1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static RequiredArgs
28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
29                                   llvm::Value *This, llvm::Value *ImplicitParam,
30                                   QualType ImplicitParamTy, const CallExpr *CE,
31                                   CallArgList &Args) {
32   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
33          isa<CXXOperatorCallExpr>(CE));
34   assert(MD->isInstance() &&
35          "Trying to emit a member or operator call expr on a static method!");
36 
37   // C++11 [class.mfct.non-static]p2:
38   //   If a non-static member function of a class X is called for an object that
39   //   is not of type X, or of a type derived from X, the behavior is undefined.
40   SourceLocation CallLoc;
41   if (CE)
42     CallLoc = CE->getExprLoc();
43   CGF.EmitTypeCheck(
44       isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
45                                   : CodeGenFunction::TCK_MemberCall,
46       CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
47 
48   // Push the this ptr.
49   Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
50 
51   // If there is an implicit parameter (e.g. VTT), emit it.
52   if (ImplicitParam) {
53     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54   }
55 
56   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
58 
59   // And the rest of the call args.
60   if (CE) {
61     // Special case: skip first argument of CXXOperatorCall (it is "this").
62     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
63     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
64                      CE->getDirectCallee());
65   } else {
66     assert(
67         FPT->getNumParams() == 0 &&
68         "No CallExpr specified for function with non-zero number of arguments");
69   }
70   return required;
71 }
72 
73 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
74     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
75     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
76     const CallExpr *CE) {
77   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
78   CallArgList Args;
79   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
80       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args);
81   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
82                   Callee, ReturnValue, Args, MD);
83 }
84 
85 RValue CodeGenFunction::EmitCXXDestructorCall(
86     const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This,
87     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
88     StructorType Type) {
89   CallArgList Args;
90   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
91                                     ImplicitParamTy, CE, Args);
92   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
93                   Callee, ReturnValueSlot(), Args, DD);
94 }
95 
96 static CXXRecordDecl *getCXXRecord(const Expr *E) {
97   QualType T = E->getType();
98   if (const PointerType *PTy = T->getAs<PointerType>())
99     T = PTy->getPointeeType();
100   const RecordType *Ty = T->castAs<RecordType>();
101   return cast<CXXRecordDecl>(Ty->getDecl());
102 }
103 
104 // Note: This function also emit constructor calls to support a MSVC
105 // extensions allowing explicit constructor function call.
106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
107                                               ReturnValueSlot ReturnValue) {
108   const Expr *callee = CE->getCallee()->IgnoreParens();
109 
110   if (isa<BinaryOperator>(callee))
111     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
112 
113   const MemberExpr *ME = cast<MemberExpr>(callee);
114   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
115 
116   if (MD->isStatic()) {
117     // The method is static, emit it as we would a regular call.
118     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
119     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
120                     ReturnValue);
121   }
122 
123   bool HasQualifier = ME->hasQualifier();
124   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
125   bool IsArrow = ME->isArrow();
126   const Expr *Base = ME->getBase();
127 
128   return EmitCXXMemberOrOperatorMemberCallExpr(
129       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
130 }
131 
132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
133     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
134     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
135     const Expr *Base) {
136   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
137 
138   // Compute the object pointer.
139   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
140 
141   const CXXMethodDecl *DevirtualizedMethod = nullptr;
142   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
143     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
144     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
145     assert(DevirtualizedMethod);
146     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
147     const Expr *Inner = Base->ignoreParenBaseCasts();
148     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
149         MD->getReturnType().getCanonicalType())
150       // If the return types are not the same, this might be a case where more
151       // code needs to run to compensate for it. For example, the derived
152       // method might return a type that inherits form from the return
153       // type of MD and has a prefix.
154       // For now we just avoid devirtualizing these covariant cases.
155       DevirtualizedMethod = nullptr;
156     else if (getCXXRecord(Inner) == DevirtualizedClass)
157       // If the class of the Inner expression is where the dynamic method
158       // is defined, build the this pointer from it.
159       Base = Inner;
160     else if (getCXXRecord(Base) != DevirtualizedClass) {
161       // If the method is defined in a class that is not the best dynamic
162       // one or the one of the full expression, we would have to build
163       // a derived-to-base cast to compute the correct this pointer, but
164       // we don't have support for that yet, so do a virtual call.
165       DevirtualizedMethod = nullptr;
166     }
167   }
168 
169   Address This = Address::invalid();
170   if (IsArrow)
171     This = EmitPointerWithAlignment(Base);
172   else
173     This = EmitLValue(Base).getAddress();
174 
175 
176   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
177     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
178     if (isa<CXXConstructorDecl>(MD) &&
179         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
180       return RValue::get(nullptr);
181 
182     if (!MD->getParent()->mayInsertExtraPadding()) {
183       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
184         // We don't like to generate the trivial copy/move assignment operator
185         // when it isn't necessary; just produce the proper effect here.
186         // Special case: skip first argument of CXXOperatorCall (it is "this").
187         unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
188         Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
189         EmitAggregateAssign(This, RHS, CE->getType());
190         return RValue::get(This.getPointer());
191       }
192 
193       if (isa<CXXConstructorDecl>(MD) &&
194           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
195         // Trivial move and copy ctor are the same.
196         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
197         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
198         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
199         return RValue::get(This.getPointer());
200       }
201       llvm_unreachable("unknown trivial member function");
202     }
203   }
204 
205   // Compute the function type we're calling.
206   const CXXMethodDecl *CalleeDecl =
207       DevirtualizedMethod ? DevirtualizedMethod : MD;
208   const CGFunctionInfo *FInfo = nullptr;
209   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
210     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
211         Dtor, StructorType::Complete);
212   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
213     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
214         Ctor, StructorType::Complete);
215   else
216     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
217 
218   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
219 
220   // C++ [class.virtual]p12:
221   //   Explicit qualification with the scope operator (5.1) suppresses the
222   //   virtual call mechanism.
223   //
224   // We also don't emit a virtual call if the base expression has a record type
225   // because then we know what the type is.
226   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
227   llvm::Value *Callee;
228 
229   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
230     assert(CE->arg_begin() == CE->arg_end() &&
231            "Destructor shouldn't have explicit parameters");
232     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
233     if (UseVirtualCall) {
234       CGM.getCXXABI().EmitVirtualDestructorCall(
235           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
236     } else {
237       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
238         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
239       else if (!DevirtualizedMethod)
240         Callee =
241             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
242       else {
243         const CXXDestructorDecl *DDtor =
244           cast<CXXDestructorDecl>(DevirtualizedMethod);
245         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
246       }
247       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
248                                   /*ImplicitParam=*/nullptr, QualType(), CE);
249     }
250     return RValue::get(nullptr);
251   }
252 
253   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
254     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
255   } else if (UseVirtualCall) {
256     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
257                                                        CE->getLocStart());
258   } else {
259     if (SanOpts.has(SanitizerKind::CFINVCall) &&
260         MD->getParent()->isDynamicClass()) {
261       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
262       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
263                                 CE->getLocStart());
264     }
265 
266     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
267       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
268     else if (!DevirtualizedMethod)
269       Callee = CGM.GetAddrOfFunction(MD, Ty);
270     else {
271       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
272     }
273   }
274 
275   if (MD->isVirtual()) {
276     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
277         *this, CalleeDecl, This, UseVirtualCall);
278   }
279 
280   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
281                                      /*ImplicitParam=*/nullptr, QualType(), CE);
282 }
283 
284 RValue
285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
286                                               ReturnValueSlot ReturnValue) {
287   const BinaryOperator *BO =
288       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
289   const Expr *BaseExpr = BO->getLHS();
290   const Expr *MemFnExpr = BO->getRHS();
291 
292   const MemberPointerType *MPT =
293     MemFnExpr->getType()->castAs<MemberPointerType>();
294 
295   const FunctionProtoType *FPT =
296     MPT->getPointeeType()->castAs<FunctionProtoType>();
297   const CXXRecordDecl *RD =
298     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
299 
300   // Get the member function pointer.
