1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs 28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 29 llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, 31 CallArgList &Args, CallArgList *RtlArgs) { 32 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 33 isa<CXXOperatorCallExpr>(CE)); 34 assert(MD->isInstance() && 35 "Trying to emit a member or operator call expr on a static method!"); 36 ASTContext &C = CGF.getContext(); 37 38 // Push the this ptr. 39 const CXXRecordDecl *RD = 40 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 41 Args.add(RValue::get(This), 42 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 43 44 // If there is an implicit parameter (e.g. VTT), emit it. 45 if (ImplicitParam) { 46 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 47 } 48 49 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 50 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 51 52 // And the rest of the call args. 53 if (RtlArgs) { 54 // Special case: if the caller emitted the arguments right-to-left already 55 // (prior to emitting the *this argument), we're done. This happens for 56 // assignment operators. 57 Args.addFrom(*RtlArgs); 58 } else if (CE) { 59 // Special case: skip first argument of CXXOperatorCall (it is "this"). 60 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 61 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 62 CE->getDirectCallee()); 63 } else { 64 assert( 65 FPT->getNumParams() == 0 && 66 "No CallExpr specified for function with non-zero number of arguments"); 67 } 68 return required; 69 } 70 71 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 72 const CXXMethodDecl *MD, const CGCallee &Callee, 73 ReturnValueSlot ReturnValue, 74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 75 const CallExpr *CE, CallArgList *RtlArgs) { 76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 77 CallArgList Args; 78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 79 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 80 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required); 81 return EmitCall(FnInfo, Callee, ReturnValue, Args); 82 } 83 84 RValue CodeGenFunction::EmitCXXDestructorCall( 85 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 86 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 87 StructorType Type) { 88 CallArgList Args; 89 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 90 ImplicitParamTy, CE, Args, nullptr); 91 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 92 Callee, ReturnValueSlot(), Args); 93 } 94 95 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 96 const CXXPseudoDestructorExpr *E) { 97 QualType DestroyedType = E->getDestroyedType(); 98 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 99 // Automatic Reference Counting: 100 // If the pseudo-expression names a retainable object with weak or 101 // strong lifetime, the object shall be released. 102 Expr *BaseExpr = E->getBase(); 103 Address BaseValue = Address::invalid(); 104 Qualifiers BaseQuals; 105 106 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 107 if (E->isArrow()) { 108 BaseValue = EmitPointerWithAlignment(BaseExpr); 109 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 110 BaseQuals = PTy->getPointeeType().getQualifiers(); 111 } else { 112 LValue BaseLV = EmitLValue(BaseExpr); 113 BaseValue = BaseLV.getAddress(); 114 QualType BaseTy = BaseExpr->getType(); 115 BaseQuals = BaseTy.getQualifiers(); 116 } 117 118 switch (DestroyedType.getObjCLifetime()) { 119 case Qualifiers::OCL_None: 120 case Qualifiers::OCL_ExplicitNone: 121 case Qualifiers::OCL_Autoreleasing: 122 break; 123 124 case Qualifiers::OCL_Strong: 125 EmitARCRelease(Builder.CreateLoad(BaseValue, 126 DestroyedType.isVolatileQualified()), 127 ARCPreciseLifetime); 128 break; 129 130 case Qualifiers::OCL_Weak: 131 EmitARCDestroyWeak(BaseValue); 132 break; 133 } 134 } else { 135 // C++ [expr.pseudo]p1: 136 // The result shall only be used as the operand for the function call 137 // operator (), and the result of such a call has type void. The only 138 // effect is the evaluation of the postfix-expression before the dot or 139 // arrow. 140 EmitIgnoredExpr(E->getBase()); 141 } 142 143 return RValue::get(nullptr); 144 } 145 146 static CXXRecordDecl *getCXXRecord(const Expr *E) { 147 QualType T = E->getType(); 148 if (const PointerType *PTy = T->getAs<PointerType>()) 149 T = PTy->getPointeeType(); 150 const RecordType *Ty = T->castAs<RecordType>(); 151 return cast<CXXRecordDecl>(Ty->getDecl()); 152 } 153 154 // Note: This function also emit constructor calls to support a MSVC 155 // extensions allowing explicit constructor function call. 156 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 157 ReturnValueSlot ReturnValue) { 158 const Expr *callee = CE->getCallee()->IgnoreParens(); 159 160 if (isa<BinaryOperator>(callee)) 161 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 162 163 const MemberExpr *ME = cast<MemberExpr>(callee); 164 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 165 166 if (MD->isStatic()) { 167 // The method is static, emit it as we would a regular call. 168 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 169 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 170 ReturnValue); 171 } 172 173 bool HasQualifier = ME->hasQualifier(); 174 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 175 bool IsArrow = ME->isArrow(); 176 const Expr *Base = ME->getBase(); 177 178 return EmitCXXMemberOrOperatorMemberCallExpr( 179 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 180 } 181 182 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 183 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 184 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 185 const Expr *Base) { 186 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 187 188 // Compute the object pointer. 189 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 190 191 const CXXMethodDecl *DevirtualizedMethod = nullptr; 192 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 193 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 194 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 195 assert(DevirtualizedMethod); 196 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 197 const Expr *Inner = Base->ignoreParenBaseCasts(); 198 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 199 MD->getReturnType().getCanonicalType()) 200 // If the return types are not the same, this might be a case where more 201 // code needs to run to compensate for it. For example, the derived 202 // method might return a type that inherits form from the return 203 // type of MD and has a prefix. 204 // For now we just avoid devirtualizing these covariant cases. 205 DevirtualizedMethod = nullptr; 206 else if (getCXXRecord(Inner) == DevirtualizedClass) 207 // If the class of the Inner expression is where the dynamic method 208 // is defined, build the this pointer from it. 209 Base = Inner; 210 else if (getCXXRecord(Base) != DevirtualizedClass) { 211 // If the method is defined in a class that is not the best dynamic 212 // one or the one of the full expression, we would have to build 213 // a derived-to-base cast to compute the correct this pointer, but 214 // we don't have support for that yet, so do a virtual call. 215 DevirtualizedMethod = nullptr; 216 } 217 } 218 219 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 220 // operator before the LHS. 221 CallArgList RtlArgStorage; 222 CallArgList *RtlArgs = nullptr; 223 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 224 if (OCE->isAssignmentOp()) { 225 RtlArgs = &RtlArgStorage; 226 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 227 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 228 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 229 } 230 } 231 232 Address This = Address::invalid(); 233 if (IsArrow) 234 This = EmitPointerWithAlignment(Base); 235 else 236 This = EmitLValue(Base).getAddress(); 237 238 239 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 240 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 241 if (isa<CXXConstructorDecl>(MD) && 242 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 243 return RValue::get(nullptr); 244 245 if (!MD->getParent()->mayInsertExtraPadding()) { 246 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 247 // We don't like to generate the trivial copy/move assignment operator 248 // when it isn't necessary; just produce the proper effect here. 249 LValue RHS = isa<CXXOperatorCallExpr>(CE) 250 ? MakeNaturalAlignAddrLValue( 251 (*RtlArgs)[0].RV.getScalarVal(), 252 (*(CE->arg_begin() + 1))->getType()) 253 : EmitLValue(*CE->arg_begin()); 254 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 255 return RValue::get(This.getPointer()); 256 } 257 258 if (isa<CXXConstructorDecl>(MD) && 259 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 260 // Trivial move and copy ctor are the same. 261 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 262 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 263 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 264 return RValue::get(This.getPointer()); 265 } 266 llvm_unreachable("unknown trivial member function"); 267 } 268 } 269 270 // Compute the function type we're calling. 271 const CXXMethodDecl *CalleeDecl = 272 DevirtualizedMethod ? DevirtualizedMethod : MD; 273 const CGFunctionInfo *FInfo = nullptr; 274 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 275 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 276 Dtor, StructorType::Complete); 277 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 278 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 279 Ctor, StructorType::Complete); 280 else 281 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 282 283 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 284 285 // C++11 [class.mfct.non-static]p2: 286 // If a non-static member function of a class X is called for an object that 287 // is not of type X, or of a type derived from X, the behavior is undefined. 