1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "ConstantEmitter.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "llvm/IR/Intrinsics.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 struct MemberCallInfo { 28 RequiredArgs ReqArgs; 29 // Number of prefix arguments for the call. Ignores the `this` pointer. 30 unsigned PrefixSize; 31 }; 32 } 33 34 static MemberCallInfo 35 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 36 llvm::Value *This, llvm::Value *ImplicitParam, 37 QualType ImplicitParamTy, const CallExpr *CE, 38 CallArgList &Args, CallArgList *RtlArgs) { 39 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 40 isa<CXXOperatorCallExpr>(CE)); 41 assert(MD->isInstance() && 42 "Trying to emit a member or operator call expr on a static method!"); 43 44 // Push the this ptr. 45 const CXXRecordDecl *RD = 46 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 47 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 48 49 // If there is an implicit parameter (e.g. VTT), emit it. 50 if (ImplicitParam) { 51 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 52 } 53 54 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 55 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 56 unsigned PrefixSize = Args.size() - 1; 57 58 // And the rest of the call args. 59 if (RtlArgs) { 60 // Special case: if the caller emitted the arguments right-to-left already 61 // (prior to emitting the *this argument), we're done. This happens for 62 // assignment operators. 63 Args.addFrom(*RtlArgs); 64 } else if (CE) { 65 // Special case: skip first argument of CXXOperatorCall (it is "this"). 66 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 67 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 68 CE->getDirectCallee()); 69 } else { 70 assert( 71 FPT->getNumParams() == 0 && 72 "No CallExpr specified for function with non-zero number of arguments"); 73 } 74 return {required, PrefixSize}; 75 } 76 77 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 78 const CXXMethodDecl *MD, const CGCallee &Callee, 79 ReturnValueSlot ReturnValue, 80 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 81 const CallExpr *CE, CallArgList *RtlArgs) { 82 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 83 CallArgList Args; 84 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 85 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 86 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 87 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 88 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 89 CE ? CE->getExprLoc() : SourceLocation()); 90 } 91 92 RValue CodeGenFunction::EmitCXXDestructorCall( 93 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 94 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 95 StructorType Type) { 96 CallArgList Args; 97 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 98 ImplicitParamTy, CE, Args, nullptr); 99 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 100 Callee, ReturnValueSlot(), Args); 101 } 102 103 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 104 const CXXPseudoDestructorExpr *E) { 105 QualType DestroyedType = E->getDestroyedType(); 106 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 107 // Automatic Reference Counting: 108 // If the pseudo-expression names a retainable object with weak or 109 // strong lifetime, the object shall be released. 110 Expr *BaseExpr = E->getBase(); 111 Address BaseValue = Address::invalid(); 112 Qualifiers BaseQuals; 113 114 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 115 if (E->isArrow()) { 116 BaseValue = EmitPointerWithAlignment(BaseExpr); 117 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 118 BaseQuals = PTy->getPointeeType().getQualifiers(); 119 } else { 120 LValue BaseLV = EmitLValue(BaseExpr); 121 BaseValue = BaseLV.getAddress(); 122 QualType BaseTy = BaseExpr->getType(); 123 BaseQuals = BaseTy.getQualifiers(); 124 } 125 126 switch (DestroyedType.getObjCLifetime()) { 127 case Qualifiers::OCL_None: 128 case Qualifiers::OCL_ExplicitNone: 129 case Qualifiers::OCL_Autoreleasing: 130 break; 131 132 case Qualifiers::OCL_Strong: 133 EmitARCRelease(Builder.CreateLoad(BaseValue, 134 DestroyedType.isVolatileQualified()), 135 ARCPreciseLifetime); 136 break; 137 138 case Qualifiers::OCL_Weak: 139 EmitARCDestroyWeak(BaseValue); 140 break; 141 } 142 } else { 143 // C++ [expr.pseudo]p1: 144 // The result shall only be used as the operand for the function call 145 // operator (), and the result of such a call has type void. The only 146 // effect is the evaluation of the postfix-expression before the dot or 147 // arrow. 148 EmitIgnoredExpr(E->getBase()); 149 } 150 151 return RValue::get(nullptr); 152 } 153 154 static CXXRecordDecl *getCXXRecord(const Expr *E) { 155 QualType T = E->getType(); 156 if (const PointerType *PTy = T->getAs<PointerType>()) 157 T = PTy->getPointeeType(); 158 const RecordType *Ty = T->castAs<RecordType>(); 159 return cast<CXXRecordDecl>(Ty->getDecl()); 160 } 161 162 // Note: This function also emit constructor calls to support a MSVC 163 // extensions allowing explicit constructor function call. 164 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 165 ReturnValueSlot ReturnValue) { 166 const Expr *callee = CE->getCallee()->IgnoreParens(); 167 168 if (isa<BinaryOperator>(callee)) 169 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 170 171 const MemberExpr *ME = cast<MemberExpr>(callee); 172 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 173 174 if (MD->isStatic()) { 175 // The method is static, emit it as we would a regular call. 176 CGCallee callee = 177 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 178 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 179 ReturnValue); 180 } 181 182 bool HasQualifier = ME->hasQualifier(); 183 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 184 bool IsArrow = ME->isArrow(); 185 const Expr *Base = ME->getBase(); 186 187 return EmitCXXMemberOrOperatorMemberCallExpr( 188 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 189 } 190 191 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 192 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 193 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 194 const Expr *Base) { 195 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 196 197 // Compute the object pointer. 198 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 199 200 const CXXMethodDecl *DevirtualizedMethod = nullptr; 201 if (CanUseVirtualCall && 202 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 203 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 204 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 205 assert(DevirtualizedMethod); 206 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 207 const Expr *Inner = Base->ignoreParenBaseCasts(); 208 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 209 MD->getReturnType().getCanonicalType()) 210 // If the return types are not the same, this might be a case where more 211 // code needs to run to compensate for it. For example, the derived 212 // method might return a type that inherits form from the return 213 // type of MD and has a prefix. 214 // For now we just avoid devirtualizing these covariant cases. 215 DevirtualizedMethod = nullptr; 216 else if (getCXXRecord(Inner) == DevirtualizedClass) 217 // If the class of the Inner expression is where the dynamic method 218 // is defined, build the this pointer from it. 219 Base = Inner; 220 else if (getCXXRecord(Base) != DevirtualizedClass) { 221 // If the method is defined in a class that is not the best dynamic 222 // one or the one of the full expression, we would have to build 223 // a derived-to-base cast to compute the correct this pointer, but 224 // we don't have support for that yet, so do a virtual call. 225 DevirtualizedMethod = nullptr; 226 } 227 } 228 229 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 230 // operator before the LHS. 231 CallArgList RtlArgStorage; 232 CallArgList *RtlArgs = nullptr; 233 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 234 if (OCE->isAssignmentOp()) { 235 RtlArgs = &RtlArgStorage; 236 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 237 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 238 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 239 } 240 } 241 242 LValue This; 243 if (IsArrow) { 244 LValueBaseInfo BaseInfo; 245 TBAAAccessInfo TBAAInfo; 246 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 247 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 248 } else { 249 This = EmitLValue(Base); 250 } 251 252 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 253 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 254 // constructing a new complete object of type Ctor. 255 assert(!RtlArgs); 256 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 257 CallArgList Args; 258 commonEmitCXXMemberOrOperatorCall( 259 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr, 260 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 261 262 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 263 /*Delegating=*/false, This.getAddress(), Args, 264 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 265 /*NewPointerIsChecked=*/false); 266 return RValue::get(nullptr); 267 } 268 269 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 270 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 271 if (!MD->getParent()->mayInsertExtraPadding()) { 272 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 273 // We don't like to generate the trivial copy/move assignment operator 274 // when it isn't necessary; just produce the proper effect here. 275 LValue RHS = isa<CXXOperatorCallExpr>(CE) 276 ? MakeNaturalAlignAddrLValue( 277 (*RtlArgs)[0].getRValue(*this).getScalarVal(), 278 (*(CE->arg_begin() + 1))->getType()) 279 : EmitLValue(*CE->arg_begin()); 280 EmitAggregateAssign(This, RHS, CE->getType()); 281 return RValue::get(This.getPointer()); 282 } 283 llvm_unreachable("unknown trivial member function"); 284 } 285 } 286 287 // Compute the function type we're calling. 