1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs commonEmitCXXMemberOrOperatorCall( 28 CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) { 31 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 32 isa<CXXOperatorCallExpr>(CE)); 33 assert(MD->isInstance() && 34 "Trying to emit a member or operator call expr on a static method!"); 35 36 // C++11 [class.mfct.non-static]p2: 37 // If a non-static member function of a class X is called for an object that 38 // is not of type X, or of a type derived from X, the behavior is undefined. 39 SourceLocation CallLoc; 40 if (CE) 41 CallLoc = CE->getExprLoc(); 42 CGF.EmitTypeCheck( 43 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall 44 : CodeGenFunction::TCK_MemberCall, 45 CallLoc, This, CGF.getContext().getRecordType(MD->getParent())); 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(CGF.getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 if (CE) { 60 // Special case: skip first argument of CXXOperatorCall (it is "this"). 61 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 62 CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(), 63 CE->getDirectCallee()); 64 } else { 65 assert( 66 FPT->getNumParams() == 0 && 67 "No CallExpr specified for function with non-zero number of arguments"); 68 } 69 return required; 70 } 71 72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 73 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 75 const CallExpr *CE) { 76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 77 CallArgList Args; 78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 79 *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE, 80 Args); 81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 82 Callee, ReturnValue, Args, MD); 83 } 84 85 RValue CodeGenFunction::EmitCXXStructorCall( 86 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 87 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 88 const CallExpr *CE, StructorType Type) { 89 CallArgList Args; 90 commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This, 91 ImplicitParam, ImplicitParamTy, CE, Args); 92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type), 93 Callee, ReturnValue, Args, MD); 94 } 95 96 static CXXRecordDecl *getCXXRecord(const Expr *E) { 97 QualType T = E->getType(); 98 if (const PointerType *PTy = T->getAs<PointerType>()) 99 T = PTy->getPointeeType(); 100 const RecordType *Ty = T->castAs<RecordType>(); 101 return cast<CXXRecordDecl>(Ty->getDecl()); 102 } 103 104 // Note: This function also emit constructor calls to support a MSVC 105 // extensions allowing explicit constructor function call. 106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 107 ReturnValueSlot ReturnValue) { 108 const Expr *callee = CE->getCallee()->IgnoreParens(); 109 110 if (isa<BinaryOperator>(callee)) 111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 112 113 const MemberExpr *ME = cast<MemberExpr>(callee); 114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 115 116 if (MD->isStatic()) { 117 // The method is static, emit it as we would a regular call. 118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 120 ReturnValue); 121 } 122 123 bool HasQualifier = ME->hasQualifier(); 124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 125 bool IsArrow = ME->isArrow(); 126 const Expr *Base = ME->getBase(); 127 128 return EmitCXXMemberOrOperatorMemberCallExpr( 129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 130 } 131 132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 135 const Expr *Base) { 136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 137 138 // Compute the object pointer. 139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 140 141 const CXXMethodDecl *DevirtualizedMethod = nullptr; 142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 145 assert(DevirtualizedMethod); 146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 147 const Expr *Inner = Base->ignoreParenBaseCasts(); 148 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 149 MD->getReturnType().getCanonicalType()) 150 // If the return types are not the same, this might be a case where more 151 // code needs to run to compensate for it. For example, the derived 152 // method might return a type that inherits form from the return 153 // type of MD and has a prefix. 154 // For now we just avoid devirtualizing these covariant cases. 155 DevirtualizedMethod = nullptr; 156 else if (getCXXRecord(Inner) == DevirtualizedClass) 157 // If the class of the Inner expression is where the dynamic method 158 // is defined, build the this pointer from it. 159 Base = Inner; 160 else if (getCXXRecord(Base) != DevirtualizedClass) { 161 // If the method is defined in a class that is not the best dynamic 162 // one or the one of the full expression, we would have to build 163 // a derived-to-base cast to compute the correct this pointer, but 164 // we don't have support for that yet, so do a virtual call. 165 DevirtualizedMethod = nullptr; 166 } 167 } 168 169 llvm::Value *This; 170 if (IsArrow) 171 This = EmitScalarExpr(Base); 172 else 173 This = EmitLValue(Base).getAddress(); 174 175 176 if (MD->isTrivial()) { 177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 178 if (isa<CXXConstructorDecl>(MD) && 179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 180 return RValue::get(nullptr); 181 182 if (!MD->getParent()->mayInsertExtraPadding()) { 183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 184 // We don't like to generate the trivial copy/move assignment operator 185 // when it isn't necessary; just produce the proper effect here. 186 // Special case: skip first argument of CXXOperatorCall (it is "this"). 187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 188 llvm::Value *RHS = 189 EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress(); 190 if (auto *DI = getDebugInfo()) 191 DI->EmitLocation(Builder, CE->getLocStart()); 192 EmitAggregateAssign(This, RHS, CE->getType()); 193 return RValue::get(This); 194 } 195 196 if (isa<CXXConstructorDecl>(MD) && 197 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 198 // Trivial move and copy ctor are the same. 199 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 200 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 201 EmitAggregateCopy(This, RHS, CE->arg_begin()->getType()); 202 return RValue::get(This); 203 } 204 llvm_unreachable("unknown trivial member function"); 205 } 206 } 207 208 // Compute the function type we're calling. 209 const CXXMethodDecl *CalleeDecl = 210 DevirtualizedMethod ? DevirtualizedMethod : MD; 211 const CGFunctionInfo *FInfo = nullptr; 212 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 213 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 214 Dtor, StructorType::Complete); 215 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 216 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 217 Ctor, StructorType::Complete); 218 else 219 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 220 221 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 222 223 // C++ [class.virtual]p12: 224 // Explicit qualification with the scope operator (5.1) suppresses the 225 // virtual call mechanism. 