1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "ConstantEmitter.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "llvm/IR/Intrinsics.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 struct MemberCallInfo {
28   RequiredArgs ReqArgs;
29   // Number of prefix arguments for the call. Ignores the `this` pointer.
30   unsigned PrefixSize;
31 };
32 }
33 
34 static MemberCallInfo
35 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
36                                   llvm::Value *This, llvm::Value *ImplicitParam,
37                                   QualType ImplicitParamTy, const CallExpr *CE,
38                                   CallArgList &Args, CallArgList *RtlArgs) {
39   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
40          isa<CXXOperatorCallExpr>(CE));
41   assert(MD->isInstance() &&
42          "Trying to emit a member or operator call expr on a static method!");
43 
44   // Push the this ptr.
45   const CXXRecordDecl *RD =
46       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
47   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
48 
49   // If there is an implicit parameter (e.g. VTT), emit it.
50   if (ImplicitParam) {
51     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
52   }
53 
54   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
55   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
56   unsigned PrefixSize = Args.size() - 1;
57 
58   // And the rest of the call args.
59   if (RtlArgs) {
60     // Special case: if the caller emitted the arguments right-to-left already
61     // (prior to emitting the *this argument), we're done. This happens for
62     // assignment operators.
63     Args.addFrom(*RtlArgs);
64   } else if (CE) {
65     // Special case: skip first argument of CXXOperatorCall (it is "this").
66     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
67     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
68                      CE->getDirectCallee());
69   } else {
70     assert(
71         FPT->getNumParams() == 0 &&
72         "No CallExpr specified for function with non-zero number of arguments");
73   }
74   return {required, PrefixSize};
75 }
76 
77 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
78     const CXXMethodDecl *MD, const CGCallee &Callee,
79     ReturnValueSlot ReturnValue,
80     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
81     const CallExpr *CE, CallArgList *RtlArgs) {
82   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
83   CallArgList Args;
84   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
85       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
86   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
87       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
88   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
89                   CE ? CE->getExprLoc() : SourceLocation());
90 }
91 
92 RValue CodeGenFunction::EmitCXXDestructorCall(
93     const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
94     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
95     StructorType Type) {
96   CallArgList Args;
97   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
98                                     ImplicitParamTy, CE, Args, nullptr);
99   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
100                   Callee, ReturnValueSlot(), Args);
101 }
102 
103 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
104                                             const CXXPseudoDestructorExpr *E) {
105   QualType DestroyedType = E->getDestroyedType();
106   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
107     // Automatic Reference Counting:
108     //   If the pseudo-expression names a retainable object with weak or
109     //   strong lifetime, the object shall be released.
110     Expr *BaseExpr = E->getBase();
111     Address BaseValue = Address::invalid();
112     Qualifiers BaseQuals;
113 
114     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
115     if (E->isArrow()) {
116       BaseValue = EmitPointerWithAlignment(BaseExpr);
117       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
118       BaseQuals = PTy->getPointeeType().getQualifiers();
119     } else {
120       LValue BaseLV = EmitLValue(BaseExpr);
121       BaseValue = BaseLV.getAddress();
122       QualType BaseTy = BaseExpr->getType();
123       BaseQuals = BaseTy.getQualifiers();
124     }
125 
126     switch (DestroyedType.getObjCLifetime()) {
127     case Qualifiers::OCL_None:
128     case Qualifiers::OCL_ExplicitNone:
129     case Qualifiers::OCL_Autoreleasing:
130       break;
131 
132     case Qualifiers::OCL_Strong:
133       EmitARCRelease(Builder.CreateLoad(BaseValue,
134                         DestroyedType.isVolatileQualified()),
135                      ARCPreciseLifetime);
136       break;
137 
138     case Qualifiers::OCL_Weak:
139       EmitARCDestroyWeak(BaseValue);
140       break;
141     }
142   } else {
143     // C++ [expr.pseudo]p1:
144     //   The result shall only be used as the operand for the function call
145     //   operator (), and the result of such a call has type void. The only
146     //   effect is the evaluation of the postfix-expression before the dot or
147     //   arrow.
148     EmitIgnoredExpr(E->getBase());
149   }
150 
151   return RValue::get(nullptr);
152 }
153 
154 static CXXRecordDecl *getCXXRecord(const Expr *E) {
155   QualType T = E->getType();
156   if (const PointerType *PTy = T->getAs<PointerType>())
157     T = PTy->getPointeeType();
158   const RecordType *Ty = T->castAs<RecordType>();
159   return cast<CXXRecordDecl>(Ty->getDecl());
160 }
161 
162 // Note: This function also emit constructor calls to support a MSVC
163 // extensions allowing explicit constructor function call.
164 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
165                                               ReturnValueSlot ReturnValue) {
166   const Expr *callee = CE->getCallee()->IgnoreParens();
167 
168   if (isa<BinaryOperator>(callee))
169     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
170 
171   const MemberExpr *ME = cast<MemberExpr>(callee);
172   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
173 
174   if (MD->isStatic()) {
175     // The method is static, emit it as we would a regular call.
176     CGCallee callee =
177         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
178     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
179                     ReturnValue);
180   }
181 
182   bool HasQualifier = ME->hasQualifier();
183   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
184   bool IsArrow = ME->isArrow();
185   const Expr *Base = ME->getBase();
186 
187   return EmitCXXMemberOrOperatorMemberCallExpr(
188       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
189 }
190 
191 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
192     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
193     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
194     const Expr *Base) {
195   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
196 
197   // Compute the object pointer.
198   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
199 
200   const CXXMethodDecl *DevirtualizedMethod = nullptr;
201   if (CanUseVirtualCall &&
202       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
203     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205     assert(DevirtualizedMethod);
206     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207     const Expr *Inner = Base->ignoreParenBaseCasts();
208     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
209         MD->getReturnType().getCanonicalType())
210       // If the return types are not the same, this might be a case where more
211       // code needs to run to compensate for it. For example, the derived
212       // method might return a type that inherits form from the return
213       // type of MD and has a prefix.
214       // For now we just avoid devirtualizing these covariant cases.
215       DevirtualizedMethod = nullptr;
216     else if (getCXXRecord(Inner) == DevirtualizedClass)
217       // If the class of the Inner expression is where the dynamic method
218       // is defined, build the this pointer from it.
219       Base = Inner;
220     else if (getCXXRecord(Base) != DevirtualizedClass) {
221       // If the method is defined in a class that is not the best dynamic
222       // one or the one of the full expression, we would have to build
223       // a derived-to-base cast to compute the correct this pointer, but
224       // we don't have support for that yet, so do a virtual call.
225       DevirtualizedMethod = nullptr;
226     }
227   }
228 
229   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
230   // operator before the LHS.
231   CallArgList RtlArgStorage;
232   CallArgList *RtlArgs = nullptr;
233   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
234     if (OCE->isAssignmentOp()) {
235       RtlArgs = &RtlArgStorage;
236       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
237                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
238                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
239     }
240   }
241 
242   LValue This;
243   if (IsArrow) {
244     LValueBaseInfo BaseInfo;
245     TBAAAccessInfo TBAAInfo;
246     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
247     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
248   } else {
249     This = EmitLValue(Base);
250   }
251 
252   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
253     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
254     // constructing a new complete object of type Ctor.
255     assert(!RtlArgs);
256     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
257     CallArgList Args;
258     commonEmitCXXMemberOrOperatorCall(
259         *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
260         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
261 
262     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
263                            /*Delegating=*/false, This.getAddress(), Args,
264                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
265                            /*NewPointerIsChecked=*/false);
266     return RValue::get(nullptr);
267   }
268 
269   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
270     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
271     if (!MD->getParent()->mayInsertExtraPadding()) {
272       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
273         // We don't like to generate the trivial copy/move assignment operator
274         // when it isn't necessary; just produce the proper effect here.
275         LValue RHS = isa<CXXOperatorCallExpr>(CE)
276                          ? MakeNaturalAlignAddrLValue(
277                                (*RtlArgs)[0].getRValue(*this).getScalarVal(),
278                                (*(CE->arg_begin() + 1))->getType())
279                          : EmitLValue(*CE->arg_begin());
280         EmitAggregateAssign(This, RHS, CE->getType());
281         return RValue::get(This.getPointer());
282       }
283       llvm_unreachable("unknown trivial member function");
284     }
285   }
286 
287   // Compute the function type we're calling.
288   const CXXMethodDecl *CalleeDecl =
289       DevirtualizedMethod ? DevirtualizedMethod : MD;
290   const CGFunctionInfo *FInfo = nullptr;
291   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
292     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
293         Dtor, StructorType::Complete);
294   else
295     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
296 
297   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
298 
299   // C++11 [class.mfct.non-static]p2:
300   //   If a non-static member function of a class X is called for an object that
301   //   is not of type X, or of a type derived from X, the behavior is undefined.