288 const CXXMethodDecl *CalleeDecl = 289 DevirtualizedMethod ? DevirtualizedMethod : MD; 290 const CGFunctionInfo *FInfo = nullptr; 291 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 292 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 293 Dtor, StructorType::Complete); 294 else 295 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 296 297 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 298 299 // C++11 [class.mfct.non-static]p2: 300 // If a non-static member function of a class X is called for an object that 301 // is not of type X, or of a type derived from X, the behavior is undefined. 302 SourceLocation CallLoc; 303 ASTContext &C = getContext(); 304 if (CE) 305 CallLoc = CE->getExprLoc(); 306 307 SanitizerSet SkippedChecks; 308 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 309 auto *IOA = CMCE->getImplicitObjectArgument(); 310 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 311 if (IsImplicitObjectCXXThis) 312 SkippedChecks.set(SanitizerKind::Alignment, true); 313 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 314 SkippedChecks.set(SanitizerKind::Null, true); 315 } 316 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(), 317 C.getRecordType(CalleeDecl->getParent()), 318 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 319 320 // C++ [class.virtual]p12: 321 // Explicit qualification with the scope operator (5.1) suppresses the 322 // virtual call mechanism. 323 // 324 // We also don't emit a virtual call if the base expression has a record type 325 // because then we know what the type is. 326 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 327 328 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 329 assert(CE->arg_begin() == CE->arg_end() && 330 "Destructor shouldn't have explicit parameters"); 331 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 332 if (UseVirtualCall) { 333 CGM.getCXXABI().EmitVirtualDestructorCall( 334 *this, Dtor, Dtor_Complete, This.getAddress(), 335 cast<CXXMemberCallExpr>(CE)); 336 } else { 337 CGCallee Callee; 338 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 339 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 340 else if (!DevirtualizedMethod) 341 Callee = CGCallee::forDirect( 342 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 343 GlobalDecl(Dtor, Dtor_Complete)); 344 else { 345 Callee = CGCallee::forDirect( 346 CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty), 347 GlobalDecl(Dtor, Dtor_Complete)); 348 } 349 350 EmitCXXDestructorCall(Dtor, Callee, This.getPointer(), 351 /*ImplicitParam=*/nullptr, 352 /*ImplicitParamTy=*/QualType(), nullptr, 353 getFromDtorType(Dtor_Complete)); 354 } 355 return RValue::get(nullptr); 356 } 357 358 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 359 // 'CalleeDecl' instead. 360 361 CGCallee Callee; 362 if (UseVirtualCall) { 363 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 364 } else { 365 if (SanOpts.has(SanitizerKind::CFINVCall) && 366 MD->getParent()->isDynamicClass()) { 367 llvm::Value *VTable; 368 const CXXRecordDecl *RD; 369 std::tie(VTable, RD) = 370 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 371 MD->getParent()); 372 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 373 } 374 375 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 376 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 377 else if (!DevirtualizedMethod) 378 Callee = 379 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 380 else { 381 Callee = 382 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 383 GlobalDecl(DevirtualizedMethod)); 384 } 385 } 386 387 if (MD->isVirtual()) { 388 Address NewThisAddr = 389 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 390 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 391 This.setAddress(NewThisAddr); 392 } 393 394 return EmitCXXMemberOrOperatorCall( 395 CalleeDecl, Callee, ReturnValue, This.getPointer(), 396 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 397 } 398 399 RValue 400 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 401 ReturnValueSlot ReturnValue) { 402 const BinaryOperator *BO = 403 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 404 const Expr *BaseExpr = BO->getLHS(); 405 const Expr *MemFnExpr = BO->getRHS(); 406 407 const MemberPointerType *MPT = 408 MemFnExpr->getType()->castAs<MemberPointerType>(); 409 410 const FunctionProtoType *FPT = 411 MPT->getPointeeType()->castAs<FunctionProtoType>(); 412 const CXXRecordDecl *RD = 413 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 414 415 // Emit the 'this' pointer. 416 Address This = Address::invalid(); 417 if (BO->getOpcode() == BO_PtrMemI) 418 This = EmitPointerWithAlignment(BaseExpr); 419 else 420 This = EmitLValue(BaseExpr).getAddress(); 421 422 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 423 QualType(MPT->getClass(), 0)); 424 425 // Get the member function pointer. 426 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 427 428 // Ask the ABI to load the callee. Note that This is modified. 429 llvm::Value *ThisPtrForCall = nullptr; 430 CGCallee Callee = 431 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 432 ThisPtrForCall, MemFnPtr, MPT); 433 434 CallArgList Args; 435 436 QualType ThisType = 437 getContext().getPointerType(getContext().getTagDeclType(RD)); 438 439 // Push the this ptr. 440 Args.add(RValue::get(ThisPtrForCall), ThisType); 441 442 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 443 444 // And the rest of the call args 445 EmitCallArgs(Args, FPT, E->arguments()); 446 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 447 /*PrefixSize=*/0), 448 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 449 } 450 451 RValue 452 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 453 const CXXMethodDecl *MD, 454 ReturnValueSlot ReturnValue) { 455 assert(MD->isInstance() && 456 "Trying to emit a member call expr on a static method!"); 457 return EmitCXXMemberOrOperatorMemberCallExpr( 458 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 459 /*IsArrow=*/false, E->getArg(0)); 460 } 461 462 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 463 ReturnValueSlot ReturnValue) { 464 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 465 } 466 467 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 468 Address DestPtr, 469 const CXXRecordDecl *Base) { 470 if (Base->isEmpty()) 471 return; 472 473 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 474 475 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 476 CharUnits NVSize = Layout.getNonVirtualSize(); 477 478 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 479 // present, they are initialized by the most derived class before calling the 480 // constructor. 481 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 482 Stores.emplace_back(CharUnits::Zero(), NVSize); 483 484 // Each store is split by the existence of a vbptr. 485 CharUnits VBPtrWidth = CGF.getPointerSize(); 486 std::vector<CharUnits> VBPtrOffsets = 487 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 488 for (CharUnits VBPtrOffset : VBPtrOffsets) { 489 // Stop before we hit any virtual base pointers located in virtual bases. 490 if (VBPtrOffset >= NVSize) 491 break; 492 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 493 CharUnits LastStoreOffset = LastStore.first; 494 CharUnits LastStoreSize = LastStore.second; 495 496 CharUnits SplitBeforeOffset = LastStoreOffset; 497 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 498 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 499 if (!SplitBeforeSize.isZero()) 500 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 501 502 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 503 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 504 assert(!SplitAfterSize.isNegative() && "negative store size!"); 505 if (!SplitAfterSize.isZero()) 506 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 507 } 508 509 // If the type contains a pointer to data member we can't memset it to zero. 510 // Instead, create a null constant and copy it to the destination. 511 // TODO: there are other patterns besides zero that we can usefully memset, 512 // like -1, which happens to be the pattern used by member-pointers. 513 // TODO: isZeroInitializable can be over-conservative in the case where a 514 // virtual base contains a member pointer. 515 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 516 if (!NullConstantForBase->isNullValue()) { 517 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 518 CGF.CGM.getModule(), NullConstantForBase->getType(), 519 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 520 NullConstantForBase, Twine()); 521 522 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 523 DestPtr.getAlignment()); 524 NullVariable->setAlignment(Align.getQuantity()); 525 526 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 527 528 // Get and call the appropriate llvm.memcpy overload. 529 for (std::pair<CharUnits, CharUnits> Store : Stores) { 530 CharUnits StoreOffset = Store.first; 531 CharUnits StoreSize = Store.second; 532 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 533 CGF.Builder.CreateMemCpy( 534 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 535 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 536 StoreSizeVal); 537 } 538 539 // Otherwise, just memset the whole thing to zero. This is legal 540 // because in LLVM, all default initializers (other than the ones we just 541 // handled above) are guaranteed to have a bit pattern of all zeros. 542 } else { 543 for (std::pair<CharUnits, CharUnits> Store : Stores) { 544 CharUnits StoreOffset = Store.first; 545 CharUnits StoreSize = Store.second; 546 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 547 CGF.Builder.CreateMemSet( 548 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 549 CGF.Builder.getInt8(0), StoreSizeVal); 550 } 551 } 552 } 553 554 void 555 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 556 AggValueSlot Dest) { 557 assert(!Dest.isIgnored() && "Must have a destination!"); 558 const CXXConstructorDecl *CD = E->getConstructor(); 559 560 // If we require zero initialization before (or instead of) calling the 561 // constructor, as can be the case with a non-user-provided default 562 // constructor, emit the zero initialization now, unless destination is 563 // already zeroed. 