1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs 28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 29 llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, 31 CallArgList &Args, CallArgList *RtlArgs) { 32 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 33 isa<CXXOperatorCallExpr>(CE)); 34 assert(MD->isInstance() && 35 "Trying to emit a member or operator call expr on a static method!"); 36 ASTContext &C = CGF.getContext(); 37 38 // C++11 [class.mfct.non-static]p2: 39 // If a non-static member function of a class X is called for an object that 40 // is not of type X, or of a type derived from X, the behavior is undefined. 41 SourceLocation CallLoc; 42 if (CE) 43 CallLoc = CE->getExprLoc(); 44 CGF.EmitTypeCheck(isa<CXXConstructorDecl>(MD) 45 ? CodeGenFunction::TCK_ConstructorCall 46 : CodeGenFunction::TCK_MemberCall, 47 CallLoc, This, C.getRecordType(MD->getParent())); 48 49 // Push the this ptr. 50 const CXXRecordDecl *RD = 51 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 52 Args.add(RValue::get(This), 53 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 54 55 // If there is an implicit parameter (e.g. VTT), emit it. 56 if (ImplicitParam) { 57 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 58 } 59 60 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 61 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 62 63 // And the rest of the call args. 64 if (RtlArgs) { 65 // Special case: if the caller emitted the arguments right-to-left already 66 // (prior to emitting the *this argument), we're done. This happens for 67 // assignment operators. 68 Args.addFrom(*RtlArgs); 69 } else if (CE) { 70 // Special case: skip first argument of CXXOperatorCall (it is "this"). 71 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 72 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 73 CE->getDirectCallee()); 74 } else { 75 assert( 76 FPT->getNumParams() == 0 && 77 "No CallExpr specified for function with non-zero number of arguments"); 78 } 79 return required; 80 } 81 82 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 83 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 91 Callee, ReturnValue, Args, MD); 92 } 93 94 RValue CodeGenFunction::EmitCXXDestructorCall( 95 const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This, 96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 97 StructorType Type) { 98 CallArgList Args; 99 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 100 ImplicitParamTy, CE, Args, nullptr); 101 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 102 Callee, ReturnValueSlot(), Args, DD); 103 } 104 105 static CXXRecordDecl *getCXXRecord(const Expr *E) { 106 QualType T = E->getType(); 107 if (const PointerType *PTy = T->getAs<PointerType>()) 108 T = PTy->getPointeeType(); 109 const RecordType *Ty = T->castAs<RecordType>(); 110 return cast<CXXRecordDecl>(Ty->getDecl()); 111 } 112 113 // Note: This function also emit constructor calls to support a MSVC 114 // extensions allowing explicit constructor function call. 115 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 116 ReturnValueSlot ReturnValue) { 117 const Expr *callee = CE->getCallee()->IgnoreParens(); 118 119 if (isa<BinaryOperator>(callee)) 120 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 121 122 const MemberExpr *ME = cast<MemberExpr>(callee); 123 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 124 125 if (MD->isStatic()) { 126 // The method is static, emit it as we would a regular call. 127 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 128 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 129 ReturnValue); 130 } 131 132 bool HasQualifier = ME->hasQualifier(); 133 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 134 bool IsArrow = ME->isArrow(); 135 const Expr *Base = ME->getBase(); 136 137 return EmitCXXMemberOrOperatorMemberCallExpr( 138 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 139 } 140 141 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 142 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 143 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 144 const Expr *Base) { 145 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 146 147 // Compute the object pointer. 148 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 149 150 const CXXMethodDecl *DevirtualizedMethod = nullptr; 151 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 152 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 153 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 154 assert(DevirtualizedMethod); 155 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 156 const Expr *Inner = Base->ignoreParenBaseCasts(); 157 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 158 MD->getReturnType().getCanonicalType()) 159 // If the return types are not the same, this might be a case where more 160 // code needs to run to compensate for it. For example, the derived 161 // method might return a type that inherits form from the return 162 // type of MD and has a prefix. 163 // For now we just avoid devirtualizing these covariant cases. 164 DevirtualizedMethod = nullptr; 165 else if (getCXXRecord(Inner) == DevirtualizedClass) 166 // If the class of the Inner expression is where the dynamic method 167 // is defined, build the this pointer from it. 168 Base = Inner; 169 else if (getCXXRecord(Base) != DevirtualizedClass) { 170 // If the method is defined in a class that is not the best dynamic 171 // one or the one of the full expression, we would have to build 172 // a derived-to-base cast to compute the correct this pointer, but 173 // we don't have support for that yet, so do a virtual call. 174 DevirtualizedMethod = nullptr; 175 } 176 } 177 178 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 179 // operator before the LHS. 180 CallArgList RtlArgStorage; 181 CallArgList *RtlArgs = nullptr; 182 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 183 if (OCE->isAssignmentOp()) { 184 RtlArgs = &RtlArgStorage; 185 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 186 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 187 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 188 } 189 } 190 191 Address This = Address::invalid(); 192 if (IsArrow) 193 This = EmitPointerWithAlignment(Base); 194 else 195 This = EmitLValue(Base).getAddress(); 196 197 198 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 199 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 200 if (isa<CXXConstructorDecl>(MD) && 201 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 202 return RValue::get(nullptr); 203 204 if (!MD->getParent()->mayInsertExtraPadding()) { 205 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 206 // We don't like to generate the trivial copy/move assignment operator 207 // when it isn't necessary; just produce the proper effect here. 208 LValue RHS = isa<CXXOperatorCallExpr>(CE) 209 ? MakeNaturalAlignAddrLValue( 210 (*RtlArgs)[0].RV.getScalarVal(), 211 (*(CE->arg_begin() + 1))->getType()) 212 : EmitLValue(*CE->arg_begin()); 213 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 214 return RValue::get(This.getPointer()); 215 } 216 217 if (isa<CXXConstructorDecl>(MD) && 218 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 219 // Trivial move and copy ctor are the same. 220 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 221 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 222 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 223 return RValue::get(This.getPointer()); 224 } 225 llvm_unreachable("unknown trivial member function"); 226 } 227 } 228 229 // Compute the function type we're calling. 230 const CXXMethodDecl *CalleeDecl = 231 DevirtualizedMethod ? DevirtualizedMethod : MD; 232 const CGFunctionInfo *FInfo = nullptr; 233 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 234 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 235 Dtor, StructorType::Complete); 236 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 237 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 238 Ctor, StructorType::Complete); 239 else 240 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 241 242 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 243 244 // C++ [class.virtual]p12: 245 // Explicit qualification with the scope operator (5.1) suppresses the 246 // virtual call mechanism. 