301   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
302 
303   // Emit the 'this' pointer.
304   Address This = Address::invalid();
305   if (BO->getOpcode() == BO_PtrMemI)
306     This = EmitPointerWithAlignment(BaseExpr);
307   else
308     This = EmitLValue(BaseExpr).getAddress();
309 
310   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
311                 QualType(MPT->getClass(), 0));
312 
313   // Ask the ABI to load the callee.  Note that This is modified.
314   llvm::Value *ThisPtrForCall = nullptr;
315   llvm::Value *Callee =
316     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
317                                              ThisPtrForCall, MemFnPtr, MPT);
318 
319   CallArgList Args;
320 
321   QualType ThisType =
322     getContext().getPointerType(getContext().getTagDeclType(RD));
323 
324   // Push the this ptr.
325   Args.add(RValue::get(ThisPtrForCall), ThisType);
326 
327   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
328 
329   // And the rest of the call args
330   EmitCallArgs(Args, FPT, E->arguments(), E->getDirectCallee());
331   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
332                   Callee, ReturnValue, Args);
333 }
334 
335 RValue
336 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
337                                                const CXXMethodDecl *MD,
338                                                ReturnValueSlot ReturnValue) {
339   assert(MD->isInstance() &&
340          "Trying to emit a member call expr on a static method!");
341   return EmitCXXMemberOrOperatorMemberCallExpr(
342       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
343       /*IsArrow=*/false, E->getArg(0));
344 }
345 
346 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
347                                                ReturnValueSlot ReturnValue) {
348   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
349 }
350 
351 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
352                                             Address DestPtr,
353                                             const CXXRecordDecl *Base) {
354   if (Base->isEmpty())
355     return;
356 
357   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
358 
359   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
360   CharUnits NVSize = Layout.getNonVirtualSize();
361 
362   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
363   // present, they are initialized by the most derived class before calling the
364   // constructor.
365   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
366   Stores.emplace_back(CharUnits::Zero(), NVSize);
367 
368   // Each store is split by the existence of a vbptr.
369   CharUnits VBPtrWidth = CGF.getPointerSize();
370   std::vector<CharUnits> VBPtrOffsets =
371       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
372   for (CharUnits VBPtrOffset : VBPtrOffsets) {
373     // Stop before we hit any virtual base pointers located in virtual bases.
374     if (VBPtrOffset >= NVSize)
375       break;
376     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
377     CharUnits LastStoreOffset = LastStore.first;
378     CharUnits LastStoreSize = LastStore.second;
379 
380     CharUnits SplitBeforeOffset = LastStoreOffset;
381     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
382     assert(!SplitBeforeSize.isNegative() && "negative store size!");
383     if (!SplitBeforeSize.isZero())
384       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
385 
386     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
387     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
388     assert(!SplitAfterSize.isNegative() && "negative store size!");
389     if (!SplitAfterSize.isZero())
390       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
391   }
392 
393   // If the type contains a pointer to data member we can't memset it to zero.
394   // Instead, create a null constant and copy it to the destination.
395   // TODO: there are other patterns besides zero that we can usefully memset,
396   // like -1, which happens to be the pattern used by member-pointers.
397   // TODO: isZeroInitializable can be over-conservative in the case where a
398   // virtual base contains a member pointer.
399   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
400   if (!NullConstantForBase->isNullValue()) {
401     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
402         CGF.CGM.getModule(), NullConstantForBase->getType(),
403         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
404         NullConstantForBase, Twine());
405 
406     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
407                                DestPtr.getAlignment());
408     NullVariable->setAlignment(Align.getQuantity());
409 
410     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
411 
412     // Get and call the appropriate llvm.memcpy overload.
413     for (std::pair<CharUnits, CharUnits> Store : Stores) {
414       CharUnits StoreOffset = Store.first;
415       CharUnits StoreSize = Store.second;
416       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
417       CGF.Builder.CreateMemCpy(
418           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
419           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
420           StoreSizeVal);
421     }
422 
423   // Otherwise, just memset the whole thing to zero.  This is legal
424   // because in LLVM, all default initializers (other than the ones we just
425   // handled above) are guaranteed to have a bit pattern of all zeros.
426   } else {
427     for (std::pair<CharUnits, CharUnits> Store : Stores) {
428       CharUnits StoreOffset = Store.first;
429       CharUnits StoreSize = Store.second;
430       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
431       CGF.Builder.CreateMemSet(
432           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
433           CGF.Builder.getInt8(0), StoreSizeVal);
434     }
435   }
436 }
437 
438 void
439 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
440                                       AggValueSlot Dest) {
441   assert(!Dest.isIgnored() && "Must have a destination!");
442   const CXXConstructorDecl *CD = E->getConstructor();
443 
444   // If we require zero initialization before (or instead of) calling the
445   // constructor, as can be the case with a non-user-provided default
446   // constructor, emit the zero initialization now, unless destination is
447   // already zeroed.
448   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
449     switch (E->getConstructionKind()) {
450     case CXXConstructExpr::CK_Delegating:
451     case CXXConstructExpr::CK_Complete:
452       EmitNullInitialization(Dest.getAddress(), E->getType());
453       break;
454     case CXXConstructExpr::CK_VirtualBase:
455     case CXXConstructExpr::CK_NonVirtualBase:
456       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
457                                       CD->getParent());
458       break;
459     }
460   }
461 
462   // If this is a call to a trivial default constructor, do nothing.
463   if (CD->isTrivial() && CD->isDefaultConstructor())
464     return;
465 
466   // Elide the constructor if we're constructing from a temporary.
467   // The temporary check is required because Sema sets this on NRVO
468   // returns.
469   if (getLangOpts().ElideConstructors && E->isElidable()) {
470     assert(getContext().hasSameUnqualifiedType(E->getType(),
471                                                E->getArg(0)->getType()));
472     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
473       EmitAggExpr(E->getArg(0), Dest);
474       return;
475     }
476   }
477 
478   if (const ArrayType *arrayType
479         = getContext().getAsArrayType(E->getType())) {
480     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
481   } else {
482     CXXCtorType Type = Ctor_Complete;
483     bool ForVirtualBase = false;
484     bool Delegating = false;
485 
486     switch (E->getConstructionKind()) {
487      case CXXConstructExpr::CK_Delegating:
488       // We should be emitting a constructor; GlobalDecl will assert this
489       Type = CurGD.getCtorType();
490       Delegating = true;
491       break;
492 
493      case CXXConstructExpr::CK_Complete:
494       Type = Ctor_Complete;
495       break;
496 
497      case CXXConstructExpr::CK_VirtualBase:
498       ForVirtualBase = true;
499       // fall-through
500 
501      case CXXConstructExpr::CK_NonVirtualBase:
502       Type = Ctor_Base;
503     }
504 
505     // Call the constructor.
506     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
507                            Dest.getAddress(), E);
508   }
509 }
510 
511 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
512                                                  const Expr *Exp) {
513   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
514     Exp = E->getSubExpr();
515   assert(isa<CXXConstructExpr>(Exp) &&
516          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
517   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
518   const CXXConstructorDecl *CD = E->getConstructor();
519   RunCleanupsScope Scope(*this);
520 
521   // If we require zero initialization before (or instead of) calling the
522   // constructor, as can be the case with a non-user-provided default
523   // constructor, emit the zero initialization now.
