1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "ConstantEmitter.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29   RequiredArgs ReqArgs;
30   // Number of prefix arguments for the call. Ignores the `this` pointer.
31   unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37                                   llvm::Value *This, llvm::Value *ImplicitParam,
38                                   QualType ImplicitParamTy, const CallExpr *CE,
39                                   CallArgList &Args, CallArgList *RtlArgs) {
40   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41          isa<CXXOperatorCallExpr>(CE));
42   assert(MD->isInstance() &&
43          "Trying to emit a member or operator call expr on a static method!");
44   ASTContext &C = CGF.getContext();
45 
46   // Push the this ptr.
47   const CXXRecordDecl *RD =
48       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
49   Args.add(RValue::get(This),
50            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
51 
52   // If there is an implicit parameter (e.g. VTT), emit it.
53   if (ImplicitParam) {
54     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55   }
56 
57   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
59   unsigned PrefixSize = Args.size() - 1;
60 
61   // And the rest of the call args.
62   if (RtlArgs) {
63     // Special case: if the caller emitted the arguments right-to-left already
64     // (prior to emitting the *this argument), we're done. This happens for
65     // assignment operators.
66     Args.addFrom(*RtlArgs);
67   } else if (CE) {
68     // Special case: skip first argument of CXXOperatorCall (it is "this").
69     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
70     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
71                      CE->getDirectCallee());
72   } else {
73     assert(
74         FPT->getNumParams() == 0 &&
75         "No CallExpr specified for function with non-zero number of arguments");
76   }
77   return {required, PrefixSize};
78 }
79 
80 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
81     const CXXMethodDecl *MD, const CGCallee &Callee,
82     ReturnValueSlot ReturnValue,
83     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
84     const CallExpr *CE, CallArgList *RtlArgs) {
85   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
86   CallArgList Args;
87   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
88       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
89   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
90       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
91   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
92                   CE ? CE->getExprLoc() : SourceLocation());
93 }
94 
95 RValue CodeGenFunction::EmitCXXDestructorCall(
96     const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
97     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
98     StructorType Type) {
99   CallArgList Args;
100   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
101                                     ImplicitParamTy, CE, Args, nullptr);
102   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
103                   Callee, ReturnValueSlot(), Args);
104 }
105 
106 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
107                                             const CXXPseudoDestructorExpr *E) {
108   QualType DestroyedType = E->getDestroyedType();
109   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
110     // Automatic Reference Counting:
111     //   If the pseudo-expression names a retainable object with weak or
112     //   strong lifetime, the object shall be released.
113     Expr *BaseExpr = E->getBase();
114     Address BaseValue = Address::invalid();
115     Qualifiers BaseQuals;
116 
117     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
118     if (E->isArrow()) {
119       BaseValue = EmitPointerWithAlignment(BaseExpr);
120       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
121       BaseQuals = PTy->getPointeeType().getQualifiers();
122     } else {
123       LValue BaseLV = EmitLValue(BaseExpr);
124       BaseValue = BaseLV.getAddress();
125       QualType BaseTy = BaseExpr->getType();
126       BaseQuals = BaseTy.getQualifiers();
127     }
128 
129     switch (DestroyedType.getObjCLifetime()) {
130     case Qualifiers::OCL_None:
131     case Qualifiers::OCL_ExplicitNone:
132     case Qualifiers::OCL_Autoreleasing:
133       break;
134 
135     case Qualifiers::OCL_Strong:
136       EmitARCRelease(Builder.CreateLoad(BaseValue,
137                         DestroyedType.isVolatileQualified()),
138                      ARCPreciseLifetime);
139       break;
140 
141     case Qualifiers::OCL_Weak:
142       EmitARCDestroyWeak(BaseValue);
143       break;
144     }
145   } else {
146     // C++ [expr.pseudo]p1:
147     //   The result shall only be used as the operand for the function call
148     //   operator (), and the result of such a call has type void. The only
149     //   effect is the evaluation of the postfix-expression before the dot or
150     //   arrow.
151     EmitIgnoredExpr(E->getBase());
152   }
153 
154   return RValue::get(nullptr);
155 }
156 
157 static CXXRecordDecl *getCXXRecord(const Expr *E) {
158   QualType T = E->getType();
159   if (const PointerType *PTy = T->getAs<PointerType>())
160     T = PTy->getPointeeType();
161   const RecordType *Ty = T->castAs<RecordType>();
162   return cast<CXXRecordDecl>(Ty->getDecl());
163 }
164 
165 // Note: This function also emit constructor calls to support a MSVC
166 // extensions allowing explicit constructor function call.
167 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
168                                               ReturnValueSlot ReturnValue) {
169   const Expr *callee = CE->getCallee()->IgnoreParens();
170 
171   if (isa<BinaryOperator>(callee))
172     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
173 
174   const MemberExpr *ME = cast<MemberExpr>(callee);
175   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
176 
177   if (MD->isStatic()) {
178     // The method is static, emit it as we would a regular call.
179     CGCallee callee =
180         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
181     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
182                     ReturnValue);
183   }
184 
185   bool HasQualifier = ME->hasQualifier();
186   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
187   bool IsArrow = ME->isArrow();
188   const Expr *Base = ME->getBase();
189 
190   return EmitCXXMemberOrOperatorMemberCallExpr(
191       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
192 }
193 
194 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
195     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
196     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
197     const Expr *Base) {
198   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
199 
200   // Compute the object pointer.
201   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
202 
203   const CXXMethodDecl *DevirtualizedMethod = nullptr;
204   if (CanUseVirtualCall &&
205       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
206     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
207     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
208     assert(DevirtualizedMethod);
209     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
210     const Expr *Inner = Base->ignoreParenBaseCasts();
211     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
212         MD->getReturnType().getCanonicalType())
213       // If the return types are not the same, this might be a case where more
214       // code needs to run to compensate for it. For example, the derived
215       // method might return a type that inherits form from the return
216       // type of MD and has a prefix.
217       // For now we just avoid devirtualizing these covariant cases.
218       DevirtualizedMethod = nullptr;
219     else if (getCXXRecord(Inner) == DevirtualizedClass)
220       // If the class of the Inner expression is where the dynamic method
221       // is defined, build the this pointer from it.
222       Base = Inner;
223     else if (getCXXRecord(Base) != DevirtualizedClass) {
224       // If the method is defined in a class that is not the best dynamic
225       // one or the one of the full expression, we would have to build
226       // a derived-to-base cast to compute the correct this pointer, but
227       // we don't have support for that yet, so do a virtual call.
228       DevirtualizedMethod = nullptr;
229     }
230   }
231 
232   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
233   // operator before the LHS.
234   CallArgList RtlArgStorage;
235   CallArgList *RtlArgs = nullptr;
236   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
237     if (OCE->isAssignmentOp()) {
238       RtlArgs = &RtlArgStorage;
239       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
240                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
241                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
242     }
243   }
244 
245   LValue This;
246   if (IsArrow) {
247     LValueBaseInfo BaseInfo;
248     TBAAAccessInfo TBAAInfo;
249     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
250     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
251   } else {
252     This = EmitLValue(Base);
253   }
254 
255 
256   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
257     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
258     if (isa<CXXConstructorDecl>(MD) &&
259         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
260       return RValue::get(nullptr);
261 
262     if (!MD->getParent()->mayInsertExtraPadding()) {
263       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
264         // We don't like to generate the trivial copy/move assignment operator
265         // when it isn't necessary; just produce the proper effect here.
266         LValue RHS = isa<CXXOperatorCallExpr>(CE)
267                          ? MakeNaturalAlignAddrLValue(
268                                (*RtlArgs)[0].getRValue(*this).getScalarVal(),
269                                (*(CE->arg_begin() + 1))->getType())
270                          : EmitLValue(*CE->arg_begin());
271         EmitAggregateAssign(This, RHS, CE->getType());
272         return RValue::get(This.getPointer());
273       }
274 
275       if (isa<CXXConstructorDecl>(MD) &&
276           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
277         // Trivial move and copy ctor are the same.
278         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
279         const Expr *Arg = *CE->arg_begin();
280         LValue RHS = EmitLValue(Arg);
281         LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
282         // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
283         // constructing a new complete object of type Ctor.
284         EmitAggregateCopy(Dest, RHS, Arg->getType(),
285                           AggValueSlot::DoesNotOverlap);
286         return RValue::get(This.getPointer());
287       }
288       llvm_unreachable("unknown trivial member function");
289     }
290   }
291 
292   // Compute the function type we're calling.
293   const CXXMethodDecl *CalleeDecl =
294       DevirtualizedMethod ? DevirtualizedMethod : MD;
295   const CGFunctionInfo *FInfo = nullptr;
296   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
297     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
298         Dtor, StructorType::Complete);
299   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
300     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
301         Ctor, StructorType::Complete);
302   else
303     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
304 
305   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
306 
307   // C++11 [class.mfct.non-static]p2:
308   //   If a non-static member function of a class X is called for an object that
309   //   is not of type X, or of a type derived from X, the behavior is undefined.