302   SourceLocation CallLoc;
303   ASTContext &C = getContext();
304   if (CE)
305     CallLoc = CE->getExprLoc();
306 
307   SanitizerSet SkippedChecks;
308   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
309     auto *IOA = CMCE->getImplicitObjectArgument();
310     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
311     if (IsImplicitObjectCXXThis)
312       SkippedChecks.set(SanitizerKind::Alignment, true);
313     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
314       SkippedChecks.set(SanitizerKind::Null, true);
315   }
316   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
317                 C.getRecordType(CalleeDecl->getParent()),
318                 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319 
320   // C++ [class.virtual]p12:
321   //   Explicit qualification with the scope operator (5.1) suppresses the
322   //   virtual call mechanism.
323   //
324   // We also don't emit a virtual call if the base expression has a record type
325   // because then we know what the type is.
326   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
327 
328   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
329     assert(CE->arg_begin() == CE->arg_end() &&
330            "Destructor shouldn't have explicit parameters");
331     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
332     if (UseVirtualCall) {
333       CGM.getCXXABI().EmitVirtualDestructorCall(
334           *this, Dtor, Dtor_Complete, This.getAddress(),
335           cast<CXXMemberCallExpr>(CE));
336     } else {
337       CGCallee Callee;
338       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
339         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
340       else if (!DevirtualizedMethod)
341         Callee = CGCallee::forDirect(
342             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
343             GlobalDecl(Dtor, Dtor_Complete));
344       else {
345         Callee = CGCallee::forDirect(
346             CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty),
347             GlobalDecl(Dtor, Dtor_Complete));
348       }
349 
350       EmitCXXDestructorCall(Dtor, Callee, This.getPointer(),
351                             /*ImplicitParam=*/nullptr,
352                             /*ImplicitParamTy=*/QualType(), nullptr,
353                             getFromDtorType(Dtor_Complete));
354     }
355     return RValue::get(nullptr);
356   }
357 
358   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
359   // 'CalleeDecl' instead.
360 
361   CGCallee Callee;
362   if (UseVirtualCall) {
363     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
364   } else {
365     if (SanOpts.has(SanitizerKind::CFINVCall) &&
366         MD->getParent()->isDynamicClass()) {
367       llvm::Value *VTable;
368       const CXXRecordDecl *RD;
369       std::tie(VTable, RD) =
370           CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
371                                         MD->getParent());
372       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
373     }
374 
375     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
376       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
377     else if (!DevirtualizedMethod)
378       Callee =
379           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
380     else {
381       Callee =
382           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
383                               GlobalDecl(DevirtualizedMethod));
384     }
385   }
386 
387   if (MD->isVirtual()) {
388     Address NewThisAddr =
389         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
390             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
391     This.setAddress(NewThisAddr);
392   }
393 
394   return EmitCXXMemberOrOperatorCall(
395       CalleeDecl, Callee, ReturnValue, This.getPointer(),
396       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
397 }
398 
399 RValue
400 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
401                                               ReturnValueSlot ReturnValue) {
402   const BinaryOperator *BO =
403       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
404   const Expr *BaseExpr = BO->getLHS();
405   const Expr *MemFnExpr = BO->getRHS();
406 
407   const MemberPointerType *MPT =
408     MemFnExpr->getType()->castAs<MemberPointerType>();
409 
410   const FunctionProtoType *FPT =
411     MPT->getPointeeType()->castAs<FunctionProtoType>();
412   const CXXRecordDecl *RD =
413     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
414 
415   // Emit the 'this' pointer.
416   Address This = Address::invalid();
417   if (BO->getOpcode() == BO_PtrMemI)
418     This = EmitPointerWithAlignment(BaseExpr);
419   else
420     This = EmitLValue(BaseExpr).getAddress();
421 
422   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
423                 QualType(MPT->getClass(), 0));
424 
425   // Get the member function pointer.
426   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
427 
428   // Ask the ABI to load the callee.  Note that This is modified.
429   llvm::Value *ThisPtrForCall = nullptr;
430   CGCallee Callee =
431     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
432                                              ThisPtrForCall, MemFnPtr, MPT);
433 
434   CallArgList Args;
435 
436   QualType ThisType =
437     getContext().getPointerType(getContext().getTagDeclType(RD));
438 
439   // Push the this ptr.
440   Args.add(RValue::get(ThisPtrForCall), ThisType);
441 
442   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
443 
444   // And the rest of the call args
445   EmitCallArgs(Args, FPT, E->arguments());
446   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
447                                                       /*PrefixSize=*/0),
448                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
449 }
450 
451 RValue
452 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
453                                                const CXXMethodDecl *MD,
454                                                ReturnValueSlot ReturnValue) {
455   assert(MD->isInstance() &&
456          "Trying to emit a member call expr on a static method!");
457   return EmitCXXMemberOrOperatorMemberCallExpr(
458       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
459       /*IsArrow=*/false, E->getArg(0));
460 }
461 
462 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
463                                                ReturnValueSlot ReturnValue) {
464   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
465 }
466 
467 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
468                                             Address DestPtr,
469                                             const CXXRecordDecl *Base) {
470   if (Base->isEmpty())
471     return;
472 
473   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
474 
475   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
476   CharUnits NVSize = Layout.getNonVirtualSize();
477 
478   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
479   // present, they are initialized by the most derived class before calling the
480   // constructor.
481   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
482   Stores.emplace_back(CharUnits::Zero(), NVSize);
483 
484   // Each store is split by the existence of a vbptr.
485   CharUnits VBPtrWidth = CGF.getPointerSize();
486   std::vector<CharUnits> VBPtrOffsets =
487       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
488   for (CharUnits VBPtrOffset : VBPtrOffsets) {
489     // Stop before we hit any virtual base pointers located in virtual bases.
490     if (VBPtrOffset >= NVSize)
491       break;
492     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
493     CharUnits LastStoreOffset = LastStore.first;
494     CharUnits LastStoreSize = LastStore.second;
495 
496     CharUnits SplitBeforeOffset = LastStoreOffset;
497     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
498     assert(!SplitBeforeSize.isNegative() && "negative store size!");
499     if (!SplitBeforeSize.isZero())
500       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
501 
502     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
503     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
504     assert(!SplitAfterSize.isNegative() && "negative store size!");
505     if (!SplitAfterSize.isZero())
506       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
507   }
508 
509   // If the type contains a pointer to data member we can't memset it to zero.
510   // Instead, create a null constant and copy it to the destination.
511   // TODO: there are other patterns besides zero that we can usefully memset,
512   // like -1, which happens to be the pattern used by member-pointers.
513   // TODO: isZeroInitializable can be over-conservative in the case where a
514   // virtual base contains a member pointer.
515   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
516   if (!NullConstantForBase->isNullValue()) {
517     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
518         CGF.CGM.getModule(), NullConstantForBase->getType(),
519         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
520         NullConstantForBase, Twine());
521 
522     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
523                                DestPtr.getAlignment());
524     NullVariable->setAlignment(Align.getQuantity());
525 
526     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
527 
528     // Get and call the appropriate llvm.memcpy overload.
529     for (std::pair<CharUnits, CharUnits> Store : Stores) {
530       CharUnits StoreOffset = Store.first;
531       CharUnits StoreSize = Store.second;
532       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
533       CGF.Builder.CreateMemCpy(
534           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
535           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
536           StoreSizeVal);
537     }
538 
539   // Otherwise, just memset the whole thing to zero.  This is legal
540   // because in LLVM, all default initializers (other than the ones we just
541   // handled above) are guaranteed to have a bit pattern of all zeros.
542   } else {
543     for (std::pair<CharUnits, CharUnits> Store : Stores) {
544       CharUnits StoreOffset = Store.first;
545       CharUnits StoreSize = Store.second;
546       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
547       CGF.Builder.CreateMemSet(
548           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
549           CGF.Builder.getInt8(0), StoreSizeVal);
550     }
551   }
552 }
553 
554 void
555 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
556                                       AggValueSlot Dest) {
557   assert(!Dest.isIgnored() && "Must have a destination!");
558   const CXXConstructorDecl *CD = E->getConstructor();
559 
560   // If we require zero initialization before (or instead of) calling the
561   // constructor, as can be the case with a non-user-provided default
562   // constructor, emit the zero initialization now, unless destination is
563   // already zeroed.
564   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
565     switch (E->getConstructionKind()) {
566     case CXXConstructExpr::CK_Delegating:
567     case CXXConstructExpr::CK_Complete:
568       EmitNullInitialization(Dest.getAddress(), E->getType());
569       break;
570     case CXXConstructExpr::CK_VirtualBase:
571     case CXXConstructExpr::CK_NonVirtualBase:
572       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
573                                       CD->getParent());
574       break;
575     }
576   }
577 
578   // If this is a call to a trivial default constructor, do nothing.
579   if (CD->isTrivial() && CD->isDefaultConstructor())
580     return;
581 
582   // Elide the constructor if we're constructing from a temporary.
