1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 41 isa<CXXOperatorCallExpr>(CE)); 42 assert(MD->isInstance() && 43 "Trying to emit a member or operator call expr on a static method!"); 44 ASTContext &C = CGF.getContext(); 45 46 // Push the this ptr. 47 const CXXRecordDecl *RD = 48 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 49 Args.add(RValue::get(This), 50 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 51 52 // If there is an implicit parameter (e.g. VTT), emit it. 53 if (ImplicitParam) { 54 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 55 } 56 57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 58 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 59 unsigned PrefixSize = Args.size() - 1; 60 61 // And the rest of the call args. 62 if (RtlArgs) { 63 // Special case: if the caller emitted the arguments right-to-left already 64 // (prior to emitting the *this argument), we're done. This happens for 65 // assignment operators. 66 Args.addFrom(*RtlArgs); 67 } else if (CE) { 68 // Special case: skip first argument of CXXOperatorCall (it is "this"). 69 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 70 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 71 CE->getDirectCallee()); 72 } else { 73 assert( 74 FPT->getNumParams() == 0 && 75 "No CallExpr specified for function with non-zero number of arguments"); 76 } 77 return {required, PrefixSize}; 78 } 79 80 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 81 const CXXMethodDecl *MD, const CGCallee &Callee, 82 ReturnValueSlot ReturnValue, 83 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 84 const CallExpr *CE, CallArgList *RtlArgs) { 85 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 86 CallArgList Args; 87 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 88 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 89 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 90 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 91 return EmitCall(FnInfo, Callee, ReturnValue, Args); 92 } 93 94 RValue CodeGenFunction::EmitCXXDestructorCall( 95 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 97 StructorType Type) { 98 CallArgList Args; 99 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 100 ImplicitParamTy, CE, Args, nullptr); 101 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 102 Callee, ReturnValueSlot(), Args); 103 } 104 105 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 106 const CXXPseudoDestructorExpr *E) { 107 QualType DestroyedType = E->getDestroyedType(); 108 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 109 // Automatic Reference Counting: 110 // If the pseudo-expression names a retainable object with weak or 111 // strong lifetime, the object shall be released. 112 Expr *BaseExpr = E->getBase(); 113 Address BaseValue = Address::invalid(); 114 Qualifiers BaseQuals; 115 116 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 117 if (E->isArrow()) { 118 BaseValue = EmitPointerWithAlignment(BaseExpr); 119 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 120 BaseQuals = PTy->getPointeeType().getQualifiers(); 121 } else { 122 LValue BaseLV = EmitLValue(BaseExpr); 123 BaseValue = BaseLV.getAddress(); 124 QualType BaseTy = BaseExpr->getType(); 125 BaseQuals = BaseTy.getQualifiers(); 126 } 127 128 switch (DestroyedType.getObjCLifetime()) { 129 case Qualifiers::OCL_None: 130 case Qualifiers::OCL_ExplicitNone: 131 case Qualifiers::OCL_Autoreleasing: 132 break; 133 134 case Qualifiers::OCL_Strong: 135 EmitARCRelease(Builder.CreateLoad(BaseValue, 136 DestroyedType.isVolatileQualified()), 137 ARCPreciseLifetime); 138 break; 139 140 case Qualifiers::OCL_Weak: 141 EmitARCDestroyWeak(BaseValue); 142 break; 143 } 144 } else { 145 // C++ [expr.pseudo]p1: 146 // The result shall only be used as the operand for the function call 147 // operator (), and the result of such a call has type void. The only 148 // effect is the evaluation of the postfix-expression before the dot or 149 // arrow. 150 EmitIgnoredExpr(E->getBase()); 151 } 152 153 return RValue::get(nullptr); 154 } 155 156 static CXXRecordDecl *getCXXRecord(const Expr *E) { 157 QualType T = E->getType(); 158 if (const PointerType *PTy = T->getAs<PointerType>()) 159 T = PTy->getPointeeType(); 160 const RecordType *Ty = T->castAs<RecordType>(); 161 return cast<CXXRecordDecl>(Ty->getDecl()); 162 } 163 164 // Note: This function also emit constructor calls to support a MSVC 165 // extensions allowing explicit constructor function call. 166 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 167 ReturnValueSlot ReturnValue) { 168 const Expr *callee = CE->getCallee()->IgnoreParens(); 169 170 if (isa<BinaryOperator>(callee)) 171 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 172 173 const MemberExpr *ME = cast<MemberExpr>(callee); 174 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 175 176 if (MD->isStatic()) { 177 // The method is static, emit it as we would a regular call. 178 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 179 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 180 ReturnValue); 181 } 182 183 bool HasQualifier = ME->hasQualifier(); 184 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 185 bool IsArrow = ME->isArrow(); 186 const Expr *Base = ME->getBase(); 187 188 return EmitCXXMemberOrOperatorMemberCallExpr( 189 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 190 } 191 192 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 193 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 194 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 195 const Expr *Base) { 196 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 197 198 // Compute the object pointer. 199 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 200 201 const CXXMethodDecl *DevirtualizedMethod = nullptr; 202 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 203 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 204 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 205 assert(DevirtualizedMethod); 206 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 207 const Expr *Inner = Base->ignoreParenBaseCasts(); 208 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 209 MD->getReturnType().getCanonicalType()) 210 // If the return types are not the same, this might be a case where more 211 // code needs to run to compensate for it. For example, the derived 212 // method might return a type that inherits form from the return 213 // type of MD and has a prefix. 214 // For now we just avoid devirtualizing these covariant cases. 215 DevirtualizedMethod = nullptr; 216 else if (getCXXRecord(Inner) == DevirtualizedClass) 217 // If the class of the Inner expression is where the dynamic method 218 // is defined, build the this pointer from it. 219 Base = Inner; 220 else if (getCXXRecord(Base) != DevirtualizedClass) { 221 // If the method is defined in a class that is not the best dynamic 222 // one or the one of the full expression, we would have to build 223 // a derived-to-base cast to compute the correct this pointer, but 224 // we don't have support for that yet, so do a virtual call. 225 DevirtualizedMethod = nullptr; 226 } 227 } 228 229 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 230 // operator before the LHS. 231 CallArgList RtlArgStorage; 232 CallArgList *RtlArgs = nullptr; 233 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 234 if (OCE->isAssignmentOp()) { 235 RtlArgs = &RtlArgStorage; 236 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 237 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 238 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 239 } 240 } 241 242 Address This = Address::invalid(); 243 if (IsArrow) 244 This = EmitPointerWithAlignment(Base); 245 else 246 This = EmitLValue(Base).getAddress(); 247 248 249 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 250 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 251 if (isa<CXXConstructorDecl>(MD) && 252 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 253 return RValue::get(nullptr); 254 255 if (!MD->getParent()->mayInsertExtraPadding()) { 256 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 257 // We don't like to generate the trivial copy/move assignment operator 258 // when it isn't necessary; just produce the proper effect here. 259 LValue RHS = isa<CXXOperatorCallExpr>(CE) 260 ? MakeNaturalAlignAddrLValue( 261 (*RtlArgs)[0].RV.getScalarVal(), 262 (*(CE->arg_begin() + 1))->getType()) 263 : EmitLValue(*CE->arg_begin()); 264 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 265 return RValue::get(This.getPointer()); 266 } 267 268 if (isa<CXXConstructorDecl>(MD) && 269 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 270 // Trivial move and copy ctor are the same. 271 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 272 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 273 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 274 return RValue::get(This.getPointer()); 275 } 276 llvm_unreachable("unknown trivial member function"); 277 } 278 } 279 280 // Compute the function type we're calling. 281 const CXXMethodDecl *CalleeDecl = 282 DevirtualizedMethod ? DevirtualizedMethod : MD; 283 const CGFunctionInfo *FInfo = nullptr; 284 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 285 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 286 Dtor, StructorType::Complete); 287 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 288 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 289 Ctor, StructorType::Complete); 290 else 291 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 292 293 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 294 295 // C++11 [class.mfct.non-static]p2: 296 // If a non-static member function of a class X is called for an object that 297 // is not of type X, or of a type derived from X, the behavior is undefined. 