310   SourceLocation CallLoc;
311   ASTContext &C = getContext();
312   if (CE)
313     CallLoc = CE->getExprLoc();
314 
315   SanitizerSet SkippedChecks;
316   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
317     auto *IOA = CMCE->getImplicitObjectArgument();
318     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
319     if (IsImplicitObjectCXXThis)
320       SkippedChecks.set(SanitizerKind::Alignment, true);
321     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
322       SkippedChecks.set(SanitizerKind::Null, true);
323   }
324   EmitTypeCheck(
325       isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
326                                           : CodeGenFunction::TCK_MemberCall,
327       CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
328       /*Alignment=*/CharUnits::Zero(), SkippedChecks);
329 
330   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
331   // 'CalleeDecl' instead.
332 
333   // C++ [class.virtual]p12:
334   //   Explicit qualification with the scope operator (5.1) suppresses the
335   //   virtual call mechanism.
336   //
337   // We also don't emit a virtual call if the base expression has a record type
338   // because then we know what the type is.
339   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
340 
341   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
342     assert(CE->arg_begin() == CE->arg_end() &&
343            "Destructor shouldn't have explicit parameters");
344     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
345     if (UseVirtualCall) {
346       CGM.getCXXABI().EmitVirtualDestructorCall(
347           *this, Dtor, Dtor_Complete, This.getAddress(),
348           cast<CXXMemberCallExpr>(CE));
349     } else {
350       CGCallee Callee;
351       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
352         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
353       else if (!DevirtualizedMethod)
354         Callee = CGCallee::forDirect(
355             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
356             GlobalDecl(Dtor, Dtor_Complete));
357       else {
358         const CXXDestructorDecl *DDtor =
359           cast<CXXDestructorDecl>(DevirtualizedMethod);
360         Callee = CGCallee::forDirect(
361             CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
362             GlobalDecl(DDtor, Dtor_Complete));
363       }
364       EmitCXXMemberOrOperatorCall(
365           CalleeDecl, Callee, ReturnValue, This.getPointer(),
366           /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
367     }
368     return RValue::get(nullptr);
369   }
370 
371   CGCallee Callee;
372   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
373     Callee = CGCallee::forDirect(
374         CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
375         GlobalDecl(Ctor, Ctor_Complete));
376   } else if (UseVirtualCall) {
377     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378   } else {
379     if (SanOpts.has(SanitizerKind::CFINVCall) &&
380         MD->getParent()->isDynamicClass()) {
381       llvm::Value *VTable;
382       const CXXRecordDecl *RD;
383       std::tie(VTable, RD) =
384           CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385                                         MD->getParent());
386       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
387     }
388 
389     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391     else if (!DevirtualizedMethod)
392       Callee =
393           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
394     else {
395       Callee =
396           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
397                               GlobalDecl(DevirtualizedMethod));
398     }
399   }
400 
401   if (MD->isVirtual()) {
402     Address NewThisAddr =
403         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
404             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
405     This.setAddress(NewThisAddr);
406   }
407 
408   return EmitCXXMemberOrOperatorCall(
409       CalleeDecl, Callee, ReturnValue, This.getPointer(),
410       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
411 }
412 
413 RValue
414 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
415                                               ReturnValueSlot ReturnValue) {
416   const BinaryOperator *BO =
417       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
418   const Expr *BaseExpr = BO->getLHS();
419   const Expr *MemFnExpr = BO->getRHS();
420 
421   const MemberPointerType *MPT =
422     MemFnExpr->getType()->castAs<MemberPointerType>();
423 
424   const FunctionProtoType *FPT =
425     MPT->getPointeeType()->castAs<FunctionProtoType>();
426   const CXXRecordDecl *RD =
427     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
428 
429   // Emit the 'this' pointer.
430   Address This = Address::invalid();
431   if (BO->getOpcode() == BO_PtrMemI)
432     This = EmitPointerWithAlignment(BaseExpr);
433   else
434     This = EmitLValue(BaseExpr).getAddress();
435 
436   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
437                 QualType(MPT->getClass(), 0));
438 
439   // Get the member function pointer.
440   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
441 
442   // Ask the ABI to load the callee.  Note that This is modified.
443   llvm::Value *ThisPtrForCall = nullptr;
444   CGCallee Callee =
445     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
446                                              ThisPtrForCall, MemFnPtr, MPT);
447 
448   CallArgList Args;
449 
450   QualType ThisType =
451     getContext().getPointerType(getContext().getTagDeclType(RD));
452 
453   // Push the this ptr.
454   Args.add(RValue::get(ThisPtrForCall), ThisType);
455 
456   RequiredArgs required =
457       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
458 
459   // And the rest of the call args
460   EmitCallArgs(Args, FPT, E->arguments());
461   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
462                                                       /*PrefixSize=*/0),
463                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
464 }
465 
466 RValue
467 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
468                                                const CXXMethodDecl *MD,
469                                                ReturnValueSlot ReturnValue) {
470   assert(MD->isInstance() &&
471          "Trying to emit a member call expr on a static method!");
472   return EmitCXXMemberOrOperatorMemberCallExpr(
473       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
474       /*IsArrow=*/false, E->getArg(0));
475 }
476 
477 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
478                                                ReturnValueSlot ReturnValue) {
479   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
480 }
481 
482 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
483                                             Address DestPtr,
484                                             const CXXRecordDecl *Base) {
485   if (Base->isEmpty())
486     return;
487 
488   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
489 
490   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
491   CharUnits NVSize = Layout.getNonVirtualSize();
492 
493   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
494   // present, they are initialized by the most derived class before calling the
495   // constructor.
496   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
497   Stores.emplace_back(CharUnits::Zero(), NVSize);
498 
499   // Each store is split by the existence of a vbptr.
500   CharUnits VBPtrWidth = CGF.getPointerSize();
501   std::vector<CharUnits> VBPtrOffsets =
502       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
503   for (CharUnits VBPtrOffset : VBPtrOffsets) {
504     // Stop before we hit any virtual base pointers located in virtual bases.
505     if (VBPtrOffset >= NVSize)
506       break;
507     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
508     CharUnits LastStoreOffset = LastStore.first;
509     CharUnits LastStoreSize = LastStore.second;
510 
511     CharUnits SplitBeforeOffset = LastStoreOffset;
512     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
513     assert(!SplitBeforeSize.isNegative() && "negative store size!");
514     if (!SplitBeforeSize.isZero())
515       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
516 
517     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
518     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
519     assert(!SplitAfterSize.isNegative() && "negative store size!");
520     if (!SplitAfterSize.isZero())
521       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
522   }
523 
524   // If the type contains a pointer to data member we can't memset it to zero.
525   // Instead, create a null constant and copy it to the destination.
526   // TODO: there are other patterns besides zero that we can usefully memset,
527   // like -1, which happens to be the pattern used by member-pointers.
528   // TODO: isZeroInitializable can be over-conservative in the case where a
529   // virtual base contains a member pointer.
530   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
531   if (!NullConstantForBase->isNullValue()) {
532     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
533         CGF.CGM.getModule(), NullConstantForBase->getType(),
534         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
535         NullConstantForBase, Twine());
536 
537     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
538                                DestPtr.getAlignment());
539     NullVariable->setAlignment(Align.getQuantity());
540 
541     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
542 
543     // Get and call the appropriate llvm.memcpy overload.
544     for (std::pair<CharUnits, CharUnits> Store : Stores) {
545       CharUnits StoreOffset = Store.first;
546       CharUnits StoreSize = Store.second;
547       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
548       CGF.Builder.CreateMemCpy(
549           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
550           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
551           StoreSizeVal);
552     }
553 
554   // Otherwise, just memset the whole thing to zero.  This is legal
555   // because in LLVM, all default initializers (other than the ones we just
556   // handled above) are guaranteed to have a bit pattern of all zeros.
557   } else {
558     for (std::pair<CharUnits, CharUnits> Store : Stores) {
559       CharUnits StoreOffset = Store.first;
560       CharUnits StoreSize = Store.second;
561       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
562       CGF.Builder.CreateMemSet(
563           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
564           CGF.Builder.getInt8(0), StoreSizeVal);
565     }
566   }
567 }
568 
569 void
570 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
571                                       AggValueSlot Dest) {
572   assert(!Dest.isIgnored() && "Must have a destination!");
573   const CXXConstructorDecl *CD = E->getConstructor();
574 
575   // If we require zero initialization before (or instead of) calling the
576   // constructor, as can be the case with a non-user-provided default
577   // constructor, emit the zero initialization now, unless destination is
578   // already zeroed.
579   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
580     switch (E->getConstructionKind()) {
581     case CXXConstructExpr::CK_Delegating:
582     case CXXConstructExpr::CK_Complete:
583       EmitNullInitialization(Dest.getAddress(), E->getType());
584       break;
585     case CXXConstructExpr::CK_VirtualBase:
586     case CXXConstructExpr::CK_NonVirtualBase:
587       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
588                                       CD->getParent());
589       break;
590     }
591   }
592 
593   // If this is a call to a trivial default constructor, do nothing.