288 SourceLocation CallLoc; 289 ASTContext &C = getContext(); 290 if (CE) 291 CallLoc = CE->getExprLoc(); 292 293 SanitizerSet SkippedChecks; 294 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) 295 if (CanElideObjectPointerNullCheck(CMCE->getImplicitObjectArgument())) 296 SkippedChecks.set(SanitizerKind::Null, true); 297 EmitTypeCheck( 298 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 299 : CodeGenFunction::TCK_MemberCall, 300 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 301 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 302 303 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 304 // 'CalleeDecl' instead. 305 306 // C++ [class.virtual]p12: 307 // Explicit qualification with the scope operator (5.1) suppresses the 308 // virtual call mechanism. 309 // 310 // We also don't emit a virtual call if the base expression has a record type 311 // because then we know what the type is. 312 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 313 314 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 315 assert(CE->arg_begin() == CE->arg_end() && 316 "Destructor shouldn't have explicit parameters"); 317 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 318 if (UseVirtualCall) { 319 CGM.getCXXABI().EmitVirtualDestructorCall( 320 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 321 } else { 322 CGCallee Callee; 323 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 324 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 325 else if (!DevirtualizedMethod) 326 Callee = CGCallee::forDirect( 327 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 328 Dtor); 329 else { 330 const CXXDestructorDecl *DDtor = 331 cast<CXXDestructorDecl>(DevirtualizedMethod); 332 Callee = CGCallee::forDirect( 333 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 334 DDtor); 335 } 336 EmitCXXMemberOrOperatorCall( 337 CalleeDecl, Callee, ReturnValue, This.getPointer(), 338 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 339 } 340 return RValue::get(nullptr); 341 } 342 343 CGCallee Callee; 344 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 345 Callee = CGCallee::forDirect( 346 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 347 Ctor); 348 } else if (UseVirtualCall) { 349 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 350 CE->getLocStart()); 351 } else { 352 if (SanOpts.has(SanitizerKind::CFINVCall) && 353 MD->getParent()->isDynamicClass()) { 354 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 355 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 356 CE->getLocStart()); 357 } 358 359 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 360 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 361 else if (!DevirtualizedMethod) 362 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 363 else { 364 Callee = CGCallee::forDirect( 365 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 366 DevirtualizedMethod); 367 } 368 } 369 370 if (MD->isVirtual()) { 371 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 372 *this, CalleeDecl, This, UseVirtualCall); 373 } 374 375 return EmitCXXMemberOrOperatorCall( 376 CalleeDecl, Callee, ReturnValue, This.getPointer(), 377 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 378 } 379 380 RValue 381 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 382 ReturnValueSlot ReturnValue) { 383 const BinaryOperator *BO = 384 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 385 const Expr *BaseExpr = BO->getLHS(); 386 const Expr *MemFnExpr = BO->getRHS(); 387 388 const MemberPointerType *MPT = 389 MemFnExpr->getType()->castAs<MemberPointerType>(); 390 391 const FunctionProtoType *FPT = 392 MPT->getPointeeType()->castAs<FunctionProtoType>(); 393 const CXXRecordDecl *RD = 394 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 395 396 // Emit the 'this' pointer. 397 Address This = Address::invalid(); 398 if (BO->getOpcode() == BO_PtrMemI) 399 This = EmitPointerWithAlignment(BaseExpr); 400 else 401 This = EmitLValue(BaseExpr).getAddress(); 402 403 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 404 QualType(MPT->getClass(), 0)); 405 406 // Get the member function pointer. 407 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 408 409 // Ask the ABI to load the callee. Note that This is modified. 410 llvm::Value *ThisPtrForCall = nullptr; 411 CGCallee Callee = 412 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 413 ThisPtrForCall, MemFnPtr, MPT); 414 415 CallArgList Args; 416 417 QualType ThisType = 418 getContext().getPointerType(getContext().getTagDeclType(RD)); 419 420 // Push the this ptr. 421 Args.add(RValue::get(ThisPtrForCall), ThisType); 422 423 RequiredArgs required = 424 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 425 426 // And the rest of the call args 427 EmitCallArgs(Args, FPT, E->arguments()); 428 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 429 Callee, ReturnValue, Args); 430 } 431 432 RValue 433 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 434 const CXXMethodDecl *MD, 435 ReturnValueSlot ReturnValue) { 436 assert(MD->isInstance() && 437 "Trying to emit a member call expr on a static method!"); 438 return EmitCXXMemberOrOperatorMemberCallExpr( 439 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 440 /*IsArrow=*/false, E->getArg(0)); 441 } 442 443 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 444 ReturnValueSlot ReturnValue) { 445 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 446 } 447 448 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 449 Address DestPtr, 450 const CXXRecordDecl *Base) { 451 if (Base->isEmpty()) 452 return; 453 454 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 455 456 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 457 CharUnits NVSize = Layout.getNonVirtualSize(); 458 459 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 460 // present, they are initialized by the most derived class before calling the 461 // constructor. 462 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 463 Stores.emplace_back(CharUnits::Zero(), NVSize); 464 465 // Each store is split by the existence of a vbptr. 466 CharUnits VBPtrWidth = CGF.getPointerSize(); 467 std::vector<CharUnits> VBPtrOffsets = 468 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 469 for (CharUnits VBPtrOffset : VBPtrOffsets) { 470 // Stop before we hit any virtual base pointers located in virtual bases. 471 if (VBPtrOffset >= NVSize) 472 break; 473 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 474 CharUnits LastStoreOffset = LastStore.first; 475 CharUnits LastStoreSize = LastStore.second; 476 477 CharUnits SplitBeforeOffset = LastStoreOffset; 478 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 479 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 480 if (!SplitBeforeSize.isZero()) 481 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 482 483 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 484 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 485 assert(!SplitAfterSize.isNegative() && "negative store size!"); 486 if (!SplitAfterSize.isZero()) 487 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 488 } 489 490 // If the type contains a pointer to data member we can't memset it to zero. 491 // Instead, create a null constant and copy it to the destination. 492 // TODO: there are other patterns besides zero that we can usefully memset, 493 // like -1, which happens to be the pattern used by member-pointers. 494 // TODO: isZeroInitializable can be over-conservative in the case where a 495 // virtual base contains a member pointer. 496 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 497 if (!NullConstantForBase->isNullValue()) { 498 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 499 CGF.CGM.getModule(), NullConstantForBase->getType(), 500 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 501 NullConstantForBase, Twine()); 502 503 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 504 DestPtr.getAlignment()); 505 NullVariable->setAlignment(Align.getQuantity()); 506 507 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 508 509 // Get and call the appropriate llvm.memcpy overload. 510 for (std::pair<CharUnits, CharUnits> Store : Stores) { 511 CharUnits StoreOffset = Store.first; 512 CharUnits StoreSize = Store.second; 513 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 514 CGF.Builder.CreateMemCpy( 515 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 516 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 517 StoreSizeVal); 518 } 519 520 // Otherwise, just memset the whole thing to zero. This is legal 521 // because in LLVM, all default initializers (other than the ones we just 522 // handled above) are guaranteed to have a bit pattern of all zeros. 523 } else { 524 for (std::pair<CharUnits, CharUnits> Store : Stores) { 525 CharUnits StoreOffset = Store.first; 526 CharUnits StoreSize = Store.second; 527 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 528 CGF.Builder.CreateMemSet( 529 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 530 CGF.Builder.getInt8(0), StoreSizeVal); 531 } 532 } 533 } 534 535 void 536 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 537 AggValueSlot Dest) { 538 assert(!Dest.isIgnored() && "Must have a destination!"); 539 const CXXConstructorDecl *CD = E->getConstructor(); 540 541 // If we require zero initialization before (or instead of) calling the 542 // constructor, as can be the case with a non-user-provided default 543 // constructor, emit the zero initialization now, unless destination is 544 // already zeroed. 