226 // 227 // We also don't emit a virtual call if the base expression has a record type 228 // because then we know what the type is. 229 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 230 llvm::Value *Callee; 231 232 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 233 assert(CE->arg_begin() == CE->arg_end() && 234 "Destructor shouldn't have explicit parameters"); 235 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 236 if (UseVirtualCall) { 237 CGM.getCXXABI().EmitVirtualDestructorCall( 238 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 239 } else { 240 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 241 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 242 else if (!DevirtualizedMethod) 243 Callee = 244 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 245 else { 246 const CXXDestructorDecl *DDtor = 247 cast<CXXDestructorDecl>(DevirtualizedMethod); 248 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 249 } 250 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This, 251 /*ImplicitParam=*/nullptr, QualType(), CE); 252 } 253 return RValue::get(nullptr); 254 } 255 256 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 257 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 258 } else if (UseVirtualCall) { 259 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty); 260 } else { 261 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 262 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 263 else if (!DevirtualizedMethod) 264 Callee = CGM.GetAddrOfFunction(MD, Ty); 265 else { 266 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 267 } 268 } 269 270 if (MD->isVirtual()) { 271 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 272 *this, MD, This, UseVirtualCall); 273 } 274 275 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This, 276 /*ImplicitParam=*/nullptr, QualType(), CE); 277 } 278 279 RValue 280 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 281 ReturnValueSlot ReturnValue) { 282 const BinaryOperator *BO = 283 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 284 const Expr *BaseExpr = BO->getLHS(); 285 const Expr *MemFnExpr = BO->getRHS(); 286 287 const MemberPointerType *MPT = 288 MemFnExpr->getType()->castAs<MemberPointerType>(); 289 290 const FunctionProtoType *FPT = 291 MPT->getPointeeType()->castAs<FunctionProtoType>(); 292 const CXXRecordDecl *RD = 293 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 294 295 // Get the member function pointer. 296 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 297 298 // Emit the 'this' pointer. 299 llvm::Value *This; 300 301 if (BO->getOpcode() == BO_PtrMemI) 302 This = EmitScalarExpr(BaseExpr); 303 else 304 This = EmitLValue(BaseExpr).getAddress(); 305 306 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 307 QualType(MPT->getClass(), 0)); 308 309 // Ask the ABI to load the callee. Note that This is modified. 310 llvm::Value *Callee = 311 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT); 312 313 CallArgList Args; 314 315 QualType ThisType = 316 getContext().getPointerType(getContext().getTagDeclType(RD)); 317 318 // Push the this ptr. 319 Args.add(RValue::get(This), ThisType); 320 321 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 322 323 // And the rest of the call args 324 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee()); 325 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 326 Callee, ReturnValue, Args); 327 } 328 329 RValue 330 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 331 const CXXMethodDecl *MD, 332 ReturnValueSlot ReturnValue) { 333 assert(MD->isInstance() && 334 "Trying to emit a member call expr on a static method!"); 335 return EmitCXXMemberOrOperatorMemberCallExpr( 336 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 337 /*IsArrow=*/false, E->getArg(0)); 338 } 339 340 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 341 ReturnValueSlot ReturnValue) { 342 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 343 } 344 345 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 346 llvm::Value *DestPtr, 347 const CXXRecordDecl *Base) { 348 if (Base->isEmpty()) 349 return; 350 351 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 352 353 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 354 CharUnits Size = Layout.getNonVirtualSize(); 355 CharUnits Align = Layout.getNonVirtualAlignment(); 356 357 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 358 359 // If the type contains a pointer to data member we can't memset it to zero. 360 // Instead, create a null constant and copy it to the destination. 361 // TODO: there are other patterns besides zero that we can usefully memset, 362 // like -1, which happens to be the pattern used by member-pointers. 363 // TODO: isZeroInitializable can be over-conservative in the case where a 364 // virtual base contains a member pointer. 365 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 366 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 367 368 llvm::GlobalVariable *NullVariable = 369 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 370 /*isConstant=*/true, 371 llvm::GlobalVariable::PrivateLinkage, 372 NullConstant, Twine()); 373 NullVariable->setAlignment(Align.getQuantity()); 374 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 375 376 // Get and call the appropriate llvm.memcpy overload. 377 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 378 return; 379 } 380 381 // Otherwise, just memset the whole thing to zero. This is legal 382 // because in LLVM, all default initializers (other than the ones we just 383 // handled above) are guaranteed to have a bit pattern of all zeros. 384 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 385 Align.getQuantity()); 386 } 387 388 void 389 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 390 AggValueSlot Dest) { 391 assert(!Dest.isIgnored() && "Must have a destination!"); 392 const CXXConstructorDecl *CD = E->getConstructor(); 393 394 // If we require zero initialization before (or instead of) calling the 395 // constructor, as can be the case with a non-user-provided default 396 // constructor, emit the zero initialization now, unless destination is 397 // already zeroed. 398 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 399 switch (E->getConstructionKind()) { 400 case CXXConstructExpr::CK_Delegating: 401 case CXXConstructExpr::CK_Complete: 402 EmitNullInitialization(Dest.getAddr(), E->getType()); 403 break; 404 case CXXConstructExpr::CK_VirtualBase: 405 case CXXConstructExpr::CK_NonVirtualBase: 406 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 407 break; 408 } 409 } 410 411 // If this is a call to a trivial default constructor, do nothing. 412 if (CD->isTrivial() && CD->isDefaultConstructor()) 413 return; 414 415 // Elide the constructor if we're constructing from a temporary. 416 // The temporary check is required because Sema sets this on NRVO 417 // returns. 418 if (getLangOpts().ElideConstructors && E->isElidable()) { 419 assert(getContext().hasSameUnqualifiedType(E->getType(), 420 E->getArg(0)->getType())); 421 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 422 EmitAggExpr(E->getArg(0), Dest); 423 return; 424 } 425 } 426 427 if (const ConstantArrayType *arrayType 428 = getContext().getAsConstantArrayType(E->getType())) { 429 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E); 430 } else { 431 CXXCtorType Type = Ctor_Complete; 432 bool ForVirtualBase = false; 433 bool Delegating = false; 434 435 switch (E->getConstructionKind()) { 436 case CXXConstructExpr::CK_Delegating: 437 // We should be emitting a constructor; GlobalDecl will assert this 438 Type = CurGD.getCtorType(); 439 Delegating = true; 440 break; 441 442 case CXXConstructExpr::CK_Complete: 443 Type = Ctor_Complete; 444 break; 445 446 case CXXConstructExpr::CK_VirtualBase: 447 ForVirtualBase = true; 448 // fall-through 449 450 case CXXConstructExpr::CK_NonVirtualBase: 451 Type = Ctor_Base; 452 } 453 454 // Call the constructor. 455 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 456 E); 457 } 458 } 459 460 void 461 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 462 llvm::Value *Src, 463 const Expr *Exp) { 464 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 465 Exp = E->getSubExpr(); 466 assert(isa<CXXConstructExpr>(Exp) && 467 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 468 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 469 const CXXConstructorDecl *CD = E->getConstructor(); 470 RunCleanupsScope Scope(*this); 471 472 // If we require zero initialization before (or instead of) calling the 473 // constructor, as can be the case with a non-user-provided default 474 // constructor, emit the zero initialization now. 475 // FIXME. Do I still need this for a copy ctor synthesis? 476 if (E->requiresZeroInitialization()) 477 EmitNullInitialization(Dest, E->getType()); 478 479 assert(!getContext().getAsConstantArrayType(E->getType()) 480 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 481 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 482 } 483 484 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 485 const CXXNewExpr *E) { 486 if (!E->isArray()) 487 return CharUnits::Zero(); 488 489 // No cookie is required if the operator new[] being used is the 490 // reserved placement operator new[]. 