594   if (CD->isTrivial() && CD->isDefaultConstructor())
595     return;
596 
597   // Elide the constructor if we're constructing from a temporary.
598   // The temporary check is required because Sema sets this on NRVO
599   // returns.
600   if (getLangOpts().ElideConstructors && E->isElidable()) {
601     assert(getContext().hasSameUnqualifiedType(E->getType(),
602                                                E->getArg(0)->getType()));
603     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
604       EmitAggExpr(E->getArg(0), Dest);
605       return;
606     }
607   }
608 
609   if (const ArrayType *arrayType
610         = getContext().getAsArrayType(E->getType())) {
611     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
612                                Dest.isSanitizerChecked());
613   } else {
614     CXXCtorType Type = Ctor_Complete;
615     bool ForVirtualBase = false;
616     bool Delegating = false;
617 
618     switch (E->getConstructionKind()) {
619      case CXXConstructExpr::CK_Delegating:
620       // We should be emitting a constructor; GlobalDecl will assert this
621       Type = CurGD.getCtorType();
622       Delegating = true;
623       break;
624 
625      case CXXConstructExpr::CK_Complete:
626       Type = Ctor_Complete;
627       break;
628 
629      case CXXConstructExpr::CK_VirtualBase:
630       ForVirtualBase = true;
631       LLVM_FALLTHROUGH;
632 
633      case CXXConstructExpr::CK_NonVirtualBase:
634       Type = Ctor_Base;
635     }
636 
637     // Call the constructor.
638     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
639                            Dest.getAddress(), E, Dest.mayOverlap(),
640                            Dest.isSanitizerChecked());
641   }
642 }
643 
644 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
645                                                  const Expr *Exp) {
646   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
647     Exp = E->getSubExpr();
648   assert(isa<CXXConstructExpr>(Exp) &&
649          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
650   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
651   const CXXConstructorDecl *CD = E->getConstructor();
652   RunCleanupsScope Scope(*this);
653 
654   // If we require zero initialization before (or instead of) calling the
655   // constructor, as can be the case with a non-user-provided default
656   // constructor, emit the zero initialization now.
657   // FIXME. Do I still need this for a copy ctor synthesis?
658   if (E->requiresZeroInitialization())
659     EmitNullInitialization(Dest, E->getType());
660 
661   assert(!getContext().getAsConstantArrayType(E->getType())
662          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
663   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
664 }
665 
666 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
667                                         const CXXNewExpr *E) {
668   if (!E->isArray())
669     return CharUnits::Zero();
670 
671   // No cookie is required if the operator new[] being used is the
672   // reserved placement operator new[].
673   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
674     return CharUnits::Zero();
675 
676   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
677 }
678 
679 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
680                                         const CXXNewExpr *e,
681                                         unsigned minElements,
682                                         llvm::Value *&numElements,
683                                         llvm::Value *&sizeWithoutCookie) {
684   QualType type = e->getAllocatedType();
685 
686   if (!e->isArray()) {
687     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
688     sizeWithoutCookie
689       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
690     return sizeWithoutCookie;
691   }
692 
693   // The width of size_t.
694   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
695 
696   // Figure out the cookie size.
697   llvm::APInt cookieSize(sizeWidth,
698                          CalculateCookiePadding(CGF, e).getQuantity());
699 
700   // Emit the array size expression.
701   // We multiply the size of all dimensions for NumElements.
702   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
703   numElements =
704     ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
705   if (!numElements)
706     numElements = CGF.EmitScalarExpr(e->getArraySize());
707   assert(isa<llvm::IntegerType>(numElements->getType()));
708 
709   // The number of elements can be have an arbitrary integer type;
710   // essentially, we need to multiply it by a constant factor, add a
711   // cookie size, and verify that the result is representable as a
712   // size_t.  That's just a gloss, though, and it's wrong in one
713   // important way: if the count is negative, it's an error even if
714   // the cookie size would bring the total size >= 0.
715   bool isSigned
716     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
717   llvm::IntegerType *numElementsType
718     = cast<llvm::IntegerType>(numElements->getType());
719   unsigned numElementsWidth = numElementsType->getBitWidth();
720 
721   // Compute the constant factor.
722   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
723   while (const ConstantArrayType *CAT
724              = CGF.getContext().getAsConstantArrayType(type)) {
725     type = CAT->getElementType();
726     arraySizeMultiplier *= CAT->getSize();
727   }
728 
729   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
730   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
731   typeSizeMultiplier *= arraySizeMultiplier;
732 
733   // This will be a size_t.
734   llvm::Value *size;
735 
736   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
737   // Don't bloat the -O0 code.
738   if (llvm::ConstantInt *numElementsC =
739         dyn_cast<llvm::ConstantInt>(numElements)) {
740     const llvm::APInt &count = numElementsC->getValue();
741 
742     bool hasAnyOverflow = false;
743 
744     // If 'count' was a negative number, it's an overflow.
745     if (isSigned && count.isNegative())
746       hasAnyOverflow = true;
747 
748     // We want to do all this arithmetic in size_t.  If numElements is
749     // wider than that, check whether it's already too big, and if so,
750     // overflow.
751     else if (numElementsWidth > sizeWidth &&
752              numElementsWidth - sizeWidth > count.countLeadingZeros())
753       hasAnyOverflow = true;
754 
755     // Okay, compute a count at the right width.
756     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
757 
758     // If there is a brace-initializer, we cannot allocate fewer elements than
759     // there are initializers. If we do, that's treated like an overflow.
760     if (adjustedCount.ult(minElements))
761       hasAnyOverflow = true;
762 
763     // Scale numElements by that.  This might overflow, but we don't
764     // care because it only overflows if allocationSize does, too, and
765     // if that overflows then we shouldn't use this.
766     numElements = llvm::ConstantInt::get(CGF.SizeTy,
767                                          adjustedCount * arraySizeMultiplier);
768 
769     // Compute the size before cookie, and track whether it overflowed.
770     bool overflow;
771     llvm::APInt allocationSize
772       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
773     hasAnyOverflow |= overflow;
774 
775     // Add in the cookie, and check whether it's overflowed.
776     if (cookieSize != 0) {
777       // Save the current size without a cookie.  This shouldn't be
778       // used if there was overflow.
779       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
780 
781       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
782       hasAnyOverflow |= overflow;
783     }
784 
785     // On overflow, produce a -1 so operator new will fail.
786     if (hasAnyOverflow) {
787       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
788     } else {
789       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
790     }
791 
792   // Otherwise, we might need to use the overflow intrinsics.
793   } else {
794     // There are up to five conditions we need to test for:
795     // 1) if isSigned, we need to check whether numElements is negative;
796     // 2) if numElementsWidth > sizeWidth, we need to check whether
797     //   numElements is larger than something representable in size_t;
798     // 3) if minElements > 0, we need to check whether numElements is smaller
799     //    than that.
800     // 4) we need to compute
801     //      sizeWithoutCookie := numElements * typeSizeMultiplier
802     //    and check whether it overflows; and
803     // 5) if we need a cookie, we need to compute
804     //      size := sizeWithoutCookie + cookieSize
805     //    and check whether it overflows.
806 
807     llvm::Value *hasOverflow = nullptr;
808 
809     // If numElementsWidth > sizeWidth, then one way or another, we're
810     // going to have to do a comparison for (2), and this happens to
811     // take care of (1), too.
812     if (numElementsWidth > sizeWidth) {
813       llvm::APInt threshold(numElementsWidth, 1);
814       threshold <<= sizeWidth;
815 
816       llvm::Value *thresholdV
817         = llvm::ConstantInt::get(numElementsType, threshold);
818 
819       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
820       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
821 
822     // Otherwise, if we're signed, we want to sext up to size_t.
823     } else if (isSigned) {
824       if (numElementsWidth < sizeWidth)
825         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
826 
827       // If there's a non-1 type size multiplier, then we can do the
828       // signedness check at the same time as we do the multiply
829       // because a negative number times anything will cause an
830       // unsigned overflow.  Otherwise, we have to do it here. But at least
831       // in this case, we can subsume the >= minElements check.
832       if (typeSizeMultiplier == 1)
833         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
834                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
835 
836     // Otherwise, zext up to size_t if necessary.
837     } else if (numElementsWidth < sizeWidth) {
838       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
839     }
840 
841     assert(numElements->getType() == CGF.SizeTy);
842 
843     if (minElements) {
844       // Don't allow allocation of fewer elements than we have initializers.
845       if (!hasOverflow) {
846         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
847                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
848       } else if (numElementsWidth > sizeWidth) {
849         // The other existing overflow subsumes this check.
850         // We do an unsigned comparison, since any signed value < -1 is
851         // taken care of either above or below.