524   // FIXME. Do I still need this for a copy ctor synthesis?
525   if (E->requiresZeroInitialization())
526     EmitNullInitialization(Dest, E->getType());
527 
528   assert(!getContext().getAsConstantArrayType(E->getType())
529          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
530   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
531 }
532 
533 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
534                                         const CXXNewExpr *E) {
535   if (!E->isArray())
536     return CharUnits::Zero();
537 
538   // No cookie is required if the operator new[] being used is the
539   // reserved placement operator new[].
540   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
541     return CharUnits::Zero();
542 
543   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
544 }
545 
546 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
547                                         const CXXNewExpr *e,
548                                         unsigned minElements,
549                                         llvm::Value *&numElements,
550                                         llvm::Value *&sizeWithoutCookie) {
551   QualType type = e->getAllocatedType();
552 
553   if (!e->isArray()) {
554     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
555     sizeWithoutCookie
556       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
557     return sizeWithoutCookie;
558   }
559 
560   // The width of size_t.
561   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
562 
563   // Figure out the cookie size.
564   llvm::APInt cookieSize(sizeWidth,
565                          CalculateCookiePadding(CGF, e).getQuantity());
566 
567   // Emit the array size expression.
568   // We multiply the size of all dimensions for NumElements.
569   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
570   numElements = CGF.EmitScalarExpr(e->getArraySize());
571   assert(isa<llvm::IntegerType>(numElements->getType()));
572 
573   // The number of elements can be have an arbitrary integer type;
574   // essentially, we need to multiply it by a constant factor, add a
575   // cookie size, and verify that the result is representable as a
576   // size_t.  That's just a gloss, though, and it's wrong in one
577   // important way: if the count is negative, it's an error even if
578   // the cookie size would bring the total size >= 0.
579   bool isSigned
580     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
581   llvm::IntegerType *numElementsType
582     = cast<llvm::IntegerType>(numElements->getType());
583   unsigned numElementsWidth = numElementsType->getBitWidth();
584 
585   // Compute the constant factor.
586   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
587   while (const ConstantArrayType *CAT
588              = CGF.getContext().getAsConstantArrayType(type)) {
589     type = CAT->getElementType();
590     arraySizeMultiplier *= CAT->getSize();
591   }
592 
593   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
594   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
595   typeSizeMultiplier *= arraySizeMultiplier;
596 
597   // This will be a size_t.
598   llvm::Value *size;
599 
600   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
601   // Don't bloat the -O0 code.
602   if (llvm::ConstantInt *numElementsC =
603         dyn_cast<llvm::ConstantInt>(numElements)) {
604     const llvm::APInt &count = numElementsC->getValue();
605 
606     bool hasAnyOverflow = false;
607 
608     // If 'count' was a negative number, it's an overflow.
609     if (isSigned && count.isNegative())
610       hasAnyOverflow = true;
611 
612     // We want to do all this arithmetic in size_t.  If numElements is
613     // wider than that, check whether it's already too big, and if so,
614     // overflow.
615     else if (numElementsWidth > sizeWidth &&
616              numElementsWidth - sizeWidth > count.countLeadingZeros())
617       hasAnyOverflow = true;
618 
619     // Okay, compute a count at the right width.
620     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
621 
622     // If there is a brace-initializer, we cannot allocate fewer elements than
623     // there are initializers. If we do, that's treated like an overflow.
624     if (adjustedCount.ult(minElements))
625       hasAnyOverflow = true;
626 
627     // Scale numElements by that.  This might overflow, but we don't
628     // care because it only overflows if allocationSize does, too, and
629     // if that overflows then we shouldn't use this.
630     numElements = llvm::ConstantInt::get(CGF.SizeTy,
631                                          adjustedCount * arraySizeMultiplier);
632 
633     // Compute the size before cookie, and track whether it overflowed.
634     bool overflow;
635     llvm::APInt allocationSize
636       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
637     hasAnyOverflow |= overflow;
638 
639     // Add in the cookie, and check whether it's overflowed.
640     if (cookieSize != 0) {
641       // Save the current size without a cookie.  This shouldn't be
642       // used if there was overflow.
643       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
644 
645       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
646       hasAnyOverflow |= overflow;
647     }
648 
649     // On overflow, produce a -1 so operator new will fail.
650     if (hasAnyOverflow) {
651       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
652     } else {
653       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
654     }
655 
656   // Otherwise, we might need to use the overflow intrinsics.
657   } else {
658     // There are up to five conditions we need to test for:
659     // 1) if isSigned, we need to check whether numElements is negative;
660     // 2) if numElementsWidth > sizeWidth, we need to check whether
661     //   numElements is larger than something representable in size_t;
662     // 3) if minElements > 0, we need to check whether numElements is smaller
663     //    than that.
664     // 4) we need to compute
665     //      sizeWithoutCookie := numElements * typeSizeMultiplier
666     //    and check whether it overflows; and
667     // 5) if we need a cookie, we need to compute
668     //      size := sizeWithoutCookie + cookieSize
669     //    and check whether it overflows.
670 
671     llvm::Value *hasOverflow = nullptr;
672 
673     // If numElementsWidth > sizeWidth, then one way or another, we're
674     // going to have to do a comparison for (2), and this happens to
675     // take care of (1), too.
676     if (numElementsWidth > sizeWidth) {
677       llvm::APInt threshold(numElementsWidth, 1);
678       threshold <<= sizeWidth;
679 
680       llvm::Value *thresholdV
681         = llvm::ConstantInt::get(numElementsType, threshold);
682 
683       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
684       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
685 
686     // Otherwise, if we're signed, we want to sext up to size_t.
687     } else if (isSigned) {
688       if (numElementsWidth < sizeWidth)
689         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
690 
691       // If there's a non-1 type size multiplier, then we can do the
692       // signedness check at the same time as we do the multiply
693       // because a negative number times anything will cause an
694       // unsigned overflow.  Otherwise, we have to do it here. But at least
695       // in this case, we can subsume the >= minElements check.
696       if (typeSizeMultiplier == 1)
697         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
698                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
699 
700     // Otherwise, zext up to size_t if necessary.
701     } else if (numElementsWidth < sizeWidth) {
702       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
703     }
704 
705     assert(numElements->getType() == CGF.SizeTy);
706 
707     if (minElements) {
708       // Don't allow allocation of fewer elements than we have initializers.
709       if (!hasOverflow) {
710         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
711                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
712       } else if (numElementsWidth > sizeWidth) {
713         // The other existing overflow subsumes this check.
714         // We do an unsigned comparison, since any signed value < -1 is
715         // taken care of either above or below.
716         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
717                           CGF.Builder.CreateICmpULT(numElements,
718                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
719       }
720     }
721 
722     size = numElements;
723 
724     // Multiply by the type size if necessary.  This multiplier
725     // includes all the factors for nested arrays.
726     //
727     // This step also causes numElements to be scaled up by the
728     // nested-array factor if necessary.  Overflow on this computation
729     // can be ignored because the result shouldn't be used if
730     // allocation fails.
731     if (typeSizeMultiplier != 1) {
732       llvm::Value *umul_with_overflow
733         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
734 
735       llvm::Value *tsmV =
736         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
737       llvm::Value *result =
738           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
739 
740       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
741       if (hasOverflow)
742         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
743       else
744         hasOverflow = overflowed;
745 
746       size = CGF.Builder.CreateExtractValue(result, 0);
747 
748       // Also scale up numElements by the array size multiplier.