298 SourceLocation CallLoc; 299 ASTContext &C = getContext(); 300 if (CE) 301 CallLoc = CE->getExprLoc(); 302 303 SanitizerSet SkippedChecks; 304 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) 305 if (IsDeclRefOrWrappedCXXThis(CMCE->getImplicitObjectArgument())) 306 SkippedChecks.set(SanitizerKind::Null, true); 307 EmitTypeCheck( 308 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 309 : CodeGenFunction::TCK_MemberCall, 310 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 311 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 312 313 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 314 // 'CalleeDecl' instead. 315 316 // C++ [class.virtual]p12: 317 // Explicit qualification with the scope operator (5.1) suppresses the 318 // virtual call mechanism. 319 // 320 // We also don't emit a virtual call if the base expression has a record type 321 // because then we know what the type is. 322 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 323 324 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 325 assert(CE->arg_begin() == CE->arg_end() && 326 "Destructor shouldn't have explicit parameters"); 327 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 328 if (UseVirtualCall) { 329 CGM.getCXXABI().EmitVirtualDestructorCall( 330 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 331 } else { 332 CGCallee Callee; 333 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 334 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 335 else if (!DevirtualizedMethod) 336 Callee = CGCallee::forDirect( 337 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 338 Dtor); 339 else { 340 const CXXDestructorDecl *DDtor = 341 cast<CXXDestructorDecl>(DevirtualizedMethod); 342 Callee = CGCallee::forDirect( 343 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 344 DDtor); 345 } 346 EmitCXXMemberOrOperatorCall( 347 CalleeDecl, Callee, ReturnValue, This.getPointer(), 348 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 349 } 350 return RValue::get(nullptr); 351 } 352 353 CGCallee Callee; 354 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 355 Callee = CGCallee::forDirect( 356 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 357 Ctor); 358 } else if (UseVirtualCall) { 359 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 360 CE->getLocStart()); 361 } else { 362 if (SanOpts.has(SanitizerKind::CFINVCall) && 363 MD->getParent()->isDynamicClass()) { 364 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 365 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 366 CE->getLocStart()); 367 } 368 369 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 370 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 371 else if (!DevirtualizedMethod) 372 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 373 else { 374 Callee = CGCallee::forDirect( 375 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 376 DevirtualizedMethod); 377 } 378 } 379 380 if (MD->isVirtual()) { 381 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 382 *this, CalleeDecl, This, UseVirtualCall); 383 } 384 385 return EmitCXXMemberOrOperatorCall( 386 CalleeDecl, Callee, ReturnValue, This.getPointer(), 387 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 388 } 389 390 RValue 391 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 392 ReturnValueSlot ReturnValue) { 393 const BinaryOperator *BO = 394 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 395 const Expr *BaseExpr = BO->getLHS(); 396 const Expr *MemFnExpr = BO->getRHS(); 397 398 const MemberPointerType *MPT = 399 MemFnExpr->getType()->castAs<MemberPointerType>(); 400 401 const FunctionProtoType *FPT = 402 MPT->getPointeeType()->castAs<FunctionProtoType>(); 403 const CXXRecordDecl *RD = 404 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 405 406 // Emit the 'this' pointer. 407 Address This = Address::invalid(); 408 if (BO->getOpcode() == BO_PtrMemI) 409 This = EmitPointerWithAlignment(BaseExpr); 410 else 411 This = EmitLValue(BaseExpr).getAddress(); 412 413 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 414 QualType(MPT->getClass(), 0)); 415 416 // Get the member function pointer. 417 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 418 419 // Ask the ABI to load the callee. Note that This is modified. 