is 560 // already zeroed. 561 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 562 switch (E->getConstructionKind()) { 563 case CXXConstructExpr::CK_Delegating: 564 case CXXConstructExpr::CK_Complete: 565 EmitNullInitialization(Dest.getAddress(), E->getType()); 566 break; 567 case CXXConstructExpr::CK_VirtualBase: 568 case CXXConstructExpr::CK_NonVirtualBase: 569 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 570 CD->getParent()); 571 break; 572 } 573 } 574 575 // If this is a call to a trivial default constructor, do nothing. 576 if (CD->isTrivial() && CD->isDefaultConstructor()) 577 return; 578 579 // Elide the constructor if we're constructing from a temporary. 580 // The temporary check is required because Sema sets this on NRVO 581 // returns. 582 if (getLangOpts().ElideConstructors && E->isElidable()) { 583 assert(getContext().hasSameUnqualifiedType(E->getType(), 584 E->getArg(0)->getType())); 585 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 586 EmitAggExpr(E->getArg(0), Dest); 587 return; 588 } 589 } 590 591 if (const ArrayType *arrayType 592 = getContext().getAsArrayType(E->getType())) { 593 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 594 } else { 595 CXXCtorType Type = Ctor_Complete; 596 bool ForVirtualBase = false; 597 bool Delegating = false; 598 599 switch (E->getConstructionKind()) { 600 case CXXConstructExpr::CK_Delegating: 601 // We should be emitting a constructor; GlobalDecl will assert this 602 Type = CurGD.getCtorType(); 603 Delegating = true; 604 break; 605 606 case CXXConstructExpr::CK_Complete: 607 Type = Ctor_Complete; 608 break; 609 610 case CXXConstructExpr::CK_VirtualBase: 611 ForVirtualBase = true; 612 // fall-through 613 614 case CXXConstructExpr::CK_NonVirtualBase: 615 Type = Ctor_Base; 616 } 617 618 // Call the constructor. 619 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 620 Dest.getAddress(), E); 621 } 622 } 623 624 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 625 const Expr *Exp) { 626 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 627 Exp = E->getSubExpr(); 628 assert(isa<CXXConstructExpr>(Exp) && 629 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 630 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 631 const CXXConstructorDecl *CD = E->getConstructor(); 632 RunCleanupsScope Scope(*this); 633 634 // If we require zero initialization before (or instead of) calling the 635 // constructor, as can be the case with a non-user-provided default 636 // constructor, emit the zero initialization now. 637 // FIXME. Do I still need this for a copy ctor synthesis? 638 if (E->requiresZeroInitialization()) 639 EmitNullInitialization(Dest, E->getType()); 640 641 assert(!getContext().getAsConstantArrayType(E->getType()) 642 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 643 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 644 } 645 646 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 647 const CXXNewExpr *E) { 648 if (!E->isArray()) 649 return CharUnits::Zero(); 650 651 // No cookie is required if the operator new[] being used is the 652 // reserved placement operator new[]. 653 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 654 return CharUnits::Zero(); 655 656 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 657 } 658 659 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 660 const CXXNewExpr *e, 661 unsigned minElements, 662 llvm::Value *&numElements, 663 llvm::Value *&sizeWithoutCookie) { 664 QualType type = e->getAllocatedType(); 665 666 if (!e->isArray()) { 667 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 668 sizeWithoutCookie 669 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 670 return sizeWithoutCookie; 671 } 672 673 // The width of size_t. 674 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 675 676 // Figure out the cookie size. 677 llvm::APInt cookieSize(sizeWidth, 678 CalculateCookiePadding(CGF, e).getQuantity()); 679 680 // Emit the array size expression. 681 // We multiply the size of all dimensions for NumElements. 682 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 683 numElements = CGF.CGM.EmitConstantExpr(e->getArraySize(), 684 CGF.getContext().getSizeType(), &CGF); 685 if (!numElements) 686 numElements = CGF.EmitScalarExpr(e->getArraySize()); 687 assert(isa<llvm::IntegerType>(numElements->getType())); 688 689 // The number of elements can be have an arbitrary integer type; 690 // essentially, we need to multiply it by a constant factor, add a 691 // cookie size, and verify that the result is representable as a 692 // size_t. That's just a gloss, though, and it's wrong in one 693 // important way: if the count is negative, it's an error even if 694 // the cookie size would bring the total size >= 0. 695 bool isSigned 696 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 697 llvm::IntegerType *numElementsType 698 = cast<llvm::IntegerType>(numElements->getType()); 699 unsigned numElementsWidth = numElementsType->getBitWidth(); 700 701 // Compute the constant factor. 702 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 703 while (const ConstantArrayType *CAT 704 = CGF.getContext().getAsConstantArrayType(type)) { 705 type = CAT->getElementType(); 706 arraySizeMultiplier *= CAT->getSize(); 707 } 708 709 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 710 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 711 typeSizeMultiplier *= arraySizeMultiplier; 712 713 // This will be a size_t. 714 llvm::Value *size; 715 716 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 717 // Don't bloat the -O0 code. 718 if (llvm::ConstantInt *numElementsC = 719 dyn_cast<llvm::ConstantInt>(numElements)) { 720 const llvm::APInt &count = numElementsC->getValue(); 721 722 bool hasAnyOverflow = false; 723 724 // If 'count' was a negative number, it's an overflow. 725 if (isSigned && count.isNegative()) 726 hasAnyOverflow = true; 727 728 // We want to do all this arithmetic in size_t. If numElements is 729 // wider than that, check whether it's already too big, and if so, 730 // overflow. 731 else if (numElementsWidth > sizeWidth && 732 numElementsWidth - sizeWidth > count.countLeadingZeros()) 733 hasAnyOverflow = true; 734 735 // Okay, compute a count at the right width. 736 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 737 738 // If there is a brace-initializer, we cannot allocate fewer elements than 739 // there are initializers. If we do, that's treated like an overflow. 740 if (adjustedCount.ult(minElements)) 741 hasAnyOverflow = true; 742 743 // Scale numElements by that. This might overflow, but we don't 744 // care because it only overflows if allocationSize does, too, and 745 // if that overflows then we shouldn't use this. 746 numElements = llvm::ConstantInt::get(CGF.SizeTy, 747 adjustedCount * arraySizeMultiplier); 748 749 // Compute the size before cookie, and track whether it overflowed. 750 bool overflow; 751 llvm::APInt allocationSize 752 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 753 hasAnyOverflow |= overflow; 754 755 // Add in the cookie, and check whether it's overflowed. 756 if (cookieSize != 0) { 757 // Save the current size without a cookie. This shouldn't be 758 // used if there was overflow. 