247 // 248 // We also don't emit a virtual call if the base expression has a record type 249 // because then we know what the type is. 250 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 251 llvm::Value *Callee; 252 253 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 254 assert(CE->arg_begin() == CE->arg_end() && 255 "Destructor shouldn't have explicit parameters"); 256 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 257 if (UseVirtualCall) { 258 CGM.getCXXABI().EmitVirtualDestructorCall( 259 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 260 } else { 261 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 262 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 263 else if (!DevirtualizedMethod) 264 Callee = 265 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 266 else { 267 const CXXDestructorDecl *DDtor = 268 cast<CXXDestructorDecl>(DevirtualizedMethod); 269 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 270 } 271 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 272 /*ImplicitParam=*/nullptr, QualType(), CE, 273 nullptr); 274 } 275 return RValue::get(nullptr); 276 } 277 278 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 279 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 280 } else if (UseVirtualCall) { 281 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 282 CE->getLocStart()); 283 } else { 284 if (SanOpts.has(SanitizerKind::CFINVCall) && 285 MD->getParent()->isDynamicClass()) { 286 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 287 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 288 CE->getLocStart()); 289 } 290 291 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 292 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 293 else if (!DevirtualizedMethod) 294 Callee = CGM.GetAddrOfFunction(MD, Ty); 295 else { 296 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 297 } 298 } 299 300 if (MD->isVirtual()) { 301 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 302 *this, CalleeDecl, This, UseVirtualCall); 303 } 304 305 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 306 /*ImplicitParam=*/nullptr, QualType(), CE, 307 RtlArgs); 308 } 309 310 RValue 311 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 312 ReturnValueSlot ReturnValue) { 313 const BinaryOperator *BO = 314 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 315 const Expr *BaseExpr = BO->getLHS(); 316 const Expr *MemFnExpr = BO->getRHS(); 317 318 const MemberPointerType *MPT = 319 MemFnExpr->getType()->castAs<MemberPointerType>(); 320 321 const FunctionProtoType *FPT = 322 MPT->getPointeeType()->castAs<FunctionProtoType>(); 323 const CXXRecordDecl *RD = 324 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 325 326 // Emit the 'this' pointer. 327 Address This = Address::invalid(); 328 if (BO->getOpcode() == BO_PtrMemI) 329 This = EmitPointerWithAlignment(BaseExpr); 330 else 331 This = EmitLValue(BaseExpr).getAddress(); 332 333 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 334 QualType(MPT->getClass(), 0)); 335 336 // Get the member function pointer. 337 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 338 339 // Ask the ABI to load the callee. Note that This is modified. 340 llvm::Value *ThisPtrForCall = nullptr; 341 llvm::Value *Callee = 342 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 343 ThisPtrForCall, MemFnPtr, MPT); 344 345 CallArgList Args; 346 347 QualType ThisType = 348 getContext().getPointerType(getContext().getTagDeclType(RD)); 349 350 // Push the this ptr. 351 Args.add(RValue::get(ThisPtrForCall), ThisType); 352 353 RequiredArgs required = 354 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 355 356 // And the rest of the call args 357 EmitCallArgs(Args, FPT, E->arguments()); 358 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 359 Callee, ReturnValue, Args); 360 } 361 362 RValue 363 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 364 const CXXMethodDecl *MD, 365 ReturnValueSlot ReturnValue) { 366 assert(MD->isInstance() && 367 "Trying to emit a member call expr on a static method!"); 368 return EmitCXXMemberOrOperatorMemberCallExpr( 369 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 370 /*IsArrow=*/false, E->getArg(0)); 371 } 372 373 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 374 ReturnValueSlot ReturnValue) { 375 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 376 } 377 378 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 379 Address DestPtr, 380 const CXXRecordDecl *Base) { 381 if (Base->isEmpty()) 382 return; 383 384 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 385 386 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 387 CharUnits NVSize = Layout.getNonVirtualSize(); 388 389 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 390 // present, they are initialized by the most derived class before calling the 391 // constructor. 392 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 393 Stores.emplace_back(CharUnits::Zero(), NVSize); 394 395 // Each store is split by the existence of a vbptr. 396 CharUnits VBPtrWidth = CGF.getPointerSize(); 397 std::vector<CharUnits> VBPtrOffsets = 398 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 399 for (CharUnits VBPtrOffset : VBPtrOffsets) { 400 // Stop before we hit any virtual base pointers located in virtual bases. 401 if (VBPtrOffset >= NVSize) 402 break; 403 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 404 CharUnits LastStoreOffset = LastStore.first; 405 CharUnits LastStoreSize = LastStore.second; 406 407 CharUnits SplitBeforeOffset = LastStoreOffset; 408 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 409 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 410 if (!SplitBeforeSize.isZero()) 411 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 412 413 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 414 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 415 assert(!SplitAfterSize.isNegative() && "negative store size!"); 416 if (!SplitAfterSize.isZero()) 417 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 418 } 419 420 // If the type contains a pointer to data member we can't memset it to zero. 421 // Instead, create a null constant and copy it to the destination. 422 // TODO: there are other patterns besides zero that we can usefully memset, 423 // like -1, which happens to be the pattern used by member-pointers. 424 // TODO: isZeroInitializable can be over-conservative in the case where a 425 // virtual base contains a member pointer. 426 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 427 if (!NullConstantForBase->isNullValue()) { 428 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 429 CGF.CGM.getModule(), NullConstantForBase->getType(), 430 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 431 NullConstantForBase, Twine()); 432 433 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 434 DestPtr.getAlignment()); 435 NullVariable->setAlignment(Align.getQuantity()); 436 437 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 438 439 // Get and call the appropriate llvm.memcpy overload. 440 for (std::pair<CharUnits, CharUnits> Store : Stores) { 441 CharUnits StoreOffset = Store.first; 442 CharUnits StoreSize = Store.second; 443 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 444 CGF.Builder.CreateMemCpy( 445 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 446 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 447 StoreSizeVal); 448 } 449 450 // Otherwise, just memset the whole thing to zero. This is legal 451 // because in LLVM, all default initializers (other than the ones we just 452 // handled above) are guaranteed to have a bit pattern of all zeros. 453 } else { 454 for (std::pair<CharUnits, CharUnits> Store : Stores) { 455 CharUnits StoreOffset = Store.first; 456 CharUnits StoreSize = Store.second; 457 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 458 CGF.Builder.CreateMemSet( 459 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 460 CGF.Builder.getInt8(0), StoreSizeVal); 461 } 462 } 463 } 464 465 void 466 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 467 AggValueSlot Dest) { 468 assert(!Dest.isIgnored() && "Must have a destination!"); 469 const CXXConstructorDecl *CD = E->getConstructor(); 470 471 // If we require zero initialization before (or instead of) calling the 472 // constructor, as can be the case with a non-user-provided default 473 // constructor, emit the zero initialization now, unless destination is 474 // already zeroed. 475 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 476 switch (E->getConstructionKind()) { 477 case CXXConstructExpr::CK_Delegating: 478 case CXXConstructExpr::CK_Complete: 479 EmitNullInitialization(Dest.getAddress(), E->getType()); 480 break; 481 case CXXConstructExpr::CK_VirtualBase: 482 case CXXConstructExpr::CK_NonVirtualBase: 483 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 484 CD->getParent()); 485 break; 486 } 487 } 488 489 // If this is a call to a trivial default constructor, do nothing. 490 if (CD->isTrivial() && CD->isDefaultConstructor()) 491 return; 492 493 // Elide the constructor if we're constructing from a temporary. 494 // The temporary check is required because Sema sets this on NRVO 495 // returns. 