564 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 565 switch (E->getConstructionKind()) { 566 case CXXConstructExpr::CK_Delegating: 567 case CXXConstructExpr::CK_Complete: 568 EmitNullInitialization(Dest.getAddress(), E->getType()); 569 break; 570 case CXXConstructExpr::CK_VirtualBase: 571 case CXXConstructExpr::CK_NonVirtualBase: 572 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 573 CD->getParent()); 574 break; 575 } 576 } 577 578 // If this is a call to a trivial default constructor, do nothing. 579 if (CD->isTrivial() && CD->isDefaultConstructor()) 580 return; 581 582 // Elide the constructor if we're constructing from a temporary. 583 // The temporary check is required because Sema sets this on NRVO 584 // returns. 585 if (getLangOpts().ElideConstructors && E->isElidable()) { 586 assert(getContext().hasSameUnqualifiedType(E->getType(), 587 E->getArg(0)->getType())); 588 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 589 EmitAggExpr(E->getArg(0), Dest); 590 return; 591 } 592 } 593 594 if (const ArrayType *arrayType 595 = getContext().getAsArrayType(E->getType())) { 596 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 597 Dest.isSanitizerChecked()); 598 } else { 599 CXXCtorType Type = Ctor_Complete; 600 bool ForVirtualBase = false; 601 bool Delegating = false; 602 603 switch (E->getConstructionKind()) { 604 case CXXConstructExpr::CK_Delegating: 605 // We should be emitting a constructor; GlobalDecl will assert this 606 Type = CurGD.getCtorType(); 607 Delegating = true; 608 break; 609 610 case CXXConstructExpr::CK_Complete: 611 Type = Ctor_Complete; 612 break; 613 614 case CXXConstructExpr::CK_VirtualBase: 615 ForVirtualBase = true; 616 LLVM_FALLTHROUGH; 617 618 case CXXConstructExpr::CK_NonVirtualBase: 619 Type = Ctor_Base; 620 } 621 622 // Call the constructor. 623 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 624 Dest.getAddress(), E, Dest.mayOverlap(), 625 Dest.isSanitizerChecked()); 626 } 627 } 628 629 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 630 const Expr *Exp) { 631 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 632 Exp = E->getSubExpr(); 633 assert(isa<CXXConstructExpr>(Exp) && 634 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 635 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 636 const CXXConstructorDecl *CD = E->getConstructor(); 637 RunCleanupsScope Scope(*this); 638 639 // If we require zero initialization before (or instead of) calling the 640 // constructor, as can be the case with a non-user-provided default 641 // constructor, emit the zero initialization now. 642 // FIXME. Do I still need this for a copy ctor synthesis? 643 if (E->requiresZeroInitialization()) 644 EmitNullInitialization(Dest, E->getType()); 645 646 assert(!getContext().getAsConstantArrayType(E->getType()) 647 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 648 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 649 } 650 651 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 652 const CXXNewExpr *E) { 653 if (!E->isArray()) 654 return CharUnits::Zero(); 655 656 // No cookie is required if the operator new[] being used is the 657 // reserved placement operator new[]. 658 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 659 return CharUnits::Zero(); 660 661 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 662 } 663 664 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 665 const CXXNewExpr *e, 666 unsigned minElements, 667 llvm::Value *&numElements, 668 llvm::Value *&sizeWithoutCookie) { 669 QualType type = e->getAllocatedType(); 670 671 if (!e->isArray()) { 672 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 673 sizeWithoutCookie 674 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 675 return sizeWithoutCookie; 676 } 677 678 // The width of size_t. 679 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 680 681 // Figure out the cookie size. 682 llvm::APInt cookieSize(sizeWidth, 683 CalculateCookiePadding(CGF, e).getQuantity()); 684 685 // Emit the array size expression. 686 // We multiply the size of all dimensions for NumElements. 687 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 688 numElements = 689 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 690 if (!numElements) 691 numElements = CGF.EmitScalarExpr(e->getArraySize()); 692 assert(isa<llvm::IntegerType>(numElements->getType())); 693 694 // The number of elements can be have an arbitrary integer type; 695 // essentially, we need to multiply it by a constant factor, add a 696 // cookie size, and verify that the result is representable as a 697 // size_t. That's just a gloss, though, and it's wrong in one 698 // important way: if the count is negative, it's an error even if 699 // the cookie size would bring the total size >= 0. 700 bool isSigned 701 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 702 llvm::IntegerType *numElementsType 703 = cast<llvm::IntegerType>(numElements->getType()); 704 unsigned numElementsWidth = numElementsType->getBitWidth(); 705 706 // Compute the constant factor. 707 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 708 while (const ConstantArrayType *CAT 709 = CGF.getContext().getAsConstantArrayType(type)) { 710 type = CAT->getElementType(); 711 arraySizeMultiplier *= CAT->getSize(); 712 } 713 714 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 715 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 716 typeSizeMultiplier *= arraySizeMultiplier; 717 718 // This will be a size_t. 719 llvm::Value *size; 720 721 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 722 // Don't bloat the -O0 code. 723 if (llvm::ConstantInt *numElementsC = 724 dyn_cast<llvm::ConstantInt>(numElements)) { 725 const llvm::APInt &count = numElementsC->getValue(); 726 727 bool hasAnyOverflow = false; 728 729 // If 'count' was a negative number, it's an overflow. 730 if (isSigned && count.isNegative()) 731 hasAnyOverflow = true; 732 733 // We want to do all this arithmetic in size_t. If numElements is 734 // wider than that, check whether it's already too big, and if so, 735 // overflow. 736 else if (numElementsWidth > sizeWidth && 737 numElementsWidth - sizeWidth > count.countLeadingZeros()) 738 hasAnyOverflow = true; 739 740 // Okay, compute a count at the right width. 741 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 742 743 // If there is a brace-initializer, we cannot allocate fewer elements than 744 // there are initializers. If we do, that's treated like an overflow. 745 if (adjustedCount.ult(minElements)) 746 hasAnyOverflow = true; 747 748 // Scale numElements by that. This might overflow, but we don't 749 // care because it only overflows if allocationSize does, too, and 750 // if that overflows then we shouldn't use this. 751 numElements = llvm::ConstantInt::get(CGF.SizeTy, 752 adjustedCount * arraySizeMultiplier); 753 754 // Compute the size before cookie, and track whether it overflowed. 755 bool overflow; 756 llvm::APInt allocationSize 757 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 758 hasAnyOverflow |= overflow; 759 760 // Add in the cookie, and check whether it's overflowed. 761 if (cookieSize != 0) { 762 // Save the current size without a cookie. This shouldn't be 763 // used if there was overflow. 764 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 765 766 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 767 hasAnyOverflow |= overflow; 768 } 769 770 // On overflow, produce a -1 so operator new will fail. 771 if (hasAnyOverflow) { 772 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 773 } else { 774 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 775 } 776 777 // Otherwise, we might need to use the overflow intrinsics. 778 } else { 779 // There are up to five conditions we need to test for: 780 // 1) if isSigned, we need to check whether numElements is negative; 781 // 2) if numElementsWidth > sizeWidth, we need to check whether 782 // numElements is larger than something representable in size_t; 783 // 3) if minElements > 0, we need to check whether numElements is smaller 784 // than that. 785 // 4) we need to compute 786 // sizeWithoutCookie := numElements * typeSizeMultiplier 787 // and check whether it overflows; and 788 // 5) if we need a cookie, we need to compute 789 // size := sizeWithoutCookie + cookieSize 790 // and check whether it overflows. 791 792 llvm::Value *hasOverflow = nullptr; 793 794 // If numElementsWidth > sizeWidth, then one way or another, we're 795 // going to have to do a comparison for (2), and this happens to 796 // take care of (1), too. 797 if (numElementsWidth > sizeWidth) { 798 llvm::APInt threshold(numElementsWidth, 1); 799 threshold <<= sizeWidth; 800 801 llvm::Value *thresholdV 802 = llvm::ConstantInt::get(numElementsType, threshold); 803 804 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 805 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 806 807 // Otherwise, if we're signed, we want to sext up to size_t. 808 } else if (isSigned) { 809 if (numElementsWidth < sizeWidth) 810 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 811 812 // If there's a non-1 type size multiplier, then we can do the 813 // signedness check at the same time as we do the multiply 814 // because a negative number times anything will cause an 815 // unsigned overflow. Otherwise, we have to do it here. But at least 816 // in this case, we can subsume the >= minElements check. 817 if (typeSizeMultiplier == 1) 818 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 819 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 820 821 // Otherwise, zext up to size_t if necessary. 822 } else if (numElementsWidth < sizeWidth) { 823 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 824 } 825 826 assert(numElements->getType() == CGF.SizeTy); 827 828 if (minElements) { 829 // Don't allow allocation of fewer elements than we have initializers. 830 if (!hasOverflow) { 831 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 832 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 833 } else if (numElementsWidth > sizeWidth) { 834 // The other existing overflow subsumes this check. 