759 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 760 761 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 762 hasAnyOverflow |= overflow; 763 } 764 765 // On overflow, produce a -1 so operator new will fail. 766 if (hasAnyOverflow) { 767 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 768 } else { 769 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 770 } 771 772 // Otherwise, we might need to use the overflow intrinsics. 773 } else { 774 // There are up to five conditions we need to test for: 775 // 1) if isSigned, we need to check whether numElements is negative; 776 // 2) if numElementsWidth > sizeWidth, we need to check whether 777 // numElements is larger than something representable in size_t; 778 // 3) if minElements > 0, we need to check whether numElements is smaller 779 // than that. 780 // 4) we need to compute 781 // sizeWithoutCookie := numElements * typeSizeMultiplier 782 // and check whether it overflows; and 783 // 5) if we need a cookie, we need to compute 784 // size := sizeWithoutCookie + cookieSize 785 // and check whether it overflows. 786 787 llvm::Value *hasOverflow = nullptr; 788 789 // If numElementsWidth > sizeWidth, then one way or another, we're 790 // going to have to do a comparison for (2), and this happens to 791 // take care of (1), too. 792 if (numElementsWidth > sizeWidth) { 793 llvm::APInt threshold(numElementsWidth, 1); 794 threshold <<= sizeWidth; 795 796 llvm::Value *thresholdV 797 = llvm::ConstantInt::get(numElementsType, threshold); 798 799 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 800 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 801 802 // Otherwise, if we're signed, we want to sext up to size_t. 803 } else if (isSigned) { 804 if (numElementsWidth < sizeWidth) 805 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 806 807 // If there's a non-1 type size multiplier, then we can do the 808 // signedness check at the same time as we do the multiply 809 // because a negative number times anything will cause an 810 // unsigned overflow. Otherwise, we have to do it here. But at least 811 // in this case, we can subsume the >= minElements check. 812 if (typeSizeMultiplier == 1) 813 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 814 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 815 816 // Otherwise, zext up to size_t if necessary. 817 } else if (numElementsWidth < sizeWidth) { 818 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 819 } 820 821 assert(numElements->getType() == CGF.SizeTy); 822 823 if (minElements) { 824 // Don't allow allocation of fewer elements than we have initializers. 825 if (!hasOverflow) { 826 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 827 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 828 } else if (numElementsWidth > sizeWidth) { 829 // The other existing overflow subsumes this check. 830 // We do an unsigned comparison, since any signed value < -1 is 831 // taken care of either above or below. 832 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 833 CGF.Builder.CreateICmpULT(numElements, 834 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 835 } 836 } 837 838 size = numElements; 839 840 // Multiply by the type size if necessary. This multiplier 841 // includes all the factors for nested arrays. 842 // 843 // This step also causes numElements to be scaled up by the 844 // nested-array factor if necessary. Overflow on this computation 845 // can be ignored because the result shouldn't be used if 846 // allocation fails. 847 if (typeSizeMultiplier != 1) { 848 llvm::Value *umul_with_overflow 849 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 850 851 llvm::Value *tsmV = 852 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 853 llvm::Value *result = 854 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 855 856 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 857 if (hasOverflow) 858 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 859 else 860 hasOverflow = overflowed; 861 862 size = CGF.Builder.CreateExtractValue(result, 0); 863 864 // Also scale up numElements by the array size multiplier. 865 if (arraySizeMultiplier != 1) { 866 // If the base element type size is 1, then we can re-use the 867 // multiply we just did. 868 if (typeSize.isOne()) { 869 assert(arraySizeMultiplier == typeSizeMultiplier); 870 numElements = size; 871 872 // Otherwise we need a separate multiply. 873 } else { 874 llvm::Value *asmV = 875 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 876 numElements = CGF.Builder.CreateMul(numElements, asmV); 877 } 878 } 879 } else { 880 // numElements doesn't need to be scaled. 881 assert(arraySizeMultiplier == 1); 882 } 883 884 // Add in the cookie size if necessary. 885 if (cookieSize != 0) { 886 sizeWithoutCookie = size; 887 888 llvm::Value *uadd_with_overflow 889 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 890 891 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 892 llvm::Value *result = 893 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 894 895 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 896 if (hasOverflow) 897 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 898 else 899 hasOverflow = overflowed; 900 901 size = CGF.Builder.CreateExtractValue(result, 0); 902 } 903 904 // If we had any possibility of dynamic overflow, make a select to 905 // overwrite 'size' with an all-ones value, which should cause 906 // operator new to throw. 907 if (hasOverflow) 908 size = CGF.Builder.CreateSelect(hasOverflow, 909 llvm::Constant::getAllOnesValue(CGF.SizeTy), 910 size); 911 } 912 913 if (cookieSize == 0) 914 sizeWithoutCookie = size; 915 else 916 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 917 918 return size; 919 } 920 921 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 922 QualType AllocType, Address NewPtr) { 923 // FIXME: Refactor with EmitExprAsInit. 924 switch (CGF.getEvaluationKind(AllocType)) { 925 case TEK_Scalar: 926 CGF.EmitScalarInit(Init, nullptr, 927 CGF.MakeAddrLValue(NewPtr, AllocType), false); 928 return; 929 case TEK_Complex: 930 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 931 /*isInit*/ true); 932 return; 933 case TEK_Aggregate: { 934 AggValueSlot Slot 935 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 936 AggValueSlot::IsDestructed, 937 AggValueSlot::DoesNotNeedGCBarriers, 938 AggValueSlot::IsNotAliased); 939 CGF.EmitAggExpr(Init, Slot); 940 return; 941 } 942 } 943 llvm_unreachable("bad evaluation kind"); 944 } 945 946 void CodeGenFunction::EmitNewArrayInitializer( 947 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 948 Address BeginPtr, llvm::Value *NumElements, 949 llvm::Value *AllocSizeWithoutCookie) { 950 // If we have a type with trivial initialization and no initializer, 951 // there's nothing to do. 952 if (!E->hasInitializer()) 953 return; 954 955 Address CurPtr = BeginPtr; 956 957 unsigned InitListElements = 0; 958 959 const Expr *Init = E->getInitializer(); 960 Address EndOfInit = Address::invalid(); 961 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 962 EHScopeStack::stable_iterator Cleanup; 963 llvm::Instruction *CleanupDominator = nullptr; 964 965 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 966 CharUnits ElementAlign = 967 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 968 969 // Attempt to perform zero-initialization using memset. 