496 if (getLangOpts().ElideConstructors && E->isElidable()) { 497 assert(getContext().hasSameUnqualifiedType(E->getType(), 498 E->getArg(0)->getType())); 499 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 500 EmitAggExpr(E->getArg(0), Dest); 501 return; 502 } 503 } 504 505 if (const ArrayType *arrayType 506 = getContext().getAsArrayType(E->getType())) { 507 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 508 } else { 509 CXXCtorType Type = Ctor_Complete; 510 bool ForVirtualBase = false; 511 bool Delegating = false; 512 513 switch (E->getConstructionKind()) { 514 case CXXConstructExpr::CK_Delegating: 515 // We should be emitting a constructor; GlobalDecl will assert this 516 Type = CurGD.getCtorType(); 517 Delegating = true; 518 break; 519 520 case CXXConstructExpr::CK_Complete: 521 Type = Ctor_Complete; 522 break; 523 524 case CXXConstructExpr::CK_VirtualBase: 525 ForVirtualBase = true; 526 // fall-through 527 528 case CXXConstructExpr::CK_NonVirtualBase: 529 Type = Ctor_Base; 530 } 531 532 // Call the constructor. 533 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 534 Dest.getAddress(), E); 535 } 536 } 537 538 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 539 const Expr *Exp) { 540 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 541 Exp = E->getSubExpr(); 542 assert(isa<CXXConstructExpr>(Exp) && 543 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 544 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 545 const CXXConstructorDecl *CD = E->getConstructor(); 546 RunCleanupsScope Scope(*this); 547 548 // If we require zero initialization before (or instead of) calling the 549 // constructor, as can be the case with a non-user-provided default 550 // constructor, emit the zero initialization now. 551 // FIXME. Do I still need this for a copy ctor synthesis? 552 if (E->requiresZeroInitialization()) 553 EmitNullInitialization(Dest, E->getType()); 554 555 assert(!getContext().getAsConstantArrayType(E->getType()) 556 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 557 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 558 } 559 560 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 561 const CXXNewExpr *E) { 562 if (!E->isArray()) 563 return CharUnits::Zero(); 564 565 // No cookie is required if the operator new[] being used is the 566 // reserved placement operator new[]. 567 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 568 return CharUnits::Zero(); 569 570 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 571 } 572 573 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 574 const CXXNewExpr *e, 575 unsigned minElements, 576 llvm::Value *&numElements, 577 llvm::Value *&sizeWithoutCookie) { 578 QualType type = e->getAllocatedType(); 579 580 if (!e->isArray()) { 581 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 582 sizeWithoutCookie 583 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 584 return sizeWithoutCookie; 585 } 586 587 // The width of size_t. 588 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 589 590 // Figure out the cookie size. 591 llvm::APInt cookieSize(sizeWidth, 592 CalculateCookiePadding(CGF, e).getQuantity()); 593 594 // Emit the array size expression. 595 // We multiply the size of all dimensions for NumElements. 596 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 597 numElements = CGF.EmitScalarExpr(e->getArraySize()); 598 assert(isa<llvm::IntegerType>(numElements->getType())); 599 600 // The number of elements can be have an arbitrary integer type; 601 // essentially, we need to multiply it by a constant factor, add a 602 // cookie size, and verify that the result is representable as a 603 // size_t. That's just a gloss, though, and it's wrong in one 604 // important way: if the count is negative, it's an error even if 605 // the cookie size would bring the total size >= 0. 606 bool isSigned 607 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 608 llvm::IntegerType *numElementsType 609 = cast<llvm::IntegerType>(numElements->getType()); 610 unsigned numElementsWidth = numElementsType->getBitWidth(); 611 612 // Compute the constant factor. 613 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 614 while (const ConstantArrayType *CAT 615 = CGF.getContext().getAsConstantArrayType(type)) { 616 type = CAT->getElementType(); 617 arraySizeMultiplier *= CAT->getSize(); 618 } 619 620 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 621 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 622 typeSizeMultiplier *= arraySizeMultiplier; 623 624 // This will be a size_t. 625 llvm::Value *size; 626 627 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 628 // Don't bloat the -O0 code. 629 if (llvm::ConstantInt *numElementsC = 630 dyn_cast<llvm::ConstantInt>(numElements)) { 631 const llvm::APInt &count = numElementsC->getValue(); 632 633 bool hasAnyOverflow = false; 634 635 // If 'count' was a negative number, it's an overflow. 636 if (isSigned && count.isNegative()) 637 hasAnyOverflow = true; 638 639 // We want to do all this arithmetic in size_t. If numElements is 640 // wider than that, check whether it's already too big, and if so, 641 // overflow. 642 else if (numElementsWidth > sizeWidth && 643 numElementsWidth - sizeWidth > count.countLeadingZeros()) 644 hasAnyOverflow = true; 645 646 // Okay, compute a count at the right width. 647 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 648 649 // If there is a brace-initializer, we cannot allocate fewer elements than 650 // there are initializers. If we do, that's treated like an overflow. 651 if (adjustedCount.ult(minElements)) 652 hasAnyOverflow = true; 653 654 // Scale numElements by that. This might overflow, but we don't 655 // care because it only overflows if allocationSize does, too, and 656 // if that overflows then we shouldn't use this. 657 numElements = llvm::ConstantInt::get(CGF.SizeTy, 658 adjustedCount * arraySizeMultiplier); 659 660 // Compute the size before cookie, and track whether it overflowed. 661 bool overflow; 662 llvm::APInt allocationSize 663 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 664 hasAnyOverflow |= overflow; 665 666 // Add in the cookie, and check whether it's overflowed. 667 if (cookieSize != 0) { 668 // Save the current size without a cookie. This shouldn't be 669 // used if there was overflow. 670 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 671 672 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 673 hasAnyOverflow |= overflow; 674 } 675 676 // On overflow, produce a -1 so operator new will fail. 677 if (hasAnyOverflow) { 678 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 679 } else { 680 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 681 } 682 683 // Otherwise, we might need to use the overflow intrinsics. 684 } else { 685 // There are up to five conditions we need to test for: 686 // 1) if isSigned, we need to check whether numElements is negative; 687 // 2) if numElementsWidth > sizeWidth, we need to check whether 688 // numElements is larger than something representable in size_t; 689 // 3) if minElements > 0, we need to check whether numElements is smaller 690 // than that. 691 // 4) we need to compute 692 // sizeWithoutCookie := numElements * typeSizeMultiplier 693 // and check whether it overflows; and 694 // 5) if we need a cookie, we need to compute 695 // size := sizeWithoutCookie + cookieSize 696 // and check whether it overflows. 697 698 llvm::Value *hasOverflow = nullptr; 699 700 // If numElementsWidth > sizeWidth, then one way or another, we're 701 // going to have to do a comparison for (2), and this happens to 702 // take care of (1), too. 703 if (numElementsWidth > sizeWidth) { 704 llvm::APInt threshold(numElementsWidth, 1); 705 threshold <<= sizeWidth; 706 707 llvm::Value *thresholdV 708 = llvm::ConstantInt::get(numElementsType, threshold); 709 710 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 711 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 712 713 // Otherwise, if we're signed, we want to sext up to size_t. 714 } else if (isSigned) { 715 if (numElementsWidth < sizeWidth) 716 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 717 718 // If there's a non-1 type size multiplier, then we can do the 719 // signedness check at the same time as we do the multiply 720 // because a negative number times anything will cause an 721 // unsigned overflow. Otherwise, we have to do it here. But at least 722 // in this case, we can subsume the >= minElements check. 723 if (typeSizeMultiplier == 1) 724 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 725 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 726 727 // Otherwise, zext up to size_t if necessary. 728 } else if (numElementsWidth < sizeWidth) { 729 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 730 } 731 732 assert(numElements->getType() == CGF.SizeTy); 733 734 if (minElements) { 735 // Don't allow allocation of fewer elements than we have initializers. 736 if (!hasOverflow) { 737 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 738 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 739 } else if (numElementsWidth > sizeWidth) { 740 // The other existing overflow subsumes this check. 