852         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
853                           CGF.Builder.CreateICmpULT(numElements,
854                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
855       }
856     }
857 
858     size = numElements;
859 
860     // Multiply by the type size if necessary.  This multiplier
861     // includes all the factors for nested arrays.
862     //
863     // This step also causes numElements to be scaled up by the
864     // nested-array factor if necessary.  Overflow on this computation
865     // can be ignored because the result shouldn't be used if
866     // allocation fails.
867     if (typeSizeMultiplier != 1) {
868       llvm::Value *umul_with_overflow
869         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
870 
871       llvm::Value *tsmV =
872         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
873       llvm::Value *result =
874           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
875 
876       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
877       if (hasOverflow)
878         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
879       else
880         hasOverflow = overflowed;
881 
882       size = CGF.Builder.CreateExtractValue(result, 0);
883 
884       // Also scale up numElements by the array size multiplier.
885       if (arraySizeMultiplier != 1) {
886         // If the base element type size is 1, then we can re-use the
887         // multiply we just did.
888         if (typeSize.isOne()) {
889           assert(arraySizeMultiplier == typeSizeMultiplier);
890           numElements = size;
891 
892         // Otherwise we need a separate multiply.
893         } else {
894           llvm::Value *asmV =
895             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
896           numElements = CGF.Builder.CreateMul(numElements, asmV);
897         }
898       }
899     } else {
900       // numElements doesn't need to be scaled.
901       assert(arraySizeMultiplier == 1);
902     }
903 
904     // Add in the cookie size if necessary.
905     if (cookieSize != 0) {
906       sizeWithoutCookie = size;
907 
908       llvm::Value *uadd_with_overflow
909         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
910 
911       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
912       llvm::Value *result =
913           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
914 
915       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
916       if (hasOverflow)
917         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
918       else
919         hasOverflow = overflowed;
920 
921       size = CGF.Builder.CreateExtractValue(result, 0);
922     }
923 
924     // If we had any possibility of dynamic overflow, make a select to
925     // overwrite 'size' with an all-ones value, which should cause
926     // operator new to throw.
927     if (hasOverflow)
928       size = CGF.Builder.CreateSelect(hasOverflow,
929                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
930                                       size);
931   }
932 
933   if (cookieSize == 0)
934     sizeWithoutCookie = size;
935   else
936     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
937 
938   return size;
939 }
940 
941 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
942                                     QualType AllocType, Address NewPtr,
943                                     AggValueSlot::Overlap_t MayOverlap) {
944   // FIXME: Refactor with EmitExprAsInit.
945   switch (CGF.getEvaluationKind(AllocType)) {
946   case TEK_Scalar:
947     CGF.EmitScalarInit(Init, nullptr,
948                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
949     return;
950   case TEK_Complex:
951     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
952                                   /*isInit*/ true);
953     return;
954   case TEK_Aggregate: {
955     AggValueSlot Slot
956       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
957                               AggValueSlot::IsDestructed,
958                               AggValueSlot::DoesNotNeedGCBarriers,
959                               AggValueSlot::IsNotAliased,
960                               MayOverlap, AggValueSlot::IsNotZeroed,
961                               AggValueSlot::IsSanitizerChecked);
962     CGF.EmitAggExpr(Init, Slot);
963     return;
964   }
965   }
966   llvm_unreachable("bad evaluation kind");
967 }
968 
969 void CodeGenFunction::EmitNewArrayInitializer(
970     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
971     Address BeginPtr, llvm::Value *NumElements,
972     llvm::Value *AllocSizeWithoutCookie) {
973   // If we have a type with trivial initialization and no initializer,
974   // there's nothing to do.
975   if (!E->hasInitializer())
976     return;
977 
978   Address CurPtr = BeginPtr;
979 
980   unsigned InitListElements = 0;
981 
982   const Expr *Init = E->getInitializer();
983   Address EndOfInit = Address::invalid();
984   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
985   EHScopeStack::stable_iterator Cleanup;
986   llvm::Instruction *CleanupDominator = nullptr;
987 
988   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
989   CharUnits ElementAlign =
990     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
991 
992   // Attempt to perform zero-initialization using memset.
993   auto TryMemsetInitialization = [&]() -> bool {
994     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
995     // we can initialize with a memset to -1.
996     if (!CGM.getTypes().isZeroInitializable(ElementType))
997       return false;
998 
999     // Optimization: since zero initialization will just set the memory
1000     // to all zeroes, generate a single memset to do it in one shot.
1001 
1002     // Subtract out the size of any elements we've already initialized.
1003     auto *RemainingSize = AllocSizeWithoutCookie;
1004     if (InitListElements) {
1005       // We know this can't overflow; we check this when doing the allocation.
1006       auto *InitializedSize = llvm::ConstantInt::get(
1007           RemainingSize->getType(),
1008           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1009               InitListElements);
1010       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1011     }
1012 
1013     // Create the memset.
1014     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1015     return true;
1016   };
1017 
1018   // If the initializer is an initializer list, first do the explicit elements.
1019   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1020     // Initializing from a (braced) string literal is a special case; the init
1021     // list element does not initialize a (single) array element.
1022     if (ILE->isStringLiteralInit()) {
1023       // Initialize the initial portion of length equal to that of the string
1024       // literal. The allocation must be for at least this much; we emitted a
1025       // check for that earlier.
1026       AggValueSlot Slot =
1027           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1028                                 AggValueSlot::IsDestructed,
1029                                 AggValueSlot::DoesNotNeedGCBarriers,
1030                                 AggValueSlot::IsNotAliased,
1031                                 AggValueSlot::DoesNotOverlap,
1032                                 AggValueSlot::IsNotZeroed,
1033                                 AggValueSlot::IsSanitizerChecked);
1034       EmitAggExpr(ILE->getInit(0), Slot);
1035 
1036       // Move past these elements.
1037       InitListElements =
1038           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1039               ->getSize().getZExtValue();
1040       CurPtr =
1041           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1042                                             Builder.getSize(InitListElements),
1043                                             "string.init.end"),
1044                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1045                                                           ElementSize));
1046 
1047       // Zero out the rest, if any remain.
1048       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1049       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1050         bool OK = TryMemsetInitialization();
1051         (void)OK;
1052         assert(OK && "couldn't memset character type?");
1053       }
1054       return;
1055     }
1056 
1057     InitListElements = ILE->getNumInits();
1058 
1059     // If this is a multi-dimensional array new, we will initialize multiple
1060     // elements with each init list element.
1061     QualType AllocType = E->getAllocatedType();
1062     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1063             AllocType->getAsArrayTypeUnsafe())) {
1064       ElementTy = ConvertTypeForMem(AllocType);
1065       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1066       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1067     }
1068 
1069     // Enter a partial-destruction Cleanup if necessary.
1070     if (needsEHCleanup(DtorKind)) {
1071       // In principle we could tell the Cleanup where we are more
1072       // directly, but the control flow can get so varied here that it
1073       // would actually be quite complex.  Therefore we go through an
1074       // alloca.
1075       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1076                                    "array.init.end");
1077       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1078       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1079                                        ElementType, ElementAlign,
1080                                        getDestroyer(DtorKind));
1081       Cleanup = EHStack.stable_begin();
1082     }
1083 
1084     CharUnits StartAlign = CurPtr.getAlignment();
1085     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1086       // Tell the cleanup that it needs to destroy up to this
1087       // element.  TODO: some of these stores can be trivially
1088       // observed to be unnecessary.
1089       if (EndOfInit.isValid()) {
1090         auto FinishedPtr =
1091           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1092         Builder.CreateStore(FinishedPtr, EndOfInit);
1093       }
1094       // FIXME: If the last initializer is an incomplete initializer list for
1095       // an array, and we have an array filler, we can fold together the two
1096       // initialization loops.
1097       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1098                               ILE->getInit(i)->getType(), CurPtr,
1099                               AggValueSlot::DoesNotOverlap);
1100       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1101                                                  Builder.getSize(1),
1102                                                  "array.exp.next"),
1103                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1104     }
1105 
1106     // The remaining elements are filled with the array filler expression.
1107     Init = ILE->getArrayFiller();
1108 
1109     // Extract the initializer for the individual array elements by pulling
1110     // out the array filler from all the nested initializer lists. This avoids
1111     // generating a nested loop for the initialization.
1112     while (Init && Init->getType()->isConstantArrayType()) {
1113       auto *SubILE = dyn_cast<InitListExpr>(Init);
1114       if (!SubILE)
1115         break;
1116       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1117       Init = SubILE->getArrayFiller();
1118     }
1119 
1120     // Switch back to initializing one base element at a time.
1121     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1122   }
1123 
1124   // If all elements have already been initialized, skip any further
1125   // initialization.
1126   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1127   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1128     // If there was a Cleanup, deactivate it.
1129     if (CleanupDominator)
1130       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1131     return;
1132   }
1133 
1134   assert(Init && "have trailing elements to initialize but no initializer");
1135 
1136   // If this is a constructor call, try to optimize it out, and failing that
1137   // emit a single loop to initialize all remaining elements.
