1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/Support/CallSite.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
28                                           SourceLocation CallLoc,
29                                           llvm::Value *Callee,
30                                           ReturnValueSlot ReturnValue,
31                                           llvm::Value *This,
32                                           llvm::Value *ImplicitParam,
33                                           QualType ImplicitParamTy,
34                                           CallExpr::const_arg_iterator ArgBeg,
35                                           CallExpr::const_arg_iterator ArgEnd) {
36   assert(MD->isInstance() &&
37          "Trying to emit a member call expr on a static method!");
38 
39   // C++11 [class.mfct.non-static]p2:
40   //   If a non-static member function of a class X is called for an object that
41   //   is not of type X, or of a type derived from X, the behavior is undefined.
42   EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
43                                             : TCK_MemberCall,
44                 CallLoc, This, getContext().getRecordType(MD->getParent()));
45 
46   CallArgList Args;
47 
48   // Push the this ptr.
49   Args.add(RValue::get(This), MD->getThisType(getContext()));
50 
51   // If there is an implicit parameter (e.g. VTT), emit it.
52   if (ImplicitParam) {
53     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54   }
55 
56   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
58 
59   // And the rest of the call args.
60   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
61 
62   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
63                   Callee, ReturnValue, Args, MD);
64 }
65 
66 static CXXRecordDecl *getCXXRecord(const Expr *E) {
67   QualType T = E->getType();
68   if (const PointerType *PTy = T->getAs<PointerType>())
69     T = PTy->getPointeeType();
70   const RecordType *Ty = T->castAs<RecordType>();
71   return cast<CXXRecordDecl>(Ty->getDecl());
72 }
73 
74 // Note: This function also emit constructor calls to support a MSVC
75 // extensions allowing explicit constructor function call.
76 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
77                                               ReturnValueSlot ReturnValue) {
78   const Expr *callee = CE->getCallee()->IgnoreParens();
79 
80   if (isa<BinaryOperator>(callee))
81     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
82 
83   const MemberExpr *ME = cast<MemberExpr>(callee);
84   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
85 
86   if (MD->isStatic()) {
87     // The method is static, emit it as we would a regular call.
88     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
89     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
90                     CE->getLocStart(), ReturnValue, CE->arg_begin(),
91                     CE->arg_end());
92   }
93 
94   // Compute the object pointer.
95   const Expr *Base = ME->getBase();
96   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
97 
98   const CXXMethodDecl *DevirtualizedMethod = NULL;
99   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
100     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
101     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
102     assert(DevirtualizedMethod);
103     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
104     const Expr *Inner = Base->ignoreParenBaseCasts();
105     if (getCXXRecord(Inner) == DevirtualizedClass)
106       // If the class of the Inner expression is where the dynamic method
107       // is defined, build the this pointer from it.
108       Base = Inner;
109     else if (getCXXRecord(Base) != DevirtualizedClass) {
110       // If the method is defined in a class that is not the best dynamic
111       // one or the one of the full expression, we would have to build
112       // a derived-to-base cast to compute the correct this pointer, but
113       // we don't have support for that yet, so do a virtual call.
114       DevirtualizedMethod = NULL;
115     }
116     // If the return types are not the same, this might be a case where more
117     // code needs to run to compensate for it. For example, the derived
118     // method might return a type that inherits form from the return
119     // type of MD and has a prefix.
120     // For now we just avoid devirtualizing these covariant cases.
121     if (DevirtualizedMethod &&
122         DevirtualizedMethod->getResultType().getCanonicalType() !=
123         MD->getResultType().getCanonicalType())
124       DevirtualizedMethod = NULL;
125   }
126 
127   llvm::Value *This;
128   if (ME->isArrow())
129     This = EmitScalarExpr(Base);
130   else
131     This = EmitLValue(Base).getAddress();
132 
133 
134   if (MD->isTrivial()) {
135     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
136     if (isa<CXXConstructorDecl>(MD) &&
137         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
138       return RValue::get(0);
139 
140     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
141       // We don't like to generate the trivial copy/move assignment operator
142       // when it isn't necessary; just produce the proper effect here.
143       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
144       EmitAggregateAssign(This, RHS, CE->getType());
145       return RValue::get(This);
146     }
147 
148     if (isa<CXXConstructorDecl>(MD) &&
149         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
150       // Trivial move and copy ctor are the same.
151       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
152       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
153                                      CE->arg_begin(), CE->arg_end());
154       return RValue::get(This);
155     }
156     llvm_unreachable("unknown trivial member function");
157   }
158 
159   // Compute the function type we're calling.
160   const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
161   const CGFunctionInfo *FInfo = 0;
162   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
163     FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
164                                                  Dtor_Complete);
165   else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
166     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
167                                                              Ctor_Complete);
168   else
169     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
170 
171   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
172 
173   // C++ [class.virtual]p12:
174   //   Explicit qualification with the scope operator (5.1) suppresses the
175   //   virtual call mechanism.
176   //
177   // We also don't emit a virtual call if the base expression has a record type
178   // because then we know what the type is.
179   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
180   llvm::Value *Callee;
181 
182   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
183     assert(CE->arg_begin() == CE->arg_end() &&
184            "Destructor shouldn't have explicit parameters");
185     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
186     if (UseVirtualCall) {
187       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
188                                                 CE->getExprLoc(), This);
189     } else {
190       if (getLangOpts().AppleKext &&
191           MD->isVirtual() &&
192           ME->hasQualifier())
193         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
194       else if (!DevirtualizedMethod)
195         Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty);
196       else {
197         const CXXDestructorDecl *DDtor =
198           cast<CXXDestructorDecl>(DevirtualizedMethod);
199         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
200       }
201       EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
202                         /*ImplicitParam=*/0, QualType(), 0, 0);
203     }
204     return RValue::get(0);
205   }
206 
207   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
208     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
209   } else if (UseVirtualCall) {
210     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
211   } else {
212     if (getLangOpts().AppleKext &&
213         MD->isVirtual() &&
214         ME->hasQualifier())
215       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
216     else if (!DevirtualizedMethod)
217       Callee = CGM.GetAddrOfFunction(MD, Ty);
218     else {
219       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
220     }
221   }
222 
223   if (MD->isVirtual())
224     This = CGM.getCXXABI().adjustThisArgumentForVirtualCall(*this, MD, This);
225 
226   return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
227                            /*ImplicitParam=*/0, QualType(),
228                            CE->arg_begin(), CE->arg_end());
229 }
230 
231 RValue
232 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
233                                               ReturnValueSlot ReturnValue) {
234   const BinaryOperator *BO =
235       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
236   const Expr *BaseExpr = BO->getLHS();
237   const Expr *MemFnExpr = BO->getRHS();
238 
239   const MemberPointerType *MPT =
240     MemFnExpr->getType()->castAs<MemberPointerType>();
241 
242   const FunctionProtoType *FPT =
243     MPT->getPointeeType()->castAs<FunctionProtoType>();
244   const CXXRecordDecl *RD =
245     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
246 
247   // Get the member function pointer.
248   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
249 
250   // Emit the 'this' pointer.
251   llvm::Value *This;
252 
253   if (BO->getOpcode() == BO_PtrMemI)
254     This = EmitScalarExpr(BaseExpr);
255   else
256     This = EmitLValue(BaseExpr).getAddress();
257 
258   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
259                 QualType(MPT->getClass(), 0));
260 
261   // Ask the ABI to load the callee.  Note that This is modified.