741 // We do an unsigned comparison, since any signed value < -1 is 742 // taken care of either above or below. 743 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 744 CGF.Builder.CreateICmpULT(numElements, 745 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 746 } 747 } 748 749 size = numElements; 750 751 // Multiply by the type size if necessary. This multiplier 752 // includes all the factors for nested arrays. 753 // 754 // This step also causes numElements to be scaled up by the 755 // nested-array factor if necessary. Overflow on this computation 756 // can be ignored because the result shouldn't be used if 757 // allocation fails. 758 if (typeSizeMultiplier != 1) { 759 llvm::Value *umul_with_overflow 760 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 761 762 llvm::Value *tsmV = 763 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 764 llvm::Value *result = 765 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 766 767 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 768 if (hasOverflow) 769 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 770 else 771 hasOverflow = overflowed; 772 773 size = CGF.Builder.CreateExtractValue(result, 0); 774 775 // Also scale up numElements by the array size multiplier. 776 if (arraySizeMultiplier != 1) { 777 // If the base element type size is 1, then we can re-use the 778 // multiply we just did. 779 if (typeSize.isOne()) { 780 assert(arraySizeMultiplier == typeSizeMultiplier); 781 numElements = size; 782 783 // Otherwise we need a separate multiply. 784 } else { 785 llvm::Value *asmV = 786 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 787 numElements = CGF.Builder.CreateMul(numElements, asmV); 788 } 789 } 790 } else { 791 // numElements doesn't need to be scaled. 792 assert(arraySizeMultiplier == 1); 793 } 794 795 // Add in the cookie size if necessary. 796 if (cookieSize != 0) { 797 sizeWithoutCookie = size; 798 799 llvm::Value *uadd_with_overflow 800 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 801 802 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 803 llvm::Value *result = 804 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 805 806 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 807 if (hasOverflow) 808 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 809 else 810 hasOverflow = overflowed; 811 812 size = CGF.Builder.CreateExtractValue(result, 0); 813 } 814 815 // If we had any possibility of dynamic overflow, make a select to 816 // overwrite 'size' with an all-ones value, which should cause 817 // operator new to throw. 818 if (hasOverflow) 819 size = CGF.Builder.CreateSelect(hasOverflow, 820 llvm::Constant::getAllOnesValue(CGF.SizeTy), 821 size); 822 } 823 824 if (cookieSize == 0) 825 sizeWithoutCookie = size; 826 else 827 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 828 829 return size; 830 } 831 832 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 833 QualType AllocType, Address NewPtr) { 834 // FIXME: Refactor with EmitExprAsInit. 835 switch (CGF.getEvaluationKind(AllocType)) { 836 case TEK_Scalar: 837 CGF.EmitScalarInit(Init, nullptr, 838 CGF.MakeAddrLValue(NewPtr, AllocType), false); 839 return; 840 case TEK_Complex: 841 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 842 /*isInit*/ true); 843 return; 844 case TEK_Aggregate: { 845 AggValueSlot Slot 846 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 847 AggValueSlot::IsDestructed, 848 AggValueSlot::DoesNotNeedGCBarriers, 849 AggValueSlot::IsNotAliased); 850 CGF.EmitAggExpr(Init, Slot); 851 return; 852 } 853 } 854 llvm_unreachable("bad evaluation kind"); 855 } 856 857 void CodeGenFunction::EmitNewArrayInitializer( 858 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 859 Address BeginPtr, llvm::Value *NumElements, 860 llvm::Value *AllocSizeWithoutCookie) { 861 // If we have a type with trivial initialization and no initializer, 862 // there's nothing to do. 863 if (!E->hasInitializer()) 864 return; 865 866 Address CurPtr = BeginPtr; 867 868 unsigned InitListElements = 0; 869 870 const Expr *Init = E->getInitializer(); 871 Address EndOfInit = Address::invalid(); 872 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 873 EHScopeStack::stable_iterator Cleanup; 874 llvm::Instruction *CleanupDominator = nullptr; 875 876 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 877 CharUnits ElementAlign = 878 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 879 880 // If the initializer is an initializer list, first do the explicit elements. 881 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 882 InitListElements = ILE->getNumInits(); 883 884 // If this is a multi-dimensional array new, we will initialize multiple 885 // elements with each init list element. 886 QualType AllocType = E->getAllocatedType(); 887 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 888 AllocType->getAsArrayTypeUnsafe())) { 889 ElementTy = ConvertTypeForMem(AllocType); 890 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 891 InitListElements *= getContext().getConstantArrayElementCount(CAT); 892 } 893 894 // Enter a partial-destruction Cleanup if necessary. 895 if (needsEHCleanup(DtorKind)) { 896 // In principle we could tell the Cleanup where we are more 897 // directly, but the control flow can get so varied here that it 898 // would actually be quite complex. Therefore we go through an 899 // alloca. 900 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 901 "array.init.end"); 902 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 903 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 904 ElementType, ElementAlign, 905 getDestroyer(DtorKind)); 906 Cleanup = EHStack.stable_begin(); 907 } 908 909 CharUnits StartAlign = CurPtr.getAlignment(); 910 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 911 // Tell the cleanup that it needs to destroy up to this 912 // element. TODO: some of these stores can be trivially 913 // observed to be unnecessary. 914 if (EndOfInit.isValid()) { 915 auto FinishedPtr = 916 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 917 Builder.CreateStore(FinishedPtr, EndOfInit); 918 } 919 // FIXME: If the last initializer is an incomplete initializer list for 920 // an array, and we have an array filler, we can fold together the two 921 // initialization loops. 922 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 923 ILE->getInit(i)->getType(), CurPtr); 924 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 925 Builder.getSize(1), 926 "array.exp.next"), 927 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 928 } 929 930 // The remaining elements are filled with the array filler expression. 931 Init = ILE->getArrayFiller(); 932 933 // Extract the initializer for the individual array elements by pulling 934 // out the array filler from all the nested initializer lists. This avoids 935 // generating a nested loop for the initialization. 936 while (Init && Init->getType()->isConstantArrayType()) { 937 auto *SubILE = dyn_cast<InitListExpr>(Init); 938 if (!SubILE) 939 break; 940 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 941 Init = SubILE->getArrayFiller(); 942 } 943 944 // Switch back to initializing one base element at a time. 945 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 946 } 947 948 // Attempt to perform zero-initialization using memset. 949 auto TryMemsetInitialization = [&]() -> bool { 950 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 951 // we can initialize with a memset to -1. 952 if (!CGM.getTypes().isZeroInitializable(ElementType)) 953 return false; 954 955 // Optimization: since zero initialization will just set the memory 956 // to all zeroes, generate a single memset to do it in one shot. 957 958 // Subtract out the size of any elements we've already initialized. 959 auto *RemainingSize = AllocSizeWithoutCookie; 960 if (InitListElements) { 961 // We know this can't overflow; we check this when doing the allocation. 962 auto *InitializedSize = llvm::ConstantInt::get( 963 RemainingSize->getType(), 964 getContext().getTypeSizeInChars(ElementType).getQuantity() * 965 InitListElements); 966 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 967 } 968 969 // Create the memset. 970 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 971 return true; 972 }; 973 974 // If all elements have already been initialized, skip any further 975 // initialization. 976 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 977 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 978 // If there was a Cleanup, deactivate it. 979 if (CleanupDominator) 980 DeactivateCleanupBlock(Cleanup, CleanupDominator); 981 return; 982 } 983 984 assert(Init && "have trailing elements to initialize but no initializer"); 985 986 // If this is a constructor call, try to optimize it out, and failing that 987 // emit a single loop to initialize all remaining elements. 