1138   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1139     CXXConstructorDecl *Ctor = CCE->getConstructor();
1140     if (Ctor->isTrivial()) {
1141       // If new expression did not specify value-initialization, then there
1142       // is no initialization.
1143       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1144         return;
1145 
1146       if (TryMemsetInitialization())
1147         return;
1148     }
1149 
1150     // Store the new Cleanup position for irregular Cleanups.
1151     //
1152     // FIXME: Share this cleanup with the constructor call emission rather than
1153     // having it create a cleanup of its own.
1154     if (EndOfInit.isValid())
1155       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1156 
1157     // Emit a constructor call loop to initialize the remaining elements.
1158     if (InitListElements)
1159       NumElements = Builder.CreateSub(
1160           NumElements,
1161           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1162     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1163                                /*NewPointerIsChecked*/true,
1164                                CCE->requiresZeroInitialization());
1165     return;
1166   }
1167 
1168   // If this is value-initialization, we can usually use memset.
1169   ImplicitValueInitExpr IVIE(ElementType);
1170   if (isa<ImplicitValueInitExpr>(Init)) {
1171     if (TryMemsetInitialization())
1172       return;
1173 
1174     // Switch to an ImplicitValueInitExpr for the element type. This handles
1175     // only one case: multidimensional array new of pointers to members. In
1176     // all other cases, we already have an initializer for the array element.
1177     Init = &IVIE;
1178   }
1179 
1180   // At this point we should have found an initializer for the individual
1181   // elements of the array.
1182   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1183          "got wrong type of element to initialize");
1184 
1185   // If we have an empty initializer list, we can usually use memset.
1186   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1187     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1188       return;
1189 
1190   // If we have a struct whose every field is value-initialized, we can
1191   // usually use memset.
1192   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1193     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1194       if (RType->getDecl()->isStruct()) {
1195         unsigned NumElements = 0;
1196         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1197           NumElements = CXXRD->getNumBases();
1198         for (auto *Field : RType->getDecl()->fields())
1199           if (!Field->isUnnamedBitfield())
1200             ++NumElements;
1201         // FIXME: Recurse into nested InitListExprs.
1202         if (ILE->getNumInits() == NumElements)
1203           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1204             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1205               --NumElements;
1206         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1207           return;
1208       }
1209     }
1210   }
1211 
1212   // Create the loop blocks.
1213   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1214   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1215   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1216 
1217   // Find the end of the array, hoisted out of the loop.
1218   llvm::Value *EndPtr =
1219     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1220 
1221   // If the number of elements isn't constant, we have to now check if there is
1222   // anything left to initialize.
1223   if (!ConstNum) {
1224     llvm::Value *IsEmpty =
1225       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1226     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1227   }
1228 
1229   // Enter the loop.
1230   EmitBlock(LoopBB);
1231 
1232   // Set up the current-element phi.
1233   llvm::PHINode *CurPtrPhi =
1234     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1235   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1236 
1237   CurPtr = Address(CurPtrPhi, ElementAlign);
1238 
1239   // Store the new Cleanup position for irregular Cleanups.
1240   if (EndOfInit.isValid())
1241     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1242 
1243   // Enter a partial-destruction Cleanup if necessary.
1244   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1245     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1246                                    ElementType, ElementAlign,
1247                                    getDestroyer(DtorKind));
1248     Cleanup = EHStack.stable_begin();
1249     CleanupDominator = Builder.CreateUnreachable();
1250   }
1251 
1252   // Emit the initializer into this element.
1253   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1254                           AggValueSlot::DoesNotOverlap);
1255 
1256   // Leave the Cleanup if we entered one.
1257   if (CleanupDominator) {
1258     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1259     CleanupDominator->eraseFromParent();
1260   }
1261 
1262   // Advance to the next element by adjusting the pointer type as necessary.
1263   llvm::Value *NextPtr =
1264     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1265                                        "array.next");
1266 
1267   // Check whether we've gotten to the end of the array and, if so,
1268   // exit the loop.
1269   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1270   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1271   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1272 
1273   EmitBlock(ContBB);
1274 }
1275 
1276 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1277                                QualType ElementType, llvm::Type *ElementTy,
1278                                Address NewPtr, llvm::Value *NumElements,
1279                                llvm::Value *AllocSizeWithoutCookie) {
1280   ApplyDebugLocation DL(CGF, E);
1281   if (E->isArray())
1282     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1283                                 AllocSizeWithoutCookie);
1284   else if (const Expr *Init = E->getInitializer())
1285     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1286                             AggValueSlot::DoesNotOverlap);
1287 }
1288 
1289 /// Emit a call to an operator new or operator delete function, as implicitly
1290 /// created by new-expressions and delete-expressions.
1291 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1292                                 const FunctionDecl *CalleeDecl,
1293                                 const FunctionProtoType *CalleeType,
1294                                 const CallArgList &Args) {
1295   llvm::Instruction *CallOrInvoke;
1296   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1297   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1298   RValue RV =
1299       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1300                        Args, CalleeType, /*chainCall=*/false),
1301                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1302 
1303   /// C++1y [expr.new]p10:
1304   ///   [In a new-expression,] an implementation is allowed to omit a call
1305   ///   to a replaceable global allocation function.
1306   ///
1307   /// We model such elidable calls with the 'builtin' attribute.
1308   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1309   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1310       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1311     // FIXME: Add addAttribute to CallSite.
1312     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1313       CI->addAttribute(llvm::AttributeList::FunctionIndex,
1314                        llvm::Attribute::Builtin);
1315     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1316       II->addAttribute(llvm::AttributeList::FunctionIndex,
1317                        llvm::Attribute::Builtin);
1318     else
1319       llvm_unreachable("unexpected kind of call instruction");
1320   }
1321 
1322   return RV;
1323 }
1324 
1325 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1326                                                  const CallExpr *TheCall,
1327                                                  bool IsDelete) {
1328   CallArgList Args;
1329   EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1330   // Find the allocation or deallocation function that we're calling.
1331   ASTContext &Ctx = getContext();
1332   DeclarationName Name = Ctx.DeclarationNames
1333       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1334 
1335   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1336     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1337       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1338         return EmitNewDeleteCall(*this, FD, Type, Args);
1339   llvm_unreachable("predeclared global operator new/delete is missing");
1340 }
1341 
1342 namespace {
1343 /// The parameters to pass to a usual operator delete.
1344 struct UsualDeleteParams {
1345   bool DestroyingDelete = false;
1346   bool Size = false;
1347   bool Alignment = false;
1348 };
1349 }
1350 
1351 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1352   UsualDeleteParams Params;
1353 
1354   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1355   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1356 
1357   // The first argument is always a void*.
1358   ++AI;
1359 
1360   // The next parameter may be a std::destroying_delete_t.
1361   if (FD->isDestroyingOperatorDelete()) {
1362     Params.DestroyingDelete = true;
1363     assert(AI != AE);
1364     ++AI;
1365   }
1366 
1367   // Figure out what other parameters we should be implicitly passing.
1368   if (AI != AE && (*AI)->isIntegerType()) {
1369     Params.Size = true;
1370     ++AI;
1371   }
1372 
1373   if (AI != AE && (*AI)->isAlignValT()) {
1374     Params.Alignment = true;
1375     ++AI;
1376   }
1377 
1378   assert(AI == AE && "unexpected usual deallocation function parameter");
1379   return Params;
1380 }
1381 
1382 namespace {
1383   /// A cleanup to call the given 'operator delete' function upon abnormal
1384   /// exit from a new expression. Templated on a traits type that deals with
1385   /// ensuring that the arguments dominate the cleanup if necessary.
1386   template<typename Traits>
1387   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1388     /// Type used to hold llvm::Value*s.
1389     typedef typename Traits::ValueTy ValueTy;
1390     /// Type used to hold RValues.
1391     typedef typename Traits::RValueTy RValueTy;
1392     struct PlacementArg {
1393       RValueTy ArgValue;
1394       QualType ArgType;
1395     };
1396 
1397     unsigned NumPlacementArgs : 31;
1398     unsigned PassAlignmentToPlacementDelete : 1;
1399     const FunctionDecl *OperatorDelete;
1400     ValueTy Ptr;
1401     ValueTy AllocSize;
1402     CharUnits AllocAlign;
1403 
1404     PlacementArg *getPlacementArgs() {
1405       return reinterpret_cast<PlacementArg *>(this + 1);
1406     }
1407 
1408   public:
1409     static size_t getExtraSize(size_t NumPlacementArgs) {
1410       return NumPlacementArgs * sizeof(PlacementArg);
1411     }
1412 
1413     CallDeleteDuringNew(size_t NumPlacementArgs,
1414                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1415                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1416                         CharUnits AllocAlign)
1417       : NumPlacementArgs(NumPlacementArgs),
1418         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1419         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1420         AllocAlign(AllocAlign) {}
1421 
1422     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1423       assert(I < NumPlacementArgs && "index out of range");
1424       getPlacementArgs()[I] = {Arg, Type};
1425     }
1426 
1427     void Emit(CodeGenFunction &CGF, Flags flags) override {
1428       const FunctionProtoType *FPT =
1429           OperatorDelete->getType()->getAs<FunctionProtoType>();
1430       CallArgList DeleteArgs;
1431 
1432       // The first argument is always a void* (or C* for a destroying operator
1433       // delete for class type C).