545 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 546 switch (E->getConstructionKind()) { 547 case CXXConstructExpr::CK_Delegating: 548 case CXXConstructExpr::CK_Complete: 549 EmitNullInitialization(Dest.getAddress(), E->getType()); 550 break; 551 case CXXConstructExpr::CK_VirtualBase: 552 case CXXConstructExpr::CK_NonVirtualBase: 553 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 554 CD->getParent()); 555 break; 556 } 557 } 558 559 // If this is a call to a trivial default constructor, do nothing. 560 if (CD->isTrivial() && CD->isDefaultConstructor()) 561 return; 562 563 // Elide the constructor if we're constructing from a temporary. 564 // The temporary check is required because Sema sets this on NRVO 565 // returns. 566 if (getLangOpts().ElideConstructors && E->isElidable()) { 567 assert(getContext().hasSameUnqualifiedType(E->getType(), 568 E->getArg(0)->getType())); 569 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 570 EmitAggExpr(E->getArg(0), Dest); 571 return; 572 } 573 } 574 575 if (const ArrayType *arrayType 576 = getContext().getAsArrayType(E->getType())) { 577 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 578 } else { 579 CXXCtorType Type = Ctor_Complete; 580 bool ForVirtualBase = false; 581 bool Delegating = false; 582 583 switch (E->getConstructionKind()) { 584 case CXXConstructExpr::CK_Delegating: 585 // We should be emitting a constructor; GlobalDecl will assert this 586 Type = CurGD.getCtorType(); 587 Delegating = true; 588 break; 589 590 case CXXConstructExpr::CK_Complete: 591 Type = Ctor_Complete; 592 break; 593 594 case CXXConstructExpr::CK_VirtualBase: 595 ForVirtualBase = true; 596 // fall-through 597 598 case CXXConstructExpr::CK_NonVirtualBase: 599 Type = Ctor_Base; 600 } 601 602 // Call the constructor. 603 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 604 Dest.getAddress(), E); 605 } 606 } 607 608 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 609 const Expr *Exp) { 610 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 611 Exp = E->getSubExpr(); 612 assert(isa<CXXConstructExpr>(Exp) && 613 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 614 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 615 const CXXConstructorDecl *CD = E->getConstructor(); 616 RunCleanupsScope Scope(*this); 617 618 // If we require zero initialization before (or instead of) calling the 619 // constructor, as can be the case with a non-user-provided default 620 // constructor, emit the zero initialization now. 621 // FIXME. Do I still need this for a copy ctor synthesis? 622 if (E->requiresZeroInitialization()) 623 EmitNullInitialization(Dest, E->getType()); 624 625 assert(!getContext().getAsConstantArrayType(E->getType()) 626 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 627 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 628 } 629 630 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 631 const CXXNewExpr *E) { 632 if (!E->isArray()) 633 return CharUnits::Zero(); 634 635 // No cookie is required if the operator new[] being used is the 636 // reserved placement operator new[]. 637 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 638 return CharUnits::Zero(); 639 640 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 641 } 642 643 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 644 const CXXNewExpr *e, 645 unsigned minElements, 646 llvm::Value *&numElements, 647 llvm::Value *&sizeWithoutCookie) { 648 QualType type = e->getAllocatedType(); 649 650 if (!e->isArray()) { 651 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 652 sizeWithoutCookie 653 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 654 return sizeWithoutCookie; 655 } 656 657 // The width of size_t. 658 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 659 660 // Figure out the cookie size. 661 llvm::APInt cookieSize(sizeWidth, 662 CalculateCookiePadding(CGF, e).getQuantity()); 663 664 // Emit the array size expression. 665 // We multiply the size of all dimensions for NumElements. 666 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 667 numElements = CGF.CGM.EmitConstantExpr(e->getArraySize(), 668 CGF.getContext().getSizeType(), &CGF); 669 if (!numElements) 670 numElements = CGF.EmitScalarExpr(e->getArraySize()); 671 assert(isa<llvm::IntegerType>(numElements->getType())); 672 673 // The number of elements can be have an arbitrary integer type; 674 // essentially, we need to multiply it by a constant factor, add a 675 // cookie size, and verify that the result is representable as a 676 // size_t. That's just a gloss, though, and it's wrong in one 677 // important way: if the count is negative, it's an error even if 678 // the cookie size would bring the total size >= 0. 679 bool isSigned 680 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 681 llvm::IntegerType *numElementsType 682 = cast<llvm::IntegerType>(numElements->getType()); 683 unsigned numElementsWidth = numElementsType->getBitWidth(); 684 685 // Compute the constant factor. 686 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 687 while (const ConstantArrayType *CAT 688 = CGF.getContext().getAsConstantArrayType(type)) { 689 type = CAT->getElementType(); 690 arraySizeMultiplier *= CAT->getSize(); 691 } 692 693 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 694 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 695 typeSizeMultiplier *= arraySizeMultiplier; 696 697 // This will be a size_t. 698 llvm::Value *size; 699 700 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 701 // Don't bloat the -O0 code. 702 if (llvm::ConstantInt *numElementsC = 703 dyn_cast<llvm::ConstantInt>(numElements)) { 704 const llvm::APInt &count = numElementsC->getValue(); 705 706 bool hasAnyOverflow = false; 707 708 // If 'count' was a negative number, it's an overflow. 709 if (isSigned && count.isNegative()) 710 hasAnyOverflow = true; 711 712 // We want to do all this arithmetic in size_t. If numElements is 713 // wider than that, check whether it's already too big, and if so, 714 // overflow. 715 else if (numElementsWidth > sizeWidth && 716 numElementsWidth - sizeWidth > count.countLeadingZeros()) 717 hasAnyOverflow = true; 718 719 // Okay, compute a count at the right width. 720 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 721 722 // If there is a brace-initializer, we cannot allocate fewer elements than 723 // there are initializers. If we do, that's treated like an overflow. 724 if (adjustedCount.ult(minElements)) 725 hasAnyOverflow = true; 726 727 // Scale numElements by that. This might overflow, but we don't 728 // care because it only overflows if allocationSize does, too, and 729 // if that overflows then we shouldn't use this. 730 numElements = llvm::ConstantInt::get(CGF.SizeTy, 731 adjustedCount * arraySizeMultiplier); 732 733 // Compute the size before cookie, and track whether it overflowed. 734 bool overflow; 735 llvm::APInt allocationSize 736 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 737 hasAnyOverflow |= overflow; 738 739 // Add in the cookie, and check whether it's overflowed. 740 if (cookieSize != 0) { 741 // Save the current size without a cookie. This shouldn't be 742 // used if there was overflow. 743 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 744 745 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 746 hasAnyOverflow |= overflow; 747 } 748 749 // On overflow, produce a -1 so operator new will fail. 750 if (hasAnyOverflow) { 751 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 752 } else { 753 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 754 } 755 756 // Otherwise, we might need to use the overflow intrinsics. 757 } else { 758 // There are up to five conditions we need to test for: 759 // 1) if isSigned, we need to check whether numElements is negative; 760 // 2) if numElementsWidth > sizeWidth, we need to check whether 761 // numElements is larger than something representable in size_t; 762 // 3) if minElements > 0, we need to check whether numElements is smaller 763 // than that. 764 // 4) we need to compute 765 // sizeWithoutCookie := numElements * typeSizeMultiplier 766 // and check whether it overflows; and 767 // 5) if we need a cookie, we need to compute 768 // size := sizeWithoutCookie + cookieSize 769 // and check whether it overflows. 770 771 llvm::Value *hasOverflow = nullptr; 772 773 // If numElementsWidth > sizeWidth, then one way or another, we're 774 // going to have to do a comparison for (2), and this happens to 775 // take care of (1), too. 776 if (numElementsWidth > sizeWidth) { 777 llvm::APInt threshold(numElementsWidth, 1); 778 threshold <<= sizeWidth; 779 780 llvm::Value *thresholdV 781 = llvm::ConstantInt::get(numElementsType, threshold); 782 783 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 784 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 785 786 // Otherwise, if we're signed, we want to sext up to size_t. 787 } else if (isSigned) { 788 if (numElementsWidth < sizeWidth) 789 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 790 791 // If there's a non-1 type size multiplier, then we can do the 792 // signedness check at the same time as we do the multiply 793 // because a negative number times anything will cause an 794 // unsigned overflow. Otherwise, we have to do it here. But at least 795 // in this case, we can subsume the >= minElements check. 796 if (typeSizeMultiplier == 1) 797 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 798 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 799 800 // Otherwise, zext up to size_t if necessary. 