749       if (arraySizeMultiplier != 1) {
750         // If the base element type size is 1, then we can re-use the
751         // multiply we just did.
752         if (typeSize.isOne()) {
753           assert(arraySizeMultiplier == typeSizeMultiplier);
754           numElements = size;
755 
756         // Otherwise we need a separate multiply.
757         } else {
758           llvm::Value *asmV =
759             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
760           numElements = CGF.Builder.CreateMul(numElements, asmV);
761         }
762       }
763     } else {
764       // numElements doesn't need to be scaled.
765       assert(arraySizeMultiplier == 1);
766     }
767 
768     // Add in the cookie size if necessary.
769     if (cookieSize != 0) {
770       sizeWithoutCookie = size;
771 
772       llvm::Value *uadd_with_overflow
773         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
774 
775       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
776       llvm::Value *result =
777           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
778 
779       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
780       if (hasOverflow)
781         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
782       else
783         hasOverflow = overflowed;
784 
785       size = CGF.Builder.CreateExtractValue(result, 0);
786     }
787 
788     // If we had any possibility of dynamic overflow, make a select to
789     // overwrite 'size' with an all-ones value, which should cause
790     // operator new to throw.
791     if (hasOverflow)
792       size = CGF.Builder.CreateSelect(hasOverflow,
793                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
794                                       size);
795   }
796 
797   if (cookieSize == 0)
798     sizeWithoutCookie = size;
799   else
800     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
801 
802   return size;
803 }
804 
805 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
806                                     QualType AllocType, Address NewPtr) {
807   // FIXME: Refactor with EmitExprAsInit.
808   switch (CGF.getEvaluationKind(AllocType)) {
809   case TEK_Scalar:
810     CGF.EmitScalarInit(Init, nullptr,
811                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
812     return;
813   case TEK_Complex:
814     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
815                                   /*isInit*/ true);
816     return;
817   case TEK_Aggregate: {
818     AggValueSlot Slot
819       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
820                               AggValueSlot::IsDestructed,
821                               AggValueSlot::DoesNotNeedGCBarriers,
822                               AggValueSlot::IsNotAliased);
823     CGF.EmitAggExpr(Init, Slot);
824     return;
825   }
826   }
827   llvm_unreachable("bad evaluation kind");
828 }
829 
830 void CodeGenFunction::EmitNewArrayInitializer(
831     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
832     Address BeginPtr, llvm::Value *NumElements,
833     llvm::Value *AllocSizeWithoutCookie) {
834   // If we have a type with trivial initialization and no initializer,
835   // there's nothing to do.
836   if (!E->hasInitializer())
837     return;
838 
839   Address CurPtr = BeginPtr;
840 
841   unsigned InitListElements = 0;
842 
843   const Expr *Init = E->getInitializer();
844   Address EndOfInit = Address::invalid();
845   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
846   EHScopeStack::stable_iterator Cleanup;
847   llvm::Instruction *CleanupDominator = nullptr;
848 
849   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
850   CharUnits ElementAlign =
851     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
852 
853   // If the initializer is an initializer list, first do the explicit elements.
854   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
855     InitListElements = ILE->getNumInits();
856 
857     // If this is a multi-dimensional array new, we will initialize multiple
858     // elements with each init list element.
859     QualType AllocType = E->getAllocatedType();
860     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
861             AllocType->getAsArrayTypeUnsafe())) {
862       ElementTy = ConvertTypeForMem(AllocType);
863       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
864       InitListElements *= getContext().getConstantArrayElementCount(CAT);
865     }
866 
867     // Enter a partial-destruction Cleanup if necessary.
868     if (needsEHCleanup(DtorKind)) {
869       // In principle we could tell the Cleanup where we are more
870       // directly, but the control flow can get so varied here that it
871       // would actually be quite complex.  Therefore we go through an
872       // alloca.
873       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
874                                    "array.init.end");
875       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
876       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
877                                        ElementType, ElementAlign,
878                                        getDestroyer(DtorKind));
879       Cleanup = EHStack.stable_begin();
880     }
881 
882     CharUnits StartAlign = CurPtr.getAlignment();
883     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
884       // Tell the cleanup that it needs to destroy up to this
885       // element.  TODO: some of these stores can be trivially
886       // observed to be unnecessary.
887       if (EndOfInit.isValid()) {
888         auto FinishedPtr =
889           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
890         Builder.CreateStore(FinishedPtr, EndOfInit);
891       }
892       // FIXME: If the last initializer is an incomplete initializer list for
893       // an array, and we have an array filler, we can fold together the two
894       // initialization loops.
895       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
896                               ILE->getInit(i)->getType(), CurPtr);
897       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
898                                                  Builder.getSize(1),
899                                                  "array.exp.next"),
900                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
901     }
902 
903     // The remaining elements are filled with the array filler expression.
904     Init = ILE->getArrayFiller();
905 
906     // Extract the initializer for the individual array elements by pulling
907     // out the array filler from all the nested initializer lists. This avoids
908     // generating a nested loop for the initialization.
909     while (Init && Init->getType()->isConstantArrayType()) {
910       auto *SubILE = dyn_cast<InitListExpr>(Init);
911       if (!SubILE)
912         break;
913       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
914       Init = SubILE->getArrayFiller();
915     }
916 
917     // Switch back to initializing one base element at a time.
918     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
919   }
920 
921   // Attempt to perform zero-initialization using memset.
922   auto TryMemsetInitialization = [&]() -> bool {
923     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
924     // we can initialize with a memset to -1.
925     if (!CGM.getTypes().isZeroInitializable(ElementType))
926       return false;
927 
928     // Optimization: since zero initialization will just set the memory
929     // to all zeroes, generate a single memset to do it in one shot.
930 
931     // Subtract out the size of any elements we've already initialized.
932     auto *RemainingSize = AllocSizeWithoutCookie;
933     if (InitListElements) {
934       // We know this can't overflow; we check this when doing the allocation.
935       auto *InitializedSize = llvm::ConstantInt::get(
936           RemainingSize->getType(),
937           getContext().getTypeSizeInChars(ElementType).getQuantity() *
938               InitListElements);
939       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
940     }
941 
942     // Create the memset.
943     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
944     return true;
945   };
946 
947   // If all elements have already been initialized, skip any further
948   // initialization.
949   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
950   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
951     // If there was a Cleanup, deactivate it.
952     if (CleanupDominator)
953       DeactivateCleanupBlock(Cleanup, CleanupDominator);
954     return;
955   }
956 
957   assert(Init && "have trailing elements to initialize but no initializer");
958 
959   // If this is a constructor call, try to optimize it out, and failing that
960   // emit a single loop to initialize all remaining elements.
961   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
962     CXXConstructorDecl *Ctor = CCE->getConstructor();
963     if (Ctor->isTrivial()) {
964       // If new expression did not specify value-initialization, then there
965       // is no initialization.
966       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
967         return;
968 
969       if (TryMemsetInitialization())
970         return;
971     }
972 
973     // Store the new Cleanup position for irregular Cleanups.
974     //
975     // FIXME: Share this cleanup with the constructor call emission rather than
976     // having it create a cleanup of its own.
977     if (EndOfInit.isValid())
978       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
979 
980     // Emit a constructor call loop to initialize the remaining elements.
981     if (InitListElements)
982       NumElements = Builder.CreateSub(
983           NumElements,
984           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
985     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
986                                CCE->requiresZeroInitialization());
987     return;
988   }
989 
990   // If this is value-initialization, we can usually use memset.