583   // The temporary check is required because Sema sets this on NRVO
584   // returns.
585   if (getLangOpts().ElideConstructors && E->isElidable()) {
586     assert(getContext().hasSameUnqualifiedType(E->getType(),
587                                                E->getArg(0)->getType()));
588     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
589       EmitAggExpr(E->getArg(0), Dest);
590       return;
591     }
592   }
593 
594   if (const ArrayType *arrayType
595         = getContext().getAsArrayType(E->getType())) {
596     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
597                                Dest.isSanitizerChecked());
598   } else {
599     CXXCtorType Type = Ctor_Complete;
600     bool ForVirtualBase = false;
601     bool Delegating = false;
602 
603     switch (E->getConstructionKind()) {
604      case CXXConstructExpr::CK_Delegating:
605       // We should be emitting a constructor; GlobalDecl will assert this
606       Type = CurGD.getCtorType();
607       Delegating = true;
608       break;
609 
610      case CXXConstructExpr::CK_Complete:
611       Type = Ctor_Complete;
612       break;
613 
614      case CXXConstructExpr::CK_VirtualBase:
615       ForVirtualBase = true;
616       LLVM_FALLTHROUGH;
617 
618      case CXXConstructExpr::CK_NonVirtualBase:
619       Type = Ctor_Base;
620     }
621 
622     // Call the constructor.
623     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
624                            Dest.getAddress(), E, Dest.mayOverlap(),
625                            Dest.isSanitizerChecked());
626   }
627 }
628 
629 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
630                                                  const Expr *Exp) {
631   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
632     Exp = E->getSubExpr();
633   assert(isa<CXXConstructExpr>(Exp) &&
634          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
635   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
636   const CXXConstructorDecl *CD = E->getConstructor();
637   RunCleanupsScope Scope(*this);
638 
639   // If we require zero initialization before (or instead of) calling the
640   // constructor, as can be the case with a non-user-provided default
641   // constructor, emit the zero initialization now.
642   // FIXME. Do I still need this for a copy ctor synthesis?
643   if (E->requiresZeroInitialization())
644     EmitNullInitialization(Dest, E->getType());
645 
646   assert(!getContext().getAsConstantArrayType(E->getType())
647          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
648   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
649 }
650 
651 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
652                                         const CXXNewExpr *E) {
653   if (!E->isArray())
654     return CharUnits::Zero();
655 
656   // No cookie is required if the operator new[] being used is the
657   // reserved placement operator new[].
658   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
659     return CharUnits::Zero();
660 
661   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
662 }
663 
664 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
665                                         const CXXNewExpr *e,
666                                         unsigned minElements,
667                                         llvm::Value *&numElements,
668                                         llvm::Value *&sizeWithoutCookie) {
669   QualType type = e->getAllocatedType();
670 
671   if (!e->isArray()) {
672     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
673     sizeWithoutCookie
674       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
675     return sizeWithoutCookie;
676   }
677 
678   // The width of size_t.
679   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
680 
681   // Figure out the cookie size.
682   llvm::APInt cookieSize(sizeWidth,
683                          CalculateCookiePadding(CGF, e).getQuantity());
684 
685   // Emit the array size expression.
686   // We multiply the size of all dimensions for NumElements.
687   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
688   numElements =
689     ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
690   if (!numElements)
691     numElements = CGF.EmitScalarExpr(e->getArraySize());
692   assert(isa<llvm::IntegerType>(numElements->getType()));
693 
694   // The number of elements can be have an arbitrary integer type;
695   // essentially, we need to multiply it by a constant factor, add a
696   // cookie size, and verify that the result is representable as a
697   // size_t.  That's just a gloss, though, and it's wrong in one
698   // important way: if the count is negative, it's an error even if
699   // the cookie size would bring the total size >= 0.
700   bool isSigned
701     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
702   llvm::IntegerType *numElementsType
703     = cast<llvm::IntegerType>(numElements->getType());
704   unsigned numElementsWidth = numElementsType->getBitWidth();
705 
706   // Compute the constant factor.
707   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
708   while (const ConstantArrayType *CAT
709              = CGF.getContext().getAsConstantArrayType(type)) {
710     type = CAT->getElementType();
711     arraySizeMultiplier *= CAT->getSize();
712   }
713 
714   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
715   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
716   typeSizeMultiplier *= arraySizeMultiplier;
717 
718   // This will be a size_t.
719   llvm::Value *size;
720 
721   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
722   // Don't bloat the -O0 code.
723   if (llvm::ConstantInt *numElementsC =
724         dyn_cast<llvm::ConstantInt>(numElements)) {
725     const llvm::APInt &count = numElementsC->getValue();
726 
727     bool hasAnyOverflow = false;
728 
729     // If 'count' was a negative number, it's an overflow.
730     if (isSigned && count.isNegative())
731       hasAnyOverflow = true;
732 
733     // We want to do all this arithmetic in size_t.  If numElements is
734     // wider than that, check whether it's already too big, and if so,
735     // overflow.
736     else if (numElementsWidth > sizeWidth &&
737              numElementsWidth - sizeWidth > count.countLeadingZeros())
738       hasAnyOverflow = true;
739 
740     // Okay, compute a count at the right width.
741     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
742 
743     // If there is a brace-initializer, we cannot allocate fewer elements than
744     // there are initializers. If we do, that's treated like an overflow.
745     if (adjustedCount.ult(minElements))
746       hasAnyOverflow = true;
747 
748     // Scale numElements by that.  This might overflow, but we don't
749     // care because it only overflows if allocationSize does, too, and
750     // if that overflows then we shouldn't use this.
751     numElements = llvm::ConstantInt::get(CGF.SizeTy,
752                                          adjustedCount * arraySizeMultiplier);
753 
754     // Compute the size before cookie, and track whether it overflowed.
755     bool overflow;
756     llvm::APInt allocationSize
757       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
758     hasAnyOverflow |= overflow;
759 
760     // Add in the cookie, and check whether it's overflowed.
761     if (cookieSize != 0) {
762       // Save the current size without a cookie.  This shouldn't be
763       // used if there was overflow.
764       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
765 
766       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
767       hasAnyOverflow |= overflow;
768     }
769 
770     // On overflow, produce a -1 so operator new will fail.
771     if (hasAnyOverflow) {
772       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
773     } else {
774       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
775     }
776 
777   // Otherwise, we might need to use the overflow intrinsics.
778   } else {
779     // There are up to five conditions we need to test for:
780     // 1) if isSigned, we need to check whether numElements is negative;
781     // 2) if numElementsWidth > sizeWidth, we need to check whether
782     //   numElements is larger than something representable in size_t;
783     // 3) if minElements > 0, we need to check whether numElements is smaller
784     //    than that.
785     // 4) we need to compute
786     //      sizeWithoutCookie := numElements * typeSizeMultiplier
787     //    and check whether it overflows; and
788     // 5) if we need a cookie, we need to compute
789     //      size := sizeWithoutCookie + cookieSize
790     //    and check whether it overflows.
791 
792     llvm::Value *hasOverflow = nullptr;
793 
794     // If numElementsWidth > sizeWidth, then one way or another, we're
795     // going to have to do a comparison for (2), and this happens to
796     // take care of (1), too.
797     if (numElementsWidth > sizeWidth) {
798       llvm::APInt threshold(numElementsWidth, 1);
799       threshold <<= sizeWidth;
800 
801       llvm::Value *thresholdV
802         = llvm::ConstantInt::get(numElementsType, threshold);
803 
804       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
805       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
806 
807     // Otherwise, if we're signed, we want to sext up to size_t.
808     } else if (isSigned) {
809       if (numElementsWidth < sizeWidth)
810         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
811 
812       // If there's a non-1 type size multiplier, then we can do the
813       // signedness check at the same time as we do the multiply
814       // because a negative number times anything will cause an
815       // unsigned overflow.  Otherwise, we have to do it here. But at least
816       // in this case, we can subsume the >= minElements check.
817       if (typeSizeMultiplier == 1)
818         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
819                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
820 
821     // Otherwise, zext up to size_t if necessary.
822     } else if (numElementsWidth < sizeWidth) {
823       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
824     }
825 
826     assert(numElements->getType() == CGF.SizeTy);
827 
828     if (minElements) {
829       // Don't allow allocation of fewer elements than we have initializers.
830       if (!hasOverflow) {
831         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
832                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
833       } else if (numElementsWidth > sizeWidth) {
834         // The other existing overflow subsumes this check.
835         // We do an unsigned comparison, since any signed value < -1 is
836         // taken care of either above or below.
837         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
838                           CGF.Builder.CreateICmpULT(numElements,
839                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
840       }
841     }
842 
843     size = numElements;
844 
845     // Multiply by the type size if necessary.  This multiplier
846     // includes all the factors for nested arrays.