801 } else if (numElementsWidth < sizeWidth) { 802 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 803 } 804 805 assert(numElements->getType() == CGF.SizeTy); 806 807 if (minElements) { 808 // Don't allow allocation of fewer elements than we have initializers. 809 if (!hasOverflow) { 810 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 811 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 812 } else if (numElementsWidth > sizeWidth) { 813 // The other existing overflow subsumes this check. 814 // We do an unsigned comparison, since any signed value < -1 is 815 // taken care of either above or below. 816 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 817 CGF.Builder.CreateICmpULT(numElements, 818 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 819 } 820 } 821 822 size = numElements; 823 824 // Multiply by the type size if necessary. This multiplier 825 // includes all the factors for nested arrays. 826 // 827 // This step also causes numElements to be scaled up by the 828 // nested-array factor if necessary. Overflow on this computation 829 // can be ignored because the result shouldn't be used if 830 // allocation fails. 831 if (typeSizeMultiplier != 1) { 832 llvm::Value *umul_with_overflow 833 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 834 835 llvm::Value *tsmV = 836 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 837 llvm::Value *result = 838 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 839 840 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 841 if (hasOverflow) 842 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 843 else 844 hasOverflow = overflowed; 845 846 size = CGF.Builder.CreateExtractValue(result, 0); 847 848 // Also scale up numElements by the array size multiplier. 849 if (arraySizeMultiplier != 1) { 850 // If the base element type size is 1, then we can re-use the 851 // multiply we just did. 852 if (typeSize.isOne()) { 853 assert(arraySizeMultiplier == typeSizeMultiplier); 854 numElements = size; 855 856 // Otherwise we need a separate multiply. 857 } else { 858 llvm::Value *asmV = 859 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 860 numElements = CGF.Builder.CreateMul(numElements, asmV); 861 } 862 } 863 } else { 864 // numElements doesn't need to be scaled. 865 assert(arraySizeMultiplier == 1); 866 } 867 868 // Add in the cookie size if necessary. 869 if (cookieSize != 0) { 870 sizeWithoutCookie = size; 871 872 llvm::Value *uadd_with_overflow 873 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 874 875 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 876 llvm::Value *result = 877 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 878 879 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 880 if (hasOverflow) 881 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 882 else 883 hasOverflow = overflowed; 884 885 size = CGF.Builder.CreateExtractValue(result, 0); 886 } 887 888 // If we had any possibility of dynamic overflow, make a select to 889 // overwrite 'size' with an all-ones value, which should cause 890 // operator new to throw. 891 if (hasOverflow) 892 size = CGF.Builder.CreateSelect(hasOverflow, 893 llvm::Constant::getAllOnesValue(CGF.SizeTy), 894 size); 895 } 896 897 if (cookieSize == 0) 898 sizeWithoutCookie = size; 899 else 900 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 901 902 return size; 903 } 904 905 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 906 QualType AllocType, Address NewPtr) { 907 // FIXME: Refactor with EmitExprAsInit. 908 switch (CGF.getEvaluationKind(AllocType)) { 909 case TEK_Scalar: 910 CGF.EmitScalarInit(Init, nullptr, 911 CGF.MakeAddrLValue(NewPtr, AllocType), false); 912 return; 913 case TEK_Complex: 914 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 915 /*isInit*/ true); 916 return; 917 case TEK_Aggregate: { 918 AggValueSlot Slot 919 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 920 AggValueSlot::IsDestructed, 921 AggValueSlot::DoesNotNeedGCBarriers, 922 AggValueSlot::IsNotAliased); 923 CGF.EmitAggExpr(Init, Slot); 924 return; 925 } 926 } 927 llvm_unreachable("bad evaluation kind"); 928 } 929 930 void CodeGenFunction::EmitNewArrayInitializer( 931 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 932 Address BeginPtr, llvm::Value *NumElements, 933 llvm::Value *AllocSizeWithoutCookie) { 934 // If we have a type with trivial initialization and no initializer, 935 // there's nothing to do. 936 if (!E->hasInitializer()) 937 return; 938 939 Address CurPtr = BeginPtr; 940 941 unsigned InitListElements = 0; 942 943 const Expr *Init = E->getInitializer(); 944 Address EndOfInit = Address::invalid(); 945 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 946 EHScopeStack::stable_iterator Cleanup; 947 llvm::Instruction *CleanupDominator = nullptr; 948 949 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 950 CharUnits ElementAlign = 951 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 952 953 // Attempt to perform zero-initialization using memset. 954 auto TryMemsetInitialization = [&]() -> bool { 955 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 956 // we can initialize with a memset to -1. 957 if (!CGM.getTypes().isZeroInitializable(ElementType)) 958 return false; 959 960 // Optimization: since zero initialization will just set the memory 961 // to all zeroes, generate a single memset to do it in one shot. 962 963 // Subtract out the size of any elements we've already initialized. 964 auto *RemainingSize = AllocSizeWithoutCookie; 965 if (InitListElements) { 966 // We know this can't overflow; we check this when doing the allocation. 967 auto *InitializedSize = llvm::ConstantInt::get( 968 RemainingSize->getType(), 969 getContext().getTypeSizeInChars(ElementType).getQuantity() * 970 InitListElements); 971 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 972 } 973 974 // Create the memset. 975 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 976 return true; 977 }; 978 979 // If the initializer is an initializer list, first do the explicit elements. 980 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 981 // Initializing from a (braced) string literal is a special case; the init 982 // list element does not initialize a (single) array element. 983 if (ILE->isStringLiteralInit()) { 984 // Initialize the initial portion of length equal to that of the string 985 // literal. The allocation must be for at least this much; we emitted a 986 // check for that earlier. 987 AggValueSlot Slot = 988 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 989 AggValueSlot::IsDestructed, 990 AggValueSlot::DoesNotNeedGCBarriers, 991 AggValueSlot::IsNotAliased); 992 EmitAggExpr(ILE->getInit(0), Slot); 993 994 // Move past these elements. 995 InitListElements = 996 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 997 ->getSize().getZExtValue(); 998 CurPtr = 999 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1000 Builder.getSize(InitListElements), 1001 "string.init.end"), 1002 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1003 ElementSize)); 1004 1005 // Zero out the rest, if any remain. 1006 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1007 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1008 bool OK = TryMemsetInitialization(); 1009 (void)OK; 1010 assert(OK && "couldn't memset character type?"); 1011 } 1012 return; 1013 } 1014 1015 InitListElements = ILE->getNumInits(); 1016 1017 // If this is a multi-dimensional array new, we will initialize multiple 1018 // elements with each init list element. 1019 QualType AllocType = E->getAllocatedType(); 1020 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1021 AllocType->getAsArrayTypeUnsafe())) { 1022 ElementTy = ConvertTypeForMem(AllocType); 1023 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1024 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1025 } 1026 1027 // Enter a partial-destruction Cleanup if necessary. 1028 if (needsEHCleanup(DtorKind)) { 1029 // In principle we could tell the Cleanup where we are more 1030 // directly, but the control flow can get so varied here that it 1031 // would actually be quite complex. Therefore we go through an 1032 // alloca. 1033 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1034 "array.init.end"); 1035 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1036 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1037 ElementType, ElementAlign, 1038 getDestroyer(DtorKind)); 1039 Cleanup = EHStack.stable_begin(); 1040 } 1041 1042 CharUnits StartAlign = CurPtr.getAlignment(); 1043 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1044 // Tell the cleanup that it needs to destroy up to this 1045 // element. TODO: some of these stores can be trivially 1046 // observed to be unnecessary. 1047 if (EndOfInit.isValid()) { 1048 auto FinishedPtr = 1049 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1050 Builder.CreateStore(FinishedPtr, EndOfInit); 1051 } 1052 // FIXME: If the last initializer is an incomplete initializer list for 1053 // an array, and we have an array filler, we can fold together the two 1054 // initialization loops. 1055 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1056 ILE->getInit(i)->getType(), CurPtr); 1057 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1058 Builder.getSize(1), 1059 "array.exp.next"), 1060 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1061 } 1062 1063 // The remaining elements are filled with the array filler expression. 1064 Init = ILE->getArrayFiller(); 1065 1066 // Extract the initializer for the individual array elements by pulling 1067 // out the array filler from all the nested initializer lists. This avoids 1068 // generating a nested loop for the initialization. 