991   ImplicitValueInitExpr IVIE(ElementType);
992   if (isa<ImplicitValueInitExpr>(Init)) {
993     if (TryMemsetInitialization())
994       return;
995 
996     // Switch to an ImplicitValueInitExpr for the element type. This handles
997     // only one case: multidimensional array new of pointers to members. In
998     // all other cases, we already have an initializer for the array element.
999     Init = &IVIE;
1000   }
1001 
1002   // At this point we should have found an initializer for the individual
1003   // elements of the array.
1004   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1005          "got wrong type of element to initialize");
1006 
1007   // If we have an empty initializer list, we can usually use memset.
1008   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1009     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1010       return;
1011 
1012   // If we have a struct whose every field is value-initialized, we can
1013   // usually use memset.
1014   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1015     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1016       if (RType->getDecl()->isStruct()) {
1017         unsigned NumElements = 0;
1018         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1019           NumElements = CXXRD->getNumBases();
1020         for (auto *Field : RType->getDecl()->fields())
1021           if (!Field->isUnnamedBitfield())
1022             ++NumElements;
1023         // FIXME: Recurse into nested InitListExprs.
1024         if (ILE->getNumInits() == NumElements)
1025           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1026             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1027               --NumElements;
1028         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1029           return;
1030       }
1031     }
1032   }
1033 
1034   // Create the loop blocks.
1035   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1036   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1037   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1038 
1039   // Find the end of the array, hoisted out of the loop.
1040   llvm::Value *EndPtr =
1041     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1042 
1043   // If the number of elements isn't constant, we have to now check if there is
1044   // anything left to initialize.
1045   if (!ConstNum) {
1046     llvm::Value *IsEmpty =
1047       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1048     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1049   }
1050 
1051   // Enter the loop.
1052   EmitBlock(LoopBB);
1053 
1054   // Set up the current-element phi.
1055   llvm::PHINode *CurPtrPhi =
1056     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1057   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1058 
1059   CurPtr = Address(CurPtrPhi, ElementAlign);
1060 
1061   // Store the new Cleanup position for irregular Cleanups.
1062   if (EndOfInit.isValid())
1063     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1064 
1065   // Enter a partial-destruction Cleanup if necessary.
1066   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1067     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1068                                    ElementType, ElementAlign,
1069                                    getDestroyer(DtorKind));
1070     Cleanup = EHStack.stable_begin();
1071     CleanupDominator = Builder.CreateUnreachable();
1072   }
1073 
1074   // Emit the initializer into this element.
1075   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1076 
1077   // Leave the Cleanup if we entered one.
1078   if (CleanupDominator) {
1079     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1080     CleanupDominator->eraseFromParent();
1081   }
1082 
1083   // Advance to the next element by adjusting the pointer type as necessary.
1084   llvm::Value *NextPtr =
1085     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1086                                        "array.next");
1087 
1088   // Check whether we've gotten to the end of the array and, if so,
1089   // exit the loop.
1090   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1091   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1092   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1093 
1094   EmitBlock(ContBB);
1095 }
1096 
1097 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1098                                QualType ElementType, llvm::Type *ElementTy,
1099                                Address NewPtr, llvm::Value *NumElements,
1100                                llvm::Value *AllocSizeWithoutCookie) {
1101   ApplyDebugLocation DL(CGF, E);
1102   if (E->isArray())
1103     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1104                                 AllocSizeWithoutCookie);
1105   else if (const Expr *Init = E->getInitializer())
1106     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1107 }
1108 
1109 /// Emit a call to an operator new or operator delete function, as implicitly
1110 /// created by new-expressions and delete-expressions.
1111 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1112                                 const FunctionDecl *Callee,
1113                                 const FunctionProtoType *CalleeType,
1114                                 const CallArgList &Args) {
1115   llvm::Instruction *CallOrInvoke;
1116   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1117   RValue RV =
1118       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1119                        Args, CalleeType, /*chainCall=*/false),
1120                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1121 
1122   /// C++1y [expr.new]p10:
1123   ///   [In a new-expression,] an implementation is allowed to omit a call
1124   ///   to a replaceable global allocation function.
1125   ///
1126   /// We model such elidable calls with the 'builtin' attribute.
1127   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1128   if (Callee->isReplaceableGlobalAllocationFunction() &&
1129       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1130     // FIXME: Add addAttribute to CallSite.
1131     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1132       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1133                        llvm::Attribute::Builtin);
1134     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1135       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1136                        llvm::Attribute::Builtin);
1137     else
1138       llvm_unreachable("unexpected kind of call instruction");
1139   }
1140 
1141   return RV;
1142 }
1143 
1144 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1145                                                  const Expr *Arg,
1146                                                  bool IsDelete) {
1147   CallArgList Args;
1148   const Stmt *ArgS = Arg;
1149   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1150   // Find the allocation or deallocation function that we're calling.
1151   ASTContext &Ctx = getContext();
1152   DeclarationName Name = Ctx.DeclarationNames
1153       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1154   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1155     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1156       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1157         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1158   llvm_unreachable("predeclared global operator new/delete is missing");
1159 }
1160 
1161 namespace {
1162   /// A cleanup to call the given 'operator delete' function upon
1163   /// abnormal exit from a new expression.
1164   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1165     size_t NumPlacementArgs;
1166     const FunctionDecl *OperatorDelete;
1167     llvm::Value *Ptr;
1168     llvm::Value *AllocSize;
1169 
1170     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1171 
1172   public:
1173     static size_t getExtraSize(size_t NumPlacementArgs) {
1174       return NumPlacementArgs * sizeof(RValue);
1175     }
1176 
1177     CallDeleteDuringNew(size_t NumPlacementArgs,
1178                         const FunctionDecl *OperatorDelete,
1179                         llvm::Value *Ptr,
1180                         llvm::Value *AllocSize)
1181       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1182         Ptr(Ptr), AllocSize(AllocSize) {}
1183 
1184     void setPlacementArg(unsigned I, RValue Arg) {
1185       assert(I < NumPlacementArgs && "index out of range");
1186       getPlacementArgs()[I] = Arg;
1187     }
1188 
1189     void Emit(CodeGenFunction &CGF, Flags flags) override {
1190       const FunctionProtoType *FPT
1191         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1192       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1193              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1194 
1195       CallArgList DeleteArgs;
1196 
1197       // The first argument is always a void*.
1198       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1199       DeleteArgs.add(RValue::get(Ptr), *AI++);
1200 
1201       // A member 'operator delete' can take an extra 'size_t' argument.
1202       if (FPT->getNumParams() == NumPlacementArgs + 2)
1203         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1204 
1205       // Pass the rest of the arguments, which must match exactly.
1206       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1207         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1208 
1209       // Call 'operator delete'.
1210       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1211     }
1212   };
1213 
1214   /// A cleanup to call the given 'operator delete' function upon
1215   /// abnormal exit from a new expression when the new expression is
1216   /// conditional.
1217   class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup {
1218     size_t NumPlacementArgs;
1219     const FunctionDecl *OperatorDelete;
1220     DominatingValue<RValue>::saved_type Ptr;
1221     DominatingValue<RValue>::saved_type AllocSize;
1222 
1223     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1224       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1225     }
1226 
1227   public:
1228     static size_t getExtraSize(size_t NumPlacementArgs) {
1229       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1230     }
1231 
1232     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1233                                    const FunctionDecl *OperatorDelete,
1234                                    DominatingValue<RValue>::saved_type Ptr,
1235                               DominatingValue<RValue>::saved_type AllocSize)
1236       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1237         Ptr(Ptr), AllocSize(AllocSize) {}
1238 
1239     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1240       assert(I < NumPlacementArgs && "index out of range");
1241       getPlacementArgs()[I] = Arg;
1242     }
1243 
1244     void Emit(CodeGenFunction &CGF, Flags flags) override {
1245       const FunctionProtoType *FPT
1246         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1247       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1248              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1249 
1250       CallArgList DeleteArgs;
1251 
1252       // The first argument is always a void*.