262   llvm::Value *Callee =
263     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
264 
265   CallArgList Args;
266 
267   QualType ThisType =
268     getContext().getPointerType(getContext().getTagDeclType(RD));
269 
270   // Push the this ptr.
271   Args.add(RValue::get(This), ThisType);
272 
273   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
274 
275   // And the rest of the call args
276   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
277   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
278                   Callee, ReturnValue, Args);
279 }
280 
281 RValue
282 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
283                                                const CXXMethodDecl *MD,
284                                                ReturnValueSlot ReturnValue) {
285   assert(MD->isInstance() &&
286          "Trying to emit a member call expr on a static method!");
287   LValue LV = EmitLValue(E->getArg(0));
288   llvm::Value *This = LV.getAddress();
289 
290   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
291       MD->isTrivial()) {
292     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
293     QualType Ty = E->getType();
294     EmitAggregateAssign(This, Src, Ty);
295     return RValue::get(This);
296   }
297 
298   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
299   return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This,
300                            /*ImplicitParam=*/0, QualType(),
301                            E->arg_begin() + 1, E->arg_end());
302 }
303 
304 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
305                                                ReturnValueSlot ReturnValue) {
306   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
307 }
308 
309 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
310                                             llvm::Value *DestPtr,
311                                             const CXXRecordDecl *Base) {
312   if (Base->isEmpty())
313     return;
314 
315   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
316 
317   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
318   CharUnits Size = Layout.getNonVirtualSize();
319   CharUnits Align = Layout.getNonVirtualAlignment();
320 
321   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
322 
323   // If the type contains a pointer to data member we can't memset it to zero.
324   // Instead, create a null constant and copy it to the destination.
325   // TODO: there are other patterns besides zero that we can usefully memset,
326   // like -1, which happens to be the pattern used by member-pointers.
327   // TODO: isZeroInitializable can be over-conservative in the case where a
328   // virtual base contains a member pointer.
329   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
330     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
331 
332     llvm::GlobalVariable *NullVariable =
333       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
334                                /*isConstant=*/true,
335                                llvm::GlobalVariable::PrivateLinkage,
336                                NullConstant, Twine());
337     NullVariable->setAlignment(Align.getQuantity());
338     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
339 
340     // Get and call the appropriate llvm.memcpy overload.
341     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
342     return;
343   }
344 
345   // Otherwise, just memset the whole thing to zero.  This is legal
346   // because in LLVM, all default initializers (other than the ones we just
347   // handled above) are guaranteed to have a bit pattern of all zeros.
348   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
349                            Align.getQuantity());
350 }
351 
352 void
353 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
354                                       AggValueSlot Dest) {
355   assert(!Dest.isIgnored() && "Must have a destination!");
356   const CXXConstructorDecl *CD = E->getConstructor();
357 
358   // If we require zero initialization before (or instead of) calling the
359   // constructor, as can be the case with a non-user-provided default
360   // constructor, emit the zero initialization now, unless destination is
361   // already zeroed.
362   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
363     switch (E->getConstructionKind()) {
364     case CXXConstructExpr::CK_Delegating:
365     case CXXConstructExpr::CK_Complete:
366       EmitNullInitialization(Dest.getAddr(), E->getType());
367       break;
368     case CXXConstructExpr::CK_VirtualBase:
369     case CXXConstructExpr::CK_NonVirtualBase:
370       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
371       break;
372     }
373   }
374 
375   // If this is a call to a trivial default constructor, do nothing.
376   if (CD->isTrivial() && CD->isDefaultConstructor())
377     return;
378 
379   // Elide the constructor if we're constructing from a temporary.
380   // The temporary check is required because Sema sets this on NRVO
381   // returns.
382   if (getLangOpts().ElideConstructors && E->isElidable()) {
383     assert(getContext().hasSameUnqualifiedType(E->getType(),
384                                                E->getArg(0)->getType()));
385     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
386       EmitAggExpr(E->getArg(0), Dest);
387       return;
388     }
389   }
390 
391   if (const ConstantArrayType *arrayType
392         = getContext().getAsConstantArrayType(E->getType())) {
393     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
394                                E->arg_begin(), E->arg_end());
395   } else {
396     CXXCtorType Type = Ctor_Complete;
397     bool ForVirtualBase = false;
398     bool Delegating = false;
399 
400     switch (E->getConstructionKind()) {
401      case CXXConstructExpr::CK_Delegating:
402       // We should be emitting a constructor; GlobalDecl will assert this
403       Type = CurGD.getCtorType();
404       Delegating = true;
405       break;
406 
407      case CXXConstructExpr::CK_Complete:
408       Type = Ctor_Complete;
409       break;
410 
411      case CXXConstructExpr::CK_VirtualBase:
412       ForVirtualBase = true;
413       // fall-through
414 
415      case CXXConstructExpr::CK_NonVirtualBase:
416       Type = Ctor_Base;
417     }
418 
419     // Call the constructor.
420     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
421                            E->arg_begin(), E->arg_end());
422   }
423 }
424 
425 void
426 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
427                                             llvm::Value *Src,
428                                             const Expr *Exp) {
429   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
430     Exp = E->getSubExpr();
431   assert(isa<CXXConstructExpr>(Exp) &&
432          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
433   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
434   const CXXConstructorDecl *CD = E->getConstructor();
435   RunCleanupsScope Scope(*this);
436 
437   // If we require zero initialization before (or instead of) calling the
438   // constructor, as can be the case with a non-user-provided default
439   // constructor, emit the zero initialization now.
440   // FIXME. Do I still need this for a copy ctor synthesis?
441   if (E->requiresZeroInitialization())
442     EmitNullInitialization(Dest, E->getType());
443 
444   assert(!getContext().getAsConstantArrayType(E->getType())
445          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
446   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end());
447 }
448 
449 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
450                                         const CXXNewExpr *E) {
451   if (!E->isArray())
452     return CharUnits::Zero();
453 
454   // No cookie is required if the operator new[] being used is the
455   // reserved placement operator new[].
456   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
457     return CharUnits::Zero();
458 
459   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
460 }
461 
462 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
463                                         const CXXNewExpr *e,
464                                         unsigned minElements,
465                                         llvm::Value *&numElements,
466                                         llvm::Value *&sizeWithoutCookie) {
467   QualType type = e->getAllocatedType();
468 
469   if (!e->isArray()) {
470     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
471     sizeWithoutCookie
472       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
473     return sizeWithoutCookie;
474   }
475 
476   // The width of size_t.
477   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
478 
479   // Figure out the cookie size.
480   llvm::APInt cookieSize(sizeWidth,
481                          CalculateCookiePadding(CGF, e).getQuantity());
482 
483   // Emit the array size expression.
484   // We multiply the size of all dimensions for NumElements.
485   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
486   numElements = CGF.EmitScalarExpr(e->getArraySize());
487   assert(isa<llvm::IntegerType>(numElements->getType()));
488 
489   // The number of elements can be have an arbitrary integer type;
490   // essentially, we need to multiply it by a constant factor, add a
491   // cookie size, and verify that the result is representable as a
492   // size_t.  That's just a gloss, though, and it's wrong in one
493   // important way: if the count is negative, it's an error even if
494   // the cookie size would bring the total size >= 0.