988 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 989 CXXConstructorDecl *Ctor = CCE->getConstructor(); 990 if (Ctor->isTrivial()) { 991 // If new expression did not specify value-initialization, then there 992 // is no initialization. 993 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 994 return; 995 996 if (TryMemsetInitialization()) 997 return; 998 } 999 1000 // Store the new Cleanup position for irregular Cleanups. 1001 // 1002 // FIXME: Share this cleanup with the constructor call emission rather than 1003 // having it create a cleanup of its own. 1004 if (EndOfInit.isValid()) 1005 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1006 1007 // Emit a constructor call loop to initialize the remaining elements. 1008 if (InitListElements) 1009 NumElements = Builder.CreateSub( 1010 NumElements, 1011 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1012 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1013 CCE->requiresZeroInitialization()); 1014 return; 1015 } 1016 1017 // If this is value-initialization, we can usually use memset. 1018 ImplicitValueInitExpr IVIE(ElementType); 1019 if (isa<ImplicitValueInitExpr>(Init)) { 1020 if (TryMemsetInitialization()) 1021 return; 1022 1023 // Switch to an ImplicitValueInitExpr for the element type. This handles 1024 // only one case: multidimensional array new of pointers to members. In 1025 // all other cases, we already have an initializer for the array element. 1026 Init = &IVIE; 1027 } 1028 1029 // At this point we should have found an initializer for the individual 1030 // elements of the array. 1031 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1032 "got wrong type of element to initialize"); 1033 1034 // If we have an empty initializer list, we can usually use memset. 1035 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1036 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1037 return; 1038 1039 // If we have a struct whose every field is value-initialized, we can 1040 // usually use memset. 1041 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1042 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1043 if (RType->getDecl()->isStruct()) { 1044 unsigned NumElements = 0; 1045 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1046 NumElements = CXXRD->getNumBases(); 1047 for (auto *Field : RType->getDecl()->fields()) 1048 if (!Field->isUnnamedBitfield()) 1049 ++NumElements; 1050 // FIXME: Recurse into nested InitListExprs. 1051 if (ILE->getNumInits() == NumElements) 1052 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1053 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1054 --NumElements; 1055 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1056 return; 1057 } 1058 } 1059 } 1060 1061 // Create the loop blocks. 1062 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1063 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1064 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1065 1066 // Find the end of the array, hoisted out of the loop. 1067 llvm::Value *EndPtr = 1068 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1069 1070 // If the number of elements isn't constant, we have to now check if there is 1071 // anything left to initialize. 1072 if (!ConstNum) { 1073 llvm::Value *IsEmpty = 1074 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1075 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1076 } 1077 1078 // Enter the loop. 1079 EmitBlock(LoopBB); 1080 1081 // Set up the current-element phi. 1082 llvm::PHINode *CurPtrPhi = 1083 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1084 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1085 1086 CurPtr = Address(CurPtrPhi, ElementAlign); 1087 1088 // Store the new Cleanup position for irregular Cleanups. 1089 if (EndOfInit.isValid()) 1090 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1091 1092 // Enter a partial-destruction Cleanup if necessary. 1093 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1094 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1095 ElementType, ElementAlign, 1096 getDestroyer(DtorKind)); 1097 Cleanup = EHStack.stable_begin(); 1098 CleanupDominator = Builder.CreateUnreachable(); 1099 } 1100 1101 // Emit the initializer into this element. 1102 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1103 1104 // Leave the Cleanup if we entered one. 1105 if (CleanupDominator) { 1106 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1107 CleanupDominator->eraseFromParent(); 1108 } 1109 1110 // Advance to the next element by adjusting the pointer type as necessary. 1111 llvm::Value *NextPtr = 1112 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1113 "array.next"); 1114 1115 // Check whether we've gotten to the end of the array and, if so, 1116 // exit the loop. 1117 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1118 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1119 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1120 1121 EmitBlock(ContBB); 1122 } 1123 1124 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1125 QualType ElementType, llvm::Type *ElementTy, 1126 Address NewPtr, llvm::Value *NumElements, 1127 llvm::Value *AllocSizeWithoutCookie) { 1128 ApplyDebugLocation DL(CGF, E); 1129 if (E->isArray()) 1130 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1131 AllocSizeWithoutCookie); 1132 else if (const Expr *Init = E->getInitializer()) 1133 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1134 } 1135 1136 /// Emit a call to an operator new or operator delete function, as implicitly 1137 /// created by new-expressions and delete-expressions. 1138 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1139 const FunctionDecl *Callee, 1140 const FunctionProtoType *CalleeType, 1141 const CallArgList &Args) { 1142 llvm::Instruction *CallOrInvoke; 1143 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1144 RValue RV = 1145 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1146 Args, CalleeType, /*chainCall=*/false), 1147 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1148 1149 /// C++1y [expr.new]p10: 1150 /// [In a new-expression,] an implementation is allowed to omit a call 1151 /// to a replaceable global allocation function. 1152 /// 1153 /// We model such elidable calls with the 'builtin' attribute. 1154 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1155 if (Callee->isReplaceableGlobalAllocationFunction() && 1156 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1157 // FIXME: Add addAttribute to CallSite. 1158 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1159 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1160 llvm::Attribute::Builtin); 1161 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1162 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1163 llvm::Attribute::Builtin); 1164 else 1165 llvm_unreachable("unexpected kind of call instruction"); 1166 } 1167 1168 return RV; 1169 } 1170 1171 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1172 const Expr *Arg, 1173 bool IsDelete) { 1174 CallArgList Args; 1175 const Stmt *ArgS = Arg; 1176 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1177 // Find the allocation or deallocation function that we're calling. 1178 ASTContext &Ctx = getContext(); 1179 DeclarationName Name = Ctx.DeclarationNames 1180 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1181 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1182 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1183 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1184 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1185 llvm_unreachable("predeclared global operator new/delete is missing"); 1186 } 1187 1188 namespace { 1189 /// A cleanup to call the given 'operator delete' function upon 1190 /// abnormal exit from a new expression. 1191 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1192 size_t NumPlacementArgs; 1193 const FunctionDecl *OperatorDelete; 1194 llvm::Value *Ptr; 1195 llvm::Value *AllocSize; 1196 1197 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1198 1199 public: 1200 static size_t getExtraSize(size_t NumPlacementArgs) { 1201 return NumPlacementArgs * sizeof(RValue); 1202 } 1203 1204 CallDeleteDuringNew(size_t NumPlacementArgs, 1205 const FunctionDecl *OperatorDelete, 1206 llvm::Value *Ptr, 1207 llvm::Value *AllocSize) 1208 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1209 Ptr(Ptr), AllocSize(AllocSize) {} 1210 1211 void setPlacementArg(unsigned I, RValue Arg) { 1212 assert(I < NumPlacementArgs && "index out of range"); 1213 getPlacementArgs()[I] = Arg; 1214 } 1215 1216 void Emit(CodeGenFunction &CGF, Flags flags) override { 1217 const FunctionProtoType *FPT 1218 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1219 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1220 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1221 1222 CallArgList DeleteArgs; 1223 1224 // The first argument is always a void*. 