1069 while (Init && Init->getType()->isConstantArrayType()) { 1070 auto *SubILE = dyn_cast<InitListExpr>(Init); 1071 if (!SubILE) 1072 break; 1073 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1074 Init = SubILE->getArrayFiller(); 1075 } 1076 1077 // Switch back to initializing one base element at a time. 1078 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1079 } 1080 1081 // If all elements have already been initialized, skip any further 1082 // initialization. 1083 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1084 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1085 // If there was a Cleanup, deactivate it. 1086 if (CleanupDominator) 1087 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1088 return; 1089 } 1090 1091 assert(Init && "have trailing elements to initialize but no initializer"); 1092 1093 // If this is a constructor call, try to optimize it out, and failing that 1094 // emit a single loop to initialize all remaining elements. 1095 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1096 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1097 if (Ctor->isTrivial()) { 1098 // If new expression did not specify value-initialization, then there 1099 // is no initialization. 1100 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1101 return; 1102 1103 if (TryMemsetInitialization()) 1104 return; 1105 } 1106 1107 // Store the new Cleanup position for irregular Cleanups. 1108 // 1109 // FIXME: Share this cleanup with the constructor call emission rather than 1110 // having it create a cleanup of its own. 1111 if (EndOfInit.isValid()) 1112 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1113 1114 // Emit a constructor call loop to initialize the remaining elements. 1115 if (InitListElements) 1116 NumElements = Builder.CreateSub( 1117 NumElements, 1118 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1119 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1120 CCE->requiresZeroInitialization()); 1121 return; 1122 } 1123 1124 // If this is value-initialization, we can usually use memset. 1125 ImplicitValueInitExpr IVIE(ElementType); 1126 if (isa<ImplicitValueInitExpr>(Init)) { 1127 if (TryMemsetInitialization()) 1128 return; 1129 1130 // Switch to an ImplicitValueInitExpr for the element type. This handles 1131 // only one case: multidimensional array new of pointers to members. In 1132 // all other cases, we already have an initializer for the array element. 1133 Init = &IVIE; 1134 } 1135 1136 // At this point we should have found an initializer for the individual 1137 // elements of the array. 1138 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1139 "got wrong type of element to initialize"); 1140 1141 // If we have an empty initializer list, we can usually use memset. 1142 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1143 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1144 return; 1145 1146 // If we have a struct whose every field is value-initialized, we can 1147 // usually use memset. 1148 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1149 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1150 if (RType->getDecl()->isStruct()) { 1151 unsigned NumElements = 0; 1152 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1153 NumElements = CXXRD->getNumBases(); 1154 for (auto *Field : RType->getDecl()->fields()) 1155 if (!Field->isUnnamedBitfield()) 1156 ++NumElements; 1157 // FIXME: Recurse into nested InitListExprs. 1158 if (ILE->getNumInits() == NumElements) 1159 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1160 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1161 --NumElements; 1162 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1163 return; 1164 } 1165 } 1166 } 1167 1168 // Create the loop blocks. 1169 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1170 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1171 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1172 1173 // Find the end of the array, hoisted out of the loop. 1174 llvm::Value *EndPtr = 1175 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1176 1177 // If the number of elements isn't constant, we have to now check if there is 1178 // anything left to initialize. 1179 if (!ConstNum) { 1180 llvm::Value *IsEmpty = 1181 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1182 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1183 } 1184 1185 // Enter the loop. 1186 EmitBlock(LoopBB); 1187 1188 // Set up the current-element phi. 1189 llvm::PHINode *CurPtrPhi = 1190 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1191 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1192 1193 CurPtr = Address(CurPtrPhi, ElementAlign); 1194 1195 // Store the new Cleanup position for irregular Cleanups. 1196 if (EndOfInit.isValid()) 1197 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1198 1199 // Enter a partial-destruction Cleanup if necessary. 1200 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1201 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1202 ElementType, ElementAlign, 1203 getDestroyer(DtorKind)); 1204 Cleanup = EHStack.stable_begin(); 1205 CleanupDominator = Builder.CreateUnreachable(); 1206 } 1207 1208 // Emit the initializer into this element. 1209 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1210 1211 // Leave the Cleanup if we entered one. 1212 if (CleanupDominator) { 1213 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1214 CleanupDominator->eraseFromParent(); 1215 } 1216 1217 // Advance to the next element by adjusting the pointer type as necessary. 1218 llvm::Value *NextPtr = 1219 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1220 "array.next"); 1221 1222 // Check whether we've gotten to the end of the array and, if so, 1223 // exit the loop. 1224 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1225 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1226 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1227 1228 EmitBlock(ContBB); 1229 } 1230 1231 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1232 QualType ElementType, llvm::Type *ElementTy, 1233 Address NewPtr, llvm::Value *NumElements, 1234 llvm::Value *AllocSizeWithoutCookie) { 1235 ApplyDebugLocation DL(CGF, E); 1236 if (E->isArray()) 1237 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1238 AllocSizeWithoutCookie); 1239 else if (const Expr *Init = E->getInitializer()) 1240 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1241 } 1242 1243 /// Emit a call to an operator new or operator delete function, as implicitly 1244 /// created by new-expressions and delete-expressions. 1245 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1246 const FunctionDecl *CalleeDecl, 1247 const FunctionProtoType *CalleeType, 1248 const CallArgList &Args) { 1249 llvm::Instruction *CallOrInvoke; 1250 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1251 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1252 RValue RV = 1253 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1254 Args, CalleeType, /*chainCall=*/false), 1255 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1256 1257 /// C++1y [expr.new]p10: 1258 /// [In a new-expression,] an implementation is allowed to omit a call 1259 /// to a replaceable global allocation function. 1260 /// 1261 /// We model such elidable calls with the 'builtin' attribute. 1262 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1263 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1264 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1265 // FIXME: Add addAttribute to CallSite. 1266 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1267 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1268 llvm::Attribute::Builtin); 1269 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1270 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1271 llvm::Attribute::Builtin); 1272 else 1273 llvm_unreachable("unexpected kind of call instruction"); 1274 } 1275 1276 return RV; 1277 } 1278 1279 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1280 const Expr *Arg, 1281 bool IsDelete) { 1282 CallArgList Args; 1283 const Stmt *ArgS = Arg; 1284 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1285 // Find the allocation or deallocation function that we're calling. 1286 ASTContext &Ctx = getContext(); 1287 DeclarationName Name = Ctx.DeclarationNames 1288 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1289 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1290 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1291 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1292 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1293 llvm_unreachable("predeclared global operator new/delete is missing"); 1294 } 1295 1296 static std::pair<bool, bool> 1297 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) { 1298 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1299 1300 // The first argument is always a void*. 1301 ++AI; 1302 1303 // Figure out what other parameters we should be implicitly passing. 1304 bool PassSize = false; 1305 bool PassAlignment = false; 1306 1307 if (AI != AE && (*AI)->isIntegerType()) { 1308 PassSize = true; 1309 ++AI; 1310 } 1311 1312 if (AI != AE && (*AI)->isAlignValT()) { 1313 PassAlignment = true; 1314 ++AI; 1315 } 1316 1317 assert(AI == AE && "unexpected usual deallocation function parameter"); 1318 return {PassSize, PassAlignment}; 1319 } 1320 1321 namespace { 1322 /// A cleanup to call the given 'operator delete' function upon abnormal 1323 /// exit from a new expression. Templated on a traits type that deals with 1324 /// ensuring that the arguments dominate the cleanup if necessary. 1325 template<typename Traits> 1326 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1327 /// Type used to hold llvm::Value*s. 1328 typedef typename Traits::ValueTy ValueTy; 1329 /// Type used to hold RValues. 