495   bool isSigned
496     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
497   llvm::IntegerType *numElementsType
498     = cast<llvm::IntegerType>(numElements->getType());
499   unsigned numElementsWidth = numElementsType->getBitWidth();
500 
501   // Compute the constant factor.
502   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
503   while (const ConstantArrayType *CAT
504              = CGF.getContext().getAsConstantArrayType(type)) {
505     type = CAT->getElementType();
506     arraySizeMultiplier *= CAT->getSize();
507   }
508 
509   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
510   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
511   typeSizeMultiplier *= arraySizeMultiplier;
512 
513   // This will be a size_t.
514   llvm::Value *size;
515 
516   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
517   // Don't bloat the -O0 code.
518   if (llvm::ConstantInt *numElementsC =
519         dyn_cast<llvm::ConstantInt>(numElements)) {
520     const llvm::APInt &count = numElementsC->getValue();
521 
522     bool hasAnyOverflow = false;
523 
524     // If 'count' was a negative number, it's an overflow.
525     if (isSigned && count.isNegative())
526       hasAnyOverflow = true;
527 
528     // We want to do all this arithmetic in size_t.  If numElements is
529     // wider than that, check whether it's already too big, and if so,
530     // overflow.
531     else if (numElementsWidth > sizeWidth &&
532              numElementsWidth - sizeWidth > count.countLeadingZeros())
533       hasAnyOverflow = true;
534 
535     // Okay, compute a count at the right width.
536     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
537 
538     // If there is a brace-initializer, we cannot allocate fewer elements than
539     // there are initializers. If we do, that's treated like an overflow.
540     if (adjustedCount.ult(minElements))
541       hasAnyOverflow = true;
542 
543     // Scale numElements by that.  This might overflow, but we don't
544     // care because it only overflows if allocationSize does, too, and
545     // if that overflows then we shouldn't use this.
546     numElements = llvm::ConstantInt::get(CGF.SizeTy,
547                                          adjustedCount * arraySizeMultiplier);
548 
549     // Compute the size before cookie, and track whether it overflowed.
550     bool overflow;
551     llvm::APInt allocationSize
552       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
553     hasAnyOverflow |= overflow;
554 
555     // Add in the cookie, and check whether it's overflowed.
556     if (cookieSize != 0) {
557       // Save the current size without a cookie.  This shouldn't be
558       // used if there was overflow.
559       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
560 
561       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
562       hasAnyOverflow |= overflow;
563     }
564 
565     // On overflow, produce a -1 so operator new will fail.
566     if (hasAnyOverflow) {
567       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
568     } else {
569       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
570     }
571 
572   // Otherwise, we might need to use the overflow intrinsics.
573   } else {
574     // There are up to five conditions we need to test for:
575     // 1) if isSigned, we need to check whether numElements is negative;
576     // 2) if numElementsWidth > sizeWidth, we need to check whether
577     //   numElements is larger than something representable in size_t;
578     // 3) if minElements > 0, we need to check whether numElements is smaller
579     //    than that.
580     // 4) we need to compute
581     //      sizeWithoutCookie := numElements * typeSizeMultiplier
582     //    and check whether it overflows; and
583     // 5) if we need a cookie, we need to compute
584     //      size := sizeWithoutCookie + cookieSize
585     //    and check whether it overflows.
586 
587     llvm::Value *hasOverflow = 0;
588 
589     // If numElementsWidth > sizeWidth, then one way or another, we're
590     // going to have to do a comparison for (2), and this happens to
591     // take care of (1), too.
592     if (numElementsWidth > sizeWidth) {
593       llvm::APInt threshold(numElementsWidth, 1);
594       threshold <<= sizeWidth;
595 
596       llvm::Value *thresholdV
597         = llvm::ConstantInt::get(numElementsType, threshold);
598 
599       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
600       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
601 
602     // Otherwise, if we're signed, we want to sext up to size_t.
603     } else if (isSigned) {
604       if (numElementsWidth < sizeWidth)
605         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
606 
607       // If there's a non-1 type size multiplier, then we can do the
608       // signedness check at the same time as we do the multiply
609       // because a negative number times anything will cause an
610       // unsigned overflow.  Otherwise, we have to do it here. But at least
611       // in this case, we can subsume the >= minElements check.
612       if (typeSizeMultiplier == 1)
613         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
614                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
615 
616     // Otherwise, zext up to size_t if necessary.
617     } else if (numElementsWidth < sizeWidth) {
618       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
619     }
620 
621     assert(numElements->getType() == CGF.SizeTy);
622 
623     if (minElements) {
624       // Don't allow allocation of fewer elements than we have initializers.
625       if (!hasOverflow) {
626         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
627                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
628       } else if (numElementsWidth > sizeWidth) {
629         // The other existing overflow subsumes this check.
630         // We do an unsigned comparison, since any signed value < -1 is
631         // taken care of either above or below.
632         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
633                           CGF.Builder.CreateICmpULT(numElements,
634                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
635       }
636     }
637 
638     size = numElements;
639 
640     // Multiply by the type size if necessary.  This multiplier
641     // includes all the factors for nested arrays.
642     //
643     // This step also causes numElements to be scaled up by the
644     // nested-array factor if necessary.  Overflow on this computation
645     // can be ignored because the result shouldn't be used if
646     // allocation fails.
647     if (typeSizeMultiplier != 1) {
648       llvm::Value *umul_with_overflow
649         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
650 
651       llvm::Value *tsmV =
652         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
653       llvm::Value *result =
654         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
655 
656       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
657       if (hasOverflow)
658         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
659       else
660         hasOverflow = overflowed;
661 
662       size = CGF.Builder.CreateExtractValue(result, 0);
663 
664       // Also scale up numElements by the array size multiplier.
665       if (arraySizeMultiplier != 1) {
666         // If the base element type size is 1, then we can re-use the
667         // multiply we just did.
668         if (typeSize.isOne()) {
669           assert(arraySizeMultiplier == typeSizeMultiplier);
670           numElements = size;
671 
672         // Otherwise we need a separate multiply.
673         } else {
674           llvm::Value *asmV =
675             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
676           numElements = CGF.Builder.CreateMul(numElements, asmV);
677         }
678       }
679     } else {
680       // numElements doesn't need to be scaled.
681       assert(arraySizeMultiplier == 1);
682     }
683 
684     // Add in the cookie size if necessary.
685     if (cookieSize != 0) {
686       sizeWithoutCookie = size;
687 
688       llvm::Value *uadd_with_overflow
689         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
690 
691       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
692       llvm::Value *result =
693         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
694 
695       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
696       if (hasOverflow)
697         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
698       else
699         hasOverflow = overflowed;
700 
701       size = CGF.Builder.CreateExtractValue(result, 0);
702     }
703 
704     // If we had any possibility of dynamic overflow, make a select to
705     // overwrite 'size' with an all-ones value, which should cause
706     // operator new to throw.
707     if (hasOverflow)
708       size = CGF.Builder.CreateSelect(hasOverflow,
709                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
710                                       size);
711   }
712 
713   if (cookieSize == 0)
714     sizeWithoutCookie = size;
715   else
716     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
717 
718   return size;
719 }
720 
721 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
722                                     QualType AllocType, llvm::Value *NewPtr) {
723   // FIXME: Refactor with EmitExprAsInit.