1225 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1226 DeleteArgs.add(RValue::get(Ptr), *AI++); 1227 1228 // A member 'operator delete' can take an extra 'size_t' argument. 1229 if (FPT->getNumParams() == NumPlacementArgs + 2) 1230 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1231 1232 // Pass the rest of the arguments, which must match exactly. 1233 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1234 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1235 1236 // Call 'operator delete'. 1237 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1238 } 1239 }; 1240 1241 /// A cleanup to call the given 'operator delete' function upon 1242 /// abnormal exit from a new expression when the new expression is 1243 /// conditional. 1244 class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup { 1245 size_t NumPlacementArgs; 1246 const FunctionDecl *OperatorDelete; 1247 DominatingValue<RValue>::saved_type Ptr; 1248 DominatingValue<RValue>::saved_type AllocSize; 1249 1250 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1251 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1252 } 1253 1254 public: 1255 static size_t getExtraSize(size_t NumPlacementArgs) { 1256 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1257 } 1258 1259 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1260 const FunctionDecl *OperatorDelete, 1261 DominatingValue<RValue>::saved_type Ptr, 1262 DominatingValue<RValue>::saved_type AllocSize) 1263 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1264 Ptr(Ptr), AllocSize(AllocSize) {} 1265 1266 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1267 assert(I < NumPlacementArgs && "index out of range"); 1268 getPlacementArgs()[I] = Arg; 1269 } 1270 1271 void Emit(CodeGenFunction &CGF, Flags flags) override { 1272 const FunctionProtoType *FPT 1273 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1274 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1275 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1276 1277 CallArgList DeleteArgs; 1278 1279 // The first argument is always a void*. 1280 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1281 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1282 1283 // A member 'operator delete' can take an extra 'size_t' argument. 1284 if (FPT->getNumParams() == NumPlacementArgs + 2) { 1285 RValue RV = AllocSize.restore(CGF); 1286 DeleteArgs.add(RV, *AI++); 1287 } 1288 1289 // Pass the rest of the arguments, which must match exactly. 1290 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1291 RValue RV = getPlacementArgs()[I].restore(CGF); 1292 DeleteArgs.add(RV, *AI++); 1293 } 1294 1295 // Call 'operator delete'. 1296 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1297 } 1298 }; 1299 } 1300 1301 /// Enter a cleanup to call 'operator delete' if the initializer in a 1302 /// new-expression throws. 1303 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1304 const CXXNewExpr *E, 1305 Address NewPtr, 1306 llvm::Value *AllocSize, 1307 const CallArgList &NewArgs) { 1308 // If we're not inside a conditional branch, then the cleanup will 1309 // dominate and we can do the easier (and more efficient) thing. 1310 if (!CGF.isInConditionalBranch()) { 1311 CallDeleteDuringNew *Cleanup = CGF.EHStack 1312 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1313 E->getNumPlacementArgs(), 1314 E->getOperatorDelete(), 1315 NewPtr.getPointer(), 1316 AllocSize); 1317 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1318 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1319 1320 return; 1321 } 1322 1323 // Otherwise, we need to save all this stuff. 1324 DominatingValue<RValue>::saved_type SavedNewPtr = 1325 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1326 DominatingValue<RValue>::saved_type SavedAllocSize = 1327 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1328 1329 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1330 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1331 E->getNumPlacementArgs(), 1332 E->getOperatorDelete(), 1333 SavedNewPtr, 1334 SavedAllocSize); 1335 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1336 Cleanup->setPlacementArg(I, 1337 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1338 1339 CGF.initFullExprCleanup(); 1340 } 1341 1342 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1343 // The element type being allocated. 1344 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1345 1346 // 1. Build a call to the allocation function. 1347 FunctionDecl *allocator = E->getOperatorNew(); 1348 1349 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1350 unsigned minElements = 0; 1351 if (E->isArray() && E->hasInitializer()) { 1352 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1353 minElements = ILE->getNumInits(); 1354 } 1355 1356 llvm::Value *numElements = nullptr; 1357 llvm::Value *allocSizeWithoutCookie = nullptr; 1358 llvm::Value *allocSize = 1359 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1360 allocSizeWithoutCookie); 1361 1362 // Emit the allocation call. If the allocator is a global placement 1363 // operator, just "inline" it directly. 1364 Address allocation = Address::invalid(); 1365 CallArgList allocatorArgs; 1366 if (allocator->isReservedGlobalPlacementOperator()) { 1367 assert(E->getNumPlacementArgs() == 1); 1368 const Expr *arg = *E->placement_arguments().begin(); 1369 1370 AlignmentSource alignSource; 1371 allocation = EmitPointerWithAlignment(arg, &alignSource); 1372 1373 // The pointer expression will, in many cases, be an opaque void*. 1374 // In these cases, discard the computed alignment and use the 1375 // formal alignment of the allocated type. 1376 if (alignSource != AlignmentSource::Decl) { 1377 allocation = Address(allocation.getPointer(), 1378 getContext().getTypeAlignInChars(allocType)); 1379 } 1380 1381 // Set up allocatorArgs for the call to operator delete if it's not 1382 // the reserved global operator. 1383 if (E->getOperatorDelete() && 1384 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1385 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1386 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1387 } 1388 1389 } else { 1390 const FunctionProtoType *allocatorType = 1391 allocator->getType()->castAs<FunctionProtoType>(); 1392 1393 // The allocation size is the first argument. 1394 QualType sizeType = getContext().getSizeType(); 1395 allocatorArgs.add(RValue::get(allocSize), sizeType); 1396 1397 // We start at 1 here because the first argument (the allocation size) 1398 // has already been emitted. 1399 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1400 /* CalleeDecl */ nullptr, 1401 /*ParamsToSkip*/ 1); 1402 1403 RValue RV = 1404 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1405 1406 // For now, only assume that the allocation function returns 1407 // something satisfactorily aligned for the element type, plus 1408 // the cookie if we have one. 1409 CharUnits allocationAlign = 1410 getContext().getTypeAlignInChars(allocType); 1411 if (allocSize != allocSizeWithoutCookie) { 1412 CharUnits cookieAlign = getSizeAlign(); // FIXME? 1413 allocationAlign = std::max(allocationAlign, cookieAlign); 1414 } 1415 1416 allocation = Address(RV.getScalarVal(), allocationAlign); 1417 } 1418 1419 // Emit a null check on the allocation result if the allocation 1420 // function is allowed to return null (because it has a non-throwing 1421 // exception spec or is the reserved placement new) and we have an 1422 // interesting initializer. 1423 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1424 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1425 1426 llvm::BasicBlock *nullCheckBB = nullptr; 1427 llvm::BasicBlock *contBB = nullptr; 1428 1429 // The null-check means that the initializer is conditionally 1430 // evaluated. 1431 ConditionalEvaluation conditional(*this); 1432 1433 if (nullCheck) { 1434 conditional.begin(*this); 1435 1436 nullCheckBB = Builder.GetInsertBlock(); 1437 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1438 contBB = createBasicBlock("new.cont"); 1439 1440 llvm::Value *isNull = 1441 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1442 Builder.CreateCondBr(isNull, contBB, notNullBB); 1443 EmitBlock(notNullBB); 1444 } 1445 1446 // If there's an operator delete, enter a cleanup to call it if an 1447 // exception is thrown. 