970 auto TryMemsetInitialization = [&]() -> bool { 971 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 972 // we can initialize with a memset to -1. 973 if (!CGM.getTypes().isZeroInitializable(ElementType)) 974 return false; 975 976 // Optimization: since zero initialization will just set the memory 977 // to all zeroes, generate a single memset to do it in one shot. 978 979 // Subtract out the size of any elements we've already initialized. 980 auto *RemainingSize = AllocSizeWithoutCookie; 981 if (InitListElements) { 982 // We know this can't overflow; we check this when doing the allocation. 983 auto *InitializedSize = llvm::ConstantInt::get( 984 RemainingSize->getType(), 985 getContext().getTypeSizeInChars(ElementType).getQuantity() * 986 InitListElements); 987 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 988 } 989 990 // Create the memset. 991 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 992 return true; 993 }; 994 995 // If the initializer is an initializer list, first do the explicit elements. 996 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 997 // Initializing from a (braced) string literal is a special case; the init 998 // list element does not initialize a (single) array element. 999 if (ILE->isStringLiteralInit()) { 1000 // Initialize the initial portion of length equal to that of the string 1001 // literal. The allocation must be for at least this much; we emitted a 1002 // check for that earlier. 1003 AggValueSlot Slot = 1004 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1005 AggValueSlot::IsDestructed, 1006 AggValueSlot::DoesNotNeedGCBarriers, 1007 AggValueSlot::IsNotAliased); 1008 EmitAggExpr(ILE->getInit(0), Slot); 1009 1010 // Move past these elements. 1011 InitListElements = 1012 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1013 ->getSize().getZExtValue(); 1014 CurPtr = 1015 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1016 Builder.getSize(InitListElements), 1017 "string.init.end"), 1018 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1019 ElementSize)); 1020 1021 // Zero out the rest, if any remain. 1022 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1023 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1024 bool OK = TryMemsetInitialization(); 1025 (void)OK; 1026 assert(OK && "couldn't memset character type?"); 1027 } 1028 return; 1029 } 1030 1031 InitListElements = ILE->getNumInits(); 1032 1033 // If this is a multi-dimensional array new, we will initialize multiple 1034 // elements with each init list element. 1035 QualType AllocType = E->getAllocatedType(); 1036 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1037 AllocType->getAsArrayTypeUnsafe())) { 1038 ElementTy = ConvertTypeForMem(AllocType); 1039 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1040 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1041 } 1042 1043 // Enter a partial-destruction Cleanup if necessary. 1044 if (needsEHCleanup(DtorKind)) { 1045 // In principle we could tell the Cleanup where we are more 1046 // directly, but the control flow can get so varied here that it 1047 // would actually be quite complex. Therefore we go through an 1048 // alloca. 1049 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1050 "array.init.end"); 1051 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1052 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1053 ElementType, ElementAlign, 1054 getDestroyer(DtorKind)); 1055 Cleanup = EHStack.stable_begin(); 1056 } 1057 1058 CharUnits StartAlign = CurPtr.getAlignment(); 1059 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1060 // Tell the cleanup that it needs to destroy up to this 1061 // element. TODO: some of these stores can be trivially 1062 // observed to be unnecessary. 1063 if (EndOfInit.isValid()) { 1064 auto FinishedPtr = 1065 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1066 Builder.CreateStore(FinishedPtr, EndOfInit); 1067 } 1068 // FIXME: If the last initializer is an incomplete initializer list for 1069 // an array, and we have an array filler, we can fold together the two 1070 // initialization loops. 1071 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1072 ILE->getInit(i)->getType(), CurPtr); 1073 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1074 Builder.getSize(1), 1075 "array.exp.next"), 1076 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1077 } 1078 1079 // The remaining elements are filled with the array filler expression. 1080 Init = ILE->getArrayFiller(); 1081 1082 // Extract the initializer for the individual array elements by pulling 1083 // out the array filler from all the nested initializer lists. This avoids 1084 // generating a nested loop for the initialization. 1085 while (Init && Init->getType()->isConstantArrayType()) { 1086 auto *SubILE = dyn_cast<InitListExpr>(Init); 1087 if (!SubILE) 1088 break; 1089 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1090 Init = SubILE->getArrayFiller(); 1091 } 1092 1093 // Switch back to initializing one base element at a time. 1094 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1095 } 1096 1097 // If all elements have already been initialized, skip any further 1098 // initialization. 1099 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1100 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1101 // If there was a Cleanup, deactivate it. 1102 if (CleanupDominator) 1103 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1104 return; 1105 } 1106 1107 assert(Init && "have trailing elements to initialize but no initializer"); 1108 1109 // If this is a constructor call, try to optimize it out, and failing that 1110 // emit a single loop to initialize all remaining elements. 1111 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1112 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1113 if (Ctor->isTrivial()) { 1114 // If new expression did not specify value-initialization, then there 1115 // is no initialization. 1116 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1117 return; 1118 1119 if (TryMemsetInitialization()) 1120 return; 1121 } 1122 1123 // Store the new Cleanup position for irregular Cleanups. 1124 // 1125 // FIXME: Share this cleanup with the constructor call emission rather than 1126 // having it create a cleanup of its own. 1127 if (EndOfInit.isValid()) 1128 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1129 1130 // Emit a constructor call loop to initialize the remaining elements. 1131 if (InitListElements) 1132 NumElements = Builder.CreateSub( 1133 NumElements, 1134 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1135 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1136 CCE->requiresZeroInitialization()); 1137 return; 1138 } 1139 1140 // If this is value-initialization, we can usually use memset. 1141 ImplicitValueInitExpr IVIE(ElementType); 1142 if (isa<ImplicitValueInitExpr>(Init)) { 1143 if (TryMemsetInitialization()) 1144 return; 1145 1146 // Switch to an ImplicitValueInitExpr for the element type. This handles 1147 // only one case: multidimensional array new of pointers to members. In 1148 // all other cases, we already have an initializer for the array element. 1149 Init = &IVIE; 1150 } 1151 1152 // At this point we should have found an initializer for the individual 1153 // elements of the array. 