491 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 492 return CharUnits::Zero(); 493 494 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 495 } 496 497 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 498 const CXXNewExpr *e, 499 unsigned minElements, 500 llvm::Value *&numElements, 501 llvm::Value *&sizeWithoutCookie) { 502 QualType type = e->getAllocatedType(); 503 504 if (!e->isArray()) { 505 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 506 sizeWithoutCookie 507 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 508 return sizeWithoutCookie; 509 } 510 511 // The width of size_t. 512 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 513 514 // Figure out the cookie size. 515 llvm::APInt cookieSize(sizeWidth, 516 CalculateCookiePadding(CGF, e).getQuantity()); 517 518 // Emit the array size expression. 519 // We multiply the size of all dimensions for NumElements. 520 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 521 numElements = CGF.EmitScalarExpr(e->getArraySize()); 522 assert(isa<llvm::IntegerType>(numElements->getType())); 523 524 // The number of elements can be have an arbitrary integer type; 525 // essentially, we need to multiply it by a constant factor, add a 526 // cookie size, and verify that the result is representable as a 527 // size_t. That's just a gloss, though, and it's wrong in one 528 // important way: if the count is negative, it's an error even if 529 // the cookie size would bring the total size >= 0. 530 bool isSigned 531 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 532 llvm::IntegerType *numElementsType 533 = cast<llvm::IntegerType>(numElements->getType()); 534 unsigned numElementsWidth = numElementsType->getBitWidth(); 535 536 // Compute the constant factor. 537 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 538 while (const ConstantArrayType *CAT 539 = CGF.getContext().getAsConstantArrayType(type)) { 540 type = CAT->getElementType(); 541 arraySizeMultiplier *= CAT->getSize(); 542 } 543 544 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 545 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 546 typeSizeMultiplier *= arraySizeMultiplier; 547 548 // This will be a size_t. 549 llvm::Value *size; 550 551 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 552 // Don't bloat the -O0 code. 553 if (llvm::ConstantInt *numElementsC = 554 dyn_cast<llvm::ConstantInt>(numElements)) { 555 const llvm::APInt &count = numElementsC->getValue(); 556 557 bool hasAnyOverflow = false; 558 559 // If 'count' was a negative number, it's an overflow. 560 if (isSigned && count.isNegative()) 561 hasAnyOverflow = true; 562 563 // We want to do all this arithmetic in size_t. If numElements is 564 // wider than that, check whether it's already too big, and if so, 565 // overflow. 566 else if (numElementsWidth > sizeWidth && 567 numElementsWidth - sizeWidth > count.countLeadingZeros()) 568 hasAnyOverflow = true; 569 570 // Okay, compute a count at the right width. 571 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 572 573 // If there is a brace-initializer, we cannot allocate fewer elements than 574 // there are initializers. If we do, that's treated like an overflow. 575 if (adjustedCount.ult(minElements)) 576 hasAnyOverflow = true; 577 578 // Scale numElements by that. This might overflow, but we don't 579 // care because it only overflows if allocationSize does, too, and 580 // if that overflows then we shouldn't use this. 581 numElements = llvm::ConstantInt::get(CGF.SizeTy, 582 adjustedCount * arraySizeMultiplier); 583 584 // Compute the size before cookie, and track whether it overflowed. 585 bool overflow; 586 llvm::APInt allocationSize 587 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 588 hasAnyOverflow |= overflow; 589 590 // Add in the cookie, and check whether it's overflowed. 591 if (cookieSize != 0) { 592 // Save the current size without a cookie. This shouldn't be 593 // used if there was overflow. 594 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 595 596 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 597 hasAnyOverflow |= overflow; 598 } 599 600 // On overflow, produce a -1 so operator new will fail. 601 if (hasAnyOverflow) { 602 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 603 } else { 604 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 605 } 606 607 // Otherwise, we might need to use the overflow intrinsics. 608 } else { 609 // There are up to five conditions we need to test for: 610 // 1) if isSigned, we need to check whether numElements is negative; 611 // 2) if numElementsWidth > sizeWidth, we need to check whether 612 // numElements is larger than something representable in size_t; 613 // 3) if minElements > 0, we need to check whether numElements is smaller 614 // than that. 615 // 4) we need to compute 616 // sizeWithoutCookie := numElements * typeSizeMultiplier 617 // and check whether it overflows; and 618 // 5) if we need a cookie, we need to compute 619 // size := sizeWithoutCookie + cookieSize 620 // and check whether it overflows. 621 622 llvm::Value *hasOverflow = nullptr; 623 624 // If numElementsWidth > sizeWidth, then one way or another, we're 625 // going to have to do a comparison for (2), and this happens to 626 // take care of (1), too. 627 if (numElementsWidth > sizeWidth) { 628 llvm::APInt threshold(numElementsWidth, 1); 629 threshold <<= sizeWidth; 630 631 llvm::Value *thresholdV 632 = llvm::ConstantInt::get(numElementsType, threshold); 633 634 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 635 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 636 637 // Otherwise, if we're signed, we want to sext up to size_t. 638 } else if (isSigned) { 639 if (numElementsWidth < sizeWidth) 640 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 641 642 // If there's a non-1 type size multiplier, then we can do the 643 // signedness check at the same time as we do the multiply 644 // because a negative number times anything will cause an 645 // unsigned overflow. Otherwise, we have to do it here. But at least 646 // in this case, we can subsume the >= minElements check. 647 if (typeSizeMultiplier == 1) 648 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 649 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 650 651 // Otherwise, zext up to size_t if necessary. 652 } else if (numElementsWidth < sizeWidth) { 653 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 654 } 655 656 assert(numElements->getType() == CGF.SizeTy); 657 658 if (minElements) { 659 // Don't allow allocation of fewer elements than we have initializers. 660 if (!hasOverflow) { 661 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 662 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 663 } else if (numElementsWidth > sizeWidth) { 664 // The other existing overflow subsumes this check. 665 // We do an unsigned comparison, since any signed value < -1 is 666 // taken care of either above or below. 667 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 668 CGF.Builder.CreateICmpULT(numElements, 669 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 670 } 671 } 672 673 size = numElements; 674 675 // Multiply by the type size if necessary. This multiplier 676 // includes all the factors for nested arrays. 677 // 678 // This step also causes numElements to be scaled up by the 679 // nested-array factor if necessary. Overflow on this computation 680 // can be ignored because the result shouldn't be used if 681 // allocation fails. 682 if (typeSizeMultiplier != 1) { 683 llvm::Value *umul_with_overflow 684 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 685 686 llvm::Value *tsmV = 687 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 688 llvm::Value *result = 689 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 690 691 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 692 if (hasOverflow) 693 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 694 else 695 hasOverflow = overflowed; 696 697 size = CGF.Builder.CreateExtractValue(result, 0); 698 699 // Also scale up numElements by the array size multiplier. 