847     //
848     // This step also causes numElements to be scaled up by the
849     // nested-array factor if necessary.  Overflow on this computation
850     // can be ignored because the result shouldn't be used if
851     // allocation fails.
852     if (typeSizeMultiplier != 1) {
853       llvm::Function *umul_with_overflow
854         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
855 
856       llvm::Value *tsmV =
857         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
858       llvm::Value *result =
859           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
860 
861       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
862       if (hasOverflow)
863         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
864       else
865         hasOverflow = overflowed;
866 
867       size = CGF.Builder.CreateExtractValue(result, 0);
868 
869       // Also scale up numElements by the array size multiplier.
870       if (arraySizeMultiplier != 1) {
871         // If the base element type size is 1, then we can re-use the
872         // multiply we just did.
873         if (typeSize.isOne()) {
874           assert(arraySizeMultiplier == typeSizeMultiplier);
875           numElements = size;
876 
877         // Otherwise we need a separate multiply.
878         } else {
879           llvm::Value *asmV =
880             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
881           numElements = CGF.Builder.CreateMul(numElements, asmV);
882         }
883       }
884     } else {
885       // numElements doesn't need to be scaled.
886       assert(arraySizeMultiplier == 1);
887     }
888 
889     // Add in the cookie size if necessary.
890     if (cookieSize != 0) {
891       sizeWithoutCookie = size;
892 
893       llvm::Function *uadd_with_overflow
894         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
895 
896       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
897       llvm::Value *result =
898           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
899 
900       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
901       if (hasOverflow)
902         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
903       else
904         hasOverflow = overflowed;
905 
906       size = CGF.Builder.CreateExtractValue(result, 0);
907     }
908 
909     // If we had any possibility of dynamic overflow, make a select to
910     // overwrite 'size' with an all-ones value, which should cause
911     // operator new to throw.
912     if (hasOverflow)
913       size = CGF.Builder.CreateSelect(hasOverflow,
914                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
915                                       size);
916   }
917 
918   if (cookieSize == 0)
919     sizeWithoutCookie = size;
920   else
921     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
922 
923   return size;
924 }
925 
926 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
927                                     QualType AllocType, Address NewPtr,
928                                     AggValueSlot::Overlap_t MayOverlap) {
929   // FIXME: Refactor with EmitExprAsInit.
930   switch (CGF.getEvaluationKind(AllocType)) {
931   case TEK_Scalar:
932     CGF.EmitScalarInit(Init, nullptr,
933                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
934     return;
935   case TEK_Complex:
936     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
937                                   /*isInit*/ true);
938     return;
939   case TEK_Aggregate: {
940     AggValueSlot Slot
941       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
942                               AggValueSlot::IsDestructed,
943                               AggValueSlot::DoesNotNeedGCBarriers,
944                               AggValueSlot::IsNotAliased,
945                               MayOverlap, AggValueSlot::IsNotZeroed,
946                               AggValueSlot::IsSanitizerChecked);
947     CGF.EmitAggExpr(Init, Slot);
948     return;
949   }
950   }
951   llvm_unreachable("bad evaluation kind");
952 }
953 
954 void CodeGenFunction::EmitNewArrayInitializer(
955     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
956     Address BeginPtr, llvm::Value *NumElements,
957     llvm::Value *AllocSizeWithoutCookie) {
958   // If we have a type with trivial initialization and no initializer,
959   // there's nothing to do.
960   if (!E->hasInitializer())
961     return;
962 
963   Address CurPtr = BeginPtr;
964 
965   unsigned InitListElements = 0;
966 
967   const Expr *Init = E->getInitializer();
968   Address EndOfInit = Address::invalid();
969   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
970   EHScopeStack::stable_iterator Cleanup;
971   llvm::Instruction *CleanupDominator = nullptr;
972 
973   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
974   CharUnits ElementAlign =
975     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
976 
977   // Attempt to perform zero-initialization using memset.
978   auto TryMemsetInitialization = [&]() -> bool {
979     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
980     // we can initialize with a memset to -1.
981     if (!CGM.getTypes().isZeroInitializable(ElementType))
982       return false;
983 
984     // Optimization: since zero initialization will just set the memory
985     // to all zeroes, generate a single memset to do it in one shot.
986 
987     // Subtract out the size of any elements we've already initialized.
988     auto *RemainingSize = AllocSizeWithoutCookie;
989     if (InitListElements) {
990       // We know this can't overflow; we check this when doing the allocation.
991       auto *InitializedSize = llvm::ConstantInt::get(
992           RemainingSize->getType(),
993           getContext().getTypeSizeInChars(ElementType).getQuantity() *
994               InitListElements);
995       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
996     }
997 
998     // Create the memset.
999     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1000     return true;
1001   };
1002 
1003   // If the initializer is an initializer list, first do the explicit elements.
1004   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1005     // Initializing from a (braced) string literal is a special case; the init
1006     // list element does not initialize a (single) array element.
1007     if (ILE->isStringLiteralInit()) {
1008       // Initialize the initial portion of length equal to that of the string
1009       // literal. The allocation must be for at least this much; we emitted a
1010       // check for that earlier.
1011       AggValueSlot Slot =
1012           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1013                                 AggValueSlot::IsDestructed,
1014                                 AggValueSlot::DoesNotNeedGCBarriers,
1015                                 AggValueSlot::IsNotAliased,
1016                                 AggValueSlot::DoesNotOverlap,
1017                                 AggValueSlot::IsNotZeroed,
1018                                 AggValueSlot::IsSanitizerChecked);
1019       EmitAggExpr(ILE->getInit(0), Slot);
1020 
1021       // Move past these elements.
1022       InitListElements =
1023           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1024               ->getSize().getZExtValue();
1025       CurPtr =
1026           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1027                                             Builder.getSize(InitListElements),
1028                                             "string.init.end"),
1029                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1030                                                           ElementSize));
1031 
1032       // Zero out the rest, if any remain.
1033       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1034       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1035         bool OK = TryMemsetInitialization();
1036         (void)OK;
1037         assert(OK && "couldn't memset character type?");
1038       }
1039       return;
1040     }
1041 
1042     InitListElements = ILE->getNumInits();
1043 
1044     // If this is a multi-dimensional array new, we will initialize multiple
1045     // elements with each init list element.
1046     QualType AllocType = E->getAllocatedType();
1047     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1048             AllocType->getAsArrayTypeUnsafe())) {
1049       ElementTy = ConvertTypeForMem(AllocType);
1050       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1051       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1052     }
1053 
1054     // Enter a partial-destruction Cleanup if necessary.
1055     if (needsEHCleanup(DtorKind)) {
1056       // In principle we could tell the Cleanup where we are more
1057       // directly, but the control flow can get so varied here that it
1058       // would actually be quite complex.  Therefore we go through an
1059       // alloca.
1060       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1061                                    "array.init.end");
1062       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1063       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1064                                        ElementType, ElementAlign,
1065                                        getDestroyer(DtorKind));
1066       Cleanup = EHStack.stable_begin();
1067     }
1068 
1069     CharUnits StartAlign = CurPtr.getAlignment();
1070     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1071       // Tell the cleanup that it needs to destroy up to this
1072       // element.  TODO: some of these stores can be trivially
1073       // observed to be unnecessary.
1074       if (EndOfInit.isValid()) {
1075         auto FinishedPtr =
1076           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1077         Builder.CreateStore(FinishedPtr, EndOfInit);
1078       }
1079       // FIXME: If the last initializer is an incomplete initializer list for
1080       // an array, and we have an array filler, we can fold together the two
1081       // initialization loops.
1082       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1083                               ILE->getInit(i)->getType(), CurPtr,
1084                               AggValueSlot::DoesNotOverlap);
1085       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1086                                                  Builder.getSize(1),
1087                                                  "array.exp.next"),
1088                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1089     }
1090 
1091     // The remaining elements are filled with the array filler expression.
1092     Init = ILE->getArrayFiller();
1093 
1094     // Extract the initializer for the individual array elements by pulling
1095     // out the array filler from all the nested initializer lists. This avoids
1096     // generating a nested loop for the initialization.
1097     while (Init && Init->getType()->isConstantArrayType()) {
1098       auto *SubILE = dyn_cast<InitListExpr>(Init);
1099       if (!SubILE)
1100         break;
1101       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1102       Init = SubILE->getArrayFiller();
1103     }
1104 
1105     // Switch back to initializing one base element at a time.
1106     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1107   }
1108 
1109   // If all elements have already been initialized, skip any further
1110   // initialization.
1111   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1112   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1113     // If there was a Cleanup, deactivate it.
1114     if (CleanupDominator)
1115       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1116     return;
1117   }
1118 
1119   assert(Init && "have trailing elements to initialize but no initializer");
1120 
1121   // If this is a constructor call, try to optimize it out, and failing that
1122   // emit a single loop to initialize all remaining elements.