1448 EHScopeStack::stable_iterator operatorDeleteCleanup; 1449 llvm::Instruction *cleanupDominator = nullptr; 1450 if (E->getOperatorDelete() && 1451 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1452 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1453 operatorDeleteCleanup = EHStack.stable_begin(); 1454 cleanupDominator = Builder.CreateUnreachable(); 1455 } 1456 1457 assert((allocSize == allocSizeWithoutCookie) == 1458 CalculateCookiePadding(*this, E).isZero()); 1459 if (allocSize != allocSizeWithoutCookie) { 1460 assert(E->isArray()); 1461 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1462 numElements, 1463 E, allocType); 1464 } 1465 1466 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1467 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1468 1469 // Passing pointer through invariant.group.barrier to avoid propagation of 1470 // vptrs information which may be included in previous type. 1471 if (CGM.getCodeGenOpts().StrictVTablePointers && 1472 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1473 allocator->isReservedGlobalPlacementOperator()) 1474 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1475 result.getAlignment()); 1476 1477 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1478 allocSizeWithoutCookie); 1479 if (E->isArray()) { 1480 // NewPtr is a pointer to the base element type. If we're 1481 // allocating an array of arrays, we'll need to cast back to the 1482 // array pointer type. 1483 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1484 if (result.getType() != resultType) 1485 result = Builder.CreateBitCast(result, resultType); 1486 } 1487 1488 // Deactivate the 'operator delete' cleanup if we finished 1489 // initialization. 1490 if (operatorDeleteCleanup.isValid()) { 1491 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1492 cleanupDominator->eraseFromParent(); 1493 } 1494 1495 llvm::Value *resultPtr = result.getPointer(); 1496 if (nullCheck) { 1497 conditional.end(*this); 1498 1499 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1500 EmitBlock(contBB); 1501 1502 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1503 PHI->addIncoming(resultPtr, notNullBB); 1504 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1505 nullCheckBB); 1506 1507 resultPtr = PHI; 1508 } 1509 1510 return resultPtr; 1511 } 1512 1513 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1514 llvm::Value *Ptr, 1515 QualType DeleteTy) { 1516 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1517 1518 const FunctionProtoType *DeleteFTy = 1519 DeleteFD->getType()->getAs<FunctionProtoType>(); 1520 1521 CallArgList DeleteArgs; 1522 1523 // Check if we need to pass the size to the delete operator. 1524 llvm::Value *Size = nullptr; 1525 QualType SizeTy; 1526 if (DeleteFTy->getNumParams() == 2) { 1527 SizeTy = DeleteFTy->getParamType(1); 1528 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1529 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1530 DeleteTypeSize.getQuantity()); 1531 } 1532 1533 QualType ArgTy = DeleteFTy->getParamType(0); 1534 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1535 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1536 1537 if (Size) 1538 DeleteArgs.add(RValue::get(Size), SizeTy); 1539 1540 // Emit the call to delete. 1541 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1542 } 1543 1544 namespace { 1545 /// Calls the given 'operator delete' on a single object. 1546 struct CallObjectDelete final : EHScopeStack::Cleanup { 1547 llvm::Value *Ptr; 1548 const FunctionDecl *OperatorDelete; 1549 QualType ElementType; 1550 1551 CallObjectDelete(llvm::Value *Ptr, 1552 const FunctionDecl *OperatorDelete, 1553 QualType ElementType) 1554 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1555 1556 void Emit(CodeGenFunction &CGF, Flags flags) override { 1557 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1558 } 1559 }; 1560 } 1561 1562 void 1563 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1564 llvm::Value *CompletePtr, 1565 QualType ElementType) { 1566 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1567 OperatorDelete, ElementType); 1568 } 1569 1570 /// Emit the code for deleting a single object. 1571 static void EmitObjectDelete(CodeGenFunction &CGF, 1572 const CXXDeleteExpr *DE, 1573 Address Ptr, 1574 QualType ElementType) { 1575 // Find the destructor for the type, if applicable. If the 1576 // destructor is virtual, we'll just emit the vcall and return. 1577 const CXXDestructorDecl *Dtor = nullptr; 1578 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1579 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1580 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1581 Dtor = RD->getDestructor(); 1582 1583 if (Dtor->isVirtual()) { 1584 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1585 Dtor); 1586 return; 1587 } 1588 } 1589 } 1590 1591 // Make sure that we call delete even if the dtor throws. 1592 // This doesn't have to a conditional cleanup because we're going 1593 // to pop it off in a second. 1594 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1595 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1596 Ptr.getPointer(), 1597 OperatorDelete, ElementType); 1598 1599 if (Dtor) 1600 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1601 /*ForVirtualBase=*/false, 1602 /*Delegating=*/false, 1603 Ptr); 1604 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1605 switch (Lifetime) { 1606 case Qualifiers::OCL_None: 1607 case Qualifiers::OCL_ExplicitNone: 1608 case Qualifiers::OCL_Autoreleasing: 1609 break; 1610 1611 case Qualifiers::OCL_Strong: 1612 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1613 break; 1614 1615 case Qualifiers::OCL_Weak: 1616 CGF.EmitARCDestroyWeak(Ptr); 1617 break; 1618 } 1619 } 1620 1621 CGF.PopCleanupBlock(); 1622 } 1623 1624 namespace { 1625 /// Calls the given 'operator delete' on an array of objects. 1626 struct CallArrayDelete final : EHScopeStack::Cleanup { 1627 llvm::Value *Ptr; 1628 const FunctionDecl *OperatorDelete; 1629 llvm::Value *NumElements; 1630 QualType ElementType; 1631 CharUnits CookieSize; 1632 1633 CallArrayDelete(llvm::Value *Ptr, 1634 const FunctionDecl *OperatorDelete, 1635 llvm::Value *NumElements, 1636 QualType ElementType, 1637 CharUnits CookieSize) 1638 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1639 ElementType(ElementType), CookieSize(CookieSize) {} 1640 1641 void Emit(CodeGenFunction &CGF, Flags flags) override { 1642 const FunctionProtoType *DeleteFTy = 1643 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1644 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 1645 1646 CallArgList Args; 1647 1648 // Pass the pointer as the first argument. 1649 QualType VoidPtrTy = DeleteFTy->getParamType(0); 1650 llvm::Value *DeletePtr 1651 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1652 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1653 1654 // Pass the original requested size as the second argument. 1655 if (DeleteFTy->getNumParams() == 2) { 1656 QualType size_t = DeleteFTy->getParamType(1); 1657 llvm::IntegerType *SizeTy 1658 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1659 1660 CharUnits ElementTypeSize = 1661 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1662 1663 // The size of an element, multiplied by the number of elements. 1664 llvm::Value *Size 1665 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1666 if (NumElements) 1667 Size = CGF.Builder.CreateMul(Size, NumElements); 1668 1669 // Plus the size of the cookie if applicable. 1670 if (!CookieSize.isZero()) { 1671 llvm::Value *CookieSizeV 1672 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1673 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1674 } 1675 1676 Args.add(RValue::get(Size), size_t); 1677 } 1678 1679 // Emit the call to delete. 1680 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1681 } 1682 }; 1683 } 1684 1685 /// Emit the code for deleting an array of objects. 1686 static void EmitArrayDelete(CodeGenFunction &CGF, 1687 const CXXDeleteExpr *E, 1688 Address deletedPtr, 1689 QualType elementType) { 1690 llvm::Value *numElements = nullptr; 1691 llvm::Value *allocatedPtr = nullptr; 1692 CharUnits cookieSize; 1693 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1694 numElements, allocatedPtr, cookieSize); 1695 1696 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1697 1698 // Make sure that we call delete even if one of the dtors throws. 1699 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1700 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1701 allocatedPtr, operatorDelete, 1702 numElements, elementType, 1703 cookieSize); 1704 1705 // Destroy the elements. 1706 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1707 assert(numElements && "no element count for a type with a destructor!"); 1708 1709 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1710 CharUnits elementAlign = 1711 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1712 1713 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1714 llvm::Value *arrayEnd = 1715 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1716 1717 // Note that it is legal to allocate a zero-length array, and we 1718 // can never fold the check away because the length should always 1719 // come from a cookie. 1720 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1721 CGF.getDestroyer(dtorKind), 1722 /*checkZeroLength*/ true, 1723 CGF.needsEHCleanup(dtorKind)); 1724 } 1725 1726 // Pop the cleanup block. 