1434       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1435 
1436       // Figure out what other parameters we should be implicitly passing.
1437       UsualDeleteParams Params;
1438       if (NumPlacementArgs) {
1439         // A placement deallocation function is implicitly passed an alignment
1440         // if the placement allocation function was, but is never passed a size.
1441         Params.Alignment = PassAlignmentToPlacementDelete;
1442       } else {
1443         // For a non-placement new-expression, 'operator delete' can take a
1444         // size and/or an alignment if it has the right parameters.
1445         Params = getUsualDeleteParams(OperatorDelete);
1446       }
1447 
1448       assert(!Params.DestroyingDelete &&
1449              "should not call destroying delete in a new-expression");
1450 
1451       // The second argument can be a std::size_t (for non-placement delete).
1452       if (Params.Size)
1453         DeleteArgs.add(Traits::get(CGF, AllocSize),
1454                        CGF.getContext().getSizeType());
1455 
1456       // The next (second or third) argument can be a std::align_val_t, which
1457       // is an enum whose underlying type is std::size_t.
1458       // FIXME: Use the right type as the parameter type. Note that in a call
1459       // to operator delete(size_t, ...), we may not have it available.
1460       if (Params.Alignment)
1461         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1462                            CGF.SizeTy, AllocAlign.getQuantity())),
1463                        CGF.getContext().getSizeType());
1464 
1465       // Pass the rest of the arguments, which must match exactly.
1466       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1467         auto Arg = getPlacementArgs()[I];
1468         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1469       }
1470 
1471       // Call 'operator delete'.
1472       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1473     }
1474   };
1475 }
1476 
1477 /// Enter a cleanup to call 'operator delete' if the initializer in a
1478 /// new-expression throws.
1479 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1480                                   const CXXNewExpr *E,
1481                                   Address NewPtr,
1482                                   llvm::Value *AllocSize,
1483                                   CharUnits AllocAlign,
1484                                   const CallArgList &NewArgs) {
1485   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1486 
1487   // If we're not inside a conditional branch, then the cleanup will
1488   // dominate and we can do the easier (and more efficient) thing.
1489   if (!CGF.isInConditionalBranch()) {
1490     struct DirectCleanupTraits {
1491       typedef llvm::Value *ValueTy;
1492       typedef RValue RValueTy;
1493       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1494       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1495     };
1496 
1497     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1498 
1499     DirectCleanup *Cleanup = CGF.EHStack
1500       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1501                                            E->getNumPlacementArgs(),
1502                                            E->getOperatorDelete(),
1503                                            NewPtr.getPointer(),
1504                                            AllocSize,
1505                                            E->passAlignment(),
1506                                            AllocAlign);
1507     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1508       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1509       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1510     }
1511 
1512     return;
1513   }
1514 
1515   // Otherwise, we need to save all this stuff.
1516   DominatingValue<RValue>::saved_type SavedNewPtr =
1517     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1518   DominatingValue<RValue>::saved_type SavedAllocSize =
1519     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1520 
1521   struct ConditionalCleanupTraits {
1522     typedef DominatingValue<RValue>::saved_type ValueTy;
1523     typedef DominatingValue<RValue>::saved_type RValueTy;
1524     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1525       return V.restore(CGF);
1526     }
1527   };
1528   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1529 
1530   ConditionalCleanup *Cleanup = CGF.EHStack
1531     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1532                                               E->getNumPlacementArgs(),
1533                                               E->getOperatorDelete(),
1534                                               SavedNewPtr,
1535                                               SavedAllocSize,
1536                                               E->passAlignment(),
1537                                               AllocAlign);
1538   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1539     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1540     Cleanup->setPlacementArg(
1541         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1542   }
1543 
1544   CGF.initFullExprCleanup();
1545 }
1546 
1547 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1548   // The element type being allocated.
1549   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1550 
1551   // 1. Build a call to the allocation function.
1552   FunctionDecl *allocator = E->getOperatorNew();
1553 
1554   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1555   unsigned minElements = 0;
1556   if (E->isArray() && E->hasInitializer()) {
1557     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1558     if (ILE && ILE->isStringLiteralInit())
1559       minElements =
1560           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1561               ->getSize().getZExtValue();
1562     else if (ILE)
1563       minElements = ILE->getNumInits();
1564   }
1565 
1566   llvm::Value *numElements = nullptr;
1567   llvm::Value *allocSizeWithoutCookie = nullptr;
1568   llvm::Value *allocSize =
1569     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1570                         allocSizeWithoutCookie);
1571   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1572 
1573   // Emit the allocation call.  If the allocator is a global placement
1574   // operator, just "inline" it directly.
1575   Address allocation = Address::invalid();
1576   CallArgList allocatorArgs;
1577   if (allocator->isReservedGlobalPlacementOperator()) {
1578     assert(E->getNumPlacementArgs() == 1);
1579     const Expr *arg = *E->placement_arguments().begin();
1580 
1581     LValueBaseInfo BaseInfo;
1582     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1583 
1584     // The pointer expression will, in many cases, be an opaque void*.
1585     // In these cases, discard the computed alignment and use the
1586     // formal alignment of the allocated type.
1587     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1588       allocation = Address(allocation.getPointer(), allocAlign);
1589 
1590     // Set up allocatorArgs for the call to operator delete if it's not
1591     // the reserved global operator.
1592     if (E->getOperatorDelete() &&
1593         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1594       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1595       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1596     }
1597 
1598   } else {
1599     const FunctionProtoType *allocatorType =
1600       allocator->getType()->castAs<FunctionProtoType>();
1601     unsigned ParamsToSkip = 0;
1602 
1603     // The allocation size is the first argument.
1604     QualType sizeType = getContext().getSizeType();
1605     allocatorArgs.add(RValue::get(allocSize), sizeType);
1606     ++ParamsToSkip;
1607 
1608     if (allocSize != allocSizeWithoutCookie) {
1609       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1610       allocAlign = std::max(allocAlign, cookieAlign);
1611     }
1612 
1613     // The allocation alignment may be passed as the second argument.
1614     if (E->passAlignment()) {
1615       QualType AlignValT = sizeType;
1616       if (allocatorType->getNumParams() > 1) {
1617         AlignValT = allocatorType->getParamType(1);
1618         assert(getContext().hasSameUnqualifiedType(
1619                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1620                    sizeType) &&
1621                "wrong type for alignment parameter");
1622         ++ParamsToSkip;
1623       } else {
1624         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1625         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1626       }
1627       allocatorArgs.add(
1628           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1629           AlignValT);
1630     }
1631 
1632     // FIXME: Why do we not pass a CalleeDecl here?
1633     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1634                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1635 
1636     RValue RV =
1637       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1638 
1639     // If this was a call to a global replaceable allocation function that does
1640     // not take an alignment argument, the allocator is known to produce
1641     // storage that's suitably aligned for any object that fits, up to a known
1642     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1643     CharUnits allocationAlign = allocAlign;
1644     if (!E->passAlignment() &&
1645         allocator->isReplaceableGlobalAllocationFunction()) {
1646       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1647           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1648       allocationAlign = std::max(
1649           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1650     }
1651 
1652     allocation = Address(RV.getScalarVal(), allocationAlign);
1653   }
1654 
1655   // Emit a null check on the allocation result if the allocation
1656   // function is allowed to return null (because it has a non-throwing
1657   // exception spec or is the reserved placement new) and we have an
1658   // interesting initializer will be running sanitizers on the initialization.
1659   bool nullCheck = E->shouldNullCheckAllocation() &&
1660                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1661                     sanitizePerformTypeCheck());
1662 
1663   llvm::BasicBlock *nullCheckBB = nullptr;
1664   llvm::BasicBlock *contBB = nullptr;
1665 
1666   // The null-check means that the initializer is conditionally
1667   // evaluated.
1668   ConditionalEvaluation conditional(*this);
1669 
1670   if (nullCheck) {
1671     conditional.begin(*this);
1672 
1673     nullCheckBB = Builder.GetInsertBlock();
1674     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1675     contBB = createBasicBlock("new.cont");
1676 
1677     llvm::Value *isNull =
1678       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1679     Builder.CreateCondBr(isNull, contBB, notNullBB);
1680     EmitBlock(notNullBB);
1681   }
1682 
1683   // If there's an operator delete, enter a cleanup to call it if an
1684   // exception is thrown.