1253       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1254       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1255 
1256       // A member 'operator delete' can take an extra 'size_t' argument.
1257       if (FPT->getNumParams() == NumPlacementArgs + 2) {
1258         RValue RV = AllocSize.restore(CGF);
1259         DeleteArgs.add(RV, *AI++);
1260       }
1261 
1262       // Pass the rest of the arguments, which must match exactly.
1263       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1264         RValue RV = getPlacementArgs()[I].restore(CGF);
1265         DeleteArgs.add(RV, *AI++);
1266       }
1267 
1268       // Call 'operator delete'.
1269       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1270     }
1271   };
1272 }
1273 
1274 /// Enter a cleanup to call 'operator delete' if the initializer in a
1275 /// new-expression throws.
1276 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1277                                   const CXXNewExpr *E,
1278                                   Address NewPtr,
1279                                   llvm::Value *AllocSize,
1280                                   const CallArgList &NewArgs) {
1281   // If we're not inside a conditional branch, then the cleanup will
1282   // dominate and we can do the easier (and more efficient) thing.
1283   if (!CGF.isInConditionalBranch()) {
1284     CallDeleteDuringNew *Cleanup = CGF.EHStack
1285       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1286                                                  E->getNumPlacementArgs(),
1287                                                  E->getOperatorDelete(),
1288                                                  NewPtr.getPointer(),
1289                                                  AllocSize);
1290     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1291       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1292 
1293     return;
1294   }
1295 
1296   // Otherwise, we need to save all this stuff.
1297   DominatingValue<RValue>::saved_type SavedNewPtr =
1298     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1299   DominatingValue<RValue>::saved_type SavedAllocSize =
1300     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1301 
1302   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1303     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1304                                                  E->getNumPlacementArgs(),
1305                                                  E->getOperatorDelete(),
1306                                                  SavedNewPtr,
1307                                                  SavedAllocSize);
1308   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1309     Cleanup->setPlacementArg(I,
1310                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1311 
1312   CGF.initFullExprCleanup();
1313 }
1314 
1315 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1316   // The element type being allocated.
1317   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1318 
1319   // 1. Build a call to the allocation function.
1320   FunctionDecl *allocator = E->getOperatorNew();
1321 
1322   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1323   unsigned minElements = 0;
1324   if (E->isArray() && E->hasInitializer()) {
1325     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1326       minElements = ILE->getNumInits();
1327   }
1328 
1329   llvm::Value *numElements = nullptr;
1330   llvm::Value *allocSizeWithoutCookie = nullptr;
1331   llvm::Value *allocSize =
1332     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1333                         allocSizeWithoutCookie);
1334 
1335   // Emit the allocation call.  If the allocator is a global placement
1336   // operator, just "inline" it directly.
1337   Address allocation = Address::invalid();
1338   CallArgList allocatorArgs;
1339   if (allocator->isReservedGlobalPlacementOperator()) {
1340     assert(E->getNumPlacementArgs() == 1);
1341     const Expr *arg = *E->placement_arguments().begin();
1342 
1343     AlignmentSource alignSource;
1344     allocation = EmitPointerWithAlignment(arg, &alignSource);
1345 
1346     // The pointer expression will, in many cases, be an opaque void*.
1347     // In these cases, discard the computed alignment and use the
1348     // formal alignment of the allocated type.
1349     if (alignSource != AlignmentSource::Decl) {
1350       allocation = Address(allocation.getPointer(),
1351                            getContext().getTypeAlignInChars(allocType));
1352     }
1353 
1354     // Set up allocatorArgs for the call to operator delete if it's not
1355     // the reserved global operator.
1356     if (E->getOperatorDelete() &&
1357         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1358       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1359       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1360     }
1361 
1362   } else {
1363     const FunctionProtoType *allocatorType =
1364       allocator->getType()->castAs<FunctionProtoType>();
1365 
1366     // The allocation size is the first argument.
1367     QualType sizeType = getContext().getSizeType();
1368     allocatorArgs.add(RValue::get(allocSize), sizeType);
1369 
1370     // We start at 1 here because the first argument (the allocation size)
1371     // has already been emitted.
1372     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1373                  /* CalleeDecl */ nullptr,
1374                  /*ParamsToSkip*/ 1);
1375 
1376     RValue RV =
1377       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1378 
1379     // For now, only assume that the allocation function returns
1380     // something satisfactorily aligned for the element type, plus
1381     // the cookie if we have one.
1382     CharUnits allocationAlign =
1383       getContext().getTypeAlignInChars(allocType);
1384     if (allocSize != allocSizeWithoutCookie) {
1385       CharUnits cookieAlign = getSizeAlign(); // FIXME?
1386       allocationAlign = std::max(allocationAlign, cookieAlign);
1387     }
1388 
1389     allocation = Address(RV.getScalarVal(), allocationAlign);
1390   }
1391 
1392   // Emit a null check on the allocation result if the allocation
1393   // function is allowed to return null (because it has a non-throwing
1394   // exception spec or is the reserved placement new) and we have an
1395   // interesting initializer.
1396   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1397     (!allocType.isPODType(getContext()) || E->hasInitializer());
1398 
1399   llvm::BasicBlock *nullCheckBB = nullptr;
1400   llvm::BasicBlock *contBB = nullptr;
1401 
1402   // The null-check means that the initializer is conditionally
1403   // evaluated.
1404   ConditionalEvaluation conditional(*this);
1405 
1406   if (nullCheck) {
1407     conditional.begin(*this);
1408 
1409     nullCheckBB = Builder.GetInsertBlock();
1410     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1411     contBB = createBasicBlock("new.cont");
1412 
1413     llvm::Value *isNull =
1414       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1415     Builder.CreateCondBr(isNull, contBB, notNullBB);
1416     EmitBlock(notNullBB);
1417   }
1418 
1419   // If there's an operator delete, enter a cleanup to call it if an
1420   // exception is thrown.
1421   EHScopeStack::stable_iterator operatorDeleteCleanup;
1422   llvm::Instruction *cleanupDominator = nullptr;
1423   if (E->getOperatorDelete() &&
1424       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1425     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1426     operatorDeleteCleanup = EHStack.stable_begin();
1427     cleanupDominator = Builder.CreateUnreachable();
1428   }
1429 
1430   assert((allocSize == allocSizeWithoutCookie) ==
1431          CalculateCookiePadding(*this, E).isZero());
1432   if (allocSize != allocSizeWithoutCookie) {
1433     assert(E->isArray());
1434     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1435                                                        numElements,
1436                                                        E, allocType);
1437   }
1438 
1439   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1440   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1441 
1442   // Passing pointer through invariant.group.barrier to avoid propagation of
1443   // vptrs information which may be included in previous type.
1444   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1445       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1446       allocator->isReservedGlobalPlacementOperator())
1447     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1448                      result.getAlignment());
1449 
1450   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1451                      allocSizeWithoutCookie);
1452   if (E->isArray()) {
1453     // NewPtr is a pointer to the base element type.  If we're
1454     // allocating an array of arrays, we'll need to cast back to the
1455     // array pointer type.
1456     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1457     if (result.getType() != resultType)
1458       result = Builder.CreateBitCast(result, resultType);
1459   }
1460 
1461   // Deactivate the 'operator delete' cleanup if we finished
1462   // initialization.