724   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
725   switch (CGF.getEvaluationKind(AllocType)) {
726   case TEK_Scalar:
727     CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
728                                                    Alignment),
729                        false);
730     return;
731   case TEK_Complex:
732     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
733                                                            Alignment),
734                                   /*isInit*/ true);
735     return;
736   case TEK_Aggregate: {
737     AggValueSlot Slot
738       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
739                               AggValueSlot::IsDestructed,
740                               AggValueSlot::DoesNotNeedGCBarriers,
741                               AggValueSlot::IsNotAliased);
742     CGF.EmitAggExpr(Init, Slot);
743     return;
744   }
745   }
746   llvm_unreachable("bad evaluation kind");
747 }
748 
749 void
750 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
751                                          QualType elementType,
752                                          llvm::Value *beginPtr,
753                                          llvm::Value *numElements) {
754   if (!E->hasInitializer())
755     return; // We have a POD type.
756 
757   llvm::Value *explicitPtr = beginPtr;
758   // Find the end of the array, hoisted out of the loop.
759   llvm::Value *endPtr =
760     Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
761 
762   unsigned initializerElements = 0;
763 
764   const Expr *Init = E->getInitializer();
765   llvm::AllocaInst *endOfInit = 0;
766   QualType::DestructionKind dtorKind = elementType.isDestructedType();
767   EHScopeStack::stable_iterator cleanup;
768   llvm::Instruction *cleanupDominator = 0;
769 
770   // If the initializer is an initializer list, first do the explicit elements.
771   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
772     initializerElements = ILE->getNumInits();
773 
774     // If this is a multi-dimensional array new, we will initialize multiple
775     // elements with each init list element.
776     QualType AllocType = E->getAllocatedType();
777     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
778             AllocType->getAsArrayTypeUnsafe())) {
779       unsigned AS = explicitPtr->getType()->getPointerAddressSpace();
780       llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS);
781       explicitPtr = Builder.CreateBitCast(explicitPtr, AllocPtrTy);
782       initializerElements *= getContext().getConstantArrayElementCount(CAT);
783     }
784 
785     // Enter a partial-destruction cleanup if necessary.
786     if (needsEHCleanup(dtorKind)) {
787       // In principle we could tell the cleanup where we are more
788       // directly, but the control flow can get so varied here that it
789       // would actually be quite complex.  Therefore we go through an
790       // alloca.
791       endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
792       cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
793       pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
794                                        getDestroyer(dtorKind));
795       cleanup = EHStack.stable_begin();
796     }
797 
798     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
799       // Tell the cleanup that it needs to destroy up to this
800       // element.  TODO: some of these stores can be trivially
801       // observed to be unnecessary.
802       if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
803       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
804                               ILE->getInit(i)->getType(), explicitPtr);
805       explicitPtr = Builder.CreateConstGEP1_32(explicitPtr, 1,
806                                                "array.exp.next");
807     }
808 
809     // The remaining elements are filled with the array filler expression.
810     Init = ILE->getArrayFiller();
811 
812     explicitPtr = Builder.CreateBitCast(explicitPtr, beginPtr->getType());
813   }
814 
815   // Create the continuation block.
816   llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
817 
818   // If the number of elements isn't constant, we have to now check if there is
819   // anything left to initialize.
820   if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
821     // If all elements have already been initialized, skip the whole loop.
822     if (constNum->getZExtValue() <= initializerElements) {
823       // If there was a cleanup, deactivate it.
824       if (cleanupDominator)
825         DeactivateCleanupBlock(cleanup, cleanupDominator);
826       return;
827     }
828   } else {
829     llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
830     llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
831                                                 "array.isempty");
832     Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
833     EmitBlock(nonEmptyBB);
834   }
835 
836   // Enter the loop.
837   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
838   llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
839 
840   EmitBlock(loopBB);
841 
842   // Set up the current-element phi.
843   llvm::PHINode *curPtr =
844     Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
845   curPtr->addIncoming(explicitPtr, entryBB);
846 
847   // Store the new cleanup position for irregular cleanups.
848   if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
849 
850   // Enter a partial-destruction cleanup if necessary.
851   if (!cleanupDominator && needsEHCleanup(dtorKind)) {
852     pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
853                                    getDestroyer(dtorKind));
854     cleanup = EHStack.stable_begin();
855     cleanupDominator = Builder.CreateUnreachable();
856   }
857 
858   // Emit the initializer into this element.
859   StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
860 
861   // Leave the cleanup if we entered one.
862   if (cleanupDominator) {
863     DeactivateCleanupBlock(cleanup, cleanupDominator);
864     cleanupDominator->eraseFromParent();
865   }
866 
867   // FIXME: The code below intends to initialize the individual array base
868   // elements, one at a time - but when dealing with multi-dimensional arrays -
869   // the pointer arithmetic can get confused - so the fix below entails casting
870   // to the allocated type to ensure that we get the pointer arithmetic right.
871   // It seems like the right approach here, it to really initialize the
872   // individual array base elements one at a time since it'll generate less
873   // code. I think the problem is that the wrong type is being passed into
874   // StoreAnyExprIntoOneUnit, but directly fixing that doesn't really work,
875   // because the Init expression has the wrong type at this point.
876   // So... this is ok for a quick fix, but we can and should do a lot better
877   // here long-term.
878 
879   // Advance to the next element by adjusting the pointer type as necessary.
880   // For new int[10][20][30], alloc type is int[20][30], base type is 'int'.
881   QualType AllocType = E->getAllocatedType();
882   llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(
883       curPtr->getType()->getPointerAddressSpace());
884   llvm::Value *curPtrAllocTy = Builder.CreateBitCast(curPtr, AllocPtrTy);
885   llvm::Value *nextPtrAllocTy =
886       Builder.CreateConstGEP1_32(curPtrAllocTy, 1, "array.next");
887   // Cast it back to the base type so that we can compare it to the endPtr.
888   llvm::Value *nextPtr =
889       Builder.CreateBitCast(nextPtrAllocTy, endPtr->getType());
890   // Check whether we've gotten to the end of the array and, if so,
891   // exit the loop.
892   llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
893   Builder.CreateCondBr(isEnd, contBB, loopBB);
894   curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
895 
896   EmitBlock(contBB);
897 }
898 
899 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
900                            llvm::Value *NewPtr, llvm::Value *Size) {
901   CGF.EmitCastToVoidPtr(NewPtr);
902   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
903   CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
904                            Alignment.getQuantity(), false);
905 }
906 
907 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
908                                QualType ElementType,
909                                llvm::Value *NewPtr,
910                                llvm::Value *NumElements,
911                                llvm::Value *AllocSizeWithoutCookie) {
912   const Expr *Init = E->getInitializer();
913   if (E->isArray()) {
914     if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
915       CXXConstructorDecl *Ctor = CCE->getConstructor();
916       if (Ctor->isTrivial()) {
917         // If new expression did not specify value-initialization, then there
918         // is no initialization.
919         if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
920           return;
921 
922         if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
923           // Optimization: since zero initialization will just set the memory
924           // to all zeroes, generate a single memset to do it in one shot.
925           EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
926           return;
927         }
928       }
929 
930       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
931                                      CCE->arg_begin(),  CCE->arg_end(),
932                                      CCE->requiresZeroInitialization());
933       return;
934     } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
935                CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
936       // Optimization: since zero initialization will just set the memory
937       // to all zeroes, generate a single memset to do it in one shot.