1154 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1155 "got wrong type of element to initialize"); 1156 1157 // If we have an empty initializer list, we can usually use memset. 1158 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1159 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1160 return; 1161 1162 // If we have a struct whose every field is value-initialized, we can 1163 // usually use memset. 1164 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1165 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1166 if (RType->getDecl()->isStruct()) { 1167 unsigned NumElements = 0; 1168 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1169 NumElements = CXXRD->getNumBases(); 1170 for (auto *Field : RType->getDecl()->fields()) 1171 if (!Field->isUnnamedBitfield()) 1172 ++NumElements; 1173 // FIXME: Recurse into nested InitListExprs. 1174 if (ILE->getNumInits() == NumElements) 1175 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1176 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1177 --NumElements; 1178 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1179 return; 1180 } 1181 } 1182 } 1183 1184 // Create the loop blocks. 1185 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1186 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1187 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1188 1189 // Find the end of the array, hoisted out of the loop. 1190 llvm::Value *EndPtr = 1191 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1192 1193 // If the number of elements isn't constant, we have to now check if there is 1194 // anything left to initialize. 1195 if (!ConstNum) { 1196 llvm::Value *IsEmpty = 1197 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1198 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1199 } 1200 1201 // Enter the loop. 1202 EmitBlock(LoopBB); 1203 1204 // Set up the current-element phi. 1205 llvm::PHINode *CurPtrPhi = 1206 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1207 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1208 1209 CurPtr = Address(CurPtrPhi, ElementAlign); 1210 1211 // Store the new Cleanup position for irregular Cleanups. 1212 if (EndOfInit.isValid()) 1213 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1214 1215 // Enter a partial-destruction Cleanup if necessary. 1216 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1217 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1218 ElementType, ElementAlign, 1219 getDestroyer(DtorKind)); 1220 Cleanup = EHStack.stable_begin(); 1221 CleanupDominator = Builder.CreateUnreachable(); 1222 } 1223 1224 // Emit the initializer into this element. 1225 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1226 1227 // Leave the Cleanup if we entered one. 1228 if (CleanupDominator) { 1229 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1230 CleanupDominator->eraseFromParent(); 1231 } 1232 1233 // Advance to the next element by adjusting the pointer type as necessary. 1234 llvm::Value *NextPtr = 1235 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1236 "array.next"); 1237 1238 // Check whether we've gotten to the end of the array and, if so, 1239 // exit the loop. 1240 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1241 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1242 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1243 1244 EmitBlock(ContBB); 1245 } 1246 1247 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1248 QualType ElementType, llvm::Type *ElementTy, 1249 Address NewPtr, llvm::Value *NumElements, 1250 llvm::Value *AllocSizeWithoutCookie) { 1251 ApplyDebugLocation DL(CGF, E); 1252 if (E->isArray()) 1253 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1254 AllocSizeWithoutCookie); 1255 else if (const Expr *Init = E->getInitializer()) 1256 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1257 } 1258 1259 /// Emit a call to an operator new or operator delete function, as implicitly 1260 /// created by new-expressions and delete-expressions. 1261 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1262 const FunctionDecl *CalleeDecl, 1263 const FunctionProtoType *CalleeType, 1264 const CallArgList &Args) { 1265 llvm::Instruction *CallOrInvoke; 1266 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1267 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1268 RValue RV = 1269 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1270 Args, CalleeType, /*chainCall=*/false), 1271 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1272 1273 /// C++1y [expr.new]p10: 1274 /// [In a new-expression,] an implementation is allowed to omit a call 1275 /// to a replaceable global allocation function. 1276 /// 1277 /// We model such elidable calls with the 'builtin' attribute. 1278 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1279 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1280 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1281 // FIXME: Add addAttribute to CallSite. 1282 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1283 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1284 llvm::Attribute::Builtin); 1285 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1286 II->addAttribute(llvm::AttributeList::FunctionIndex, 1287 llvm::Attribute::Builtin); 1288 else 1289 llvm_unreachable("unexpected kind of call instruction"); 1290 } 1291 1292 return RV; 1293 } 1294 1295 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1296 const Expr *Arg, 1297 bool IsDelete) { 1298 CallArgList Args; 1299 const Stmt *ArgS = Arg; 1300 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1301 // Find the allocation or deallocation function that we're calling. 1302 ASTContext &Ctx = getContext(); 1303 DeclarationName Name = Ctx.DeclarationNames 1304 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1305 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1306 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1307 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1308 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1309 llvm_unreachable("predeclared global operator new/delete is missing"); 1310 } 1311 1312 static std::pair<bool, bool> 1313 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) { 1314 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1315 1316 // The first argument is always a void*. 1317 ++AI; 1318 1319 // Figure out what other parameters we should be implicitly passing. 1320 bool PassSize = false; 1321 bool PassAlignment = false; 1322 1323 if (AI != AE && (*AI)->isIntegerType()) { 1324 PassSize = true; 1325 ++AI; 1326 } 1327 1328 if (AI != AE && (*AI)->isAlignValT()) { 1329 PassAlignment = true; 1330 ++AI; 1331 } 1332 1333 assert(AI == AE && "unexpected usual deallocation function parameter"); 1334 return {PassSize, PassAlignment}; 1335 } 1336 1337 namespace { 1338 /// A cleanup to call the given 'operator delete' function upon abnormal 1339 /// exit from a new expression. Templated on a traits type that deals with 1340 /// ensuring that the arguments dominate the cleanup if necessary. 1341 template<typename Traits> 1342 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1343 /// Type used to hold llvm::Value*s. 1344 typedef typename Traits::ValueTy ValueTy; 1345 /// Type used to hold RValues. 