1685   EHScopeStack::stable_iterator operatorDeleteCleanup;
1686   llvm::Instruction *cleanupDominator = nullptr;
1687   if (E->getOperatorDelete() &&
1688       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1689     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1690                           allocatorArgs);
1691     operatorDeleteCleanup = EHStack.stable_begin();
1692     cleanupDominator = Builder.CreateUnreachable();
1693   }
1694 
1695   assert((allocSize == allocSizeWithoutCookie) ==
1696          CalculateCookiePadding(*this, E).isZero());
1697   if (allocSize != allocSizeWithoutCookie) {
1698     assert(E->isArray());
1699     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1700                                                        numElements,
1701                                                        E, allocType);
1702   }
1703 
1704   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1705   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1706 
1707   // Passing pointer through launder.invariant.group to avoid propagation of
1708   // vptrs information which may be included in previous type.
1709   // To not break LTO with different optimizations levels, we do it regardless
1710   // of optimization level.
1711   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1712       allocator->isReservedGlobalPlacementOperator())
1713     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1714                      result.getAlignment());
1715 
1716   // Emit sanitizer checks for pointer value now, so that in the case of an
1717   // array it was checked only once and not at each constructor call.
1718   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1719       E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1720       result.getPointer(), allocType);
1721 
1722   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1723                      allocSizeWithoutCookie);
1724   if (E->isArray()) {
1725     // NewPtr is a pointer to the base element type.  If we're
1726     // allocating an array of arrays, we'll need to cast back to the
1727     // array pointer type.
1728     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1729     if (result.getType() != resultType)
1730       result = Builder.CreateBitCast(result, resultType);
1731   }
1732 
1733   // Deactivate the 'operator delete' cleanup if we finished
1734   // initialization.
1735   if (operatorDeleteCleanup.isValid()) {
1736     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1737     cleanupDominator->eraseFromParent();
1738   }
1739 
1740   llvm::Value *resultPtr = result.getPointer();
1741   if (nullCheck) {
1742     conditional.end(*this);
1743 
1744     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1745     EmitBlock(contBB);
1746 
1747     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1748     PHI->addIncoming(resultPtr, notNullBB);
1749     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1750                      nullCheckBB);
1751 
1752     resultPtr = PHI;
1753   }
1754 
1755   return resultPtr;
1756 }
1757 
1758 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1759                                      llvm::Value *Ptr, QualType DeleteTy,
1760                                      llvm::Value *NumElements,
1761                                      CharUnits CookieSize) {
1762   assert((!NumElements && CookieSize.isZero()) ||
1763          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1764 
1765   const FunctionProtoType *DeleteFTy =
1766     DeleteFD->getType()->getAs<FunctionProtoType>();
1767 
1768   CallArgList DeleteArgs;
1769 
1770   auto Params = getUsualDeleteParams(DeleteFD);
1771   auto ParamTypeIt = DeleteFTy->param_type_begin();
1772 
1773   // Pass the pointer itself.
1774   QualType ArgTy = *ParamTypeIt++;
1775   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1776   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1777 
1778   // Pass the std::destroying_delete tag if present.
1779   if (Params.DestroyingDelete) {
1780     QualType DDTag = *ParamTypeIt++;
1781     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1782     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1783     DeleteArgs.add(RValue::get(V), DDTag);
1784   }
1785 
1786   // Pass the size if the delete function has a size_t parameter.
1787   if (Params.Size) {
1788     QualType SizeType = *ParamTypeIt++;
1789     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1790     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1791                                                DeleteTypeSize.getQuantity());
1792 
1793     // For array new, multiply by the number of elements.
1794     if (NumElements)
1795       Size = Builder.CreateMul(Size, NumElements);
1796 
1797     // If there is a cookie, add the cookie size.
1798     if (!CookieSize.isZero())
1799       Size = Builder.CreateAdd(
1800           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1801 
1802     DeleteArgs.add(RValue::get(Size), SizeType);
1803   }
1804 
1805   // Pass the alignment if the delete function has an align_val_t parameter.
1806   if (Params.Alignment) {
1807     QualType AlignValType = *ParamTypeIt++;
1808     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1809         getContext().getTypeAlignIfKnown(DeleteTy));
1810     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1811                                                 DeleteTypeAlign.getQuantity());
1812     DeleteArgs.add(RValue::get(Align), AlignValType);
1813   }
1814 
1815   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1816          "unknown parameter to usual delete function");
1817 
1818   // Emit the call to delete.
1819   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1820 }
1821 
1822 namespace {
1823   /// Calls the given 'operator delete' on a single object.
1824   struct CallObjectDelete final : EHScopeStack::Cleanup {
1825     llvm::Value *Ptr;
1826     const FunctionDecl *OperatorDelete;
1827     QualType ElementType;
1828 
1829     CallObjectDelete(llvm::Value *Ptr,
1830                      const FunctionDecl *OperatorDelete,
1831                      QualType ElementType)
1832       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1833 
1834     void Emit(CodeGenFunction &CGF, Flags flags) override {
1835       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1836     }
1837   };
1838 }
1839 
1840 void
1841 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1842                                              llvm::Value *CompletePtr,
1843                                              QualType ElementType) {
1844   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1845                                         OperatorDelete, ElementType);
1846 }
1847 
1848 /// Emit the code for deleting a single object with a destroying operator
1849 /// delete. If the element type has a non-virtual destructor, Ptr has already
1850 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1851 /// Ptr points to an object of the static type.
1852 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1853                                        const CXXDeleteExpr *DE, Address Ptr,
1854                                        QualType ElementType) {
1855   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1856   if (Dtor && Dtor->isVirtual())
1857     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1858                                                 Dtor);
1859   else
1860     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1861 }
1862 
1863 /// Emit the code for deleting a single object.
1864 static void EmitObjectDelete(CodeGenFunction &CGF,
1865                              const CXXDeleteExpr *DE,
1866                              Address Ptr,
1867                              QualType ElementType) {
1868   // C++11 [expr.delete]p3:
1869   //   If the static type of the object to be deleted is different from its
1870   //   dynamic type, the static type shall be a base class of the dynamic type
1871   //   of the object to be deleted and the static type shall have a virtual
1872   //   destructor or the behavior is undefined.
1873   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1874                     DE->getExprLoc(), Ptr.getPointer(),
1875                     ElementType);
1876 
1877   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1878   assert(!OperatorDelete->isDestroyingOperatorDelete());
1879 
1880   // Find the destructor for the type, if applicable.  If the
1881   // destructor is virtual, we'll just emit the vcall and return.
1882   const CXXDestructorDecl *Dtor = nullptr;
1883   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1884     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1885     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1886       Dtor = RD->getDestructor();
1887 
1888       if (Dtor->isVirtual()) {
1889         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1890                                                     Dtor);
1891         return;
1892       }
1893     }
1894   }
1895 
1896   // Make sure that we call delete even if the dtor throws.
1897   // This doesn't have to a conditional cleanup because we're going
1898   // to pop it off in a second.
1899   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1900                                             Ptr.getPointer(),
1901                                             OperatorDelete, ElementType);
1902 
1903   if (Dtor)
1904     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1905                               /*ForVirtualBase=*/false,
1906                               /*Delegating=*/false,
1907                               Ptr);
1908   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1909     switch (Lifetime) {
1910     case Qualifiers::OCL_None:
1911     case Qualifiers::OCL_ExplicitNone:
1912     case Qualifiers::OCL_Autoreleasing:
1913       break;
1914 
1915     case Qualifiers::OCL_Strong:
1916       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1917       break;
1918 
1919     case Qualifiers::OCL_Weak:
1920       CGF.EmitARCDestroyWeak(Ptr);
1921       break;
1922     }
1923   }
1924 
1925   CGF.PopCleanupBlock();
1926 }
1927 
1928 namespace {
1929   /// Calls the given 'operator delete' on an array of objects.
1930   struct CallArrayDelete final : EHScopeStack::Cleanup {
1931     llvm::Value *Ptr;
1932     const FunctionDecl *OperatorDelete;
1933     llvm::Value *NumElements;
1934     QualType ElementType;
1935     CharUnits CookieSize;
1936 
1937     CallArrayDelete(llvm::Value *Ptr,
1938                     const FunctionDecl *OperatorDelete,
1939                     llvm::Value *NumElements,
1940                     QualType ElementType,
1941                     CharUnits CookieSize)
1942       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1943         ElementType(ElementType), CookieSize(CookieSize) {}
1944 
1945     void Emit(CodeGenFunction &CGF, Flags flags) override {
1946       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1947                          CookieSize);
1948     }
1949   };
1950 }
1951 
1952 /// Emit the code for deleting an array of objects.
1953 static void EmitArrayDelete(CodeGenFunction &CGF,
1954                             const CXXDeleteExpr *E,
1955                             Address deletedPtr,
1956                             QualType elementType) {
1957   llvm::Value *numElements = nullptr;
1958   llvm::Value *allocatedPtr = nullptr;
1959   CharUnits cookieSize;
1960   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1961                                       numElements, allocatedPtr, cookieSize);
1962 
1963   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1964 
1965   // Make sure that we call delete even if one of the dtors throws.