1727 CGF.PopCleanupBlock(); 1728 } 1729 1730 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1731 const Expr *Arg = E->getArgument(); 1732 Address Ptr = EmitPointerWithAlignment(Arg); 1733 1734 // Null check the pointer. 1735 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1736 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1737 1738 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1739 1740 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1741 EmitBlock(DeleteNotNull); 1742 1743 // We might be deleting a pointer to array. If so, GEP down to the 1744 // first non-array element. 1745 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1746 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1747 if (DeleteTy->isConstantArrayType()) { 1748 llvm::Value *Zero = Builder.getInt32(0); 1749 SmallVector<llvm::Value*,8> GEP; 1750 1751 GEP.push_back(Zero); // point at the outermost array 1752 1753 // For each layer of array type we're pointing at: 1754 while (const ConstantArrayType *Arr 1755 = getContext().getAsConstantArrayType(DeleteTy)) { 1756 // 1. Unpeel the array type. 1757 DeleteTy = Arr->getElementType(); 1758 1759 // 2. GEP to the first element of the array. 1760 GEP.push_back(Zero); 1761 } 1762 1763 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1764 Ptr.getAlignment()); 1765 } 1766 1767 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1768 1769 if (E->isArrayForm()) { 1770 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1771 } else { 1772 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1773 } 1774 1775 EmitBlock(DeleteEnd); 1776 } 1777 1778 static bool isGLValueFromPointerDeref(const Expr *E) { 1779 E = E->IgnoreParens(); 1780 1781 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1782 if (!CE->getSubExpr()->isGLValue()) 1783 return false; 1784 return isGLValueFromPointerDeref(CE->getSubExpr()); 1785 } 1786 1787 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1788 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1789 1790 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1791 if (BO->getOpcode() == BO_Comma) 1792 return isGLValueFromPointerDeref(BO->getRHS()); 1793 1794 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1795 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1796 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1797 1798 // C++11 [expr.sub]p1: 1799 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1800 if (isa<ArraySubscriptExpr>(E)) 1801 return true; 1802 1803 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1804 if (UO->getOpcode() == UO_Deref) 1805 return true; 1806 1807 return false; 1808 } 1809 1810 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1811 llvm::Type *StdTypeInfoPtrTy) { 1812 // Get the vtable pointer. 1813 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1814 1815 // C++ [expr.typeid]p2: 1816 // If the glvalue expression is obtained by applying the unary * operator to 1817 // a pointer and the pointer is a null pointer value, the typeid expression 1818 // throws the std::bad_typeid exception. 1819 // 1820 // However, this paragraph's intent is not clear. We choose a very generous 1821 // interpretation which implores us to consider comma operators, conditional 1822 // operators, parentheses and other such constructs. 1823 QualType SrcRecordTy = E->getType(); 1824 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1825 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1826 llvm::BasicBlock *BadTypeidBlock = 1827 CGF.createBasicBlock("typeid.bad_typeid"); 1828 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1829 1830 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 1831 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1832 1833 CGF.EmitBlock(BadTypeidBlock); 1834 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1835 CGF.EmitBlock(EndBlock); 1836 } 1837 1838 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1839 StdTypeInfoPtrTy); 1840 } 1841 1842 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1843 llvm::Type *StdTypeInfoPtrTy = 1844 ConvertType(E->getType())->getPointerTo(); 1845 1846 if (E->isTypeOperand()) { 1847 llvm::Constant *TypeInfo = 1848 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1849 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1850 } 1851 1852 // C++ [expr.typeid]p2: 1853 // When typeid is applied to a glvalue expression whose type is a 1854 // polymorphic class type, the result refers to a std::type_info object 1855 // representing the type of the most derived object (that is, the dynamic 1856 // type) to which the glvalue refers. 1857 if (E->isPotentiallyEvaluated()) 1858 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1859 StdTypeInfoPtrTy); 1860 1861 QualType OperandTy = E->getExprOperand()->getType(); 1862 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1863 StdTypeInfoPtrTy); 1864 } 1865 1866 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1867 QualType DestTy) { 1868 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1869 if (DestTy->isPointerType()) 1870 return llvm::Constant::getNullValue(DestLTy); 1871 1872 /// C++ [expr.dynamic.cast]p9: 1873 /// A failed cast to reference type throws std::bad_cast 1874 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1875 return nullptr; 1876 1877 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1878 return llvm::UndefValue::get(DestLTy); 1879 } 1880 1881 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 1882 const CXXDynamicCastExpr *DCE) { 1883 CGM.EmitExplicitCastExprType(DCE, this); 1884 QualType DestTy = DCE->getTypeAsWritten(); 1885 1886 if (DCE->isAlwaysNull()) 1887 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1888 return T; 1889 1890 QualType SrcTy = DCE->getSubExpr()->getType(); 1891 1892 // C++ [expr.dynamic.cast]p7: 1893 // If T is "pointer to cv void," then the result is a pointer to the most 1894 // derived object pointed to by v. 1895 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1896 1897 bool isDynamicCastToVoid; 1898 QualType SrcRecordTy; 1899 QualType DestRecordTy; 1900 if (DestPTy) { 1901 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1902 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1903 DestRecordTy = DestPTy->getPointeeType(); 1904 } else { 1905 isDynamicCastToVoid = false; 1906 SrcRecordTy = SrcTy; 1907 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1908 } 1909 1910 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1911 1912 // C++ [expr.dynamic.cast]p4: 1913 // If the value of v is a null pointer value in the pointer case, the result 1914 // is the null pointer value of type T. 1915 bool ShouldNullCheckSrcValue = 1916 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 1917 SrcRecordTy); 1918 1919 llvm::BasicBlock *CastNull = nullptr; 1920 llvm::BasicBlock *CastNotNull = nullptr; 1921 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1922 1923 if (ShouldNullCheckSrcValue) { 1924 CastNull = createBasicBlock("dynamic_cast.null"); 1925 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1926 1927 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 1928 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1929 EmitBlock(CastNotNull); 1930 } 1931 1932 llvm::Value *Value; 1933 if (isDynamicCastToVoid) { 1934 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 1935 DestTy); 1936 } else { 1937 assert(DestRecordTy->isRecordType() && 1938 "destination type must be a record type!"); 1939 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 1940 DestTy, DestRecordTy, CastEnd); 1941 CastNotNull = Builder.GetInsertBlock(); 1942 } 1943 1944 if (ShouldNullCheckSrcValue) { 1945 EmitBranch(CastEnd); 1946 1947 EmitBlock(CastNull); 1948 EmitBranch(CastEnd); 1949 } 1950 1951 EmitBlock(CastEnd); 1952 1953 if (ShouldNullCheckSrcValue) { 1954 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1955 PHI->addIncoming(Value, CastNotNull); 1956 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1957 1958 Value = PHI; 1959 } 1960 1961 return Value; 1962 } 1963 1964 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1965 RunCleanupsScope Scope(*this); 1966 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 1967 1968 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1969 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1970 e = E->capture_init_end(); 1971 i != e; ++i, ++CurField) { 1972 // Emit initialization 1973 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1974 if (CurField->hasCapturedVLAType()) { 1975 auto VAT = CurField->getCapturedVLAType(); 1976 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1977 } else { 1978 ArrayRef<VarDecl *> ArrayIndexes; 1979 if (CurField->getType()->isArrayType()) 1980 ArrayIndexes = E->getCaptureInitIndexVars(i); 1981 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1982 } 1983 } 1984 } 1985