1123   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1124     CXXConstructorDecl *Ctor = CCE->getConstructor();
1125     if (Ctor->isTrivial()) {
1126       // If new expression did not specify value-initialization, then there
1127       // is no initialization.
1128       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1129         return;
1130 
1131       if (TryMemsetInitialization())
1132         return;
1133     }
1134 
1135     // Store the new Cleanup position for irregular Cleanups.
1136     //
1137     // FIXME: Share this cleanup with the constructor call emission rather than
1138     // having it create a cleanup of its own.
1139     if (EndOfInit.isValid())
1140       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1141 
1142     // Emit a constructor call loop to initialize the remaining elements.
1143     if (InitListElements)
1144       NumElements = Builder.CreateSub(
1145           NumElements,
1146           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1147     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1148                                /*NewPointerIsChecked*/true,
1149                                CCE->requiresZeroInitialization());
1150     return;
1151   }
1152 
1153   // If this is value-initialization, we can usually use memset.
1154   ImplicitValueInitExpr IVIE(ElementType);
1155   if (isa<ImplicitValueInitExpr>(Init)) {
1156     if (TryMemsetInitialization())
1157       return;
1158 
1159     // Switch to an ImplicitValueInitExpr for the element type. This handles
1160     // only one case: multidimensional array new of pointers to members. In
1161     // all other cases, we already have an initializer for the array element.
1162     Init = &IVIE;
1163   }
1164 
1165   // At this point we should have found an initializer for the individual
1166   // elements of the array.
1167   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1168          "got wrong type of element to initialize");
1169 
1170   // If we have an empty initializer list, we can usually use memset.
1171   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1172     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1173       return;
1174 
1175   // If we have a struct whose every field is value-initialized, we can
1176   // usually use memset.
1177   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1178     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1179       if (RType->getDecl()->isStruct()) {
1180         unsigned NumElements = 0;
1181         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1182           NumElements = CXXRD->getNumBases();
1183         for (auto *Field : RType->getDecl()->fields())
1184           if (!Field->isUnnamedBitfield())
1185             ++NumElements;
1186         // FIXME: Recurse into nested InitListExprs.
1187         if (ILE->getNumInits() == NumElements)
1188           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1189             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1190               --NumElements;
1191         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1192           return;
1193       }
1194     }
1195   }
1196 
1197   // Create the loop blocks.
1198   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1199   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1200   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1201 
1202   // Find the end of the array, hoisted out of the loop.
1203   llvm::Value *EndPtr =
1204     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1205 
1206   // If the number of elements isn't constant, we have to now check if there is
1207   // anything left to initialize.
1208   if (!ConstNum) {
1209     llvm::Value *IsEmpty =
1210       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1211     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1212   }
1213 
1214   // Enter the loop.
1215   EmitBlock(LoopBB);
1216 
1217   // Set up the current-element phi.
1218   llvm::PHINode *CurPtrPhi =
1219     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1220   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1221 
1222   CurPtr = Address(CurPtrPhi, ElementAlign);
1223 
1224   // Store the new Cleanup position for irregular Cleanups.
1225   if (EndOfInit.isValid())
1226     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1227 
1228   // Enter a partial-destruction Cleanup if necessary.
1229   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1230     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1231                                    ElementType, ElementAlign,
1232                                    getDestroyer(DtorKind));
1233     Cleanup = EHStack.stable_begin();
1234     CleanupDominator = Builder.CreateUnreachable();
1235   }
1236 
1237   // Emit the initializer into this element.
1238   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1239                           AggValueSlot::DoesNotOverlap);
1240 
1241   // Leave the Cleanup if we entered one.
1242   if (CleanupDominator) {
1243     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1244     CleanupDominator->eraseFromParent();
1245   }
1246 
1247   // Advance to the next element by adjusting the pointer type as necessary.
1248   llvm::Value *NextPtr =
1249     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1250                                        "array.next");
1251 
1252   // Check whether we've gotten to the end of the array and, if so,
1253   // exit the loop.
1254   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1255   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1256   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1257 
1258   EmitBlock(ContBB);
1259 }
1260 
1261 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1262                                QualType ElementType, llvm::Type *ElementTy,
1263                                Address NewPtr, llvm::Value *NumElements,
1264                                llvm::Value *AllocSizeWithoutCookie) {
1265   ApplyDebugLocation DL(CGF, E);
1266   if (E->isArray())
1267     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1268                                 AllocSizeWithoutCookie);
1269   else if (const Expr *Init = E->getInitializer())
1270     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1271                             AggValueSlot::DoesNotOverlap);
1272 }
1273 
1274 /// Emit a call to an operator new or operator delete function, as implicitly
1275 /// created by new-expressions and delete-expressions.
1276 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1277                                 const FunctionDecl *CalleeDecl,
1278                                 const FunctionProtoType *CalleeType,
1279                                 const CallArgList &Args) {
1280   llvm::CallBase *CallOrInvoke;
1281   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1282   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1283   RValue RV =
1284       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1285                        Args, CalleeType, /*chainCall=*/false),
1286                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1287 
1288   /// C++1y [expr.new]p10:
1289   ///   [In a new-expression,] an implementation is allowed to omit a call
1290   ///   to a replaceable global allocation function.
1291   ///
1292   /// We model such elidable calls with the 'builtin' attribute.
1293   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1294   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1295       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1296     CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1297                                llvm::Attribute::Builtin);
1298   }
1299 
1300   return RV;
1301 }
1302 
1303 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1304                                                  const CallExpr *TheCall,
1305                                                  bool IsDelete) {
1306   CallArgList Args;
1307   EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1308   // Find the allocation or deallocation function that we're calling.
1309   ASTContext &Ctx = getContext();
1310   DeclarationName Name = Ctx.DeclarationNames
1311       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1312 
1313   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1314     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1315       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1316         return EmitNewDeleteCall(*this, FD, Type, Args);
1317   llvm_unreachable("predeclared global operator new/delete is missing");
1318 }
1319 
1320 namespace {
1321 /// The parameters to pass to a usual operator delete.
1322 struct UsualDeleteParams {
1323   bool DestroyingDelete = false;
1324   bool Size = false;
1325   bool Alignment = false;
1326 };
1327 }
1328 
1329 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1330   UsualDeleteParams Params;
1331 
1332   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1333   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1334 
1335   // The first argument is always a void*.
1336   ++AI;
1337 
1338   // The next parameter may be a std::destroying_delete_t.
1339   if (FD->isDestroyingOperatorDelete()) {
1340     Params.DestroyingDelete = true;
1341     assert(AI != AE);
1342     ++AI;
1343   }
1344 
1345   // Figure out what other parameters we should be implicitly passing.
1346   if (AI != AE && (*AI)->isIntegerType()) {
1347     Params.Size = true;
1348     ++AI;
1349   }
1350 
1351   if (AI != AE && (*AI)->isAlignValT()) {
1352     Params.Alignment = true;
1353     ++AI;
1354   }
1355 
1356   assert(AI == AE && "unexpected usual deallocation function parameter");
1357   return Params;
1358 }
1359 
1360 namespace {
1361   /// A cleanup to call the given 'operator delete' function upon abnormal
1362   /// exit from a new expression. Templated on a traits type that deals with
1363   /// ensuring that the arguments dominate the cleanup if necessary.
1364   template<typename Traits>
1365   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1366     /// Type used to hold llvm::Value*s.
1367     typedef typename Traits::ValueTy ValueTy;
1368     /// Type used to hold RValues.
1369     typedef typename Traits::RValueTy RValueTy;
1370     struct PlacementArg {
1371       RValueTy ArgValue;
1372       QualType ArgType;
1373     };
1374 
1375     unsigned NumPlacementArgs : 31;
1376     unsigned PassAlignmentToPlacementDelete : 1;
1377     const FunctionDecl *OperatorDelete;
1378     ValueTy Ptr;
1379     ValueTy AllocSize;
1380     CharUnits AllocAlign;
1381 
1382     PlacementArg *getPlacementArgs() {
1383       return reinterpret_cast<PlacementArg *>(this + 1);
1384     }
1385 
1386   public:
1387     static size_t getExtraSize(size_t NumPlacementArgs) {
1388       return NumPlacementArgs * sizeof(PlacementArg);
1389     }
1390 
1391     CallDeleteDuringNew(size_t NumPlacementArgs,
1392                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1393                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1394                         CharUnits AllocAlign)
1395       : NumPlacementArgs(NumPlacementArgs),
1396         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1397         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1398         AllocAlign(AllocAlign) {}
1399 
1400     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1401       assert(I < NumPlacementArgs && "index out of range");
1402       getPlacementArgs()[I] = {Arg, Type};
1403     }
1404 
1405     void Emit(CodeGenFunction &CGF, Flags flags) override {
1406       const FunctionProtoType *FPT =
1407           OperatorDelete->getType()->getAs<FunctionProtoType>();
1408       CallArgList DeleteArgs;
1409 
1410       // The first argument is always a void* (or C* for a destroying operator
1411       // delete for class type C).