1346 typedef typename Traits::RValueTy RValueTy; 1347 struct PlacementArg { 1348 RValueTy ArgValue; 1349 QualType ArgType; 1350 }; 1351 1352 unsigned NumPlacementArgs : 31; 1353 unsigned PassAlignmentToPlacementDelete : 1; 1354 const FunctionDecl *OperatorDelete; 1355 ValueTy Ptr; 1356 ValueTy AllocSize; 1357 CharUnits AllocAlign; 1358 1359 PlacementArg *getPlacementArgs() { 1360 return reinterpret_cast<PlacementArg *>(this + 1); 1361 } 1362 1363 public: 1364 static size_t getExtraSize(size_t NumPlacementArgs) { 1365 return NumPlacementArgs * sizeof(PlacementArg); 1366 } 1367 1368 CallDeleteDuringNew(size_t NumPlacementArgs, 1369 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1370 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1371 CharUnits AllocAlign) 1372 : NumPlacementArgs(NumPlacementArgs), 1373 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1374 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1375 AllocAlign(AllocAlign) {} 1376 1377 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1378 assert(I < NumPlacementArgs && "index out of range"); 1379 getPlacementArgs()[I] = {Arg, Type}; 1380 } 1381 1382 void Emit(CodeGenFunction &CGF, Flags flags) override { 1383 const FunctionProtoType *FPT = 1384 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1385 CallArgList DeleteArgs; 1386 1387 // The first argument is always a void*. 1388 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1389 1390 // Figure out what other parameters we should be implicitly passing. 1391 bool PassSize = false; 1392 bool PassAlignment = false; 1393 if (NumPlacementArgs) { 1394 // A placement deallocation function is implicitly passed an alignment 1395 // if the placement allocation function was, but is never passed a size. 1396 PassAlignment = PassAlignmentToPlacementDelete; 1397 } else { 1398 // For a non-placement new-expression, 'operator delete' can take a 1399 // size and/or an alignment if it has the right parameters. 1400 std::tie(PassSize, PassAlignment) = 1401 shouldPassSizeAndAlignToUsualDelete(FPT); 1402 } 1403 1404 // The second argument can be a std::size_t (for non-placement delete). 1405 if (PassSize) 1406 DeleteArgs.add(Traits::get(CGF, AllocSize), 1407 CGF.getContext().getSizeType()); 1408 1409 // The next (second or third) argument can be a std::align_val_t, which 1410 // is an enum whose underlying type is std::size_t. 1411 // FIXME: Use the right type as the parameter type. Note that in a call 1412 // to operator delete(size_t, ...), we may not have it available. 1413 if (PassAlignment) 1414 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1415 CGF.SizeTy, AllocAlign.getQuantity())), 1416 CGF.getContext().getSizeType()); 1417 1418 // Pass the rest of the arguments, which must match exactly. 1419 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1420 auto Arg = getPlacementArgs()[I]; 1421 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1422 } 1423 1424 // Call 'operator delete'. 1425 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1426 } 1427 }; 1428 } 1429 1430 /// Enter a cleanup to call 'operator delete' if the initializer in a 1431 /// new-expression throws. 1432 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1433 const CXXNewExpr *E, 1434 Address NewPtr, 1435 llvm::Value *AllocSize, 1436 CharUnits AllocAlign, 1437 const CallArgList &NewArgs) { 1438 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1439 1440 // If we're not inside a conditional branch, then the cleanup will 1441 // dominate and we can do the easier (and more efficient) thing. 1442 if (!CGF.isInConditionalBranch()) { 1443 struct DirectCleanupTraits { 1444 typedef llvm::Value *ValueTy; 1445 typedef RValue RValueTy; 1446 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1447 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1448 }; 1449 1450 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1451 1452 DirectCleanup *Cleanup = CGF.EHStack 1453 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1454 E->getNumPlacementArgs(), 1455 E->getOperatorDelete(), 1456 NewPtr.getPointer(), 1457 AllocSize, 1458 E->passAlignment(), 1459 AllocAlign); 1460 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1461 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1462 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1463 } 1464 1465 return; 1466 } 1467 1468 // Otherwise, we need to save all this stuff. 1469 DominatingValue<RValue>::saved_type SavedNewPtr = 1470 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1471 DominatingValue<RValue>::saved_type SavedAllocSize = 1472 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1473 1474 struct ConditionalCleanupTraits { 1475 typedef DominatingValue<RValue>::saved_type ValueTy; 1476 typedef DominatingValue<RValue>::saved_type RValueTy; 1477 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1478 return V.restore(CGF); 1479 } 1480 }; 1481 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1482 1483 ConditionalCleanup *Cleanup = CGF.EHStack 1484 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1485 E->getNumPlacementArgs(), 1486 E->getOperatorDelete(), 1487 SavedNewPtr, 1488 SavedAllocSize, 1489 E->passAlignment(), 1490 AllocAlign); 1491 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1492 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1493 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1494 Arg.Ty); 1495 } 1496 1497 CGF.initFullExprCleanup(); 1498 } 1499 1500 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1501 // The element type being allocated. 1502 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1503 1504 // 1. Build a call to the allocation function. 1505 FunctionDecl *allocator = E->getOperatorNew(); 1506 1507 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1508 unsigned minElements = 0; 1509 if (E->isArray() && E->hasInitializer()) { 1510 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1511 if (ILE && ILE->isStringLiteralInit()) 1512 minElements = 1513 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1514 ->getSize().getZExtValue(); 1515 else if (ILE) 1516 minElements = ILE->getNumInits(); 1517 } 1518 1519 llvm::Value *numElements = nullptr; 1520 llvm::Value *allocSizeWithoutCookie = nullptr; 1521 llvm::Value *allocSize = 1522 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1523 allocSizeWithoutCookie); 1524 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1525 1526 // Emit the allocation call. If the allocator is a global placement 1527 // operator, just "inline" it directly. 1528 Address allocation = Address::invalid(); 1529 CallArgList allocatorArgs; 1530 if (allocator->isReservedGlobalPlacementOperator()) { 1531 assert(E->getNumPlacementArgs() == 1); 1532 const Expr *arg = *E->placement_arguments().begin(); 1533 1534 AlignmentSource alignSource; 1535 allocation = EmitPointerWithAlignment(arg, &alignSource); 1536 1537 // The pointer expression will, in many cases, be an opaque void*. 1538 // In these cases, discard the computed alignment and use the 1539 // formal alignment of the allocated type. 1540 if (alignSource != AlignmentSource::Decl) 1541 allocation = Address(allocation.getPointer(), allocAlign); 1542 1543 // Set up allocatorArgs for the call to operator delete if it's not 1544 // the reserved global operator. 