835 // We do an unsigned comparison, since any signed value < -1 is 836 // taken care of either above or below. 837 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 838 CGF.Builder.CreateICmpULT(numElements, 839 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 840 } 841 } 842 843 size = numElements; 844 845 // Multiply by the type size if necessary. This multiplier 846 // includes all the factors for nested arrays. 847 // 848 // This step also causes numElements to be scaled up by the 849 // nested-array factor if necessary. Overflow on this computation 850 // can be ignored because the result shouldn't be used if 851 // allocation fails. 852 if (typeSizeMultiplier != 1) { 853 llvm::Function *umul_with_overflow 854 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 855 856 llvm::Value *tsmV = 857 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 858 llvm::Value *result = 859 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 860 861 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 862 if (hasOverflow) 863 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 864 else 865 hasOverflow = overflowed; 866 867 size = CGF.Builder.CreateExtractValue(result, 0); 868 869 // Also scale up numElements by the array size multiplier. 870 if (arraySizeMultiplier != 1) { 871 // If the base element type size is 1, then we can re-use the 872 // multiply we just did. 873 if (typeSize.isOne()) { 874 assert(arraySizeMultiplier == typeSizeMultiplier); 875 numElements = size; 876 877 // Otherwise we need a separate multiply. 878 } else { 879 llvm::Value *asmV = 880 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 881 numElements = CGF.Builder.CreateMul(numElements, asmV); 882 } 883 } 884 } else { 885 // numElements doesn't need to be scaled. 886 assert(arraySizeMultiplier == 1); 887 } 888 889 // Add in the cookie size if necessary. 890 if (cookieSize != 0) { 891 sizeWithoutCookie = size; 892 893 llvm::Function *uadd_with_overflow 894 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 895 896 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 897 llvm::Value *result = 898 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 899 900 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 901 if (hasOverflow) 902 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 903 else 904 hasOverflow = overflowed; 905 906 size = CGF.Builder.CreateExtractValue(result, 0); 907 } 908 909 // If we had any possibility of dynamic overflow, make a select to 910 // overwrite 'size' with an all-ones value, which should cause 911 // operator new to throw. 912 if (hasOverflow) 913 size = CGF.Builder.CreateSelect(hasOverflow, 914 llvm::Constant::getAllOnesValue(CGF.SizeTy), 915 size); 916 } 917 918 if (cookieSize == 0) 919 sizeWithoutCookie = size; 920 else 921 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 922 923 return size; 924 } 925 926 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 927 QualType AllocType, Address NewPtr, 928 AggValueSlot::Overlap_t MayOverlap) { 929 // FIXME: Refactor with EmitExprAsInit. 930 switch (CGF.getEvaluationKind(AllocType)) { 931 case TEK_Scalar: 932 CGF.EmitScalarInit(Init, nullptr, 933 CGF.MakeAddrLValue(NewPtr, AllocType), false); 934 return; 935 case TEK_Complex: 936 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 937 /*isInit*/ true); 938 return; 939 case TEK_Aggregate: { 940 AggValueSlot Slot 941 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 942 AggValueSlot::IsDestructed, 943 AggValueSlot::DoesNotNeedGCBarriers, 944 AggValueSlot::IsNotAliased, 945 MayOverlap, AggValueSlot::IsNotZeroed, 946 AggValueSlot::IsSanitizerChecked); 947 CGF.EmitAggExpr(Init, Slot); 948 return; 949 } 950 } 951 llvm_unreachable("bad evaluation kind"); 952 } 953 954 void CodeGenFunction::EmitNewArrayInitializer( 955 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 956 Address BeginPtr, llvm::Value *NumElements, 957 llvm::Value *AllocSizeWithoutCookie) { 958 // If we have a type with trivial initialization and no initializer, 959 // there's nothing to do. 960 if (!E->hasInitializer()) 961 return; 962 963 Address CurPtr = BeginPtr; 964 965 unsigned InitListElements = 0; 966 967 const Expr *Init = E->getInitializer(); 968 Address EndOfInit = Address::invalid(); 969 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 970 EHScopeStack::stable_iterator Cleanup; 971 llvm::Instruction *CleanupDominator = nullptr; 972 973 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 974 CharUnits ElementAlign = 975 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 976 977 // Attempt to perform zero-initialization using memset. 978 auto TryMemsetInitialization = [&]() -> bool { 979 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 980 // we can initialize with a memset to -1. 981 if (!CGM.getTypes().isZeroInitializable(ElementType)) 982 return false; 983 984 // Optimization: since zero initialization will just set the memory 985 // to all zeroes, generate a single memset to do it in one shot. 986 987 // Subtract out the size of any elements we've already initialized. 988 auto *RemainingSize = AllocSizeWithoutCookie; 989 if (InitListElements) { 990 // We know this can't overflow; we check this when doing the allocation. 991 auto *InitializedSize = llvm::ConstantInt::get( 992 RemainingSize->getType(), 993 getContext().getTypeSizeInChars(ElementType).getQuantity() * 994 InitListElements); 995 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 996 } 997 998 // Create the memset. 999 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1000 return true; 1001 }; 1002 1003 // If the initializer is an initializer list, first do the explicit elements. 1004 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1005 // Initializing from a (braced) string literal is a special case; the init 1006 // list element does not initialize a (single) array element. 1007 if (ILE->isStringLiteralInit()) { 1008 // Initialize the initial portion of length equal to that of the string 1009 // literal. The allocation must be for at least this much; we emitted a 1010 // check for that earlier. 1011 AggValueSlot Slot = 1012 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1013 AggValueSlot::IsDestructed, 1014 AggValueSlot::DoesNotNeedGCBarriers, 1015 AggValueSlot::IsNotAliased, 1016 AggValueSlot::DoesNotOverlap, 1017 AggValueSlot::IsNotZeroed, 1018 AggValueSlot::IsSanitizerChecked); 1019 EmitAggExpr(ILE->getInit(0), Slot); 1020 1021 // Move past these elements. 1022 InitListElements = 1023 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1024 ->getSize().getZExtValue(); 1025 CurPtr = 1026 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1027 Builder.getSize(InitListElements), 1028 "string.init.end"), 1029 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1030 ElementSize)); 1031 1032 // Zero out the rest, if any remain. 1033 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1034 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1035 bool OK = TryMemsetInitialization(); 1036 (void)OK; 1037 assert(OK && "couldn't memset character type?"); 1038 } 1039 return; 1040 } 1041 1042 InitListElements = ILE->getNumInits(); 1043 1044 // If this is a multi-dimensional array new, we will initialize multiple 1045 // elements with each init list element. 1046 QualType AllocType = E->getAllocatedType(); 1047 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1048 AllocType->getAsArrayTypeUnsafe())) { 1049 ElementTy = ConvertTypeForMem(AllocType); 1050 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1051 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1052 } 1053 1054 // Enter a partial-destruction Cleanup if necessary. 1055 if (needsEHCleanup(DtorKind)) { 1056 // In principle we could tell the Cleanup where we are more 1057 // directly, but the control flow can get so varied here that it 1058 // would actually be quite complex. Therefore we go through an 1059 // alloca. 1060 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1061 "array.init.end"); 1062 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1063 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1064 ElementType, ElementAlign, 1065 getDestroyer(DtorKind)); 1066 Cleanup = EHStack.stable_begin(); 1067 } 1068 1069 CharUnits StartAlign = CurPtr.getAlignment(); 1070 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1071 // Tell the cleanup that it needs to destroy up to this 1072 // element. TODO: some of these stores can be trivially 1073 // observed to be unnecessary. 1074 if (EndOfInit.isValid()) { 1075 auto FinishedPtr = 1076 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1077 Builder.CreateStore(FinishedPtr, EndOfInit); 1078 } 1079 // FIXME: If the last initializer is an incomplete initializer list for 1080 // an array, and we have an array filler, we can fold together the two 1081 // initialization loops. 1082 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1083 ILE->getInit(i)->getType(), CurPtr, 1084 AggValueSlot::DoesNotOverlap); 1085 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1086 Builder.getSize(1), 1087 "array.exp.next"), 1088 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1089 } 1090 1091 // The remaining elements are filled with the array filler expression. 1092 Init = ILE->getArrayFiller(); 1093 1094 // Extract the initializer for the individual array elements by pulling 1095 // out the array filler from all the nested initializer lists. This avoids 1096 // generating a nested loop for the initialization. 1097 while (Init && Init->getType()->isConstantArrayType()) { 1098 auto *SubILE = dyn_cast<InitListExpr>(Init); 1099 if (!SubILE) 1100 break; 1101 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1102 Init = SubILE->getArrayFiller(); 1103 } 1104 1105 // Switch back to initializing one base element at a time. 1106 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1107 } 1108 1109 // If all elements have already been initialized, skip any further 1110 // initialization. 