700 if (arraySizeMultiplier != 1) { 701 // If the base element type size is 1, then we can re-use the 702 // multiply we just did. 703 if (typeSize.isOne()) { 704 assert(arraySizeMultiplier == typeSizeMultiplier); 705 numElements = size; 706 707 // Otherwise we need a separate multiply. 708 } else { 709 llvm::Value *asmV = 710 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 711 numElements = CGF.Builder.CreateMul(numElements, asmV); 712 } 713 } 714 } else { 715 // numElements doesn't need to be scaled. 716 assert(arraySizeMultiplier == 1); 717 } 718 719 // Add in the cookie size if necessary. 720 if (cookieSize != 0) { 721 sizeWithoutCookie = size; 722 723 llvm::Value *uadd_with_overflow 724 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 725 726 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 727 llvm::Value *result = 728 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 729 730 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 731 if (hasOverflow) 732 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 733 else 734 hasOverflow = overflowed; 735 736 size = CGF.Builder.CreateExtractValue(result, 0); 737 } 738 739 // If we had any possibility of dynamic overflow, make a select to 740 // overwrite 'size' with an all-ones value, which should cause 741 // operator new to throw. 742 if (hasOverflow) 743 size = CGF.Builder.CreateSelect(hasOverflow, 744 llvm::Constant::getAllOnesValue(CGF.SizeTy), 745 size); 746 } 747 748 if (cookieSize == 0) 749 sizeWithoutCookie = size; 750 else 751 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 752 753 return size; 754 } 755 756 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 757 QualType AllocType, llvm::Value *NewPtr, 758 SourceLocation DbgLoc = SourceLocation()) { 759 // FIXME: Refactor with EmitExprAsInit. 760 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 761 switch (CGF.getEvaluationKind(AllocType)) { 762 case TEK_Scalar: 763 CGF.EmitScalarInit(Init, nullptr, 764 CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false, 765 DbgLoc); 766 return; 767 case TEK_Complex: 768 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 769 Alignment), 770 /*isInit*/ true); 771 return; 772 case TEK_Aggregate: { 773 AggValueSlot Slot 774 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 775 AggValueSlot::IsDestructed, 776 AggValueSlot::DoesNotNeedGCBarriers, 777 AggValueSlot::IsNotAliased); 778 CGF.EmitAggExpr(Init, Slot); 779 return; 780 } 781 } 782 llvm_unreachable("bad evaluation kind"); 783 } 784 785 void 786 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 787 QualType ElementType, 788 llvm::Value *BeginPtr, 789 llvm::Value *NumElements, 790 llvm::Value *AllocSizeWithoutCookie) { 791 // If we have a type with trivial initialization and no initializer, 792 // there's nothing to do. 793 if (!E->hasInitializer()) 794 return; 795 796 llvm::Value *CurPtr = BeginPtr; 797 798 unsigned InitListElements = 0; 799 800 const Expr *Init = E->getInitializer(); 801 llvm::AllocaInst *EndOfInit = nullptr; 802 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 803 EHScopeStack::stable_iterator Cleanup; 804 llvm::Instruction *CleanupDominator = nullptr; 805 806 // If the initializer is an initializer list, first do the explicit elements. 807 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 808 InitListElements = ILE->getNumInits(); 809 810 // If this is a multi-dimensional array new, we will initialize multiple 811 // elements with each init list element. 812 QualType AllocType = E->getAllocatedType(); 813 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 814 AllocType->getAsArrayTypeUnsafe())) { 815 unsigned AS = CurPtr->getType()->getPointerAddressSpace(); 816 llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS); 817 CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy); 818 InitListElements *= getContext().getConstantArrayElementCount(CAT); 819 } 820 821 // Enter a partial-destruction Cleanup if necessary. 822 if (needsEHCleanup(DtorKind)) { 823 // In principle we could tell the Cleanup where we are more 824 // directly, but the control flow can get so varied here that it 825 // would actually be quite complex. Therefore we go through an 826 // alloca. 827 EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end"); 828 CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit); 829 pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType, 830 getDestroyer(DtorKind)); 831 Cleanup = EHStack.stable_begin(); 832 } 833 834 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 835 // Tell the cleanup that it needs to destroy up to this 836 // element. TODO: some of these stores can be trivially 837 // observed to be unnecessary. 838 if (EndOfInit) 839 Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()), 840 EndOfInit); 841 // FIXME: If the last initializer is an incomplete initializer list for 842 // an array, and we have an array filler, we can fold together the two 843 // initialization loops. 844 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 845 ILE->getInit(i)->getType(), CurPtr); 846 CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next"); 847 } 848 849 // The remaining elements are filled with the array filler expression. 850 Init = ILE->getArrayFiller(); 851 852 // Extract the initializer for the individual array elements by pulling 853 // out the array filler from all the nested initializer lists. This avoids 854 // generating a nested loop for the initialization. 855 while (Init && Init->getType()->isConstantArrayType()) { 856 auto *SubILE = dyn_cast<InitListExpr>(Init); 857 if (!SubILE) 858 break; 859 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 860 Init = SubILE->getArrayFiller(); 861 } 862 863 // Switch back to initializing one base element at a time. 864 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType()); 865 } 866 867 // Attempt to perform zero-initialization using memset. 868 auto TryMemsetInitialization = [&]() -> bool { 869 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 870 // we can initialize with a memset to -1. 871 if (!CGM.getTypes().isZeroInitializable(ElementType)) 872 return false; 873 874 // Optimization: since zero initialization will just set the memory 875 // to all zeroes, generate a single memset to do it in one shot. 876 877 // Subtract out the size of any elements we've already initialized. 878 auto *RemainingSize = AllocSizeWithoutCookie; 879 if (InitListElements) { 880 // We know this can't overflow; we check this when doing the allocation. 881 auto *InitializedSize = llvm::ConstantInt::get( 882 RemainingSize->getType(), 883 getContext().getTypeSizeInChars(ElementType).getQuantity() * 884 InitListElements); 885 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 886 } 887 888 // Create the memset. 889 CharUnits Alignment = getContext().getTypeAlignInChars(ElementType); 890 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, 891 Alignment.getQuantity(), false); 892 return true; 893 }; 894 895 // If all elements have already been initialized, skip any further 896 // initialization. 897 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 898 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 899 // If there was a Cleanup, deactivate it. 900 if (CleanupDominator) 901 DeactivateCleanupBlock(Cleanup, CleanupDominator); 902 return; 903 } 904 905 assert(Init && "have trailing elements to initialize but no initializer"); 906 907 // If this is a constructor call, try to optimize it out, and failing that 908 // emit a single loop to initialize all remaining elements. 909 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 910 CXXConstructorDecl *Ctor = CCE->getConstructor(); 911 if (Ctor->isTrivial()) { 912 // If new expression did not specify value-initialization, then there 913 // is no initialization. 914 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 915 return; 916 917 if (TryMemsetInitialization()) 918 return; 919 } 920 921 // Store the new Cleanup position for irregular Cleanups. 