1545 if (E->getOperatorDelete() && 1546 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1547 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1548 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1549 } 1550 1551 } else { 1552 const FunctionProtoType *allocatorType = 1553 allocator->getType()->castAs<FunctionProtoType>(); 1554 unsigned ParamsToSkip = 0; 1555 1556 // The allocation size is the first argument. 1557 QualType sizeType = getContext().getSizeType(); 1558 allocatorArgs.add(RValue::get(allocSize), sizeType); 1559 ++ParamsToSkip; 1560 1561 if (allocSize != allocSizeWithoutCookie) { 1562 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1563 allocAlign = std::max(allocAlign, cookieAlign); 1564 } 1565 1566 // The allocation alignment may be passed as the second argument. 1567 if (E->passAlignment()) { 1568 QualType AlignValT = sizeType; 1569 if (allocatorType->getNumParams() > 1) { 1570 AlignValT = allocatorType->getParamType(1); 1571 assert(getContext().hasSameUnqualifiedType( 1572 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1573 sizeType) && 1574 "wrong type for alignment parameter"); 1575 ++ParamsToSkip; 1576 } else { 1577 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1578 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1579 } 1580 allocatorArgs.add( 1581 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1582 AlignValT); 1583 } 1584 1585 // FIXME: Why do we not pass a CalleeDecl here? 1586 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1587 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1588 1589 RValue RV = 1590 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1591 1592 // If this was a call to a global replaceable allocation function that does 1593 // not take an alignment argument, the allocator is known to produce 1594 // storage that's suitably aligned for any object that fits, up to a known 1595 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1596 CharUnits allocationAlign = allocAlign; 1597 if (!E->passAlignment() && 1598 allocator->isReplaceableGlobalAllocationFunction()) { 1599 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1600 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1601 allocationAlign = std::max( 1602 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1603 } 1604 1605 allocation = Address(RV.getScalarVal(), allocationAlign); 1606 } 1607 1608 // Emit a null check on the allocation result if the allocation 1609 // function is allowed to return null (because it has a non-throwing 1610 // exception spec or is the reserved placement new) and we have an 1611 // interesting initializer. 1612 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1613 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1614 1615 llvm::BasicBlock *nullCheckBB = nullptr; 1616 llvm::BasicBlock *contBB = nullptr; 1617 1618 // The null-check means that the initializer is conditionally 1619 // evaluated. 1620 ConditionalEvaluation conditional(*this); 1621 1622 if (nullCheck) { 1623 conditional.begin(*this); 1624 1625 nullCheckBB = Builder.GetInsertBlock(); 1626 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1627 contBB = createBasicBlock("new.cont"); 1628 1629 llvm::Value *isNull = 1630 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1631 Builder.CreateCondBr(isNull, contBB, notNullBB); 1632 EmitBlock(notNullBB); 1633 } 1634 1635 // If there's an operator delete, enter a cleanup to call it if an 1636 // exception is thrown. 1637 EHScopeStack::stable_iterator operatorDeleteCleanup; 1638 llvm::Instruction *cleanupDominator = nullptr; 1639 if (E->getOperatorDelete() && 1640 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1641 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1642 allocatorArgs); 1643 operatorDeleteCleanup = EHStack.stable_begin(); 1644 cleanupDominator = Builder.CreateUnreachable(); 1645 } 1646 1647 assert((allocSize == allocSizeWithoutCookie) == 1648 CalculateCookiePadding(*this, E).isZero()); 1649 if (allocSize != allocSizeWithoutCookie) { 1650 assert(E->isArray()); 1651 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1652 numElements, 1653 E, allocType); 1654 } 1655 1656 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1657 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1658 1659 // Passing pointer through invariant.group.barrier to avoid propagation of 1660 // vptrs information which may be included in previous type. 1661 if (CGM.getCodeGenOpts().StrictVTablePointers && 1662 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1663 allocator->isReservedGlobalPlacementOperator()) 1664 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1665 result.getAlignment()); 1666 1667 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1668 allocSizeWithoutCookie); 1669 if (E->isArray()) { 1670 // NewPtr is a pointer to the base element type. If we're 1671 // allocating an array of arrays, we'll need to cast back to the 1672 // array pointer type. 1673 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1674 if (result.getType() != resultType) 1675 result = Builder.CreateBitCast(result, resultType); 1676 } 1677 1678 // Deactivate the 'operator delete' cleanup if we finished 1679 // initialization. 1680 if (operatorDeleteCleanup.isValid()) { 1681 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1682 cleanupDominator->eraseFromParent(); 1683 } 1684 1685 llvm::Value *resultPtr = result.getPointer(); 1686 if (nullCheck) { 1687 conditional.end(*this); 1688 1689 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1690 EmitBlock(contBB); 1691 1692 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1693 PHI->addIncoming(resultPtr, notNullBB); 1694 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1695 nullCheckBB); 1696 1697 resultPtr = PHI; 1698 } 1699 1700 return resultPtr; 1701 } 1702 1703 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1704 llvm::Value *Ptr, QualType DeleteTy, 1705 llvm::Value *NumElements, 1706 CharUnits CookieSize) { 1707 assert((!NumElements && CookieSize.isZero()) || 1708 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1709 1710 const FunctionProtoType *DeleteFTy = 1711 DeleteFD->getType()->getAs<FunctionProtoType>(); 1712 1713 CallArgList DeleteArgs; 1714 1715 std::pair<bool, bool> PassSizeAndAlign = 1716 shouldPassSizeAndAlignToUsualDelete(DeleteFTy); 1717 1718 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1719 1720 // Pass the pointer itself. 1721 QualType ArgTy = *ParamTypeIt++; 1722 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1723 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1724 1725 // Pass the size if the delete function has a size_t parameter. 1726 if (PassSizeAndAlign.first) { 1727 QualType SizeType = *ParamTypeIt++; 1728 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1729 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1730 DeleteTypeSize.getQuantity()); 1731 1732 // For array new, multiply by the number of elements. 1733 if (NumElements) 1734 Size = Builder.CreateMul(Size, NumElements); 1735 1736 // If there is a cookie, add the cookie size. 1737 if (!CookieSize.isZero()) 1738 Size = Builder.CreateAdd( 1739 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1740 1741 DeleteArgs.add(RValue::get(Size), SizeType); 1742 } 1743 1744 // Pass the alignment if the delete function has an align_val_t parameter. 