1111 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1112 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1113 // If there was a Cleanup, deactivate it. 1114 if (CleanupDominator) 1115 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1116 return; 1117 } 1118 1119 assert(Init && "have trailing elements to initialize but no initializer"); 1120 1121 // If this is a constructor call, try to optimize it out, and failing that 1122 // emit a single loop to initialize all remaining elements. 1123 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1124 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1125 if (Ctor->isTrivial()) { 1126 // If new expression did not specify value-initialization, then there 1127 // is no initialization. 1128 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1129 return; 1130 1131 if (TryMemsetInitialization()) 1132 return; 1133 } 1134 1135 // Store the new Cleanup position for irregular Cleanups. 1136 // 1137 // FIXME: Share this cleanup with the constructor call emission rather than 1138 // having it create a cleanup of its own. 1139 if (EndOfInit.isValid()) 1140 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1141 1142 // Emit a constructor call loop to initialize the remaining elements. 1143 if (InitListElements) 1144 NumElements = Builder.CreateSub( 1145 NumElements, 1146 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1147 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1148 /*NewPointerIsChecked*/true, 1149 CCE->requiresZeroInitialization()); 1150 return; 1151 } 1152 1153 // If this is value-initialization, we can usually use memset. 1154 ImplicitValueInitExpr IVIE(ElementType); 1155 if (isa<ImplicitValueInitExpr>(Init)) { 1156 if (TryMemsetInitialization()) 1157 return; 1158 1159 // Switch to an ImplicitValueInitExpr for the element type. This handles 1160 // only one case: multidimensional array new of pointers to members. In 1161 // all other cases, we already have an initializer for the array element. 1162 Init = &IVIE; 1163 } 1164 1165 // At this point we should have found an initializer for the individual 1166 // elements of the array. 1167 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1168 "got wrong type of element to initialize"); 1169 1170 // If we have an empty initializer list, we can usually use memset. 1171 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1172 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1173 return; 1174 1175 // If we have a struct whose every field is value-initialized, we can 1176 // usually use memset. 1177 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1178 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1179 if (RType->getDecl()->isStruct()) { 1180 unsigned NumElements = 0; 1181 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1182 NumElements = CXXRD->getNumBases(); 1183 for (auto *Field : RType->getDecl()->fields()) 1184 if (!Field->isUnnamedBitfield()) 1185 ++NumElements; 1186 // FIXME: Recurse into nested InitListExprs. 1187 if (ILE->getNumInits() == NumElements) 1188 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1189 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1190 --NumElements; 1191 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1192 return; 1193 } 1194 } 1195 } 1196 1197 // Create the loop blocks. 1198 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1199 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1200 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1201 1202 // Find the end of the array, hoisted out of the loop. 1203 llvm::Value *EndPtr = 1204 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1205 1206 // If the number of elements isn't constant, we have to now check if there is 1207 // anything left to initialize. 1208 if (!ConstNum) { 1209 llvm::Value *IsEmpty = 1210 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1211 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1212 } 1213 1214 // Enter the loop. 1215 EmitBlock(LoopBB); 1216 1217 // Set up the current-element phi. 1218 llvm::PHINode *CurPtrPhi = 1219 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1220 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1221 1222 CurPtr = Address(CurPtrPhi, ElementAlign); 1223 1224 // Store the new Cleanup position for irregular Cleanups. 1225 if (EndOfInit.isValid()) 1226 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1227 1228 // Enter a partial-destruction Cleanup if necessary. 1229 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1230 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1231 ElementType, ElementAlign, 1232 getDestroyer(DtorKind)); 1233 Cleanup = EHStack.stable_begin(); 1234 CleanupDominator = Builder.CreateUnreachable(); 1235 } 1236 1237 // Emit the initializer into this element. 1238 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1239 AggValueSlot::DoesNotOverlap); 1240 1241 // Leave the Cleanup if we entered one. 1242 if (CleanupDominator) { 1243 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1244 CleanupDominator->eraseFromParent(); 1245 } 1246 1247 // Advance to the next element by adjusting the pointer type as necessary. 1248 llvm::Value *NextPtr = 1249 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1250 "array.next"); 1251 1252 // Check whether we've gotten to the end of the array and, if so, 1253 // exit the loop. 1254 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1255 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1256 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1257 1258 EmitBlock(ContBB); 1259 } 1260 1261 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1262 QualType ElementType, llvm::Type *ElementTy, 1263 Address NewPtr, llvm::Value *NumElements, 1264 llvm::Value *AllocSizeWithoutCookie) { 1265 ApplyDebugLocation DL(CGF, E); 1266 if (E->isArray()) 1267 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1268 AllocSizeWithoutCookie); 1269 else if (const Expr *Init = E->getInitializer()) 1270 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1271 AggValueSlot::DoesNotOverlap); 1272 } 1273 1274 /// Emit a call to an operator new or operator delete function, as implicitly 1275 /// created by new-expressions and delete-expressions. 1276 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1277 const FunctionDecl *CalleeDecl, 1278 const FunctionProtoType *CalleeType, 1279 const CallArgList &Args) { 1280 llvm::CallBase *CallOrInvoke; 1281 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1282 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1283 RValue RV = 1284 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1285 Args, CalleeType, /*chainCall=*/false), 1286 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1287 1288 /// C++1y [expr.new]p10: 1289 /// [In a new-expression,] an implementation is allowed to omit a call 1290 /// to a replaceable global allocation function. 1291 /// 1292 /// We model such elidable calls with the 'builtin' attribute. 1293 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1294 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1295 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1296 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex, 1297 llvm::Attribute::Builtin); 1298 } 1299 1300 return RV; 1301 } 1302 1303 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1304 const CallExpr *TheCall, 1305 bool IsDelete) { 1306 CallArgList Args; 1307 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1308 // Find the allocation or deallocation function that we're calling. 1309 ASTContext &Ctx = getContext(); 1310 DeclarationName Name = Ctx.DeclarationNames 1311 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1312 1313 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1314 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1315 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1316 return EmitNewDeleteCall(*this, FD, Type, Args); 1317 llvm_unreachable("predeclared global operator new/delete is missing"); 1318 } 1319 1320 namespace { 1321 /// The parameters to pass to a usual operator delete. 1322 struct UsualDeleteParams { 1323 bool DestroyingDelete = false; 1324 bool Size = false; 1325 bool Alignment = false; 1326 }; 1327 } 1328 1329 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1330 UsualDeleteParams Params; 1331 1332 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1333 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1334 1335 // The first argument is always a void*. 1336 ++AI; 1337 1338 // The next parameter may be a std::destroying_delete_t. 1339 if (FD->isDestroyingOperatorDelete()) { 1340 Params.DestroyingDelete = true; 1341 assert(AI != AE); 1342 ++AI; 1343 } 1344 1345 // Figure out what other parameters we should be implicitly passing. 1346 if (AI != AE && (*AI)->isIntegerType()) { 1347 Params.Size = true; 1348 ++AI; 1349 } 1350 1351 if (AI != AE && (*AI)->isAlignValT()) { 1352 Params.Alignment = true; 1353 ++AI; 1354 } 1355 1356 assert(AI == AE && "unexpected usual deallocation function parameter"); 1357 return Params; 1358 } 1359 1360 namespace { 1361 /// A cleanup to call the given 'operator delete' function upon abnormal 1362 /// exit from a new expression. Templated on a traits type that deals with 1363 /// ensuring that the arguments dominate the cleanup if necessary. 1364 template<typename Traits> 1365 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1366 /// Type used to hold llvm::Value*s. 1367 typedef typename Traits::ValueTy ValueTy; 1368 /// Type used to hold RValues. 1369 typedef typename Traits::RValueTy RValueTy; 1370 struct PlacementArg { 1371 RValueTy ArgValue; 1372 QualType ArgType; 1373 }; 1374 1375 unsigned NumPlacementArgs : 31; 1376 unsigned PassAlignmentToPlacementDelete : 1; 1377 const FunctionDecl *OperatorDelete; 1378 ValueTy Ptr; 1379 ValueTy AllocSize; 1380 CharUnits AllocAlign; 1381 1382 PlacementArg *getPlacementArgs() { 1383 return reinterpret_cast<PlacementArg *>(this + 1); 1384 } 1385 1386 public: 1387 static size_t getExtraSize(size_t NumPlacementArgs) { 1388 return NumPlacementArgs * sizeof(PlacementArg); 1389 } 1390 1391 CallDeleteDuringNew(size_t NumPlacementArgs, 1392 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1393 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1394 CharUnits AllocAlign) 1395 : NumPlacementArgs(NumPlacementArgs), 1396 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1397 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1398 AllocAlign(AllocAlign) {} 1399 1400 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1401 assert(I < NumPlacementArgs && "index out of range"); 1402 getPlacementArgs()[I] = {Arg, Type}; 1403 } 1404 1405 void Emit(CodeGenFunction &CGF, Flags flags) override { 1406 const FunctionProtoType *FPT = 1407 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1408 CallArgList DeleteArgs; 1409 1410 // The first argument is always a void* (or C* for a destroying operator 1411 // delete for class type C). 