1463   if (operatorDeleteCleanup.isValid()) {
1464     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1465     cleanupDominator->eraseFromParent();
1466   }
1467 
1468   llvm::Value *resultPtr = result.getPointer();
1469   if (nullCheck) {
1470     conditional.end(*this);
1471 
1472     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1473     EmitBlock(contBB);
1474 
1475     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1476     PHI->addIncoming(resultPtr, notNullBB);
1477     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1478                      nullCheckBB);
1479 
1480     resultPtr = PHI;
1481   }
1482 
1483   return resultPtr;
1484 }
1485 
1486 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1487                                      llvm::Value *Ptr,
1488                                      QualType DeleteTy) {
1489   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1490 
1491   const FunctionProtoType *DeleteFTy =
1492     DeleteFD->getType()->getAs<FunctionProtoType>();
1493 
1494   CallArgList DeleteArgs;
1495 
1496   // Check if we need to pass the size to the delete operator.
1497   llvm::Value *Size = nullptr;
1498   QualType SizeTy;
1499   if (DeleteFTy->getNumParams() == 2) {
1500     SizeTy = DeleteFTy->getParamType(1);
1501     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1502     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1503                                   DeleteTypeSize.getQuantity());
1504   }
1505 
1506   QualType ArgTy = DeleteFTy->getParamType(0);
1507   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1508   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1509 
1510   if (Size)
1511     DeleteArgs.add(RValue::get(Size), SizeTy);
1512 
1513   // Emit the call to delete.
1514   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1515 }
1516 
1517 namespace {
1518   /// Calls the given 'operator delete' on a single object.
1519   struct CallObjectDelete final : EHScopeStack::Cleanup {
1520     llvm::Value *Ptr;
1521     const FunctionDecl *OperatorDelete;
1522     QualType ElementType;
1523 
1524     CallObjectDelete(llvm::Value *Ptr,
1525                      const FunctionDecl *OperatorDelete,
1526                      QualType ElementType)
1527       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1528 
1529     void Emit(CodeGenFunction &CGF, Flags flags) override {
1530       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1531     }
1532   };
1533 }
1534 
1535 void
1536 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1537                                              llvm::Value *CompletePtr,
1538                                              QualType ElementType) {
1539   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1540                                         OperatorDelete, ElementType);
1541 }
1542 
1543 /// Emit the code for deleting a single object.
1544 static void EmitObjectDelete(CodeGenFunction &CGF,
1545                              const CXXDeleteExpr *DE,
1546                              Address Ptr,
1547                              QualType ElementType) {
1548   // Find the destructor for the type, if applicable.  If the
1549   // destructor is virtual, we'll just emit the vcall and return.
1550   const CXXDestructorDecl *Dtor = nullptr;
1551   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1552     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1553     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1554       Dtor = RD->getDestructor();
1555 
1556       if (Dtor->isVirtual()) {
1557         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1558                                                     Dtor);
1559         return;
1560       }
1561     }
1562   }
1563 
1564   // Make sure that we call delete even if the dtor throws.
1565   // This doesn't have to a conditional cleanup because we're going
1566   // to pop it off in a second.
1567   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1568   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1569                                             Ptr.getPointer(),
1570                                             OperatorDelete, ElementType);
1571 
1572   if (Dtor)
1573     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1574                               /*ForVirtualBase=*/false,
1575                               /*Delegating=*/false,
1576                               Ptr);
1577   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1578     switch (Lifetime) {
1579     case Qualifiers::OCL_None:
1580     case Qualifiers::OCL_ExplicitNone:
1581     case Qualifiers::OCL_Autoreleasing:
1582       break;
1583 
1584     case Qualifiers::OCL_Strong:
1585       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1586       break;
1587 
1588     case Qualifiers::OCL_Weak:
1589       CGF.EmitARCDestroyWeak(Ptr);
1590       break;
1591     }
1592   }
1593 
1594   CGF.PopCleanupBlock();
1595 }
1596 
1597 namespace {
1598   /// Calls the given 'operator delete' on an array of objects.
1599   struct CallArrayDelete final : EHScopeStack::Cleanup {
1600     llvm::Value *Ptr;
1601     const FunctionDecl *OperatorDelete;
1602     llvm::Value *NumElements;
1603     QualType ElementType;
1604     CharUnits CookieSize;
1605 
1606     CallArrayDelete(llvm::Value *Ptr,
1607                     const FunctionDecl *OperatorDelete,
1608                     llvm::Value *NumElements,
1609                     QualType ElementType,
1610                     CharUnits CookieSize)
1611       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1612         ElementType(ElementType), CookieSize(CookieSize) {}
1613 
1614     void Emit(CodeGenFunction &CGF, Flags flags) override {
1615       const FunctionProtoType *DeleteFTy =
1616         OperatorDelete->getType()->getAs<FunctionProtoType>();
1617       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1618 
1619       CallArgList Args;
1620 
1621       // Pass the pointer as the first argument.
1622       QualType VoidPtrTy = DeleteFTy->getParamType(0);
1623       llvm::Value *DeletePtr
1624         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1625       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1626 
1627       // Pass the original requested size as the second argument.
1628       if (DeleteFTy->getNumParams() == 2) {
1629         QualType size_t = DeleteFTy->getParamType(1);
1630         llvm::IntegerType *SizeTy
1631           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1632 
1633         CharUnits ElementTypeSize =
1634           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1635 
1636         // The size of an element, multiplied by the number of elements.
1637         llvm::Value *Size
1638           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1639         if (NumElements)
1640           Size = CGF.Builder.CreateMul(Size, NumElements);
1641 
1642         // Plus the size of the cookie if applicable.
1643         if (!CookieSize.isZero()) {
1644           llvm::Value *CookieSizeV
1645             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1646           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1647         }
1648 
1649         Args.add(RValue::get(Size), size_t);
1650       }
1651 
1652       // Emit the call to delete.
1653       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1654     }
1655   };
1656 }
1657 
1658 /// Emit the code for deleting an array of objects.
1659 static void EmitArrayDelete(CodeGenFunction &CGF,
1660                             const CXXDeleteExpr *E,
1661                             Address deletedPtr,
1662                             QualType elementType) {
1663   llvm::Value *numElements = nullptr;
1664   llvm::Value *allocatedPtr = nullptr;
1665   CharUnits cookieSize;
1666   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1667                                       numElements, allocatedPtr, cookieSize);
1668 
1669   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1670 
1671   // Make sure that we call delete even if one of the dtors throws.
1672   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1673   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1674                                            allocatedPtr, operatorDelete,
1675                                            numElements, elementType,
1676                                            cookieSize);
1677 
1678   // Destroy the elements.
1679   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1680     assert(numElements && "no element count for a type with a destructor!");
1681 
1682     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1683     CharUnits elementAlign =
1684       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1685 
1686     llvm::Value *arrayBegin = deletedPtr.getPointer();
1687     llvm::Value *arrayEnd =
1688       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1689 
1690     // Note that it is legal to allocate a zero-length array, and we
1691     // can never fold the check away because the length should always
1692     // come from a cookie.
1693     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1694                          CGF.getDestroyer(dtorKind),
1695                          /*checkZeroLength*/ true,
1696                          CGF.needsEHCleanup(dtorKind));
1697   }
1698 
1699   // Pop the cleanup block.
1700   CGF.PopCleanupBlock();
1701 }
1702 
1703 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1704   const Expr *Arg = E->getArgument();
1705   Address Ptr = EmitPointerWithAlignment(Arg);
1706 
1707   // Null check the pointer.