1412       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1413 
1414       // Figure out what other parameters we should be implicitly passing.
1415       UsualDeleteParams Params;
1416       if (NumPlacementArgs) {
1417         // A placement deallocation function is implicitly passed an alignment
1418         // if the placement allocation function was, but is never passed a size.
1419         Params.Alignment = PassAlignmentToPlacementDelete;
1420       } else {
1421         // For a non-placement new-expression, 'operator delete' can take a
1422         // size and/or an alignment if it has the right parameters.
1423         Params = getUsualDeleteParams(OperatorDelete);
1424       }
1425 
1426       assert(!Params.DestroyingDelete &&
1427              "should not call destroying delete in a new-expression");
1428 
1429       // The second argument can be a std::size_t (for non-placement delete).
1430       if (Params.Size)
1431         DeleteArgs.add(Traits::get(CGF, AllocSize),
1432                        CGF.getContext().getSizeType());
1433 
1434       // The next (second or third) argument can be a std::align_val_t, which
1435       // is an enum whose underlying type is std::size_t.
1436       // FIXME: Use the right type as the parameter type. Note that in a call
1437       // to operator delete(size_t, ...), we may not have it available.
1438       if (Params.Alignment)
1439         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1440                            CGF.SizeTy, AllocAlign.getQuantity())),
1441                        CGF.getContext().getSizeType());
1442 
1443       // Pass the rest of the arguments, which must match exactly.
1444       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1445         auto Arg = getPlacementArgs()[I];
1446         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1447       }
1448 
1449       // Call 'operator delete'.
1450       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1451     }
1452   };
1453 }
1454 
1455 /// Enter a cleanup to call 'operator delete' if the initializer in a
1456 /// new-expression throws.
1457 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1458                                   const CXXNewExpr *E,
1459                                   Address NewPtr,
1460                                   llvm::Value *AllocSize,
1461                                   CharUnits AllocAlign,
1462                                   const CallArgList &NewArgs) {
1463   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1464 
1465   // If we're not inside a conditional branch, then the cleanup will
1466   // dominate and we can do the easier (and more efficient) thing.
1467   if (!CGF.isInConditionalBranch()) {
1468     struct DirectCleanupTraits {
1469       typedef llvm::Value *ValueTy;
1470       typedef RValue RValueTy;
1471       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1472       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1473     };
1474 
1475     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1476 
1477     DirectCleanup *Cleanup = CGF.EHStack
1478       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1479                                            E->getNumPlacementArgs(),
1480                                            E->getOperatorDelete(),
1481                                            NewPtr.getPointer(),
1482                                            AllocSize,
1483                                            E->passAlignment(),
1484                                            AllocAlign);
1485     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1486       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1487       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1488     }
1489 
1490     return;
1491   }
1492 
1493   // Otherwise, we need to save all this stuff.
1494   DominatingValue<RValue>::saved_type SavedNewPtr =
1495     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1496   DominatingValue<RValue>::saved_type SavedAllocSize =
1497     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1498 
1499   struct ConditionalCleanupTraits {
1500     typedef DominatingValue<RValue>::saved_type ValueTy;
1501     typedef DominatingValue<RValue>::saved_type RValueTy;
1502     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1503       return V.restore(CGF);
1504     }
1505   };
1506   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1507 
1508   ConditionalCleanup *Cleanup = CGF.EHStack
1509     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1510                                               E->getNumPlacementArgs(),
1511                                               E->getOperatorDelete(),
1512                                               SavedNewPtr,
1513                                               SavedAllocSize,
1514                                               E->passAlignment(),
1515                                               AllocAlign);
1516   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1517     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1518     Cleanup->setPlacementArg(
1519         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1520   }
1521 
1522   CGF.initFullExprCleanup();
1523 }
1524 
1525 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1526   // The element type being allocated.
1527   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1528 
1529   // 1. Build a call to the allocation function.
1530   FunctionDecl *allocator = E->getOperatorNew();
1531 
1532   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1533   unsigned minElements = 0;
1534   if (E->isArray() && E->hasInitializer()) {
1535     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1536     if (ILE && ILE->isStringLiteralInit())
1537       minElements =
1538           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1539               ->getSize().getZExtValue();
1540     else if (ILE)
1541       minElements = ILE->getNumInits();
1542   }
1543 
1544   llvm::Value *numElements = nullptr;
1545   llvm::Value *allocSizeWithoutCookie = nullptr;
1546   llvm::Value *allocSize =
1547     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1548                         allocSizeWithoutCookie);
1549   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1550 
1551   // Emit the allocation call.  If the allocator is a global placement
1552   // operator, just "inline" it directly.
1553   Address allocation = Address::invalid();
1554   CallArgList allocatorArgs;
1555   if (allocator->isReservedGlobalPlacementOperator()) {
1556     assert(E->getNumPlacementArgs() == 1);
1557     const Expr *arg = *E->placement_arguments().begin();
1558 
1559     LValueBaseInfo BaseInfo;
1560     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1561 
1562     // The pointer expression will, in many cases, be an opaque void*.
1563     // In these cases, discard the computed alignment and use the
1564     // formal alignment of the allocated type.
1565     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1566       allocation = Address(allocation.getPointer(), allocAlign);
1567 
1568     // Set up allocatorArgs for the call to operator delete if it's not
1569     // the reserved global operator.
1570     if (E->getOperatorDelete() &&
1571         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1572       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1573       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1574     }
1575 
1576   } else {
1577     const FunctionProtoType *allocatorType =
1578       allocator->getType()->castAs<FunctionProtoType>();
1579     unsigned ParamsToSkip = 0;
1580 
1581     // The allocation size is the first argument.
1582     QualType sizeType = getContext().getSizeType();
1583     allocatorArgs.add(RValue::get(allocSize), sizeType);
1584     ++ParamsToSkip;
1585 
1586     if (allocSize != allocSizeWithoutCookie) {
1587       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1588       allocAlign = std::max(allocAlign, cookieAlign);
1589     }
1590 
1591     // The allocation alignment may be passed as the second argument.
1592     if (E->passAlignment()) {
1593       QualType AlignValT = sizeType;
1594       if (allocatorType->getNumParams() > 1) {
1595         AlignValT = allocatorType->getParamType(1);
1596         assert(getContext().hasSameUnqualifiedType(
1597                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1598                    sizeType) &&
1599                "wrong type for alignment parameter");
1600         ++ParamsToSkip;
1601       } else {
1602         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1603         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1604       }
1605       allocatorArgs.add(
1606           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1607           AlignValT);
1608     }
1609 
1610     // FIXME: Why do we not pass a CalleeDecl here?
1611     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1612                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1613 
1614     RValue RV =
1615       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1616 
1617     // If this was a call to a global replaceable allocation function that does
1618     // not take an alignment argument, the allocator is known to produce
1619     // storage that's suitably aligned for any object that fits, up to a known
1620     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1621     CharUnits allocationAlign = allocAlign;
1622     if (!E->passAlignment() &&
1623         allocator->isReplaceableGlobalAllocationFunction()) {
1624       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1625           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1626       allocationAlign = std::max(
1627           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1628     }
1629 
1630     allocation = Address(RV.getScalarVal(), allocationAlign);
1631   }
1632 
1633   // Emit a null check on the allocation result if the allocation
1634   // function is allowed to return null (because it has a non-throwing
1635   // exception spec or is the reserved placement new) and we have an
1636   // interesting initializer will be running sanitizers on the initialization.
1637   bool nullCheck = E->shouldNullCheckAllocation() &&
1638                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1639                     sanitizePerformTypeCheck());
1640 
1641   llvm::BasicBlock *nullCheckBB = nullptr;
1642   llvm::BasicBlock *contBB = nullptr;
1643 
1644   // The null-check means that the initializer is conditionally
1645   // evaluated.
1646   ConditionalEvaluation conditional(*this);
1647 
1648   if (nullCheck) {
1649     conditional.begin(*this);
1650 
1651     nullCheckBB = Builder.GetInsertBlock();
1652     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1653     contBB = createBasicBlock("new.cont");
1654 
1655     llvm::Value *isNull =
1656       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1657     Builder.CreateCondBr(isNull, contBB, notNullBB);
1658     EmitBlock(notNullBB);
1659   }
1660 
1661   // If there's an operator delete, enter a cleanup to call it if an
1662   // exception is thrown.
1663   EHScopeStack::stable_iterator operatorDeleteCleanup;
1664   llvm::Instruction *cleanupDominator = nullptr;
1665   if (E->getOperatorDelete() &&
1666       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1667     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1668                           allocatorArgs);
1669     operatorDeleteCleanup = EHStack.stable_begin();
1670     cleanupDominator = Builder.CreateUnreachable();
1671   }
1672 
1673   assert((allocSize == allocSizeWithoutCookie) ==
1674          CalculateCookiePadding(*this, E).isZero());
1675   if (allocSize != allocSizeWithoutCookie) {
1676     assert(E->isArray());
1677     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1678                                                        numElements,
1679                                                        E, allocType);
1680   }
1681 
1682   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1683   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1684 
1685   // Passing pointer through launder.invariant.group to avoid propagation of
1686   // vptrs information which may be included in previous type.