1412 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1413 1414 // Figure out what other parameters we should be implicitly passing. 1415 UsualDeleteParams Params; 1416 if (NumPlacementArgs) { 1417 // A placement deallocation function is implicitly passed an alignment 1418 // if the placement allocation function was, but is never passed a size. 1419 Params.Alignment = PassAlignmentToPlacementDelete; 1420 } else { 1421 // For a non-placement new-expression, 'operator delete' can take a 1422 // size and/or an alignment if it has the right parameters. 1423 Params = getUsualDeleteParams(OperatorDelete); 1424 } 1425 1426 assert(!Params.DestroyingDelete && 1427 "should not call destroying delete in a new-expression"); 1428 1429 // The second argument can be a std::size_t (for non-placement delete). 1430 if (Params.Size) 1431 DeleteArgs.add(Traits::get(CGF, AllocSize), 1432 CGF.getContext().getSizeType()); 1433 1434 // The next (second or third) argument can be a std::align_val_t, which 1435 // is an enum whose underlying type is std::size_t. 1436 // FIXME: Use the right type as the parameter type. Note that in a call 1437 // to operator delete(size_t, ...), we may not have it available. 1438 if (Params.Alignment) 1439 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1440 CGF.SizeTy, AllocAlign.getQuantity())), 1441 CGF.getContext().getSizeType()); 1442 1443 // Pass the rest of the arguments, which must match exactly. 1444 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1445 auto Arg = getPlacementArgs()[I]; 1446 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1447 } 1448 1449 // Call 'operator delete'. 1450 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1451 } 1452 }; 1453 } 1454 1455 /// Enter a cleanup to call 'operator delete' if the initializer in a 1456 /// new-expression throws. 1457 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1458 const CXXNewExpr *E, 1459 Address NewPtr, 1460 llvm::Value *AllocSize, 1461 CharUnits AllocAlign, 1462 const CallArgList &NewArgs) { 1463 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1464 1465 // If we're not inside a conditional branch, then the cleanup will 1466 // dominate and we can do the easier (and more efficient) thing. 1467 if (!CGF.isInConditionalBranch()) { 1468 struct DirectCleanupTraits { 1469 typedef llvm::Value *ValueTy; 1470 typedef RValue RValueTy; 1471 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1472 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1473 }; 1474 1475 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1476 1477 DirectCleanup *Cleanup = CGF.EHStack 1478 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1479 E->getNumPlacementArgs(), 1480 E->getOperatorDelete(), 1481 NewPtr.getPointer(), 1482 AllocSize, 1483 E->passAlignment(), 1484 AllocAlign); 1485 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1486 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1487 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1488 } 1489 1490 return; 1491 } 1492 1493 // Otherwise, we need to save all this stuff. 1494 DominatingValue<RValue>::saved_type SavedNewPtr = 1495 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1496 DominatingValue<RValue>::saved_type SavedAllocSize = 1497 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1498 1499 struct ConditionalCleanupTraits { 1500 typedef DominatingValue<RValue>::saved_type ValueTy; 1501 typedef DominatingValue<RValue>::saved_type RValueTy; 1502 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1503 return V.restore(CGF); 1504 } 1505 }; 1506 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1507 1508 ConditionalCleanup *Cleanup = CGF.EHStack 1509 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1510 E->getNumPlacementArgs(), 1511 E->getOperatorDelete(), 1512 SavedNewPtr, 1513 SavedAllocSize, 1514 E->passAlignment(), 1515 AllocAlign); 1516 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1517 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1518 Cleanup->setPlacementArg( 1519 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1520 } 1521 1522 CGF.initFullExprCleanup(); 1523 } 1524 1525 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1526 // The element type being allocated. 1527 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1528 1529 // 1. Build a call to the allocation function. 1530 FunctionDecl *allocator = E->getOperatorNew(); 1531 1532 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1533 unsigned minElements = 0; 1534 if (E->isArray() && E->hasInitializer()) { 1535 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1536 if (ILE && ILE->isStringLiteralInit()) 1537 minElements = 1538 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1539 ->getSize().getZExtValue(); 1540 else if (ILE) 1541 minElements = ILE->getNumInits(); 1542 } 1543 1544 llvm::Value *numElements = nullptr; 1545 llvm::Value *allocSizeWithoutCookie = nullptr; 1546 llvm::Value *allocSize = 1547 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1548 allocSizeWithoutCookie); 1549 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1550 1551 // Emit the allocation call. If the allocator is a global placement 1552 // operator, just "inline" it directly. 1553 Address allocation = Address::invalid(); 1554 CallArgList allocatorArgs; 1555 if (allocator->isReservedGlobalPlacementOperator()) { 1556 assert(E->getNumPlacementArgs() == 1); 1557 const Expr *arg = *E->placement_arguments().begin(); 1558 1559 LValueBaseInfo BaseInfo; 1560 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1561 1562 // The pointer expression will, in many cases, be an opaque void*. 1563 // In these cases, discard the computed alignment and use the 1564 // formal alignment of the allocated type. 1565 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1566 allocation = Address(allocation.getPointer(), allocAlign); 1567 1568 // Set up allocatorArgs for the call to operator delete if it's not 1569 // the reserved global operator. 1570 if (E->getOperatorDelete() && 1571 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1572 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1573 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1574 } 1575 1576 } else { 1577 const FunctionProtoType *allocatorType = 1578 allocator->getType()->castAs<FunctionProtoType>(); 1579 unsigned ParamsToSkip = 0; 1580 1581 // The allocation size is the first argument. 1582 QualType sizeType = getContext().getSizeType(); 1583 allocatorArgs.add(RValue::get(allocSize), sizeType); 1584 ++ParamsToSkip; 1585 1586 if (allocSize != allocSizeWithoutCookie) { 1587 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1588 allocAlign = std::max(allocAlign, cookieAlign); 1589 } 1590 1591 // The allocation alignment may be passed as the second argument. 1592 if (E->passAlignment()) { 1593 QualType AlignValT = sizeType; 1594 if (allocatorType->getNumParams() > 1) { 1595 AlignValT = allocatorType->getParamType(1); 1596 assert(getContext().hasSameUnqualifiedType( 1597 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1598 sizeType) && 1599 "wrong type for alignment parameter"); 1600 ++ParamsToSkip; 1601 } else { 1602 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1603 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1604 } 1605 allocatorArgs.add( 1606 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1607 AlignValT); 1608 } 1609 1610 // FIXME: Why do we not pass a CalleeDecl here? 1611 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1612 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1613 1614 RValue RV = 1615 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1616 1617 // If this was a call to a global replaceable allocation function that does 1618 // not take an alignment argument, the allocator is known to produce 1619 // storage that's suitably aligned for any object that fits, up to a known 1620 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1621 CharUnits allocationAlign = allocAlign; 1622 if (!E->passAlignment() && 1623 allocator->isReplaceableGlobalAllocationFunction()) { 1624 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1625 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1626 allocationAlign = std::max( 1627 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1628 } 1629 1630 allocation = Address(RV.getScalarVal(), allocationAlign); 1631 } 1632 1633 // Emit a null check on the allocation result if the allocation 1634 // function is allowed to return null (because it has a non-throwing 1635 // exception spec or is the reserved placement new) and we have an 1636 // interesting initializer will be running sanitizers on the initialization. 1637 bool nullCheck = E->shouldNullCheckAllocation() && 1638 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1639 sanitizePerformTypeCheck()); 1640 1641 llvm::BasicBlock *nullCheckBB = nullptr; 1642 llvm::BasicBlock *contBB = nullptr; 1643 1644 // The null-check means that the initializer is conditionally 1645 // evaluated. 1646 ConditionalEvaluation conditional(*this); 1647 1648 if (nullCheck) { 1649 conditional.begin(*this); 1650 1651 nullCheckBB = Builder.GetInsertBlock(); 1652 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1653 contBB = createBasicBlock("new.cont"); 1654 1655 llvm::Value *isNull = 1656 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1657 Builder.CreateCondBr(isNull, contBB, notNullBB); 1658 EmitBlock(notNullBB); 1659 } 1660 1661 // If there's an operator delete, enter a cleanup to call it if an 1662 // exception is thrown. 