1330 typedef typename Traits::RValueTy RValueTy; 1331 struct PlacementArg { 1332 RValueTy ArgValue; 1333 QualType ArgType; 1334 }; 1335 1336 unsigned NumPlacementArgs : 31; 1337 unsigned PassAlignmentToPlacementDelete : 1; 1338 const FunctionDecl *OperatorDelete; 1339 ValueTy Ptr; 1340 ValueTy AllocSize; 1341 CharUnits AllocAlign; 1342 1343 PlacementArg *getPlacementArgs() { 1344 return reinterpret_cast<PlacementArg *>(this + 1); 1345 } 1346 1347 public: 1348 static size_t getExtraSize(size_t NumPlacementArgs) { 1349 return NumPlacementArgs * sizeof(PlacementArg); 1350 } 1351 1352 CallDeleteDuringNew(size_t NumPlacementArgs, 1353 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1354 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1355 CharUnits AllocAlign) 1356 : NumPlacementArgs(NumPlacementArgs), 1357 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1358 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1359 AllocAlign(AllocAlign) {} 1360 1361 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1362 assert(I < NumPlacementArgs && "index out of range"); 1363 getPlacementArgs()[I] = {Arg, Type}; 1364 } 1365 1366 void Emit(CodeGenFunction &CGF, Flags flags) override { 1367 const FunctionProtoType *FPT = 1368 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1369 CallArgList DeleteArgs; 1370 1371 // The first argument is always a void*. 1372 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1373 1374 // Figure out what other parameters we should be implicitly passing. 1375 bool PassSize = false; 1376 bool PassAlignment = false; 1377 if (NumPlacementArgs) { 1378 // A placement deallocation function is implicitly passed an alignment 1379 // if the placement allocation function was, but is never passed a size. 1380 PassAlignment = PassAlignmentToPlacementDelete; 1381 } else { 1382 // For a non-placement new-expression, 'operator delete' can take a 1383 // size and/or an alignment if it has the right parameters. 1384 std::tie(PassSize, PassAlignment) = 1385 shouldPassSizeAndAlignToUsualDelete(FPT); 1386 } 1387 1388 // The second argument can be a std::size_t (for non-placement delete). 1389 if (PassSize) 1390 DeleteArgs.add(Traits::get(CGF, AllocSize), 1391 CGF.getContext().getSizeType()); 1392 1393 // The next (second or third) argument can be a std::align_val_t, which 1394 // is an enum whose underlying type is std::size_t. 1395 // FIXME: Use the right type as the parameter type. Note that in a call 1396 // to operator delete(size_t, ...), we may not have it available. 1397 if (PassAlignment) 1398 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1399 CGF.SizeTy, AllocAlign.getQuantity())), 1400 CGF.getContext().getSizeType()); 1401 1402 // Pass the rest of the arguments, which must match exactly. 1403 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1404 auto Arg = getPlacementArgs()[I]; 1405 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1406 } 1407 1408 // Call 'operator delete'. 1409 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1410 } 1411 }; 1412 } 1413 1414 /// Enter a cleanup to call 'operator delete' if the initializer in a 1415 /// new-expression throws. 1416 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1417 const CXXNewExpr *E, 1418 Address NewPtr, 1419 llvm::Value *AllocSize, 1420 CharUnits AllocAlign, 1421 const CallArgList &NewArgs) { 1422 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1423 1424 // If we're not inside a conditional branch, then the cleanup will 1425 // dominate and we can do the easier (and more efficient) thing. 1426 if (!CGF.isInConditionalBranch()) { 1427 struct DirectCleanupTraits { 1428 typedef llvm::Value *ValueTy; 1429 typedef RValue RValueTy; 1430 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1431 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1432 }; 1433 1434 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1435 1436 DirectCleanup *Cleanup = CGF.EHStack 1437 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1438 E->getNumPlacementArgs(), 1439 E->getOperatorDelete(), 1440 NewPtr.getPointer(), 1441 AllocSize, 1442 E->passAlignment(), 1443 AllocAlign); 1444 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1445 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1446 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1447 } 1448 1449 return; 1450 } 1451 1452 // Otherwise, we need to save all this stuff. 1453 DominatingValue<RValue>::saved_type SavedNewPtr = 1454 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1455 DominatingValue<RValue>::saved_type SavedAllocSize = 1456 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1457 1458 struct ConditionalCleanupTraits { 1459 typedef DominatingValue<RValue>::saved_type ValueTy; 1460 typedef DominatingValue<RValue>::saved_type RValueTy; 1461 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1462 return V.restore(CGF); 1463 } 1464 }; 1465 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1466 1467 ConditionalCleanup *Cleanup = CGF.EHStack 1468 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1469 E->getNumPlacementArgs(), 1470 E->getOperatorDelete(), 1471 SavedNewPtr, 1472 SavedAllocSize, 1473 E->passAlignment(), 1474 AllocAlign); 1475 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1476 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1477 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1478 Arg.Ty); 1479 } 1480 1481 CGF.initFullExprCleanup(); 1482 } 1483 1484 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1485 // The element type being allocated. 1486 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1487 1488 // 1. Build a call to the allocation function. 1489 FunctionDecl *allocator = E->getOperatorNew(); 1490 1491 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1492 unsigned minElements = 0; 1493 if (E->isArray() && E->hasInitializer()) { 1494 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1495 if (ILE && ILE->isStringLiteralInit()) 1496 minElements = 1497 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1498 ->getSize().getZExtValue(); 1499 else if (ILE) 1500 minElements = ILE->getNumInits(); 1501 } 1502 1503 llvm::Value *numElements = nullptr; 1504 llvm::Value *allocSizeWithoutCookie = nullptr; 1505 llvm::Value *allocSize = 1506 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1507 allocSizeWithoutCookie); 1508 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1509 1510 // Emit the allocation call. If the allocator is a global placement 1511 // operator, just "inline" it directly. 1512 Address allocation = Address::invalid(); 1513 CallArgList allocatorArgs; 1514 if (allocator->isReservedGlobalPlacementOperator()) { 1515 assert(E->getNumPlacementArgs() == 1); 1516 const Expr *arg = *E->placement_arguments().begin(); 1517 1518 AlignmentSource alignSource; 1519 allocation = EmitPointerWithAlignment(arg, &alignSource); 1520 1521 // The pointer expression will, in many cases, be an opaque void*. 1522 // In these cases, discard the computed alignment and use the 1523 // formal alignment of the allocated type. 1524 if (alignSource != AlignmentSource::Decl) 1525 allocation = Address(allocation.getPointer(), allocAlign); 1526 1527 // Set up allocatorArgs for the call to operator delete if it's not 1528 // the reserved global operator. 1529 if (E->getOperatorDelete() && 1530 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1531 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1532 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1533 } 1534 1535 } else { 1536 const FunctionProtoType *allocatorType = 1537 allocator->getType()->castAs<FunctionProtoType>(); 1538 unsigned ParamsToSkip = 0; 1539 1540 // The allocation size is the first argument. 1541 QualType sizeType = getContext().getSizeType(); 1542 allocatorArgs.add(RValue::get(allocSize), sizeType); 1543 ++ParamsToSkip; 1544 1545 if (allocSize != allocSizeWithoutCookie) { 1546 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1547 allocAlign = std::max(allocAlign, cookieAlign); 1548 } 1549 1550 // The allocation alignment may be passed as the second argument. 1551 if (E->passAlignment()) { 1552 QualType AlignValT = sizeType; 1553 if (allocatorType->getNumParams() > 1) { 1554 AlignValT = allocatorType->getParamType(1); 1555 assert(getContext().hasSameUnqualifiedType( 1556 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1557 sizeType) && 1558 "wrong type for alignment parameter"); 1559 ++ParamsToSkip; 1560 } else { 1561 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1562 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1563 } 1564 allocatorArgs.add( 1565 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1566 AlignValT); 1567 } 1568 1569 // FIXME: Why do we not pass a CalleeDecl here? 1570 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1571 /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip); 1572 1573 RValue RV = 1574 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1575 1576 // If this was a call to a global replaceable allocation function that does 1577 // not take an alignment argument, the allocator is known to produce 1578 // storage that's suitably aligned for any object that fits, up to a known 1579 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1580 CharUnits allocationAlign = allocAlign; 1581 if (!E->passAlignment() && 1582 allocator->isReplaceableGlobalAllocationFunction()) { 1583 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1584 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1585 allocationAlign = std::max( 1586 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1587 } 1588 1589 allocation = Address(RV.getScalarVal(), allocationAlign); 1590 } 1591 1592 // Emit a null check on the allocation result if the allocation 1593 // function is allowed to return null (because it has a non-throwing 1594 // exception spec or is the reserved placement new) and we have an 1595 // interesting initializer. 