1687   // To not break LTO with different optimizations levels, we do it regardless
1688   // of optimization level.
1689   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1690       allocator->isReservedGlobalPlacementOperator())
1691     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1692                      result.getAlignment());
1693 
1694   // Emit sanitizer checks for pointer value now, so that in the case of an
1695   // array it was checked only once and not at each constructor call. We may
1696   // have already checked that the pointer is non-null.
1697   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1698   // we'll null check the wrong pointer here.
1699   SanitizerSet SkippedChecks;
1700   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1701   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1702                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1703                 result.getPointer(), allocType, result.getAlignment(),
1704                 SkippedChecks, numElements);
1705 
1706   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1707                      allocSizeWithoutCookie);
1708   if (E->isArray()) {
1709     // NewPtr is a pointer to the base element type.  If we're
1710     // allocating an array of arrays, we'll need to cast back to the
1711     // array pointer type.
1712     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1713     if (result.getType() != resultType)
1714       result = Builder.CreateBitCast(result, resultType);
1715   }
1716 
1717   // Deactivate the 'operator delete' cleanup if we finished
1718   // initialization.
1719   if (operatorDeleteCleanup.isValid()) {
1720     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1721     cleanupDominator->eraseFromParent();
1722   }
1723 
1724   llvm::Value *resultPtr = result.getPointer();
1725   if (nullCheck) {
1726     conditional.end(*this);
1727 
1728     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1729     EmitBlock(contBB);
1730 
1731     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1732     PHI->addIncoming(resultPtr, notNullBB);
1733     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1734                      nullCheckBB);
1735 
1736     resultPtr = PHI;
1737   }
1738 
1739   return resultPtr;
1740 }
1741 
1742 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1743                                      llvm::Value *Ptr, QualType DeleteTy,
1744                                      llvm::Value *NumElements,
1745                                      CharUnits CookieSize) {
1746   assert((!NumElements && CookieSize.isZero()) ||
1747          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1748 
1749   const FunctionProtoType *DeleteFTy =
1750     DeleteFD->getType()->getAs<FunctionProtoType>();
1751 
1752   CallArgList DeleteArgs;
1753 
1754   auto Params = getUsualDeleteParams(DeleteFD);
1755   auto ParamTypeIt = DeleteFTy->param_type_begin();
1756 
1757   // Pass the pointer itself.
1758   QualType ArgTy = *ParamTypeIt++;
1759   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1760   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1761 
1762   // Pass the std::destroying_delete tag if present.
1763   if (Params.DestroyingDelete) {
1764     QualType DDTag = *ParamTypeIt++;
1765     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1766     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1767     DeleteArgs.add(RValue::get(V), DDTag);
1768   }
1769 
1770   // Pass the size if the delete function has a size_t parameter.
1771   if (Params.Size) {
1772     QualType SizeType = *ParamTypeIt++;
1773     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1774     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1775                                                DeleteTypeSize.getQuantity());
1776 
1777     // For array new, multiply by the number of elements.
1778     if (NumElements)
1779       Size = Builder.CreateMul(Size, NumElements);
1780 
1781     // If there is a cookie, add the cookie size.
1782     if (!CookieSize.isZero())
1783       Size = Builder.CreateAdd(
1784           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1785 
1786     DeleteArgs.add(RValue::get(Size), SizeType);
1787   }
1788 
1789   // Pass the alignment if the delete function has an align_val_t parameter.
1790   if (Params.Alignment) {
1791     QualType AlignValType = *ParamTypeIt++;
1792     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1793         getContext().getTypeAlignIfKnown(DeleteTy));
1794     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1795                                                 DeleteTypeAlign.getQuantity());
1796     DeleteArgs.add(RValue::get(Align), AlignValType);
1797   }
1798 
1799   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1800          "unknown parameter to usual delete function");
1801 
1802   // Emit the call to delete.
1803   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1804 }
1805 
1806 namespace {
1807   /// Calls the given 'operator delete' on a single object.
1808   struct CallObjectDelete final : EHScopeStack::Cleanup {
1809     llvm::Value *Ptr;
1810     const FunctionDecl *OperatorDelete;
1811     QualType ElementType;
1812 
1813     CallObjectDelete(llvm::Value *Ptr,
1814                      const FunctionDecl *OperatorDelete,
1815                      QualType ElementType)
1816       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1817 
1818     void Emit(CodeGenFunction &CGF, Flags flags) override {
1819       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1820     }
1821   };
1822 }
1823 
1824 void
1825 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1826                                              llvm::Value *CompletePtr,
1827                                              QualType ElementType) {
1828   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1829                                         OperatorDelete, ElementType);
1830 }
1831 
1832 /// Emit the code for deleting a single object with a destroying operator
1833 /// delete. If the element type has a non-virtual destructor, Ptr has already
1834 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1835 /// Ptr points to an object of the static type.
1836 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1837                                        const CXXDeleteExpr *DE, Address Ptr,
1838                                        QualType ElementType) {
1839   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1840   if (Dtor && Dtor->isVirtual())
1841     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1842                                                 Dtor);
1843   else
1844     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1845 }
1846 
1847 /// Emit the code for deleting a single object.
1848 static void EmitObjectDelete(CodeGenFunction &CGF,
1849                              const CXXDeleteExpr *DE,
1850                              Address Ptr,
1851                              QualType ElementType) {
1852   // C++11 [expr.delete]p3:
1853   //   If the static type of the object to be deleted is different from its
1854   //   dynamic type, the static type shall be a base class of the dynamic type
1855   //   of the object to be deleted and the static type shall have a virtual
1856   //   destructor or the behavior is undefined.
1857   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1858                     DE->getExprLoc(), Ptr.getPointer(),
1859                     ElementType);
1860 
1861   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1862   assert(!OperatorDelete->isDestroyingOperatorDelete());
1863 
1864   // Find the destructor for the type, if applicable.  If the
1865   // destructor is virtual, we'll just emit the vcall and return.
1866   const CXXDestructorDecl *Dtor = nullptr;
1867   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1868     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1869     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1870       Dtor = RD->getDestructor();
1871 
1872       if (Dtor->isVirtual()) {
1873         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1874                                                     Dtor);
1875         return;
1876       }
1877     }
1878   }
1879 
1880   // Make sure that we call delete even if the dtor throws.
1881   // This doesn't have to a conditional cleanup because we're going
1882   // to pop it off in a second.
1883   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1884                                             Ptr.getPointer(),
1885                                             OperatorDelete, ElementType);
1886 
1887   if (Dtor)
1888     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1889                               /*ForVirtualBase=*/false,
1890                               /*Delegating=*/false,
1891                               Ptr);
1892   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1893     switch (Lifetime) {
1894     case Qualifiers::OCL_None:
1895     case Qualifiers::OCL_ExplicitNone:
1896     case Qualifiers::OCL_Autoreleasing:
1897       break;
1898 
1899     case Qualifiers::OCL_Strong:
1900       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1901       break;
1902 
1903     case Qualifiers::OCL_Weak:
1904       CGF.EmitARCDestroyWeak(Ptr);
1905       break;
1906     }
1907   }
1908 
1909   CGF.PopCleanupBlock();
1910 }
1911 
1912 namespace {
1913   /// Calls the given 'operator delete' on an array of objects.
1914   struct CallArrayDelete final : EHScopeStack::Cleanup {
1915     llvm::Value *Ptr;
1916     const FunctionDecl *OperatorDelete;
1917     llvm::Value *NumElements;
1918     QualType ElementType;
1919     CharUnits CookieSize;
1920 
1921     CallArrayDelete(llvm::Value *Ptr,
1922                     const FunctionDecl *OperatorDelete,
1923                     llvm::Value *NumElements,
1924                     QualType ElementType,
1925                     CharUnits CookieSize)
1926       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1927         ElementType(ElementType), CookieSize(CookieSize) {}
1928 
1929     void Emit(CodeGenFunction &CGF, Flags flags) override {
1930       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1931                          CookieSize);
1932     }
1933   };
1934 }
1935 
1936 /// Emit the code for deleting an array of objects.
1937 static void EmitArrayDelete(CodeGenFunction &CGF,
1938                             const CXXDeleteExpr *E,
1939                             Address deletedPtr,
1940                             QualType elementType) {
1941   llvm::Value *numElements = nullptr;
1942   llvm::Value *allocatedPtr = nullptr;
1943   CharUnits cookieSize;
1944   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1945                                       numElements, allocatedPtr, cookieSize);
1946 
1947   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1948 
1949   // Make sure that we call delete even if one of the dtors throws.