922 // 923 // FIXME: Share this cleanup with the constructor call emission rather than 924 // having it create a cleanup of its own. 925 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 926 927 // Emit a constructor call loop to initialize the remaining elements. 928 if (InitListElements) 929 NumElements = Builder.CreateSub( 930 NumElements, 931 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 932 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 933 CCE->requiresZeroInitialization()); 934 return; 935 } 936 937 // If this is value-initialization, we can usually use memset. 938 ImplicitValueInitExpr IVIE(ElementType); 939 if (isa<ImplicitValueInitExpr>(Init)) { 940 if (TryMemsetInitialization()) 941 return; 942 943 // Switch to an ImplicitValueInitExpr for the element type. This handles 944 // only one case: multidimensional array new of pointers to members. In 945 // all other cases, we already have an initializer for the array element. 946 Init = &IVIE; 947 } 948 949 // At this point we should have found an initializer for the individual 950 // elements of the array. 951 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 952 "got wrong type of element to initialize"); 953 954 // If we have an empty initializer list, we can usually use memset. 955 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 956 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 957 return; 958 959 // Create the loop blocks. 960 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 961 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 962 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 963 964 // Find the end of the array, hoisted out of the loop. 965 llvm::Value *EndPtr = 966 Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end"); 967 968 // If the number of elements isn't constant, we have to now check if there is 969 // anything left to initialize. 970 if (!ConstNum) { 971 llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr, 972 "array.isempty"); 973 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 974 } 975 976 // Enter the loop. 977 EmitBlock(LoopBB); 978 979 // Set up the current-element phi. 980 llvm::PHINode *CurPtrPhi = 981 Builder.CreatePHI(CurPtr->getType(), 2, "array.cur"); 982 CurPtrPhi->addIncoming(CurPtr, EntryBB); 983 CurPtr = CurPtrPhi; 984 985 // Store the new Cleanup position for irregular Cleanups. 986 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 987 988 // Enter a partial-destruction Cleanup if necessary. 989 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 990 pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType, 991 getDestroyer(DtorKind)); 992 Cleanup = EHStack.stable_begin(); 993 CleanupDominator = Builder.CreateUnreachable(); 994 } 995 996 // Emit the initializer into this element. 997 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 998 999 // Leave the Cleanup if we entered one. 1000 if (CleanupDominator) { 1001 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1002 CleanupDominator->eraseFromParent(); 1003 } 1004 1005 // Advance to the next element by adjusting the pointer type as necessary. 1006 llvm::Value *NextPtr = 1007 Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next"); 1008 1009 // Check whether we've gotten to the end of the array and, if so, 1010 // exit the loop. 1011 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1012 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1013 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1014 1015 EmitBlock(ContBB); 1016 } 1017 1018 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1019 QualType ElementType, 1020 llvm::Value *NewPtr, 1021 llvm::Value *NumElements, 1022 llvm::Value *AllocSizeWithoutCookie) { 1023 if (E->isArray()) 1024 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements, 1025 AllocSizeWithoutCookie); 1026 else if (const Expr *Init = E->getInitializer()) 1027 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1028 E->getStartLoc()); 1029 } 1030 1031 /// Emit a call to an operator new or operator delete function, as implicitly 1032 /// created by new-expressions and delete-expressions. 1033 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1034 const FunctionDecl *Callee, 1035 const FunctionProtoType *CalleeType, 1036 const CallArgList &Args) { 1037 llvm::Instruction *CallOrInvoke; 1038 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1039 RValue RV = 1040 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1041 Args, CalleeType, /*chainCall=*/false), 1042 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1043 1044 /// C++1y [expr.new]p10: 1045 /// [In a new-expression,] an implementation is allowed to omit a call 1046 /// to a replaceable global allocation function. 1047 /// 1048 /// We model such elidable calls with the 'builtin' attribute. 1049 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1050 if (Callee->isReplaceableGlobalAllocationFunction() && 1051 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1052 // FIXME: Add addAttribute to CallSite. 1053 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1054 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1055 llvm::Attribute::Builtin); 1056 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1057 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1058 llvm::Attribute::Builtin); 1059 else 1060 llvm_unreachable("unexpected kind of call instruction"); 1061 } 1062 1063 return RV; 1064 } 1065 1066 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1067 const Expr *Arg, 1068 bool IsDelete) { 1069 CallArgList Args; 1070 const Stmt *ArgS = Arg; 1071 EmitCallArgs(Args, *Type->param_type_begin(), 1072 ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1)); 1073 // Find the allocation or deallocation function that we're calling. 1074 ASTContext &Ctx = getContext(); 1075 DeclarationName Name = Ctx.DeclarationNames 1076 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1077 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1078 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1079 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1080 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1081 llvm_unreachable("predeclared global operator new/delete is missing"); 1082 } 1083 1084 namespace { 1085 /// A cleanup to call the given 'operator delete' function upon 1086 /// abnormal exit from a new expression. 1087 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1088 size_t NumPlacementArgs; 1089 const FunctionDecl *OperatorDelete; 1090 llvm::Value *Ptr; 1091 llvm::Value *AllocSize; 1092 1093 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1094 1095 public: 1096 static size_t getExtraSize(size_t NumPlacementArgs) { 1097 return NumPlacementArgs * sizeof(RValue); 1098 } 1099 1100 CallDeleteDuringNew(size_t NumPlacementArgs, 1101 const FunctionDecl *OperatorDelete, 1102 llvm::Value *Ptr, 1103 llvm::Value *AllocSize) 1104 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1105 Ptr(Ptr), AllocSize(AllocSize) {} 1106 1107 void setPlacementArg(unsigned I, RValue Arg) { 1108 assert(I < NumPlacementArgs && "index out of range"); 1109 getPlacementArgs()[I] = Arg; 1110 } 1111 1112 void Emit(CodeGenFunction &CGF, Flags flags) override { 1113 const FunctionProtoType *FPT 1114 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1115 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1116 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1117 1118 CallArgList DeleteArgs; 1119 1120 // The first argument is always a void*. 1121 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1122 DeleteArgs.add(RValue::get(Ptr), *AI++); 1123 1124 // A member 'operator delete' can take an extra 'size_t' argument. 1125 if (FPT->getNumParams() == NumPlacementArgs + 2) 1126 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1127 1128 // Pass the rest of the arguments, which must match exactly. 1129 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1130 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1131 1132 // Call 'operator delete'. 