1596 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1597 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1598 1599 llvm::BasicBlock *nullCheckBB = nullptr; 1600 llvm::BasicBlock *contBB = nullptr; 1601 1602 // The null-check means that the initializer is conditionally 1603 // evaluated. 1604 ConditionalEvaluation conditional(*this); 1605 1606 if (nullCheck) { 1607 conditional.begin(*this); 1608 1609 nullCheckBB = Builder.GetInsertBlock(); 1610 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1611 contBB = createBasicBlock("new.cont"); 1612 1613 llvm::Value *isNull = 1614 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1615 Builder.CreateCondBr(isNull, contBB, notNullBB); 1616 EmitBlock(notNullBB); 1617 } 1618 1619 // If there's an operator delete, enter a cleanup to call it if an 1620 // exception is thrown. 1621 EHScopeStack::stable_iterator operatorDeleteCleanup; 1622 llvm::Instruction *cleanupDominator = nullptr; 1623 if (E->getOperatorDelete() && 1624 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1625 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1626 allocatorArgs); 1627 operatorDeleteCleanup = EHStack.stable_begin(); 1628 cleanupDominator = Builder.CreateUnreachable(); 1629 } 1630 1631 assert((allocSize == allocSizeWithoutCookie) == 1632 CalculateCookiePadding(*this, E).isZero()); 1633 if (allocSize != allocSizeWithoutCookie) { 1634 assert(E->isArray()); 1635 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1636 numElements, 1637 E, allocType); 1638 } 1639 1640 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1641 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1642 1643 // Passing pointer through invariant.group.barrier to avoid propagation of 1644 // vptrs information which may be included in previous type. 1645 if (CGM.getCodeGenOpts().StrictVTablePointers && 1646 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1647 allocator->isReservedGlobalPlacementOperator()) 1648 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1649 result.getAlignment()); 1650 1651 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1652 allocSizeWithoutCookie); 1653 if (E->isArray()) { 1654 // NewPtr is a pointer to the base element type. If we're 1655 // allocating an array of arrays, we'll need to cast back to the 1656 // array pointer type. 1657 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1658 if (result.getType() != resultType) 1659 result = Builder.CreateBitCast(result, resultType); 1660 } 1661 1662 // Deactivate the 'operator delete' cleanup if we finished 1663 // initialization. 1664 if (operatorDeleteCleanup.isValid()) { 1665 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1666 cleanupDominator->eraseFromParent(); 1667 } 1668 1669 llvm::Value *resultPtr = result.getPointer(); 1670 if (nullCheck) { 1671 conditional.end(*this); 1672 1673 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1674 EmitBlock(contBB); 1675 1676 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1677 PHI->addIncoming(resultPtr, notNullBB); 1678 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1679 nullCheckBB); 1680 1681 resultPtr = PHI; 1682 } 1683 1684 return resultPtr; 1685 } 1686 1687 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1688 llvm::Value *Ptr, QualType DeleteTy, 1689 llvm::Value *NumElements, 1690 CharUnits CookieSize) { 1691 assert((!NumElements && CookieSize.isZero()) || 1692 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1693 1694 const FunctionProtoType *DeleteFTy = 1695 DeleteFD->getType()->getAs<FunctionProtoType>(); 1696 1697 CallArgList DeleteArgs; 1698 1699 std::pair<bool, bool> PassSizeAndAlign = 1700 shouldPassSizeAndAlignToUsualDelete(DeleteFTy); 1701 1702 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1703 1704 // Pass the pointer itself. 1705 QualType ArgTy = *ParamTypeIt++; 1706 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1707 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1708 1709 // Pass the size if the delete function has a size_t parameter. 1710 if (PassSizeAndAlign.first) { 1711 QualType SizeType = *ParamTypeIt++; 1712 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1713 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1714 DeleteTypeSize.getQuantity()); 1715 1716 // For array new, multiply by the number of elements. 1717 if (NumElements) 1718 Size = Builder.CreateMul(Size, NumElements); 1719 1720 // If there is a cookie, add the cookie size. 1721 if (!CookieSize.isZero()) 1722 Size = Builder.CreateAdd( 1723 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1724 1725 DeleteArgs.add(RValue::get(Size), SizeType); 1726 } 1727 1728 // Pass the alignment if the delete function has an align_val_t parameter. 1729 if (PassSizeAndAlign.second) { 1730 QualType AlignValType = *ParamTypeIt++; 1731 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1732 getContext().getTypeAlignIfKnown(DeleteTy)); 1733 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1734 DeleteTypeAlign.getQuantity()); 1735 DeleteArgs.add(RValue::get(Align), AlignValType); 1736 } 1737 1738 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1739 "unknown parameter to usual delete function"); 1740 1741 // Emit the call to delete. 1742 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1743 } 1744 1745 namespace { 1746 /// Calls the given 'operator delete' on a single object. 1747 struct CallObjectDelete final : EHScopeStack::Cleanup { 1748 llvm::Value *Ptr; 1749 const FunctionDecl *OperatorDelete; 1750 QualType ElementType; 1751 1752 CallObjectDelete(llvm::Value *Ptr, 1753 const FunctionDecl *OperatorDelete, 1754 QualType ElementType) 1755 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1756 1757 void Emit(CodeGenFunction &CGF, Flags flags) override { 1758 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1759 } 1760 }; 1761 } 1762 1763 void 1764 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1765 llvm::Value *CompletePtr, 1766 QualType ElementType) { 1767 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1768 OperatorDelete, ElementType); 1769 } 1770 1771 /// Emit the code for deleting a single object. 1772 static void EmitObjectDelete(CodeGenFunction &CGF, 1773 const CXXDeleteExpr *DE, 1774 Address Ptr, 1775 QualType ElementType) { 1776 // C++11 [expr.delete]p3: 1777 // If the static type of the object to be deleted is different from its 1778 // dynamic type, the static type shall be a base class of the dynamic type 1779 // of the object to be deleted and the static type shall have a virtual 1780 // destructor or the behavior is undefined. 1781 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1782 DE->getExprLoc(), Ptr.getPointer(), 1783 ElementType); 1784 1785 // Find the destructor for the type, if applicable. If the 1786 // destructor is virtual, we'll just emit the vcall and return. 1787 const CXXDestructorDecl *Dtor = nullptr; 1788 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1789 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1790 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1791 Dtor = RD->getDestructor(); 1792 1793 if (Dtor->isVirtual()) { 1794 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1795 Dtor); 1796 return; 1797 } 1798 } 1799 } 1800 1801 // Make sure that we call delete even if the dtor throws. 1802 // This doesn't have to a conditional cleanup because we're going 1803 // to pop it off in a second. 1804 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1805 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1806 Ptr.getPointer(), 1807 OperatorDelete, ElementType); 1808 1809 if (Dtor) 1810 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1811 /*ForVirtualBase=*/false, 1812 /*Delegating=*/false, 1813 Ptr); 1814 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1815 switch (Lifetime) { 1816 case Qualifiers::OCL_None: 1817 case Qualifiers::OCL_ExplicitNone: 1818 case Qualifiers::OCL_Autoreleasing: 1819 break; 1820 1821 case Qualifiers::OCL_Strong: 1822 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1823 break; 1824 1825 case Qualifiers::OCL_Weak: 1826 CGF.EmitARCDestroyWeak(Ptr); 1827 break; 1828 } 1829 } 1830 1831 CGF.PopCleanupBlock(); 1832 } 1833 1834 namespace { 1835 /// Calls the given 'operator delete' on an array of objects. 1836 struct CallArrayDelete final : EHScopeStack::Cleanup { 1837 llvm::Value *Ptr; 1838 const FunctionDecl *OperatorDelete; 1839 llvm::Value *NumElements; 1840 QualType ElementType; 1841 CharUnits CookieSize; 1842 1843 CallArrayDelete(llvm::Value *Ptr, 1844 const FunctionDecl *OperatorDelete, 1845 llvm::Value *NumElements, 1846 QualType ElementType, 1847 CharUnits CookieSize) 1848 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1849 ElementType(ElementType), CookieSize(CookieSize) {} 1850 1851 void Emit(CodeGenFunction &CGF, Flags flags) override { 1852 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1853 CookieSize); 1854 } 1855 }; 1856 } 1857 1858 /// Emit the code for deleting an array of objects. 1859 static void EmitArrayDelete(CodeGenFunction &CGF, 1860 const CXXDeleteExpr *E, 1861 Address deletedPtr, 1862 QualType elementType) { 1863 llvm::Value *numElements = nullptr; 1864 llvm::Value *allocatedPtr = nullptr; 1865 CharUnits cookieSize; 1866 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1867 numElements, allocatedPtr, cookieSize); 1868 1869 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1870 1871 // Make sure that we call delete even if one of the dtors throws. 