1950   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1951   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1952                                            allocatedPtr, operatorDelete,
1953                                            numElements, elementType,
1954                                            cookieSize);
1955 
1956   // Destroy the elements.
1957   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1958     assert(numElements && "no element count for a type with a destructor!");
1959 
1960     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1961     CharUnits elementAlign =
1962       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1963 
1964     llvm::Value *arrayBegin = deletedPtr.getPointer();
1965     llvm::Value *arrayEnd =
1966       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1967 
1968     // Note that it is legal to allocate a zero-length array, and we
1969     // can never fold the check away because the length should always
1970     // come from a cookie.
1971     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1972                          CGF.getDestroyer(dtorKind),
1973                          /*checkZeroLength*/ true,
1974                          CGF.needsEHCleanup(dtorKind));
1975   }
1976 
1977   // Pop the cleanup block.
1978   CGF.PopCleanupBlock();
1979 }
1980 
1981 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1982   const Expr *Arg = E->getArgument();
1983   Address Ptr = EmitPointerWithAlignment(Arg);
1984 
1985   // Null check the pointer.
1986   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1987   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1988 
1989   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1990 
1991   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1992   EmitBlock(DeleteNotNull);
1993 
1994   QualType DeleteTy = E->getDestroyedType();
1995 
1996   // A destroying operator delete overrides the entire operation of the
1997   // delete expression.
1998   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
1999     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2000     EmitBlock(DeleteEnd);
2001     return;
2002   }
2003 
2004   // We might be deleting a pointer to array.  If so, GEP down to the
2005   // first non-array element.
2006   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2007   if (DeleteTy->isConstantArrayType()) {
2008     llvm::Value *Zero = Builder.getInt32(0);
2009     SmallVector<llvm::Value*,8> GEP;
2010 
2011     GEP.push_back(Zero); // point at the outermost array
2012 
2013     // For each layer of array type we're pointing at:
2014     while (const ConstantArrayType *Arr
2015              = getContext().getAsConstantArrayType(DeleteTy)) {
2016       // 1. Unpeel the array type.
2017       DeleteTy = Arr->getElementType();
2018 
2019       // 2. GEP to the first element of the array.
2020       GEP.push_back(Zero);
2021     }
2022 
2023     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2024                   Ptr.getAlignment());
2025   }
2026 
2027   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2028 
2029   if (E->isArrayForm()) {
2030     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2031   } else {
2032     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2033   }
2034 
2035   EmitBlock(DeleteEnd);
2036 }
2037 
2038 static bool isGLValueFromPointerDeref(const Expr *E) {
2039   E = E->IgnoreParens();
2040 
2041   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2042     if (!CE->getSubExpr()->isGLValue())
2043       return false;
2044     return isGLValueFromPointerDeref(CE->getSubExpr());
2045   }
2046 
2047   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2048     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2049 
2050   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2051     if (BO->getOpcode() == BO_Comma)
2052       return isGLValueFromPointerDeref(BO->getRHS());
2053 
2054   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2055     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2056            isGLValueFromPointerDeref(ACO->getFalseExpr());
2057 
2058   // C++11 [expr.sub]p1:
2059   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2060   if (isa<ArraySubscriptExpr>(E))
2061     return true;
2062 
2063   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2064     if (UO->getOpcode() == UO_Deref)
2065       return true;
2066 
2067   return false;
2068 }
2069 
2070 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2071                                          llvm::Type *StdTypeInfoPtrTy) {
2072   // Get the vtable pointer.
2073   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2074 
2075   QualType SrcRecordTy = E->getType();
2076 
2077   // C++ [class.cdtor]p4:
2078   //   If the operand of typeid refers to the object under construction or
2079   //   destruction and the static type of the operand is neither the constructor
2080   //   or destructor’s class nor one of its bases, the behavior is undefined.
2081   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2082                     ThisPtr.getPointer(), SrcRecordTy);
2083 
2084   // C++ [expr.typeid]p2:
2085   //   If the glvalue expression is obtained by applying the unary * operator to
2086   //   a pointer and the pointer is a null pointer value, the typeid expression
2087   //   throws the std::bad_typeid exception.
2088   //
2089   // However, this paragraph's intent is not clear.  We choose a very generous
2090   // interpretation which implores us to consider comma operators, conditional
2091   // operators, parentheses and other such constructs.
2092   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2093           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2094     llvm::BasicBlock *BadTypeidBlock =
2095         CGF.createBasicBlock("typeid.bad_typeid");
2096     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2097 
2098     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2099     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2100 
2101     CGF.EmitBlock(BadTypeidBlock);
2102     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2103     CGF.EmitBlock(EndBlock);
2104   }
2105 
2106   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2107                                         StdTypeInfoPtrTy);
2108 }
2109 
2110 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2111   llvm::Type *StdTypeInfoPtrTy =
2112     ConvertType(E->getType())->getPointerTo();
2113 
2114   if (E->isTypeOperand()) {
2115     llvm::Constant *TypeInfo =
2116         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2117     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2118   }
2119 
2120   // C++ [expr.typeid]p2:
2121   //   When typeid is applied to a glvalue expression whose type is a
2122   //   polymorphic class type, the result refers to a std::type_info object
2123   //   representing the type of the most derived object (that is, the dynamic
2124   //   type) to which the glvalue refers.
2125   if (E->isPotentiallyEvaluated())
2126     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2127                                 StdTypeInfoPtrTy);
2128 
2129   QualType OperandTy = E->getExprOperand()->getType();
2130   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2131                                StdTypeInfoPtrTy);
2132 }
2133 
2134 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2135                                           QualType DestTy) {
2136   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2137   if (DestTy->isPointerType())
2138     return llvm::Constant::getNullValue(DestLTy);
2139 
2140   /// C++ [expr.dynamic.cast]p9:
2141   ///   A failed cast to reference type throws std::bad_cast
2142   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2143     return nullptr;
2144 
2145   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2146   return llvm::UndefValue::get(DestLTy);
2147 }
2148 
2149 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2150                                               const CXXDynamicCastExpr *DCE) {
2151   CGM.EmitExplicitCastExprType(DCE, this);
2152   QualType DestTy = DCE->getTypeAsWritten();
2153 
2154   QualType SrcTy = DCE->getSubExpr()->getType();
2155 
2156   // C++ [expr.dynamic.cast]p7:
2157   //   If T is "pointer to cv void," then the result is a pointer to the most
2158   //   derived object pointed to by v.
2159   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2160 
2161   bool isDynamicCastToVoid;
2162   QualType SrcRecordTy;
2163   QualType DestRecordTy;
2164   if (DestPTy) {
2165     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2166     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2167     DestRecordTy = DestPTy->getPointeeType();
2168   } else {
2169     isDynamicCastToVoid = false;
2170     SrcRecordTy = SrcTy;
2171     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2172   }
2173 
2174   // C++ [class.cdtor]p5:
2175   //   If the operand of the dynamic_cast refers to the object under
2176   //   construction or destruction and the static type of the operand is not a
2177   //   pointer to or object of the constructor or destructor’s own class or one
2178   //   of its bases, the dynamic_cast results in undefined behavior.
2179   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2180                 SrcRecordTy);
2181 
2182   if (DCE->isAlwaysNull())
2183     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2184       return T;
2185 
2186   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2187 
2188   // C++ [expr.dynamic.cast]p4:
2189   //   If the value of v is a null pointer value in the pointer case, the result
2190   //   is the null pointer value of type T.
2191   bool ShouldNullCheckSrcValue =
2192       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2193                                                          SrcRecordTy);
2194 
2195   llvm::BasicBlock *CastNull = nullptr;
2196   llvm::BasicBlock *CastNotNull = nullptr;
2197   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2198 
2199   if (ShouldNullCheckSrcValue) {
2200     CastNull = createBasicBlock("dynamic_cast.null");
2201     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2202 
2203     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2204     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2205     EmitBlock(CastNotNull);
2206   }
2207 
2208   llvm::Value *Value;
2209   if (isDynamicCastToVoid) {
2210     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2211                                                   DestTy);
2212   } else {
2213     assert(DestRecordTy->isRecordType() &&
2214            "destination type must be a record type!");
2215     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2216                                                 DestTy, DestRecordTy, CastEnd);
2217     CastNotNull = Builder.GetInsertBlock();
2218   }
2219 
2220   if (ShouldNullCheckSrcValue) {
2221     EmitBranch(CastEnd);
2222 
2223     EmitBlock(CastNull);
2224     EmitBranch(CastEnd);
2225   }
2226 
2227   EmitBlock(CastEnd);
2228 
2229   if (ShouldNullCheckSrcValue) {
2230     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2231     PHI->addIncoming(Value, CastNotNull);
2232     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2233 
2234     Value = PHI;
2235   }
2236 
2237   return Value;
2238 }
2239