1745 if (PassSizeAndAlign.second) { 1746 QualType AlignValType = *ParamTypeIt++; 1747 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1748 getContext().getTypeAlignIfKnown(DeleteTy)); 1749 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1750 DeleteTypeAlign.getQuantity()); 1751 DeleteArgs.add(RValue::get(Align), AlignValType); 1752 } 1753 1754 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1755 "unknown parameter to usual delete function"); 1756 1757 // Emit the call to delete. 1758 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1759 } 1760 1761 namespace { 1762 /// Calls the given 'operator delete' on a single object. 1763 struct CallObjectDelete final : EHScopeStack::Cleanup { 1764 llvm::Value *Ptr; 1765 const FunctionDecl *OperatorDelete; 1766 QualType ElementType; 1767 1768 CallObjectDelete(llvm::Value *Ptr, 1769 const FunctionDecl *OperatorDelete, 1770 QualType ElementType) 1771 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1772 1773 void Emit(CodeGenFunction &CGF, Flags flags) override { 1774 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1775 } 1776 }; 1777 } 1778 1779 void 1780 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1781 llvm::Value *CompletePtr, 1782 QualType ElementType) { 1783 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1784 OperatorDelete, ElementType); 1785 } 1786 1787 /// Emit the code for deleting a single object. 1788 static void EmitObjectDelete(CodeGenFunction &CGF, 1789 const CXXDeleteExpr *DE, 1790 Address Ptr, 1791 QualType ElementType) { 1792 // C++11 [expr.delete]p3: 1793 // If the static type of the object to be deleted is different from its 1794 // dynamic type, the static type shall be a base class of the dynamic type 1795 // of the object to be deleted and the static type shall have a virtual 1796 // destructor or the behavior is undefined. 1797 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1798 DE->getExprLoc(), Ptr.getPointer(), 1799 ElementType); 1800 1801 // Find the destructor for the type, if applicable. If the 1802 // destructor is virtual, we'll just emit the vcall and return. 1803 const CXXDestructorDecl *Dtor = nullptr; 1804 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1805 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1806 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1807 Dtor = RD->getDestructor(); 1808 1809 if (Dtor->isVirtual()) { 1810 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1811 Dtor); 1812 return; 1813 } 1814 } 1815 } 1816 1817 // Make sure that we call delete even if the dtor throws. 1818 // This doesn't have to a conditional cleanup because we're going 1819 // to pop it off in a second. 1820 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1821 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1822 Ptr.getPointer(), 1823 OperatorDelete, ElementType); 1824 1825 if (Dtor) 1826 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1827 /*ForVirtualBase=*/false, 1828 /*Delegating=*/false, 1829 Ptr); 1830 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1831 switch (Lifetime) { 1832 case Qualifiers::OCL_None: 1833 case Qualifiers::OCL_ExplicitNone: 1834 case Qualifiers::OCL_Autoreleasing: 1835 break; 1836 1837 case Qualifiers::OCL_Strong: 1838 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1839 break; 1840 1841 case Qualifiers::OCL_Weak: 1842 CGF.EmitARCDestroyWeak(Ptr); 1843 break; 1844 } 1845 } 1846 1847 CGF.PopCleanupBlock(); 1848 } 1849 1850 namespace { 1851 /// Calls the given 'operator delete' on an array of objects. 1852 struct CallArrayDelete final : EHScopeStack::Cleanup { 1853 llvm::Value *Ptr; 1854 const FunctionDecl *OperatorDelete; 1855 llvm::Value *NumElements; 1856 QualType ElementType; 1857 CharUnits CookieSize; 1858 1859 CallArrayDelete(llvm::Value *Ptr, 1860 const FunctionDecl *OperatorDelete, 1861 llvm::Value *NumElements, 1862 QualType ElementType, 1863 CharUnits CookieSize) 1864 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1865 ElementType(ElementType), CookieSize(CookieSize) {} 1866 1867 void Emit(CodeGenFunction &CGF, Flags flags) override { 1868 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1869 CookieSize); 1870 } 1871 }; 1872 } 1873 1874 /// Emit the code for deleting an array of objects. 1875 static void EmitArrayDelete(CodeGenFunction &CGF, 1876 const CXXDeleteExpr *E, 1877 Address deletedPtr, 1878 QualType elementType) { 1879 llvm::Value *numElements = nullptr; 1880 llvm::Value *allocatedPtr = nullptr; 1881 CharUnits cookieSize; 1882 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1883 numElements, allocatedPtr, cookieSize); 1884 1885 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1886 1887 // Make sure that we call delete even if one of the dtors throws. 1888 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1889 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1890 allocatedPtr, operatorDelete, 1891 numElements, elementType, 1892 cookieSize); 1893 1894 // Destroy the elements. 1895 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1896 assert(numElements && "no element count for a type with a destructor!"); 1897 1898 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1899 CharUnits elementAlign = 1900 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1901 1902 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1903 llvm::Value *arrayEnd = 1904 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1905 1906 // Note that it is legal to allocate a zero-length array, and we 1907 // can never fold the check away because the length should always 1908 // come from a cookie. 1909 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1910 CGF.getDestroyer(dtorKind), 1911 /*checkZeroLength*/ true, 1912 CGF.needsEHCleanup(dtorKind)); 1913 } 1914 1915 // Pop the cleanup block. 1916 CGF.PopCleanupBlock(); 1917 } 1918 1919 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1920 const Expr *Arg = E->getArgument(); 1921 Address Ptr = EmitPointerWithAlignment(Arg); 1922 1923 // Null check the pointer. 1924 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1925 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1926 1927 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1928 1929 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1930 EmitBlock(DeleteNotNull); 1931 1932 // We might be deleting a pointer to array. If so, GEP down to the 1933 // first non-array element. 1934 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1935 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1936 if (DeleteTy->isConstantArrayType()) { 1937 llvm::Value *Zero = Builder.getInt32(0); 1938 SmallVector<llvm::Value*,8> GEP; 1939 1940 GEP.push_back(Zero); // point at the outermost array 1941 1942 // For each layer of array type we're pointing at: 1943 while (const ConstantArrayType *Arr 1944 = getContext().getAsConstantArrayType(DeleteTy)) { 1945 // 1. Unpeel the array type. 1946 DeleteTy = Arr->getElementType(); 1947 1948 // 2. GEP to the first element of the array. 