1133 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1134 } 1135 }; 1136 1137 /// A cleanup to call the given 'operator delete' function upon 1138 /// abnormal exit from a new expression when the new expression is 1139 /// conditional. 1140 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1141 size_t NumPlacementArgs; 1142 const FunctionDecl *OperatorDelete; 1143 DominatingValue<RValue>::saved_type Ptr; 1144 DominatingValue<RValue>::saved_type AllocSize; 1145 1146 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1147 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1148 } 1149 1150 public: 1151 static size_t getExtraSize(size_t NumPlacementArgs) { 1152 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1153 } 1154 1155 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1156 const FunctionDecl *OperatorDelete, 1157 DominatingValue<RValue>::saved_type Ptr, 1158 DominatingValue<RValue>::saved_type AllocSize) 1159 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1160 Ptr(Ptr), AllocSize(AllocSize) {} 1161 1162 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1163 assert(I < NumPlacementArgs && "index out of range"); 1164 getPlacementArgs()[I] = Arg; 1165 } 1166 1167 void Emit(CodeGenFunction &CGF, Flags flags) override { 1168 const FunctionProtoType *FPT 1169 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1170 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1171 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1172 1173 CallArgList DeleteArgs; 1174 1175 // The first argument is always a void*. 1176 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1177 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1178 1179 // A member 'operator delete' can take an extra 'size_t' argument. 1180 if (FPT->getNumParams() == NumPlacementArgs + 2) { 1181 RValue RV = AllocSize.restore(CGF); 1182 DeleteArgs.add(RV, *AI++); 1183 } 1184 1185 // Pass the rest of the arguments, which must match exactly. 1186 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1187 RValue RV = getPlacementArgs()[I].restore(CGF); 1188 DeleteArgs.add(RV, *AI++); 1189 } 1190 1191 // Call 'operator delete'. 1192 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1193 } 1194 }; 1195 } 1196 1197 /// Enter a cleanup to call 'operator delete' if the initializer in a 1198 /// new-expression throws. 1199 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1200 const CXXNewExpr *E, 1201 llvm::Value *NewPtr, 1202 llvm::Value *AllocSize, 1203 const CallArgList &NewArgs) { 1204 // If we're not inside a conditional branch, then the cleanup will 1205 // dominate and we can do the easier (and more efficient) thing. 1206 if (!CGF.isInConditionalBranch()) { 1207 CallDeleteDuringNew *Cleanup = CGF.EHStack 1208 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1209 E->getNumPlacementArgs(), 1210 E->getOperatorDelete(), 1211 NewPtr, AllocSize); 1212 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1213 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1214 1215 return; 1216 } 1217 1218 // Otherwise, we need to save all this stuff. 1219 DominatingValue<RValue>::saved_type SavedNewPtr = 1220 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1221 DominatingValue<RValue>::saved_type SavedAllocSize = 1222 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1223 1224 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1225 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1226 E->getNumPlacementArgs(), 1227 E->getOperatorDelete(), 1228 SavedNewPtr, 1229 SavedAllocSize); 1230 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1231 Cleanup->setPlacementArg(I, 1232 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1233 1234 CGF.initFullExprCleanup(); 1235 } 1236 1237 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1238 // The element type being allocated. 1239 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1240 1241 // 1. Build a call to the allocation function. 1242 FunctionDecl *allocator = E->getOperatorNew(); 1243 const FunctionProtoType *allocatorType = 1244 allocator->getType()->castAs<FunctionProtoType>(); 1245 1246 CallArgList allocatorArgs; 1247 1248 // The allocation size is the first argument. 1249 QualType sizeType = getContext().getSizeType(); 1250 1251 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1252 unsigned minElements = 0; 1253 if (E->isArray() && E->hasInitializer()) { 1254 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1255 minElements = ILE->getNumInits(); 1256 } 1257 1258 llvm::Value *numElements = nullptr; 1259 llvm::Value *allocSizeWithoutCookie = nullptr; 1260 llvm::Value *allocSize = 1261 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1262 allocSizeWithoutCookie); 1263 1264 allocatorArgs.add(RValue::get(allocSize), sizeType); 1265 1266 // We start at 1 here because the first argument (the allocation size) 1267 // has already been emitted. 1268 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(), 1269 E->placement_arg_end(), /* CalleeDecl */ nullptr, 1270 /*ParamsToSkip*/ 1); 1271 1272 if (auto *DI = getDebugInfo()) 1273 DI->EmitLocation(Builder, E->getLocStart()); 1274 1275 // Emit the allocation call. If the allocator is a global placement 1276 // operator, just "inline" it directly. 1277 RValue RV; 1278 if (allocator->isReservedGlobalPlacementOperator()) { 1279 assert(allocatorArgs.size() == 2); 1280 RV = allocatorArgs[1].RV; 1281 // TODO: kill any unnecessary computations done for the size 1282 // argument. 1283 } else { 1284 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1285 } 1286 1287 // Emit a null check on the allocation result if the allocation 1288 // function is allowed to return null (because it has a non-throwing 1289 // exception spec; for this part, we inline 1290 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1291 // interesting initializer. 1292 bool nullCheck = allocatorType->isNothrow(getContext()) && 1293 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1294 1295 llvm::BasicBlock *nullCheckBB = nullptr; 1296 llvm::BasicBlock *contBB = nullptr; 1297 1298 llvm::Value *allocation = RV.getScalarVal(); 1299 unsigned AS = allocation->getType()->getPointerAddressSpace(); 1300 1301 // The null-check means that the initializer is conditionally 1302 // evaluated. 1303 ConditionalEvaluation conditional(*this); 1304 1305 if (nullCheck) { 1306 conditional.begin(*this); 1307 1308 nullCheckBB = Builder.GetInsertBlock(); 1309 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1310 contBB = createBasicBlock("new.cont"); 1311 1312 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1313 Builder.CreateCondBr(isNull, contBB, notNullBB); 1314 EmitBlock(notNullBB); 1315 } 1316 1317 // If there's an operator delete, enter a cleanup to call it if an 1318 // exception is thrown. 1319 EHScopeStack::stable_iterator operatorDeleteCleanup; 1320 llvm::Instruction *cleanupDominator = nullptr; 1321 if (E->getOperatorDelete() && 1322 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1323 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1324 operatorDeleteCleanup = EHStack.stable_begin(); 1325 cleanupDominator = Builder.CreateUnreachable(); 1326 } 1327 1328 assert((allocSize == allocSizeWithoutCookie) == 1329 CalculateCookiePadding(*this, E).isZero()); 1330 if (allocSize != allocSizeWithoutCookie) { 1331 assert(E->isArray()); 1332 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1333 numElements, 1334 E, allocType); 1335 } 1336 1337 llvm::Type *elementPtrTy 1338 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1339 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1340 1341 EmitNewInitializer(*this, E, allocType, result, numElements, 1342 allocSizeWithoutCookie); 1343 if (E->isArray()) { 1344 // NewPtr is a pointer to the base element type. If we're 1345 // allocating an array of arrays, we'll need to cast back to the 1346 // array pointer type. 1347 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1348 if (result->getType() != resultType) 1349 result = Builder.CreateBitCast(result, resultType); 1350 } 1351 1352 // Deactivate the 'operator delete' cleanup if we finished 1353 // initialization. 