1966   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1967   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1968                                            allocatedPtr, operatorDelete,
1969                                            numElements, elementType,
1970                                            cookieSize);
1971 
1972   // Destroy the elements.
1973   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1974     assert(numElements && "no element count for a type with a destructor!");
1975 
1976     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1977     CharUnits elementAlign =
1978       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1979 
1980     llvm::Value *arrayBegin = deletedPtr.getPointer();
1981     llvm::Value *arrayEnd =
1982       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1983 
1984     // Note that it is legal to allocate a zero-length array, and we
1985     // can never fold the check away because the length should always
1986     // come from a cookie.
1987     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1988                          CGF.getDestroyer(dtorKind),
1989                          /*checkZeroLength*/ true,
1990                          CGF.needsEHCleanup(dtorKind));
1991   }
1992 
1993   // Pop the cleanup block.
1994   CGF.PopCleanupBlock();
1995 }
1996 
1997 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1998   const Expr *Arg = E->getArgument();
1999   Address Ptr = EmitPointerWithAlignment(Arg);
2000 
2001   // Null check the pointer.
2002   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2003   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2004 
2005   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2006 
2007   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2008   EmitBlock(DeleteNotNull);
2009 
2010   QualType DeleteTy = E->getDestroyedType();
2011 
2012   // A destroying operator delete overrides the entire operation of the
2013   // delete expression.
2014   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2015     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2016     EmitBlock(DeleteEnd);
2017     return;
2018   }
2019 
2020   // We might be deleting a pointer to array.  If so, GEP down to the
2021   // first non-array element.
2022   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2023   if (DeleteTy->isConstantArrayType()) {
2024     llvm::Value *Zero = Builder.getInt32(0);
2025     SmallVector<llvm::Value*,8> GEP;
2026 
2027     GEP.push_back(Zero); // point at the outermost array
2028 
2029     // For each layer of array type we're pointing at:
2030     while (const ConstantArrayType *Arr
2031              = getContext().getAsConstantArrayType(DeleteTy)) {
2032       // 1. Unpeel the array type.
2033       DeleteTy = Arr->getElementType();
2034 
2035       // 2. GEP to the first element of the array.
2036       GEP.push_back(Zero);
2037     }
2038 
2039     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2040                   Ptr.getAlignment());
2041   }
2042 
2043   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2044 
2045   if (E->isArrayForm()) {
2046     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2047   } else {
2048     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2049   }
2050 
2051   EmitBlock(DeleteEnd);
2052 }
2053 
2054 static bool isGLValueFromPointerDeref(const Expr *E) {
2055   E = E->IgnoreParens();
2056 
2057   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2058     if (!CE->getSubExpr()->isGLValue())
2059       return false;
2060     return isGLValueFromPointerDeref(CE->getSubExpr());
2061   }
2062 
2063   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2064     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2065 
2066   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2067     if (BO->getOpcode() == BO_Comma)
2068       return isGLValueFromPointerDeref(BO->getRHS());
2069 
2070   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2071     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2072            isGLValueFromPointerDeref(ACO->getFalseExpr());
2073 
2074   // C++11 [expr.sub]p1:
2075   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2076   if (isa<ArraySubscriptExpr>(E))
2077     return true;
2078 
2079   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2080     if (UO->getOpcode() == UO_Deref)
2081       return true;
2082 
2083   return false;
2084 }
2085 
2086 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2087                                          llvm::Type *StdTypeInfoPtrTy) {
2088   // Get the vtable pointer.
2089   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2090 
2091   QualType SrcRecordTy = E->getType();
2092 
2093   // C++ [class.cdtor]p4:
2094   //   If the operand of typeid refers to the object under construction or
2095   //   destruction and the static type of the operand is neither the constructor
2096   //   or destructor’s class nor one of its bases, the behavior is undefined.
2097   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2098                     ThisPtr.getPointer(), SrcRecordTy);
2099 
2100   // C++ [expr.typeid]p2:
2101   //   If the glvalue expression is obtained by applying the unary * operator to
2102   //   a pointer and the pointer is a null pointer value, the typeid expression
2103   //   throws the std::bad_typeid exception.
2104   //
2105   // However, this paragraph's intent is not clear.  We choose a very generous
2106   // interpretation which implores us to consider comma operators, conditional
2107   // operators, parentheses and other such constructs.
2108   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2109           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2110     llvm::BasicBlock *BadTypeidBlock =
2111         CGF.createBasicBlock("typeid.bad_typeid");
2112     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2113 
2114     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2115     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2116 
2117     CGF.EmitBlock(BadTypeidBlock);
2118     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2119     CGF.EmitBlock(EndBlock);
2120   }
2121 
2122   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2123                                         StdTypeInfoPtrTy);
2124 }
2125 
2126 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2127   llvm::Type *StdTypeInfoPtrTy =
2128     ConvertType(E->getType())->getPointerTo();
2129 
2130   if (E->isTypeOperand()) {
2131     llvm::Constant *TypeInfo =
2132         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2133     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2134   }
2135 
2136   // C++ [expr.typeid]p2:
2137   //   When typeid is applied to a glvalue expression whose type is a
2138   //   polymorphic class type, the result refers to a std::type_info object
2139   //   representing the type of the most derived object (that is, the dynamic
2140   //   type) to which the glvalue refers.
2141   if (E->isPotentiallyEvaluated())
2142     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2143                                 StdTypeInfoPtrTy);
2144 
2145   QualType OperandTy = E->getExprOperand()->getType();
2146   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2147                                StdTypeInfoPtrTy);
2148 }
2149 
2150 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2151                                           QualType DestTy) {
2152   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2153   if (DestTy->isPointerType())
2154     return llvm::Constant::getNullValue(DestLTy);
2155 
2156   /// C++ [expr.dynamic.cast]p9:
2157   ///   A failed cast to reference type throws std::bad_cast
2158   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2159     return nullptr;
2160 
2161   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2162   return llvm::UndefValue::get(DestLTy);
2163 }
2164 
2165 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2166                                               const CXXDynamicCastExpr *DCE) {
2167   CGM.EmitExplicitCastExprType(DCE, this);
2168   QualType DestTy = DCE->getTypeAsWritten();
2169 
2170   QualType SrcTy = DCE->getSubExpr()->getType();
2171 
2172   // C++ [expr.dynamic.cast]p7:
2173   //   If T is "pointer to cv void," then the result is a pointer to the most
2174   //   derived object pointed to by v.
2175   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2176 
2177   bool isDynamicCastToVoid;
2178   QualType SrcRecordTy;
2179   QualType DestRecordTy;
2180   if (DestPTy) {
2181     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2182     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2183     DestRecordTy = DestPTy->getPointeeType();
2184   } else {
2185     isDynamicCastToVoid = false;
2186     SrcRecordTy = SrcTy;
2187     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2188   }
2189 
2190   // C++ [class.cdtor]p5:
2191   //   If the operand of the dynamic_cast refers to the object under
2192   //   construction or destruction and the static type of the operand is not a
2193   //   pointer to or object of the constructor or destructor’s own class or one
2194   //   of its bases, the dynamic_cast results in undefined behavior.
2195   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2196                 SrcRecordTy);
2197 
2198   if (DCE->isAlwaysNull())
2199     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2200       return T;
2201 
2202   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2203 
2204   // C++ [expr.dynamic.cast]p4:
2205   //   If the value of v is a null pointer value in the pointer case, the result
2206   //   is the null pointer value of type T.
2207   bool ShouldNullCheckSrcValue =
2208       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2209                                                          SrcRecordTy);
2210 
2211   llvm::BasicBlock *CastNull = nullptr;
2212   llvm::BasicBlock *CastNotNull = nullptr;
2213   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2214 
2215   if (ShouldNullCheckSrcValue) {
2216     CastNull = createBasicBlock("dynamic_cast.null");
2217     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2218 
2219     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2220     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2221     EmitBlock(CastNotNull);
2222   }
2223 
2224   llvm::Value *Value;
2225   if (isDynamicCastToVoid) {
2226     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2227                                                   DestTy);
2228   } else {
2229     assert(DestRecordTy->isRecordType() &&
2230            "destination type must be a record type!");
2231     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2232                                                 DestTy, DestRecordTy, CastEnd);
2233     CastNotNull = Builder.GetInsertBlock();
2234   }
2235 
2236   if (ShouldNullCheckSrcValue) {
2237     EmitBranch(CastEnd);
2238 
2239     EmitBlock(CastNull);
2240     EmitBranch(CastEnd);
2241   }
2242 
2243   EmitBlock(CastEnd);
2244 
2245   if (ShouldNullCheckSrcValue) {
2246     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2247     PHI->addIncoming(Value, CastNotNull);
2248     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2249 
2250     Value = PHI;
2251   }
2252 
2253   return Value;
2254 }
2255