938       EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
939       return;
940     }
941     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
942     return;
943   }
944 
945   if (!Init)
946     return;
947 
948   StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
949 }
950 
951 /// Emit a call to an operator new or operator delete function, as implicitly
952 /// created by new-expressions and delete-expressions.
953 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
954                                 const FunctionDecl *Callee,
955                                 const FunctionProtoType *CalleeType,
956                                 const CallArgList &Args) {
957   llvm::Instruction *CallOrInvoke;
958   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
959   RValue RV =
960       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType),
961                    CalleeAddr, ReturnValueSlot(), Args,
962                    Callee, &CallOrInvoke);
963 
964   /// C++1y [expr.new]p10:
965   ///   [In a new-expression,] an implementation is allowed to omit a call
966   ///   to a replaceable global allocation function.
967   ///
968   /// We model such elidable calls with the 'builtin' attribute.
969   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
970   if (Callee->isReplaceableGlobalAllocationFunction() &&
971       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
972     // FIXME: Add addAttribute to CallSite.
973     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
974       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
975                        llvm::Attribute::Builtin);
976     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
977       II->addAttribute(llvm::AttributeSet::FunctionIndex,
978                        llvm::Attribute::Builtin);
979     else
980       llvm_unreachable("unexpected kind of call instruction");
981   }
982 
983   return RV;
984 }
985 
986 namespace {
987   /// A cleanup to call the given 'operator delete' function upon
988   /// abnormal exit from a new expression.
989   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
990     size_t NumPlacementArgs;
991     const FunctionDecl *OperatorDelete;
992     llvm::Value *Ptr;
993     llvm::Value *AllocSize;
994 
995     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
996 
997   public:
998     static size_t getExtraSize(size_t NumPlacementArgs) {
999       return NumPlacementArgs * sizeof(RValue);
1000     }
1001 
1002     CallDeleteDuringNew(size_t NumPlacementArgs,
1003                         const FunctionDecl *OperatorDelete,
1004                         llvm::Value *Ptr,
1005                         llvm::Value *AllocSize)
1006       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1007         Ptr(Ptr), AllocSize(AllocSize) {}
1008 
1009     void setPlacementArg(unsigned I, RValue Arg) {
1010       assert(I < NumPlacementArgs && "index out of range");
1011       getPlacementArgs()[I] = Arg;
1012     }
1013 
1014     void Emit(CodeGenFunction &CGF, Flags flags) {
1015       const FunctionProtoType *FPT
1016         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1017       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1018              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1019 
1020       CallArgList DeleteArgs;
1021 
1022       // The first argument is always a void*.
1023       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1024       DeleteArgs.add(RValue::get(Ptr), *AI++);
1025 
1026       // A member 'operator delete' can take an extra 'size_t' argument.
1027       if (FPT->getNumArgs() == NumPlacementArgs + 2)
1028         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1029 
1030       // Pass the rest of the arguments, which must match exactly.
1031       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1032         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1033 
1034       // Call 'operator delete'.
1035       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1036     }
1037   };
1038 
1039   /// A cleanup to call the given 'operator delete' function upon
1040   /// abnormal exit from a new expression when the new expression is
1041   /// conditional.
1042   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1043     size_t NumPlacementArgs;
1044     const FunctionDecl *OperatorDelete;
1045     DominatingValue<RValue>::saved_type Ptr;
1046     DominatingValue<RValue>::saved_type AllocSize;
1047 
1048     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1049       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1050     }
1051 
1052   public:
1053     static size_t getExtraSize(size_t NumPlacementArgs) {
1054       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1055     }
1056 
1057     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1058                                    const FunctionDecl *OperatorDelete,
1059                                    DominatingValue<RValue>::saved_type Ptr,
1060                               DominatingValue<RValue>::saved_type AllocSize)
1061       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1062         Ptr(Ptr), AllocSize(AllocSize) {}
1063 
1064     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1065       assert(I < NumPlacementArgs && "index out of range");
1066       getPlacementArgs()[I] = Arg;
1067     }
1068 
1069     void Emit(CodeGenFunction &CGF, Flags flags) {
1070       const FunctionProtoType *FPT
1071         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1072       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1073              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1074 
1075       CallArgList DeleteArgs;
1076 
1077       // The first argument is always a void*.
1078       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1079       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1080 
1081       // A member 'operator delete' can take an extra 'size_t' argument.
1082       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
1083         RValue RV = AllocSize.restore(CGF);
1084         DeleteArgs.add(RV, *AI++);
1085       }
1086 
1087       // Pass the rest of the arguments, which must match exactly.
1088       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1089         RValue RV = getPlacementArgs()[I].restore(CGF);
1090         DeleteArgs.add(RV, *AI++);
1091       }
1092 
1093       // Call 'operator delete'.
1094       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1095     }
1096   };
1097 }
1098 
1099 /// Enter a cleanup to call 'operator delete' if the initializer in a
1100 /// new-expression throws.
1101 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1102                                   const CXXNewExpr *E,
1103                                   llvm::Value *NewPtr,
1104                                   llvm::Value *AllocSize,
1105                                   const CallArgList &NewArgs) {
1106   // If we're not inside a conditional branch, then the cleanup will
1107   // dominate and we can do the easier (and more efficient) thing.
1108   if (!CGF.isInConditionalBranch()) {
1109     CallDeleteDuringNew *Cleanup = CGF.EHStack
1110       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1111                                                  E->getNumPlacementArgs(),
1112                                                  E->getOperatorDelete(),
1113                                                  NewPtr, AllocSize);
1114     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1115       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1116 
1117     return;
1118   }
1119 
1120   // Otherwise, we need to save all this stuff.
1121   DominatingValue<RValue>::saved_type SavedNewPtr =
1122     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1123   DominatingValue<RValue>::saved_type SavedAllocSize =
1124     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1125 
1126   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1127     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1128                                                  E->getNumPlacementArgs(),
1129                                                  E->getOperatorDelete(),
1130                                                  SavedNewPtr,
1131                                                  SavedAllocSize);
1132   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1133     Cleanup->setPlacementArg(I,
1134                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1135 
1136   CGF.initFullExprCleanup();
1137 }
1138 
1139 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1140   // The element type being allocated.
1141   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1142 
1143   // 1. Build a call to the allocation function.
1144   FunctionDecl *allocator = E->getOperatorNew();
1145   const FunctionProtoType *allocatorType =
1146     allocator->getType()->castAs<FunctionProtoType>();
1147 
1148   CallArgList allocatorArgs;
1149 
1150   // The allocation size is the first argument.
1151   QualType sizeType = getContext().getSizeType();
1152 
1153   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1154   unsigned minElements = 0;
1155   if (E->isArray() && E->hasInitializer()) {
1156     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1157       minElements = ILE->getNumInits();
1158   }
1159 
1160   llvm::Value *numElements = 0;
1161   llvm::Value *allocSizeWithoutCookie = 0;
1162   llvm::Value *allocSize =
1163     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1164                         allocSizeWithoutCookie);
1165 
1166   allocatorArgs.add(RValue::get(allocSize), sizeType);
1167 
1168   // We start at 1 here because the first argument (the allocation size)
1169   // has already been emitted.
1170   EmitCallArgs(allocatorArgs, allocatorType->isVariadic(),
1171                allocatorType->arg_type_begin() + 1,
1172                allocatorType->arg_type_end(), E->placement_arg_begin(),
1173                E->placement_arg_end());
1174 
1175   // Emit the allocation call.  If the allocator is a global placement
1176   // operator, just "inline" it directly.