1354 if (operatorDeleteCleanup.isValid()) { 1355 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1356 cleanupDominator->eraseFromParent(); 1357 } 1358 1359 if (nullCheck) { 1360 conditional.end(*this); 1361 1362 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1363 EmitBlock(contBB); 1364 1365 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1366 PHI->addIncoming(result, notNullBB); 1367 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1368 nullCheckBB); 1369 1370 result = PHI; 1371 } 1372 1373 return result; 1374 } 1375 1376 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1377 llvm::Value *Ptr, 1378 QualType DeleteTy) { 1379 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1380 1381 const FunctionProtoType *DeleteFTy = 1382 DeleteFD->getType()->getAs<FunctionProtoType>(); 1383 1384 CallArgList DeleteArgs; 1385 1386 // Check if we need to pass the size to the delete operator. 1387 llvm::Value *Size = nullptr; 1388 QualType SizeTy; 1389 if (DeleteFTy->getNumParams() == 2) { 1390 SizeTy = DeleteFTy->getParamType(1); 1391 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1392 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1393 DeleteTypeSize.getQuantity()); 1394 } 1395 1396 QualType ArgTy = DeleteFTy->getParamType(0); 1397 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1398 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1399 1400 if (Size) 1401 DeleteArgs.add(RValue::get(Size), SizeTy); 1402 1403 // Emit the call to delete. 1404 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1405 } 1406 1407 namespace { 1408 /// Calls the given 'operator delete' on a single object. 1409 struct CallObjectDelete : EHScopeStack::Cleanup { 1410 llvm::Value *Ptr; 1411 const FunctionDecl *OperatorDelete; 1412 QualType ElementType; 1413 1414 CallObjectDelete(llvm::Value *Ptr, 1415 const FunctionDecl *OperatorDelete, 1416 QualType ElementType) 1417 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1418 1419 void Emit(CodeGenFunction &CGF, Flags flags) override { 1420 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1421 } 1422 }; 1423 } 1424 1425 void 1426 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1427 llvm::Value *CompletePtr, 1428 QualType ElementType) { 1429 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1430 OperatorDelete, ElementType); 1431 } 1432 1433 /// Emit the code for deleting a single object. 1434 static void EmitObjectDelete(CodeGenFunction &CGF, 1435 const CXXDeleteExpr *DE, 1436 llvm::Value *Ptr, 1437 QualType ElementType) { 1438 // Find the destructor for the type, if applicable. If the 1439 // destructor is virtual, we'll just emit the vcall and return. 1440 const CXXDestructorDecl *Dtor = nullptr; 1441 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1442 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1443 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1444 Dtor = RD->getDestructor(); 1445 1446 if (Dtor->isVirtual()) { 1447 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1448 Dtor); 1449 return; 1450 } 1451 } 1452 } 1453 1454 // Make sure that we call delete even if the dtor throws. 1455 // This doesn't have to a conditional cleanup because we're going 1456 // to pop it off in a second. 1457 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1458 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1459 Ptr, OperatorDelete, ElementType); 1460 1461 if (Dtor) 1462 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1463 /*ForVirtualBase=*/false, 1464 /*Delegating=*/false, 1465 Ptr); 1466 else if (CGF.getLangOpts().ObjCAutoRefCount && 1467 ElementType->isObjCLifetimeType()) { 1468 switch (ElementType.getObjCLifetime()) { 1469 case Qualifiers::OCL_None: 1470 case Qualifiers::OCL_ExplicitNone: 1471 case Qualifiers::OCL_Autoreleasing: 1472 break; 1473 1474 case Qualifiers::OCL_Strong: { 1475 // Load the pointer value. 1476 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1477 ElementType.isVolatileQualified()); 1478 1479 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 1480 break; 1481 } 1482 1483 case Qualifiers::OCL_Weak: 1484 CGF.EmitARCDestroyWeak(Ptr); 1485 break; 1486 } 1487 } 1488 1489 CGF.PopCleanupBlock(); 1490 } 1491 1492 namespace { 1493 /// Calls the given 'operator delete' on an array of objects. 1494 struct CallArrayDelete : EHScopeStack::Cleanup { 1495 llvm::Value *Ptr; 1496 const FunctionDecl *OperatorDelete; 1497 llvm::Value *NumElements; 1498 QualType ElementType; 1499 CharUnits CookieSize; 1500 1501 CallArrayDelete(llvm::Value *Ptr, 1502 const FunctionDecl *OperatorDelete, 1503 llvm::Value *NumElements, 1504 QualType ElementType, 1505 CharUnits CookieSize) 1506 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1507 ElementType(ElementType), CookieSize(CookieSize) {} 1508 1509 void Emit(CodeGenFunction &CGF, Flags flags) override { 1510 const FunctionProtoType *DeleteFTy = 1511 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1512 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 1513 1514 CallArgList Args; 1515 1516 // Pass the pointer as the first argument. 1517 QualType VoidPtrTy = DeleteFTy->getParamType(0); 1518 llvm::Value *DeletePtr 1519 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1520 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1521 1522 // Pass the original requested size as the second argument. 1523 if (DeleteFTy->getNumParams() == 2) { 1524 QualType size_t = DeleteFTy->getParamType(1); 1525 llvm::IntegerType *SizeTy 1526 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1527 1528 CharUnits ElementTypeSize = 1529 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1530 1531 // The size of an element, multiplied by the number of elements. 1532 llvm::Value *Size 1533 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1534 Size = CGF.Builder.CreateMul(Size, NumElements); 1535 1536 // Plus the size of the cookie if applicable. 1537 if (!CookieSize.isZero()) { 1538 llvm::Value *CookieSizeV 1539 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1540 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1541 } 1542 1543 Args.add(RValue::get(Size), size_t); 1544 } 1545 1546 // Emit the call to delete. 1547 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1548 } 1549 }; 1550 } 1551 1552 /// Emit the code for deleting an array of objects. 1553 static void EmitArrayDelete(CodeGenFunction &CGF, 1554 const CXXDeleteExpr *E, 1555 llvm::Value *deletedPtr, 1556 QualType elementType) { 1557 llvm::Value *numElements = nullptr; 1558 llvm::Value *allocatedPtr = nullptr; 1559 CharUnits cookieSize; 1560 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1561 numElements, allocatedPtr, cookieSize); 1562 1563 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1564 1565 // Make sure that we call delete even if one of the dtors throws. 1566 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1567 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1568 allocatedPtr, operatorDelete, 1569 numElements, elementType, 1570 cookieSize); 1571 1572 // Destroy the elements. 1573 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1574 assert(numElements && "no element count for a type with a destructor!"); 1575 1576 llvm::Value *arrayEnd = 1577 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1578 1579 // Note that it is legal to allocate a zero-length array, and we 1580 // can never fold the check away because the length should always 1581 // come from a cookie. 1582 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1583 CGF.getDestroyer(dtorKind), 1584 /*checkZeroLength*/ true, 1585 CGF.needsEHCleanup(dtorKind)); 1586 } 1587 1588 // Pop the cleanup block. 1589 CGF.PopCleanupBlock(); 1590 } 1591 1592 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1593 const Expr *Arg = E->getArgument(); 1594 llvm::Value *Ptr = EmitScalarExpr(Arg); 1595 1596 // Null check the pointer. 1597 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1598 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1599 1600 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1601 1602 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1603 EmitBlock(DeleteNotNull); 1604 1605 // We might be deleting a pointer to array. If so, GEP down to the 1606 // first non-array element. 