1663 EHScopeStack::stable_iterator operatorDeleteCleanup; 1664 llvm::Instruction *cleanupDominator = nullptr; 1665 if (E->getOperatorDelete() && 1666 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1667 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1668 allocatorArgs); 1669 operatorDeleteCleanup = EHStack.stable_begin(); 1670 cleanupDominator = Builder.CreateUnreachable(); 1671 } 1672 1673 assert((allocSize == allocSizeWithoutCookie) == 1674 CalculateCookiePadding(*this, E).isZero()); 1675 if (allocSize != allocSizeWithoutCookie) { 1676 assert(E->isArray()); 1677 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1678 numElements, 1679 E, allocType); 1680 } 1681 1682 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1683 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1684 1685 // Passing pointer through launder.invariant.group to avoid propagation of 1686 // vptrs information which may be included in previous type. 1687 // To not break LTO with different optimizations levels, we do it regardless 1688 // of optimization level. 1689 if (CGM.getCodeGenOpts().StrictVTablePointers && 1690 allocator->isReservedGlobalPlacementOperator()) 1691 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1692 result.getAlignment()); 1693 1694 // Emit sanitizer checks for pointer value now, so that in the case of an 1695 // array it was checked only once and not at each constructor call. We may 1696 // have already checked that the pointer is non-null. 1697 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1698 // we'll null check the wrong pointer here. 1699 SanitizerSet SkippedChecks; 1700 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1701 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1702 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1703 result.getPointer(), allocType, result.getAlignment(), 1704 SkippedChecks, numElements); 1705 1706 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1707 allocSizeWithoutCookie); 1708 if (E->isArray()) { 1709 // NewPtr is a pointer to the base element type. If we're 1710 // allocating an array of arrays, we'll need to cast back to the 1711 // array pointer type. 1712 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1713 if (result.getType() != resultType) 1714 result = Builder.CreateBitCast(result, resultType); 1715 } 1716 1717 // Deactivate the 'operator delete' cleanup if we finished 1718 // initialization. 1719 if (operatorDeleteCleanup.isValid()) { 1720 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1721 cleanupDominator->eraseFromParent(); 1722 } 1723 1724 llvm::Value *resultPtr = result.getPointer(); 1725 if (nullCheck) { 1726 conditional.end(*this); 1727 1728 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1729 EmitBlock(contBB); 1730 1731 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1732 PHI->addIncoming(resultPtr, notNullBB); 1733 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1734 nullCheckBB); 1735 1736 resultPtr = PHI; 1737 } 1738 1739 return resultPtr; 1740 } 1741 1742 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1743 llvm::Value *Ptr, QualType DeleteTy, 1744 llvm::Value *NumElements, 1745 CharUnits CookieSize) { 1746 assert((!NumElements && CookieSize.isZero()) || 1747 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1748 1749 const FunctionProtoType *DeleteFTy = 1750 DeleteFD->getType()->getAs<FunctionProtoType>(); 1751 1752 CallArgList DeleteArgs; 1753 1754 auto Params = getUsualDeleteParams(DeleteFD); 1755 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1756 1757 // Pass the pointer itself. 1758 QualType ArgTy = *ParamTypeIt++; 1759 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1760 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1761 1762 // Pass the std::destroying_delete tag if present. 1763 if (Params.DestroyingDelete) { 1764 QualType DDTag = *ParamTypeIt++; 1765 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1766 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1767 DeleteArgs.add(RValue::get(V), DDTag); 1768 } 1769 1770 // Pass the size if the delete function has a size_t parameter. 1771 if (Params.Size) { 1772 QualType SizeType = *ParamTypeIt++; 1773 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1774 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1775 DeleteTypeSize.getQuantity()); 1776 1777 // For array new, multiply by the number of elements. 1778 if (NumElements) 1779 Size = Builder.CreateMul(Size, NumElements); 1780 1781 // If there is a cookie, add the cookie size. 1782 if (!CookieSize.isZero()) 1783 Size = Builder.CreateAdd( 1784 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1785 1786 DeleteArgs.add(RValue::get(Size), SizeType); 1787 } 1788 1789 // Pass the alignment if the delete function has an align_val_t parameter. 1790 if (Params.Alignment) { 1791 QualType AlignValType = *ParamTypeIt++; 1792 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1793 getContext().getTypeAlignIfKnown(DeleteTy)); 1794 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1795 DeleteTypeAlign.getQuantity()); 1796 DeleteArgs.add(RValue::get(Align), AlignValType); 1797 } 1798 1799 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1800 "unknown parameter to usual delete function"); 1801 1802 // Emit the call to delete. 1803 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1804 } 1805 1806 namespace { 1807 /// Calls the given 'operator delete' on a single object. 1808 struct CallObjectDelete final : EHScopeStack::Cleanup { 1809 llvm::Value *Ptr; 1810 const FunctionDecl *OperatorDelete; 1811 QualType ElementType; 1812 1813 CallObjectDelete(llvm::Value *Ptr, 1814 const FunctionDecl *OperatorDelete, 1815 QualType ElementType) 1816 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1817 1818 void Emit(CodeGenFunction &CGF, Flags flags) override { 1819 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1820 } 1821 }; 1822 } 1823 1824 void 1825 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1826 llvm::Value *CompletePtr, 1827 QualType ElementType) { 1828 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1829 OperatorDelete, ElementType); 1830 } 1831 1832 /// Emit the code for deleting a single object with a destroying operator 1833 /// delete. If the element type has a non-virtual destructor, Ptr has already 1834 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1835 /// Ptr points to an object of the static type. 1836 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1837 const CXXDeleteExpr *DE, Address Ptr, 1838 QualType ElementType) { 1839 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1840 if (Dtor && Dtor->isVirtual()) 1841 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1842 Dtor); 1843 else 1844 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1845 } 1846 1847 /// Emit the code for deleting a single object. 1848 static void EmitObjectDelete(CodeGenFunction &CGF, 1849 const CXXDeleteExpr *DE, 1850 Address Ptr, 1851 QualType ElementType) { 1852 // C++11 [expr.delete]p3: 1853 // If the static type of the object to be deleted is different from its 1854 // dynamic type, the static type shall be a base class of the dynamic type 1855 // of the object to be deleted and the static type shall have a virtual 1856 // destructor or the behavior is undefined. 1857 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1858 DE->getExprLoc(), Ptr.getPointer(), 1859 ElementType); 1860 1861 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1862 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1863 1864 // Find the destructor for the type, if applicable. If the 1865 // destructor is virtual, we'll just emit the vcall and return. 1866 const CXXDestructorDecl *Dtor = nullptr; 1867 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1868 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1869 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1870 Dtor = RD->getDestructor(); 1871 1872 if (Dtor->isVirtual()) { 1873 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1874 Dtor); 1875 return; 1876 } 1877 } 1878 } 1879 1880 // Make sure that we call delete even if the dtor throws. 1881 // This doesn't have to a conditional cleanup because we're going 1882 // to pop it off in a second. 1883 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1884 Ptr.getPointer(), 1885 OperatorDelete, ElementType); 1886 1887 if (Dtor) 1888 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1889 /*ForVirtualBase=*/false, 1890 /*Delegating=*/false, 1891 Ptr); 1892 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1893 switch (Lifetime) { 1894 case Qualifiers::OCL_None: 1895 case Qualifiers::OCL_ExplicitNone: 1896 case Qualifiers::OCL_Autoreleasing: 1897 break; 1898 1899 case Qualifiers::OCL_Strong: 1900 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1901 break; 1902 1903 case Qualifiers::OCL_Weak: 1904 CGF.EmitARCDestroyWeak(Ptr); 1905 break; 1906 } 1907 } 1908 1909 CGF.PopCleanupBlock(); 1910 } 1911 1912 namespace { 1913 /// Calls the given 'operator delete' on an array of objects. 1914 struct CallArrayDelete final : EHScopeStack::Cleanup { 1915 llvm::Value *Ptr; 1916 const FunctionDecl *OperatorDelete; 1917 llvm::Value *NumElements; 1918 QualType ElementType; 1919 CharUnits CookieSize; 1920 1921 CallArrayDelete(llvm::Value *Ptr, 1922 const FunctionDecl *OperatorDelete, 1923 llvm::Value *NumElements, 1924 QualType ElementType, 1925 CharUnits CookieSize) 1926 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1927 ElementType(ElementType), CookieSize(CookieSize) {} 1928 1929 void Emit(CodeGenFunction &CGF, Flags flags) override { 1930 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1931 CookieSize); 1932 } 1933 }; 1934 } 1935 1936 /// Emit the code for deleting an array of objects. 1937 static void EmitArrayDelete(CodeGenFunction &CGF, 1938 const CXXDeleteExpr *E, 1939 Address deletedPtr, 1940 QualType elementType) { 1941 llvm::Value *numElements = nullptr; 1942 llvm::Value *allocatedPtr = nullptr; 1943 CharUnits cookieSize; 1944 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1945 numElements, allocatedPtr, cookieSize); 1946 1947 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1948 1949 // Make sure that we call delete even if one of the dtors throws. 