1872 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1873 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1874 allocatedPtr, operatorDelete, 1875 numElements, elementType, 1876 cookieSize); 1877 1878 // Destroy the elements. 1879 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1880 assert(numElements && "no element count for a type with a destructor!"); 1881 1882 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1883 CharUnits elementAlign = 1884 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1885 1886 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1887 llvm::Value *arrayEnd = 1888 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1889 1890 // Note that it is legal to allocate a zero-length array, and we 1891 // can never fold the check away because the length should always 1892 // come from a cookie. 1893 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1894 CGF.getDestroyer(dtorKind), 1895 /*checkZeroLength*/ true, 1896 CGF.needsEHCleanup(dtorKind)); 1897 } 1898 1899 // Pop the cleanup block. 1900 CGF.PopCleanupBlock(); 1901 } 1902 1903 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1904 const Expr *Arg = E->getArgument(); 1905 Address Ptr = EmitPointerWithAlignment(Arg); 1906 1907 // Null check the pointer. 1908 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1909 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1910 1911 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1912 1913 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1914 EmitBlock(DeleteNotNull); 1915 1916 // We might be deleting a pointer to array. If so, GEP down to the 1917 // first non-array element. 1918 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1919 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1920 if (DeleteTy->isConstantArrayType()) { 1921 llvm::Value *Zero = Builder.getInt32(0); 1922 SmallVector<llvm::Value*,8> GEP; 1923 1924 GEP.push_back(Zero); // point at the outermost array 1925 1926 // For each layer of array type we're pointing at: 1927 while (const ConstantArrayType *Arr 1928 = getContext().getAsConstantArrayType(DeleteTy)) { 1929 // 1. Unpeel the array type. 1930 DeleteTy = Arr->getElementType(); 1931 1932 // 2. GEP to the first element of the array. 1933 GEP.push_back(Zero); 1934 } 1935 1936 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1937 Ptr.getAlignment()); 1938 } 1939 1940 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1941 1942 if (E->isArrayForm()) { 1943 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1944 } else { 1945 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1946 } 1947 1948 EmitBlock(DeleteEnd); 1949 } 1950 1951 static bool isGLValueFromPointerDeref(const Expr *E) { 1952 E = E->IgnoreParens(); 1953 1954 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1955 if (!CE->getSubExpr()->isGLValue()) 1956 return false; 1957 return isGLValueFromPointerDeref(CE->getSubExpr()); 1958 } 1959 1960 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1961 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1962 1963 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1964 if (BO->getOpcode() == BO_Comma) 1965 return isGLValueFromPointerDeref(BO->getRHS()); 1966 1967 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1968 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1969 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1970 1971 // C++11 [expr.sub]p1: 1972 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1973 if (isa<ArraySubscriptExpr>(E)) 1974 return true; 1975 1976 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1977 if (UO->getOpcode() == UO_Deref) 1978 return true; 1979 1980 return false; 1981 } 1982 1983 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1984 llvm::Type *StdTypeInfoPtrTy) { 1985 // Get the vtable pointer. 1986 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1987 1988 // C++ [expr.typeid]p2: 1989 // If the glvalue expression is obtained by applying the unary * operator to 1990 // a pointer and the pointer is a null pointer value, the typeid expression 1991 // throws the std::bad_typeid exception. 1992 // 1993 // However, this paragraph's intent is not clear. We choose a very generous 1994 // interpretation which implores us to consider comma operators, conditional 1995 // operators, parentheses and other such constructs. 1996 QualType SrcRecordTy = E->getType(); 1997 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1998 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1999 llvm::BasicBlock *BadTypeidBlock = 2000 CGF.createBasicBlock("typeid.bad_typeid"); 2001 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2002 2003 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2004 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2005 2006 CGF.EmitBlock(BadTypeidBlock); 2007 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2008 CGF.EmitBlock(EndBlock); 2009 } 2010 2011 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2012 StdTypeInfoPtrTy); 2013 } 2014 2015 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2016 llvm::Type *StdTypeInfoPtrTy = 2017 ConvertType(E->getType())->getPointerTo(); 2018 2019 if (E->isTypeOperand()) { 2020 llvm::Constant *TypeInfo = 2021 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2022 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2023 } 2024 2025 // C++ [expr.typeid]p2: 2026 // When typeid is applied to a glvalue expression whose type is a 2027 // polymorphic class type, the result refers to a std::type_info object 2028 // representing the type of the most derived object (that is, the dynamic 2029 // type) to which the glvalue refers. 2030 if (E->isPotentiallyEvaluated()) 2031 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2032 StdTypeInfoPtrTy); 2033 2034 QualType OperandTy = E->getExprOperand()->getType(); 2035 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2036 StdTypeInfoPtrTy); 2037 } 2038 2039 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2040 QualType DestTy) { 2041 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2042 if (DestTy->isPointerType()) 2043 return llvm::Constant::getNullValue(DestLTy); 2044 2045 /// C++ [expr.dynamic.cast]p9: 2046 /// A failed cast to reference type throws std::bad_cast 2047 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2048 return nullptr; 2049 2050 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2051 return llvm::UndefValue::get(DestLTy); 2052 } 2053 2054 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2055 const CXXDynamicCastExpr *DCE) { 2056 CGM.EmitExplicitCastExprType(DCE, this); 2057 QualType DestTy = DCE->getTypeAsWritten(); 2058 2059 if (DCE->isAlwaysNull()) 2060 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2061 return T; 2062 2063 QualType SrcTy = DCE->getSubExpr()->getType(); 2064 2065 // C++ [expr.dynamic.cast]p7: 2066 // If T is "pointer to cv void," then the result is a pointer to the most 2067 // derived object pointed to by v. 2068 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2069 2070 bool isDynamicCastToVoid; 2071 QualType SrcRecordTy; 2072 QualType DestRecordTy; 2073 if (DestPTy) { 2074 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2075 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2076 DestRecordTy = DestPTy->getPointeeType(); 2077 } else { 2078 isDynamicCastToVoid = false; 2079 SrcRecordTy = SrcTy; 2080 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2081 } 2082 2083 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2084 2085 // C++ [expr.dynamic.cast]p4: 2086 // If the value of v is a null pointer value in the pointer case, the result 2087 // is the null pointer value of type T. 2088 bool ShouldNullCheckSrcValue = 2089 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2090 SrcRecordTy); 2091 2092 llvm::BasicBlock *CastNull = nullptr; 2093 llvm::BasicBlock *CastNotNull = nullptr; 2094 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2095 2096 if (ShouldNullCheckSrcValue) { 2097 CastNull = createBasicBlock("dynamic_cast.null"); 2098 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2099 2100 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2101 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2102 EmitBlock(CastNotNull); 2103 } 2104 2105 llvm::Value *Value; 2106 if (isDynamicCastToVoid) { 2107 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2108 DestTy); 2109 } else { 2110 assert(DestRecordTy->isRecordType() && 2111 "destination type must be a record type!"); 2112 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2113 DestTy, DestRecordTy, CastEnd); 2114 CastNotNull = Builder.GetInsertBlock(); 2115 } 2116 2117 if (ShouldNullCheckSrcValue) { 2118 EmitBranch(CastEnd); 2119 2120 EmitBlock(CastNull); 2121 EmitBranch(CastEnd); 2122 } 2123 2124 EmitBlock(CastEnd); 2125 2126 if (ShouldNullCheckSrcValue) { 2127 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2128 PHI->addIncoming(Value, CastNotNull); 2129 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2130 2131 Value = PHI; 2132 } 2133 2134 return Value; 2135 } 2136 2137 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2138 RunCleanupsScope Scope(*this); 2139 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2140 2141 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2142 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2143 e = E->capture_init_end(); 2144 i != e; ++i, ++CurField) { 2145 // Emit initialization 2146 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2147 if (CurField->hasCapturedVLAType()) { 2148 auto VAT = CurField->getCapturedVLAType(); 2149 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2150 } else { 2151 EmitInitializerForField(*CurField, LV, *i); 2152 } 2153 } 2154 } 2155