1607 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1608 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1609 if (DeleteTy->isConstantArrayType()) { 1610 llvm::Value *Zero = Builder.getInt32(0); 1611 SmallVector<llvm::Value*,8> GEP; 1612 1613 GEP.push_back(Zero); // point at the outermost array 1614 1615 // For each layer of array type we're pointing at: 1616 while (const ConstantArrayType *Arr 1617 = getContext().getAsConstantArrayType(DeleteTy)) { 1618 // 1. Unpeel the array type. 1619 DeleteTy = Arr->getElementType(); 1620 1621 // 2. GEP to the first element of the array. 1622 GEP.push_back(Zero); 1623 } 1624 1625 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1626 } 1627 1628 assert(ConvertTypeForMem(DeleteTy) == 1629 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1630 1631 if (E->isArrayForm()) { 1632 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1633 } else { 1634 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1635 } 1636 1637 EmitBlock(DeleteEnd); 1638 } 1639 1640 static bool isGLValueFromPointerDeref(const Expr *E) { 1641 E = E->IgnoreParens(); 1642 1643 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1644 if (!CE->getSubExpr()->isGLValue()) 1645 return false; 1646 return isGLValueFromPointerDeref(CE->getSubExpr()); 1647 } 1648 1649 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1650 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1651 1652 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1653 if (BO->getOpcode() == BO_Comma) 1654 return isGLValueFromPointerDeref(BO->getRHS()); 1655 1656 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1657 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1658 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1659 1660 // C++11 [expr.sub]p1: 1661 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1662 if (isa<ArraySubscriptExpr>(E)) 1663 return true; 1664 1665 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1666 if (UO->getOpcode() == UO_Deref) 1667 return true; 1668 1669 return false; 1670 } 1671 1672 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1673 llvm::Type *StdTypeInfoPtrTy) { 1674 // Get the vtable pointer. 1675 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1676 1677 // C++ [expr.typeid]p2: 1678 // If the glvalue expression is obtained by applying the unary * operator to 1679 // a pointer and the pointer is a null pointer value, the typeid expression 1680 // throws the std::bad_typeid exception. 1681 // 1682 // However, this paragraph's intent is not clear. We choose a very generous 1683 // interpretation which implores us to consider comma operators, conditional 1684 // operators, parentheses and other such constructs. 1685 QualType SrcRecordTy = E->getType(); 1686 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1687 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1688 llvm::BasicBlock *BadTypeidBlock = 1689 CGF.createBasicBlock("typeid.bad_typeid"); 1690 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1691 1692 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1693 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1694 1695 CGF.EmitBlock(BadTypeidBlock); 1696 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1697 CGF.EmitBlock(EndBlock); 1698 } 1699 1700 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1701 StdTypeInfoPtrTy); 1702 } 1703 1704 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1705 llvm::Type *StdTypeInfoPtrTy = 1706 ConvertType(E->getType())->getPointerTo(); 1707 1708 if (E->isTypeOperand()) { 1709 llvm::Constant *TypeInfo = 1710 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1711 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1712 } 1713 1714 // C++ [expr.typeid]p2: 1715 // When typeid is applied to a glvalue expression whose type is a 1716 // polymorphic class type, the result refers to a std::type_info object 1717 // representing the type of the most derived object (that is, the dynamic 1718 // type) to which the glvalue refers. 1719 if (E->isPotentiallyEvaluated()) 1720 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1721 StdTypeInfoPtrTy); 1722 1723 QualType OperandTy = E->getExprOperand()->getType(); 1724 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1725 StdTypeInfoPtrTy); 1726 } 1727 1728 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1729 QualType DestTy) { 1730 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1731 if (DestTy->isPointerType()) 1732 return llvm::Constant::getNullValue(DestLTy); 1733 1734 /// C++ [expr.dynamic.cast]p9: 1735 /// A failed cast to reference type throws std::bad_cast 1736 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1737 return nullptr; 1738 1739 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1740 return llvm::UndefValue::get(DestLTy); 1741 } 1742 1743 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1744 const CXXDynamicCastExpr *DCE) { 1745 QualType DestTy = DCE->getTypeAsWritten(); 1746 1747 if (DCE->isAlwaysNull()) 1748 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1749 return T; 1750 1751 QualType SrcTy = DCE->getSubExpr()->getType(); 1752 1753 // C++ [expr.dynamic.cast]p7: 1754 // If T is "pointer to cv void," then the result is a pointer to the most 1755 // derived object pointed to by v. 1756 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1757 1758 bool isDynamicCastToVoid; 1759 QualType SrcRecordTy; 1760 QualType DestRecordTy; 1761 if (DestPTy) { 1762 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1763 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1764 DestRecordTy = DestPTy->getPointeeType(); 1765 } else { 1766 isDynamicCastToVoid = false; 1767 SrcRecordTy = SrcTy; 1768 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1769 } 1770 1771 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1772 1773 // C++ [expr.dynamic.cast]p4: 1774 // If the value of v is a null pointer value in the pointer case, the result 1775 // is the null pointer value of type T. 1776 bool ShouldNullCheckSrcValue = 1777 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 1778 SrcRecordTy); 1779 1780 llvm::BasicBlock *CastNull = nullptr; 1781 llvm::BasicBlock *CastNotNull = nullptr; 1782 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1783 1784 if (ShouldNullCheckSrcValue) { 1785 CastNull = createBasicBlock("dynamic_cast.null"); 1786 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1787 1788 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1789 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1790 EmitBlock(CastNotNull); 1791 } 1792 1793 if (isDynamicCastToVoid) { 1794 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy, 1795 DestTy); 1796 } else { 1797 assert(DestRecordTy->isRecordType() && 1798 "destination type must be a record type!"); 1799 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy, 1800 DestTy, DestRecordTy, CastEnd); 1801 } 1802 1803 if (ShouldNullCheckSrcValue) { 1804 EmitBranch(CastEnd); 1805 1806 EmitBlock(CastNull); 1807 EmitBranch(CastEnd); 1808 } 1809 1810 EmitBlock(CastEnd); 1811 1812 if (ShouldNullCheckSrcValue) { 1813 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1814 PHI->addIncoming(Value, CastNotNull); 1815 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1816 1817 Value = PHI; 1818 } 1819 1820 return Value; 1821 } 1822 1823 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1824 RunCleanupsScope Scope(*this); 1825 LValue SlotLV = 1826 MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment()); 1827 1828 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1829 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1830 e = E->capture_init_end(); 1831 i != e; ++i, ++CurField) { 1832 // Emit initialization 1833 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1834 if (CurField->hasCapturedVLAType()) { 1835 auto VAT = CurField->getCapturedVLAType(); 1836 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1837 } else { 1838 ArrayRef<VarDecl *> ArrayIndexes; 1839 if (CurField->getType()->isArrayType()) 1840 ArrayIndexes = E->getCaptureInitIndexVars(i); 1841 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1842 } 1843 } 1844 } 1845