1177   RValue RV;
1178   if (allocator->isReservedGlobalPlacementOperator()) {
1179     assert(allocatorArgs.size() == 2);
1180     RV = allocatorArgs[1].RV;
1181     // TODO: kill any unnecessary computations done for the size
1182     // argument.
1183   } else {
1184     RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1185   }
1186 
1187   // Emit a null check on the allocation result if the allocation
1188   // function is allowed to return null (because it has a non-throwing
1189   // exception spec; for this part, we inline
1190   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1191   // interesting initializer.
1192   bool nullCheck = allocatorType->isNothrow(getContext()) &&
1193     (!allocType.isPODType(getContext()) || E->hasInitializer());
1194 
1195   llvm::BasicBlock *nullCheckBB = 0;
1196   llvm::BasicBlock *contBB = 0;
1197 
1198   llvm::Value *allocation = RV.getScalarVal();
1199   unsigned AS = allocation->getType()->getPointerAddressSpace();
1200 
1201   // The null-check means that the initializer is conditionally
1202   // evaluated.
1203   ConditionalEvaluation conditional(*this);
1204 
1205   if (nullCheck) {
1206     conditional.begin(*this);
1207 
1208     nullCheckBB = Builder.GetInsertBlock();
1209     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1210     contBB = createBasicBlock("new.cont");
1211 
1212     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1213     Builder.CreateCondBr(isNull, contBB, notNullBB);
1214     EmitBlock(notNullBB);
1215   }
1216 
1217   // If there's an operator delete, enter a cleanup to call it if an
1218   // exception is thrown.
1219   EHScopeStack::stable_iterator operatorDeleteCleanup;
1220   llvm::Instruction *cleanupDominator = 0;
1221   if (E->getOperatorDelete() &&
1222       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1223     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1224     operatorDeleteCleanup = EHStack.stable_begin();
1225     cleanupDominator = Builder.CreateUnreachable();
1226   }
1227 
1228   assert((allocSize == allocSizeWithoutCookie) ==
1229          CalculateCookiePadding(*this, E).isZero());
1230   if (allocSize != allocSizeWithoutCookie) {
1231     assert(E->isArray());
1232     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1233                                                        numElements,
1234                                                        E, allocType);
1235   }
1236 
1237   llvm::Type *elementPtrTy
1238     = ConvertTypeForMem(allocType)->getPointerTo(AS);
1239   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1240 
1241   EmitNewInitializer(*this, E, allocType, result, numElements,
1242                      allocSizeWithoutCookie);
1243   if (E->isArray()) {
1244     // NewPtr is a pointer to the base element type.  If we're
1245     // allocating an array of arrays, we'll need to cast back to the
1246     // array pointer type.
1247     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1248     if (result->getType() != resultType)
1249       result = Builder.CreateBitCast(result, resultType);
1250   }
1251 
1252   // Deactivate the 'operator delete' cleanup if we finished
1253   // initialization.
1254   if (operatorDeleteCleanup.isValid()) {
1255     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1256     cleanupDominator->eraseFromParent();
1257   }
1258 
1259   if (nullCheck) {
1260     conditional.end(*this);
1261 
1262     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1263     EmitBlock(contBB);
1264 
1265     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1266     PHI->addIncoming(result, notNullBB);
1267     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1268                      nullCheckBB);
1269 
1270     result = PHI;
1271   }
1272 
1273   return result;
1274 }
1275 
1276 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1277                                      llvm::Value *Ptr,
1278                                      QualType DeleteTy) {
1279   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1280 
1281   const FunctionProtoType *DeleteFTy =
1282     DeleteFD->getType()->getAs<FunctionProtoType>();
1283 
1284   CallArgList DeleteArgs;
1285 
1286   // Check if we need to pass the size to the delete operator.
1287   llvm::Value *Size = 0;
1288   QualType SizeTy;
1289   if (DeleteFTy->getNumArgs() == 2) {
1290     SizeTy = DeleteFTy->getArgType(1);
1291     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1292     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1293                                   DeleteTypeSize.getQuantity());
1294   }
1295 
1296   QualType ArgTy = DeleteFTy->getArgType(0);
1297   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1298   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1299 
1300   if (Size)
1301     DeleteArgs.add(RValue::get(Size), SizeTy);
1302 
1303   // Emit the call to delete.
1304   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1305 }
1306 
1307 namespace {
1308   /// Calls the given 'operator delete' on a single object.
1309   struct CallObjectDelete : EHScopeStack::Cleanup {
1310     llvm::Value *Ptr;
1311     const FunctionDecl *OperatorDelete;
1312     QualType ElementType;
1313 
1314     CallObjectDelete(llvm::Value *Ptr,
1315                      const FunctionDecl *OperatorDelete,
1316                      QualType ElementType)
1317       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1318 
1319     void Emit(CodeGenFunction &CGF, Flags flags) {
1320       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1321     }
1322   };
1323 }
1324 
1325 /// Emit the code for deleting a single object.
1326 static void EmitObjectDelete(CodeGenFunction &CGF,
1327                              const FunctionDecl *OperatorDelete,
1328                              llvm::Value *Ptr,
1329                              QualType ElementType,
1330                              bool UseGlobalDelete) {
1331   // Find the destructor for the type, if applicable.  If the
1332   // destructor is virtual, we'll just emit the vcall and return.
1333   const CXXDestructorDecl *Dtor = 0;
1334   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1335     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1336     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1337       Dtor = RD->getDestructor();
1338 
1339       if (Dtor->isVirtual()) {
1340         if (UseGlobalDelete) {
1341           // If we're supposed to call the global delete, make sure we do so
1342           // even if the destructor throws.
1343 
1344           // Derive the complete-object pointer, which is what we need
1345           // to pass to the deallocation function.
1346           llvm::Value *completePtr =
1347             CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
1348 
1349           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1350                                                     completePtr, OperatorDelete,
1351                                                     ElementType);
1352         }
1353 
1354         // FIXME: Provide a source location here.
1355         CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
1356         CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType,
1357                                                       SourceLocation(), Ptr);
1358 
1359         if (UseGlobalDelete) {
1360           CGF.PopCleanupBlock();
1361         }
1362 
1363         return;
1364       }
1365     }
1366   }
1367 
1368   // Make sure that we call delete even if the dtor throws.
1369   // This doesn't have to a conditional cleanup because we're going
1370   // to pop it off in a second.
1371   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1372                                             Ptr, OperatorDelete, ElementType);
1373 
1374   if (Dtor)
1375     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1376                               /*ForVirtualBase=*/false,
1377                               /*Delegating=*/false,
1378                               Ptr);
1379   else if (CGF.getLangOpts().ObjCAutoRefCount &&
1380            ElementType->isObjCLifetimeType()) {
1381     switch (ElementType.getObjCLifetime()) {
1382     case Qualifiers::OCL_None:
1383     case Qualifiers::OCL_ExplicitNone:
1384     case Qualifiers::OCL_Autoreleasing:
1385       break;
1386 
1387     case Qualifiers::OCL_Strong: {
1388       // Load the pointer value.