1950 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1951 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1952 allocatedPtr, operatorDelete, 1953 numElements, elementType, 1954 cookieSize); 1955 1956 // Destroy the elements. 1957 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1958 assert(numElements && "no element count for a type with a destructor!"); 1959 1960 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1961 CharUnits elementAlign = 1962 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1963 1964 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1965 llvm::Value *arrayEnd = 1966 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1967 1968 // Note that it is legal to allocate a zero-length array, and we 1969 // can never fold the check away because the length should always 1970 // come from a cookie. 1971 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1972 CGF.getDestroyer(dtorKind), 1973 /*checkZeroLength*/ true, 1974 CGF.needsEHCleanup(dtorKind)); 1975 } 1976 1977 // Pop the cleanup block. 1978 CGF.PopCleanupBlock(); 1979 } 1980 1981 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1982 const Expr *Arg = E->getArgument(); 1983 Address Ptr = EmitPointerWithAlignment(Arg); 1984 1985 // Null check the pointer. 1986 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1987 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1988 1989 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1990 1991 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1992 EmitBlock(DeleteNotNull); 1993 1994 QualType DeleteTy = E->getDestroyedType(); 1995 1996 // A destroying operator delete overrides the entire operation of the 1997 // delete expression. 1998 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 1999 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2000 EmitBlock(DeleteEnd); 2001 return; 2002 } 2003 2004 // We might be deleting a pointer to array. If so, GEP down to the 2005 // first non-array element. 2006 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2007 if (DeleteTy->isConstantArrayType()) { 2008 llvm::Value *Zero = Builder.getInt32(0); 2009 SmallVector<llvm::Value*,8> GEP; 2010 2011 GEP.push_back(Zero); // point at the outermost array 2012 2013 // For each layer of array type we're pointing at: 2014 while (const ConstantArrayType *Arr 2015 = getContext().getAsConstantArrayType(DeleteTy)) { 2016 // 1. Unpeel the array type. 2017 DeleteTy = Arr->getElementType(); 2018 2019 // 2. GEP to the first element of the array. 2020 GEP.push_back(Zero); 2021 } 2022 2023 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2024 Ptr.getAlignment()); 2025 } 2026 2027 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2028 2029 if (E->isArrayForm()) { 2030 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2031 } else { 2032 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2033 } 2034 2035 EmitBlock(DeleteEnd); 2036 } 2037 2038 static bool isGLValueFromPointerDeref(const Expr *E) { 2039 E = E->IgnoreParens(); 2040 2041 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2042 if (!CE->getSubExpr()->isGLValue()) 2043 return false; 2044 return isGLValueFromPointerDeref(CE->getSubExpr()); 2045 } 2046 2047 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2048 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2049 2050 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2051 if (BO->getOpcode() == BO_Comma) 2052 return isGLValueFromPointerDeref(BO->getRHS()); 2053 2054 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2055 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2056 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2057 2058 // C++11 [expr.sub]p1: 2059 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2060 if (isa<ArraySubscriptExpr>(E)) 2061 return true; 2062 2063 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2064 if (UO->getOpcode() == UO_Deref) 2065 return true; 2066 2067 return false; 2068 } 2069 2070 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2071 llvm::Type *StdTypeInfoPtrTy) { 2072 // Get the vtable pointer. 2073 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2074 2075 QualType SrcRecordTy = E->getType(); 2076 2077 // C++ [class.cdtor]p4: 2078 // If the operand of typeid refers to the object under construction or 2079 // destruction and the static type of the operand is neither the constructor 2080 // or destructor’s class nor one of its bases, the behavior is undefined. 2081 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2082 ThisPtr.getPointer(), SrcRecordTy); 2083 2084 // C++ [expr.typeid]p2: 2085 // If the glvalue expression is obtained by applying the unary * operator to 2086 // a pointer and the pointer is a null pointer value, the typeid expression 2087 // throws the std::bad_typeid exception. 2088 // 2089 // However, this paragraph's intent is not clear. We choose a very generous 2090 // interpretation which implores us to consider comma operators, conditional 2091 // operators, parentheses and other such constructs. 2092 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2093 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2094 llvm::BasicBlock *BadTypeidBlock = 2095 CGF.createBasicBlock("typeid.bad_typeid"); 2096 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2097 2098 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2099 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2100 2101 CGF.EmitBlock(BadTypeidBlock); 2102 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2103 CGF.EmitBlock(EndBlock); 2104 } 2105 2106 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2107 StdTypeInfoPtrTy); 2108 } 2109 2110 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2111 llvm::Type *StdTypeInfoPtrTy = 2112 ConvertType(E->getType())->getPointerTo(); 2113 2114 if (E->isTypeOperand()) { 2115 llvm::Constant *TypeInfo = 2116 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2117 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2118 } 2119 2120 // C++ [expr.typeid]p2: 2121 // When typeid is applied to a glvalue expression whose type is a 2122 // polymorphic class type, the result refers to a std::type_info object 2123 // representing the type of the most derived object (that is, the dynamic 2124 // type) to which the glvalue refers. 2125 if (E->isPotentiallyEvaluated()) 2126 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2127 StdTypeInfoPtrTy); 2128 2129 QualType OperandTy = E->getExprOperand()->getType(); 2130 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2131 StdTypeInfoPtrTy); 2132 } 2133 2134 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2135 QualType DestTy) { 2136 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2137 if (DestTy->isPointerType()) 2138 return llvm::Constant::getNullValue(DestLTy); 2139 2140 /// C++ [expr.dynamic.cast]p9: 2141 /// A failed cast to reference type throws std::bad_cast 2142 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2143 return nullptr; 2144 2145 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2146 return llvm::UndefValue::get(DestLTy); 2147 } 2148 2149 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2150 const CXXDynamicCastExpr *DCE) { 2151 CGM.EmitExplicitCastExprType(DCE, this); 2152 QualType DestTy = DCE->getTypeAsWritten(); 2153 2154 QualType SrcTy = DCE->getSubExpr()->getType(); 2155 2156 // C++ [expr.dynamic.cast]p7: 2157 // If T is "pointer to cv void," then the result is a pointer to the most 2158 // derived object pointed to by v. 2159 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2160 2161 bool isDynamicCastToVoid; 2162 QualType SrcRecordTy; 2163 QualType DestRecordTy; 2164 if (DestPTy) { 2165 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2166 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2167 DestRecordTy = DestPTy->getPointeeType(); 2168 } else { 2169 isDynamicCastToVoid = false; 2170 SrcRecordTy = SrcTy; 2171 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2172 } 2173 2174 // C++ [class.cdtor]p5: 2175 // If the operand of the dynamic_cast refers to the object under 2176 // construction or destruction and the static type of the operand is not a 2177 // pointer to or object of the constructor or destructor’s own class or one 2178 // of its bases, the dynamic_cast results in undefined behavior. 2179 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2180 SrcRecordTy); 2181 2182 if (DCE->isAlwaysNull()) 2183 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2184 return T; 2185 2186 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2187 2188 // C++ [expr.dynamic.cast]p4: 2189 // If the value of v is a null pointer value in the pointer case, the result 2190 // is the null pointer value of type T. 2191 bool ShouldNullCheckSrcValue = 2192 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2193 SrcRecordTy); 2194 2195 llvm::BasicBlock *CastNull = nullptr; 2196 llvm::BasicBlock *CastNotNull = nullptr; 2197 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2198 2199 if (ShouldNullCheckSrcValue) { 2200 CastNull = createBasicBlock("dynamic_cast.null"); 2201 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2202 2203 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2204 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2205 EmitBlock(CastNotNull); 2206 } 2207 2208 llvm::Value *Value; 2209 if (isDynamicCastToVoid) { 2210 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2211 DestTy); 2212 } else { 2213 assert(DestRecordTy->isRecordType() && 2214 "destination type must be a record type!"); 2215 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2216 DestTy, DestRecordTy, CastEnd); 2217 CastNotNull = Builder.GetInsertBlock(); 2218 } 2219 2220 if (ShouldNullCheckSrcValue) { 2221 EmitBranch(CastEnd); 2222 2223 EmitBlock(CastNull); 2224 EmitBranch(CastEnd); 2225 } 2226 2227 EmitBlock(CastEnd); 2228 2229 if (ShouldNullCheckSrcValue) { 2230 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2231 PHI->addIncoming(Value, CastNotNull); 2232 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2233 2234 Value = PHI; 2235 } 2236 2237 return Value; 2238 } 2239