1708   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1709   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1710 
1711   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1712 
1713   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1714   EmitBlock(DeleteNotNull);
1715 
1716   // We might be deleting a pointer to array.  If so, GEP down to the
1717   // first non-array element.
1718   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1719   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1720   if (DeleteTy->isConstantArrayType()) {
1721     llvm::Value *Zero = Builder.getInt32(0);
1722     SmallVector<llvm::Value*,8> GEP;
1723 
1724     GEP.push_back(Zero); // point at the outermost array
1725 
1726     // For each layer of array type we're pointing at:
1727     while (const ConstantArrayType *Arr
1728              = getContext().getAsConstantArrayType(DeleteTy)) {
1729       // 1. Unpeel the array type.
1730       DeleteTy = Arr->getElementType();
1731 
1732       // 2. GEP to the first element of the array.
1733       GEP.push_back(Zero);
1734     }
1735 
1736     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1737                   Ptr.getAlignment());
1738   }
1739 
1740   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1741 
1742   if (E->isArrayForm()) {
1743     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1744   } else {
1745     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1746   }
1747 
1748   EmitBlock(DeleteEnd);
1749 }
1750 
1751 static bool isGLValueFromPointerDeref(const Expr *E) {
1752   E = E->IgnoreParens();
1753 
1754   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1755     if (!CE->getSubExpr()->isGLValue())
1756       return false;
1757     return isGLValueFromPointerDeref(CE->getSubExpr());
1758   }
1759 
1760   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1761     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1762 
1763   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1764     if (BO->getOpcode() == BO_Comma)
1765       return isGLValueFromPointerDeref(BO->getRHS());
1766 
1767   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1768     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1769            isGLValueFromPointerDeref(ACO->getFalseExpr());
1770 
1771   // C++11 [expr.sub]p1:
1772   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1773   if (isa<ArraySubscriptExpr>(E))
1774     return true;
1775 
1776   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1777     if (UO->getOpcode() == UO_Deref)
1778       return true;
1779 
1780   return false;
1781 }
1782 
1783 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1784                                          llvm::Type *StdTypeInfoPtrTy) {
1785   // Get the vtable pointer.
1786   Address ThisPtr = CGF.EmitLValue(E).getAddress();
1787 
1788   // C++ [expr.typeid]p2:
1789   //   If the glvalue expression is obtained by applying the unary * operator to
1790   //   a pointer and the pointer is a null pointer value, the typeid expression
1791   //   throws the std::bad_typeid exception.
1792   //
1793   // However, this paragraph's intent is not clear.  We choose a very generous
1794   // interpretation which implores us to consider comma operators, conditional
1795   // operators, parentheses and other such constructs.
1796   QualType SrcRecordTy = E->getType();
1797   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1798           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1799     llvm::BasicBlock *BadTypeidBlock =
1800         CGF.createBasicBlock("typeid.bad_typeid");
1801     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1802 
1803     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
1804     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1805 
1806     CGF.EmitBlock(BadTypeidBlock);
1807     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1808     CGF.EmitBlock(EndBlock);
1809   }
1810 
1811   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1812                                         StdTypeInfoPtrTy);
1813 }
1814 
1815 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1816   llvm::Type *StdTypeInfoPtrTy =
1817     ConvertType(E->getType())->getPointerTo();
1818 
1819   if (E->isTypeOperand()) {
1820     llvm::Constant *TypeInfo =
1821         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1822     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1823   }
1824 
1825   // C++ [expr.typeid]p2:
1826   //   When typeid is applied to a glvalue expression whose type is a
1827   //   polymorphic class type, the result refers to a std::type_info object
1828   //   representing the type of the most derived object (that is, the dynamic
1829   //   type) to which the glvalue refers.
1830   if (E->isPotentiallyEvaluated())
1831     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1832                                 StdTypeInfoPtrTy);
1833 
1834   QualType OperandTy = E->getExprOperand()->getType();
1835   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1836                                StdTypeInfoPtrTy);
1837 }
1838 
1839 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1840                                           QualType DestTy) {
1841   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1842   if (DestTy->isPointerType())
1843     return llvm::Constant::getNullValue(DestLTy);
1844 
1845   /// C++ [expr.dynamic.cast]p9:
1846   ///   A failed cast to reference type throws std::bad_cast
1847   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1848     return nullptr;
1849 
1850   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1851   return llvm::UndefValue::get(DestLTy);
1852 }
1853 
1854 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
1855                                               const CXXDynamicCastExpr *DCE) {
1856   CGM.EmitExplicitCastExprType(DCE, this);
1857   QualType DestTy = DCE->getTypeAsWritten();
1858 
1859   if (DCE->isAlwaysNull())
1860     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1861       return T;
1862 
1863   QualType SrcTy = DCE->getSubExpr()->getType();
1864 
1865   // C++ [expr.dynamic.cast]p7:
1866   //   If T is "pointer to cv void," then the result is a pointer to the most
1867   //   derived object pointed to by v.
1868   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1869 
1870   bool isDynamicCastToVoid;
1871   QualType SrcRecordTy;
1872   QualType DestRecordTy;
1873   if (DestPTy) {
1874     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1875     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1876     DestRecordTy = DestPTy->getPointeeType();
1877   } else {
1878     isDynamicCastToVoid = false;
1879     SrcRecordTy = SrcTy;
1880     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1881   }
1882 
1883   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1884 
1885   // C++ [expr.dynamic.cast]p4:
1886   //   If the value of v is a null pointer value in the pointer case, the result
1887   //   is the null pointer value of type T.
1888   bool ShouldNullCheckSrcValue =
1889       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1890                                                          SrcRecordTy);
1891 
1892   llvm::BasicBlock *CastNull = nullptr;
1893   llvm::BasicBlock *CastNotNull = nullptr;
1894   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1895 
1896   if (ShouldNullCheckSrcValue) {
1897     CastNull = createBasicBlock("dynamic_cast.null");
1898     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1899 
1900     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
1901     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1902     EmitBlock(CastNotNull);
1903   }
1904 
1905   llvm::Value *Value;
1906   if (isDynamicCastToVoid) {
1907     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
1908                                                   DestTy);
1909   } else {
1910     assert(DestRecordTy->isRecordType() &&
1911            "destination type must be a record type!");
1912     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
1913                                                 DestTy, DestRecordTy, CastEnd);
1914     CastNotNull = Builder.GetInsertBlock();
1915   }
1916 
1917   if (ShouldNullCheckSrcValue) {
1918     EmitBranch(CastEnd);
1919 
1920     EmitBlock(CastNull);
1921     EmitBranch(CastEnd);
1922   }
1923 
1924   EmitBlock(CastEnd);
1925 
1926   if (ShouldNullCheckSrcValue) {
1927     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1928     PHI->addIncoming(Value, CastNotNull);
1929     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1930 
1931     Value = PHI;
1932   }
1933 
1934   return Value;
1935 }
1936 
1937 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1938   RunCleanupsScope Scope(*this);
1939   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
1940 
1941   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1942   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1943                                                e = E->capture_init_end();
1944        i != e; ++i, ++CurField) {
1945     // Emit initialization
1946     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1947     if (CurField->hasCapturedVLAType()) {
1948       auto VAT = CurField->getCapturedVLAType();
1949       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1950     } else {
1951       ArrayRef<VarDecl *> ArrayIndexes;
1952       if (CurField->getType()->isArrayType())
1953         ArrayIndexes = E->getCaptureInitIndexVars(i);
1954       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1955     }
1956   }
1957 }
1958