1389       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1390                                              ElementType.isVolatileQualified());
1391 
1392       CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1393       break;
1394     }
1395 
1396     case Qualifiers::OCL_Weak:
1397       CGF.EmitARCDestroyWeak(Ptr);
1398       break;
1399     }
1400   }
1401 
1402   CGF.PopCleanupBlock();
1403 }
1404 
1405 namespace {
1406   /// Calls the given 'operator delete' on an array of objects.
1407   struct CallArrayDelete : EHScopeStack::Cleanup {
1408     llvm::Value *Ptr;
1409     const FunctionDecl *OperatorDelete;
1410     llvm::Value *NumElements;
1411     QualType ElementType;
1412     CharUnits CookieSize;
1413 
1414     CallArrayDelete(llvm::Value *Ptr,
1415                     const FunctionDecl *OperatorDelete,
1416                     llvm::Value *NumElements,
1417                     QualType ElementType,
1418                     CharUnits CookieSize)
1419       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1420         ElementType(ElementType), CookieSize(CookieSize) {}
1421 
1422     void Emit(CodeGenFunction &CGF, Flags flags) {
1423       const FunctionProtoType *DeleteFTy =
1424         OperatorDelete->getType()->getAs<FunctionProtoType>();
1425       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1426 
1427       CallArgList Args;
1428 
1429       // Pass the pointer as the first argument.
1430       QualType VoidPtrTy = DeleteFTy->getArgType(0);
1431       llvm::Value *DeletePtr
1432         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1433       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1434 
1435       // Pass the original requested size as the second argument.
1436       if (DeleteFTy->getNumArgs() == 2) {
1437         QualType size_t = DeleteFTy->getArgType(1);
1438         llvm::IntegerType *SizeTy
1439           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1440 
1441         CharUnits ElementTypeSize =
1442           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1443 
1444         // The size of an element, multiplied by the number of elements.
1445         llvm::Value *Size
1446           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1447         Size = CGF.Builder.CreateMul(Size, NumElements);
1448 
1449         // Plus the size of the cookie if applicable.
1450         if (!CookieSize.isZero()) {
1451           llvm::Value *CookieSizeV
1452             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1453           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1454         }
1455 
1456         Args.add(RValue::get(Size), size_t);
1457       }
1458 
1459       // Emit the call to delete.
1460       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1461     }
1462   };
1463 }
1464 
1465 /// Emit the code for deleting an array of objects.
1466 static void EmitArrayDelete(CodeGenFunction &CGF,
1467                             const CXXDeleteExpr *E,
1468                             llvm::Value *deletedPtr,
1469                             QualType elementType) {
1470   llvm::Value *numElements = 0;
1471   llvm::Value *allocatedPtr = 0;
1472   CharUnits cookieSize;
1473   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1474                                       numElements, allocatedPtr, cookieSize);
1475 
1476   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1477 
1478   // Make sure that we call delete even if one of the dtors throws.
1479   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1480   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1481                                            allocatedPtr, operatorDelete,
1482                                            numElements, elementType,
1483                                            cookieSize);
1484 
1485   // Destroy the elements.
1486   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1487     assert(numElements && "no element count for a type with a destructor!");
1488 
1489     llvm::Value *arrayEnd =
1490       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1491 
1492     // Note that it is legal to allocate a zero-length array, and we
1493     // can never fold the check away because the length should always
1494     // come from a cookie.
1495     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1496                          CGF.getDestroyer(dtorKind),
1497                          /*checkZeroLength*/ true,
1498                          CGF.needsEHCleanup(dtorKind));
1499   }
1500 
1501   // Pop the cleanup block.
1502   CGF.PopCleanupBlock();
1503 }
1504 
1505 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1506   const Expr *Arg = E->getArgument();
1507   llvm::Value *Ptr = EmitScalarExpr(Arg);
1508 
1509   // Null check the pointer.
1510   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1511   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1512 
1513   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1514 
1515   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1516   EmitBlock(DeleteNotNull);
1517 
1518   // We might be deleting a pointer to array.  If so, GEP down to the
1519   // first non-array element.
1520   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1521   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1522   if (DeleteTy->isConstantArrayType()) {
1523     llvm::Value *Zero = Builder.getInt32(0);
1524     SmallVector<llvm::Value*,8> GEP;
1525 
1526     GEP.push_back(Zero); // point at the outermost array
1527 
1528     // For each layer of array type we're pointing at:
1529     while (const ConstantArrayType *Arr
1530              = getContext().getAsConstantArrayType(DeleteTy)) {
1531       // 1. Unpeel the array type.
1532       DeleteTy = Arr->getElementType();
1533 
1534       // 2. GEP to the first element of the array.
1535       GEP.push_back(Zero);
1536     }
1537 
1538     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1539   }
1540 
1541   assert(ConvertTypeForMem(DeleteTy) ==
1542          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1543 
1544   if (E->isArrayForm()) {
1545     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1546   } else {
1547     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1548                      E->isGlobalDelete());
1549   }
1550 
1551   EmitBlock(DeleteEnd);
1552 }
1553 
1554 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1555   // void __cxa_bad_typeid();
1556   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1557 
1558   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1559 }
1560 
1561 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1562   llvm::Value *Fn = getBadTypeidFn(CGF);
1563   CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1564   CGF.Builder.CreateUnreachable();
1565 }
1566 
1567 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1568                                          const Expr *E,
1569                                          llvm::Type *StdTypeInfoPtrTy) {
1570   // Get the vtable pointer.
1571   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1572 
1573   // C++ [expr.typeid]p2:
1574   //   If the glvalue expression is obtained by applying the unary * operator to
1575   //   a pointer and the pointer is a null pointer value, the typeid expression
1576   //   throws the std::bad_typeid exception.
1577   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1578     if (UO->getOpcode() == UO_Deref) {
1579       llvm::BasicBlock *BadTypeidBlock =
1580         CGF.createBasicBlock("typeid.bad_typeid");
1581       llvm::BasicBlock *EndBlock =
1582         CGF.createBasicBlock("typeid.end");
1583 
1584       llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1585       CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1586 
1587       CGF.EmitBlock(BadTypeidBlock);
1588       EmitBadTypeidCall(CGF);
1589       CGF.EmitBlock(EndBlock);
1590     }
1591   }
1592 
1593   llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1594                                         StdTypeInfoPtrTy->getPointerTo());
1595 
1596   // Load the type info.
1597   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1598   return CGF.Builder.CreateLoad(Value);
1599 }
1600 
1601 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1602   llvm::Type *StdTypeInfoPtrTy =
1603     ConvertType(E->getType())->getPointerTo();
1604 
1605   if (E->isTypeOperand()) {
1606     llvm::Constant *TypeInfo =
1607         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1608     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1609   }
1610 
1611   // C++ [expr.typeid]p2:
1612   //   When typeid is applied to a glvalue expression whose type is a
1613   //   polymorphic class type, the result refers to a std::type_info object
1614   //   representing the type of the most derived object (that is, the dynamic
1615   //   type) to which the glvalue refers.
1616   if (E->isPotentiallyEvaluated())
1617     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1618                                 StdTypeInfoPtrTy);
1619 
1620   QualType OperandTy = E->getExprOperand()->getType();
1621   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1622                                StdTypeInfoPtrTy);
1623 }
1624 
1625 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1626   // void *__dynamic_cast(const void *sub,
1627   //                      const abi::__class_type_info *src,
1628   //                      const abi::__class_type_info *dst,
1629   //                      std::ptrdiff_t src2dst_offset);
1630 
1631   llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
1632   llvm::Type *PtrDiffTy =
1633     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1634 
1635   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1636 
1637   llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
1638 
1639   // Mark the function as nounwind readonly.