1949 GEP.push_back(Zero); 1950 } 1951 1952 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1953 Ptr.getAlignment()); 1954 } 1955 1956 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1957 1958 if (E->isArrayForm()) { 1959 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1960 } else { 1961 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1962 } 1963 1964 EmitBlock(DeleteEnd); 1965 } 1966 1967 static bool isGLValueFromPointerDeref(const Expr *E) { 1968 E = E->IgnoreParens(); 1969 1970 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1971 if (!CE->getSubExpr()->isGLValue()) 1972 return false; 1973 return isGLValueFromPointerDeref(CE->getSubExpr()); 1974 } 1975 1976 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1977 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1978 1979 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1980 if (BO->getOpcode() == BO_Comma) 1981 return isGLValueFromPointerDeref(BO->getRHS()); 1982 1983 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1984 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1985 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1986 1987 // C++11 [expr.sub]p1: 1988 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1989 if (isa<ArraySubscriptExpr>(E)) 1990 return true; 1991 1992 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1993 if (UO->getOpcode() == UO_Deref) 1994 return true; 1995 1996 return false; 1997 } 1998 1999 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2000 llvm::Type *StdTypeInfoPtrTy) { 2001 // Get the vtable pointer. 2002 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2003 2004 // C++ [expr.typeid]p2: 2005 // If the glvalue expression is obtained by applying the unary * operator to 2006 // a pointer and the pointer is a null pointer value, the typeid expression 2007 // throws the std::bad_typeid exception. 2008 // 2009 // However, this paragraph's intent is not clear. We choose a very generous 2010 // interpretation which implores us to consider comma operators, conditional 2011 // operators, parentheses and other such constructs. 2012 QualType SrcRecordTy = E->getType(); 2013 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2014 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2015 llvm::BasicBlock *BadTypeidBlock = 2016 CGF.createBasicBlock("typeid.bad_typeid"); 2017 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2018 2019 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2020 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2021 2022 CGF.EmitBlock(BadTypeidBlock); 2023 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2024 CGF.EmitBlock(EndBlock); 2025 } 2026 2027 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2028 StdTypeInfoPtrTy); 2029 } 2030 2031 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2032 llvm::Type *StdTypeInfoPtrTy = 2033 ConvertType(E->getType())->getPointerTo(); 2034 2035 if (E->isTypeOperand()) { 2036 llvm::Constant *TypeInfo = 2037 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2038 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2039 } 2040 2041 // C++ [expr.typeid]p2: 2042 // When typeid is applied to a glvalue expression whose type is a 2043 // polymorphic class type, the result refers to a std::type_info object 2044 // representing the type of the most derived object (that is, the dynamic 2045 // type) to which the glvalue refers. 2046 if (E->isPotentiallyEvaluated()) 2047 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2048 StdTypeInfoPtrTy); 2049 2050 QualType OperandTy = E->getExprOperand()->getType(); 2051 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2052 StdTypeInfoPtrTy); 2053 } 2054 2055 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2056 QualType DestTy) { 2057 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2058 if (DestTy->isPointerType()) 2059 return llvm::Constant::getNullValue(DestLTy); 2060 2061 /// C++ [expr.dynamic.cast]p9: 2062 /// A failed cast to reference type throws std::bad_cast 2063 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2064 return nullptr; 2065 2066 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2067 return llvm::UndefValue::get(DestLTy); 2068 } 2069 2070 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2071 const CXXDynamicCastExpr *DCE) { 2072 CGM.EmitExplicitCastExprType(DCE, this); 2073 QualType DestTy = DCE->getTypeAsWritten(); 2074 2075 if (DCE->isAlwaysNull()) 2076 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2077 return T; 2078 2079 QualType SrcTy = DCE->getSubExpr()->getType(); 2080 2081 // C++ [expr.dynamic.cast]p7: 2082 // If T is "pointer to cv void," then the result is a pointer to the most 2083 // derived object pointed to by v. 2084 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2085 2086 bool isDynamicCastToVoid; 2087 QualType SrcRecordTy; 2088 QualType DestRecordTy; 2089 if (DestPTy) { 2090 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2091 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2092 DestRecordTy = DestPTy->getPointeeType(); 2093 } else { 2094 isDynamicCastToVoid = false; 2095 SrcRecordTy = SrcTy; 2096 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2097 } 2098 2099 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2100 2101 // C++ [expr.dynamic.cast]p4: 2102 // If the value of v is a null pointer value in the pointer case, the result 2103 // is the null pointer value of type T. 2104 bool ShouldNullCheckSrcValue = 2105 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2106 SrcRecordTy); 2107 2108 llvm::BasicBlock *CastNull = nullptr; 2109 llvm::BasicBlock *CastNotNull = nullptr; 2110 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2111 2112 if (ShouldNullCheckSrcValue) { 2113 CastNull = createBasicBlock("dynamic_cast.null"); 2114 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2115 2116 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2117 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2118 EmitBlock(CastNotNull); 2119 } 2120 2121 llvm::Value *Value; 2122 if (isDynamicCastToVoid) { 2123 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2124 DestTy); 2125 } else { 2126 assert(DestRecordTy->isRecordType() && 2127 "destination type must be a record type!"); 2128 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2129 DestTy, DestRecordTy, CastEnd); 2130 CastNotNull = Builder.GetInsertBlock(); 2131 } 2132 2133 if (ShouldNullCheckSrcValue) { 2134 EmitBranch(CastEnd); 2135 2136 EmitBlock(CastNull); 2137 EmitBranch(CastEnd); 2138 } 2139 2140 EmitBlock(CastEnd); 2141 2142 if (ShouldNullCheckSrcValue) { 2143 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2144 PHI->addIncoming(Value, CastNotNull); 2145 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2146 2147 Value = PHI; 2148 } 2149 2150 return Value; 2151 } 2152 2153 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2154 RunCleanupsScope Scope(*this); 2155 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2156 2157 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2158 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2159 e = E->capture_init_end(); 2160 i != e; ++i, ++CurField) { 2161 // Emit initialization 2162 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2163 if (CurField->hasCapturedVLAType()) { 2164 auto VAT = CurField->getCapturedVLAType(); 2165 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2166 } else { 2167 EmitInitializerForField(*CurField, LV, *i); 2168 } 2169 } 2170 } 2171