1640   llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
1641                                             llvm::Attribute::ReadOnly };
1642   llvm::AttributeSet Attrs = llvm::AttributeSet::get(
1643       CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
1644 
1645   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
1646 }
1647 
1648 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1649   // void __cxa_bad_cast();
1650   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1651   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1652 }
1653 
1654 static void EmitBadCastCall(CodeGenFunction &CGF) {
1655   llvm::Value *Fn = getBadCastFn(CGF);
1656   CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1657   CGF.Builder.CreateUnreachable();
1658 }
1659 
1660 /// \brief Compute the src2dst_offset hint as described in the
1661 /// Itanium C++ ABI [2.9.7]
1662 static CharUnits computeOffsetHint(ASTContext &Context,
1663                                    const CXXRecordDecl *Src,
1664                                    const CXXRecordDecl *Dst) {
1665   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1666                      /*DetectVirtual=*/false);
1667 
1668   // If Dst is not derived from Src we can skip the whole computation below and
1669   // return that Src is not a public base of Dst.  Record all inheritance paths.
1670   if (!Dst->isDerivedFrom(Src, Paths))
1671     return CharUnits::fromQuantity(-2ULL);
1672 
1673   unsigned NumPublicPaths = 0;
1674   CharUnits Offset;
1675 
1676   // Now walk all possible inheritance paths.
1677   for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
1678        I != E; ++I) {
1679     if (I->Access != AS_public) // Ignore non-public inheritance.
1680       continue;
1681 
1682     ++NumPublicPaths;
1683 
1684     for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
1685       // If the path contains a virtual base class we can't give any hint.
1686       // -1: no hint.
1687       if (J->Base->isVirtual())
1688         return CharUnits::fromQuantity(-1ULL);
1689 
1690       if (NumPublicPaths > 1) // Won't use offsets, skip computation.
1691         continue;
1692 
1693       // Accumulate the base class offsets.
1694       const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class);
1695       Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl());
1696     }
1697   }
1698 
1699   // -2: Src is not a public base of Dst.
1700   if (NumPublicPaths == 0)
1701     return CharUnits::fromQuantity(-2ULL);
1702 
1703   // -3: Src is a multiple public base type but never a virtual base type.
1704   if (NumPublicPaths > 1)
1705     return CharUnits::fromQuantity(-3ULL);
1706 
1707   // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
1708   // Return the offset of Src from the origin of Dst.
1709   return Offset;
1710 }
1711 
1712 static llvm::Value *
1713 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1714                     QualType SrcTy, QualType DestTy,
1715                     llvm::BasicBlock *CastEnd) {
1716   llvm::Type *PtrDiffLTy =
1717     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1718   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1719 
1720   if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1721     if (PTy->getPointeeType()->isVoidType()) {
1722       // C++ [expr.dynamic.cast]p7:
1723       //   If T is "pointer to cv void," then the result is a pointer to the
1724       //   most derived object pointed to by v.
1725 
1726       // Get the vtable pointer.
1727       llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1728 
1729       // Get the offset-to-top from the vtable.
1730       llvm::Value *OffsetToTop =
1731         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1732       OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1733 
1734       // Finally, add the offset to the pointer.
1735       Value = CGF.EmitCastToVoidPtr(Value);
1736       Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1737 
1738       return CGF.Builder.CreateBitCast(Value, DestLTy);
1739     }
1740   }
1741 
1742   QualType SrcRecordTy;
1743   QualType DestRecordTy;
1744 
1745   if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1746     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1747     DestRecordTy = DestPTy->getPointeeType();
1748   } else {
1749     SrcRecordTy = SrcTy;
1750     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1751   }
1752 
1753   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1754   assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1755 
1756   llvm::Value *SrcRTTI =
1757     CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1758   llvm::Value *DestRTTI =
1759     CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1760 
1761   // Compute the offset hint.
1762   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
1763   const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
1764   llvm::Value *OffsetHint =
1765     llvm::ConstantInt::get(PtrDiffLTy,
1766                            computeOffsetHint(CGF.getContext(), SrcDecl,
1767                                              DestDecl).getQuantity());
1768 
1769   // Emit the call to __dynamic_cast.
1770   Value = CGF.EmitCastToVoidPtr(Value);
1771 
1772   llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint };
1773   Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args);
1774   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1775 
1776   /// C++ [expr.dynamic.cast]p9:
1777   ///   A failed cast to reference type throws std::bad_cast
1778   if (DestTy->isReferenceType()) {
1779     llvm::BasicBlock *BadCastBlock =
1780       CGF.createBasicBlock("dynamic_cast.bad_cast");
1781 
1782     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1783     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1784 
1785     CGF.EmitBlock(BadCastBlock);
1786     EmitBadCastCall(CGF);
1787   }
1788 
1789   return Value;
1790 }
1791 
1792 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1793                                           QualType DestTy) {
1794   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1795   if (DestTy->isPointerType())
1796     return llvm::Constant::getNullValue(DestLTy);
1797 
1798   /// C++ [expr.dynamic.cast]p9:
1799   ///   A failed cast to reference type throws std::bad_cast
1800   EmitBadCastCall(CGF);
1801 
1802   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1803   return llvm::UndefValue::get(DestLTy);
1804 }
1805 
1806 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1807                                               const CXXDynamicCastExpr *DCE) {
1808   QualType DestTy = DCE->getTypeAsWritten();
1809 
1810   if (DCE->isAlwaysNull())
1811     return EmitDynamicCastToNull(*this, DestTy);
1812 
1813   QualType SrcTy = DCE->getSubExpr()->getType();
1814 
1815   // C++ [expr.dynamic.cast]p4:
1816   //   If the value of v is a null pointer value in the pointer case, the result
1817   //   is the null pointer value of type T.
1818   bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1819 
1820   llvm::BasicBlock *CastNull = 0;
1821   llvm::BasicBlock *CastNotNull = 0;
1822   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1823 
1824   if (ShouldNullCheckSrcValue) {
1825     CastNull = createBasicBlock("dynamic_cast.null");
1826     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1827 
1828     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1829     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1830     EmitBlock(CastNotNull);
1831   }
1832 
1833   Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1834 
1835   if (ShouldNullCheckSrcValue) {
1836     EmitBranch(CastEnd);
1837 
1838     EmitBlock(CastNull);
1839     EmitBranch(CastEnd);
1840   }
1841 
1842   EmitBlock(CastEnd);
1843 
1844   if (ShouldNullCheckSrcValue) {
1845     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1846     PHI->addIncoming(Value, CastNotNull);
1847     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1848 
1849     Value = PHI;
1850   }
1851 
1852   return Value;
1853 }
1854 
1855 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1856   RunCleanupsScope Scope(*this);
1857   LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
1858                                  Slot.getAlignment());
1859 
1860   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1861   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1862                                          e = E->capture_init_end();
1863        i != e; ++i, ++CurField) {
1864     // Emit initialization
1865 
1866     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1867     ArrayRef<VarDecl *> ArrayIndexes;
1868     if (CurField->getType()->isArrayType())
1869       ArrayIndexes = E->getCaptureInitIndexVars(i);
1870     EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1871   }
1872 }
1873