420 llvm::Value *ThisPtrForCall = nullptr; 421 CGCallee Callee = 422 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 423 ThisPtrForCall, MemFnPtr, MPT); 424 425 CallArgList Args; 426 427 QualType ThisType = 428 getContext().getPointerType(getContext().getTagDeclType(RD)); 429 430 // Push the this ptr. 431 Args.add(RValue::get(ThisPtrForCall), ThisType); 432 433 RequiredArgs required = 434 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 435 436 // And the rest of the call args 437 EmitCallArgs(Args, FPT, E->arguments()); 438 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 439 /*PrefixSize=*/0), 440 Callee, ReturnValue, Args); 441 } 442 443 RValue 444 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 445 const CXXMethodDecl *MD, 446 ReturnValueSlot ReturnValue) { 447 assert(MD->isInstance() && 448 "Trying to emit a member call expr on a static method!"); 449 return EmitCXXMemberOrOperatorMemberCallExpr( 450 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 451 /*IsArrow=*/false, E->getArg(0)); 452 } 453 454 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 455 ReturnValueSlot ReturnValue) { 456 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 457 } 458 459 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 460 Address DestPtr, 461 const CXXRecordDecl *Base) { 462 if (Base->isEmpty()) 463 return; 464 465 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 466 467 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 468 CharUnits NVSize = Layout.getNonVirtualSize(); 469 470 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 471 // present, they are initialized by the most derived class before calling the 472 // constructor. 473 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 474 Stores.emplace_back(CharUnits::Zero(), NVSize); 475 476 // Each store is split by the existence of a vbptr. 477 CharUnits VBPtrWidth = CGF.getPointerSize(); 478 std::vector<CharUnits> VBPtrOffsets = 479 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 480 for (CharUnits VBPtrOffset : VBPtrOffsets) { 481 // Stop before we hit any virtual base pointers located in virtual bases. 482 if (VBPtrOffset >= NVSize) 483 break; 484 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 485 CharUnits LastStoreOffset = LastStore.first; 486 CharUnits LastStoreSize = LastStore.second; 487 488 CharUnits SplitBeforeOffset = LastStoreOffset; 489 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 490 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 491 if (!SplitBeforeSize.isZero()) 492 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 493 494 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 495 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 496 assert(!SplitAfterSize.isNegative() && "negative store size!"); 497 if (!SplitAfterSize.isZero()) 498 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 499 } 500 501 // If the type contains a pointer to data member we can't memset it to zero. 502 // Instead, create a null constant and copy it to the destination. 503 // TODO: there are other patterns besides zero that we can usefully memset, 504 // like -1, which happens to be the pattern used by member-pointers. 505 // TODO: isZeroInitializable can be over-conservative in the case where a 506 // virtual base contains a member pointer. 507 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 508 if (!NullConstantForBase->isNullValue()) { 509 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 510 CGF.CGM.getModule(), NullConstantForBase->getType(), 511 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 512 NullConstantForBase, Twine()); 513 514 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 515 DestPtr.getAlignment()); 516 NullVariable->setAlignment(Align.getQuantity()); 517 518 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 519 520 // Get and call the appropriate llvm.memcpy overload. 521 for (std::pair<CharUnits, CharUnits> Store : Stores) { 522 CharUnits StoreOffset = Store.first; 523 CharUnits StoreSize = Store.second; 524 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 525 CGF.Builder.CreateMemCpy( 526 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 527 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 528 StoreSizeVal); 529 } 530 531 // Otherwise, just memset the whole thing to zero. This is legal 532 // because in LLVM, all default initializers (other than the ones we just 533 // handled above) are guaranteed to have a bit pattern of all zeros. 534 } else { 535 for (std::pair<CharUnits, CharUnits> Store : Stores) { 536 CharUnits StoreOffset = Store.first; 537 CharUnits StoreSize = Store.second; 538 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 539 CGF.Builder.CreateMemSet( 540 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 541 CGF.Builder.getInt8(0), StoreSizeVal); 542 } 543 } 544 } 545 546 void 547 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 548 AggValueSlot Dest) { 549 assert(!Dest.isIgnored() && "Must have a destination!"); 550 const CXXConstructorDecl *CD = E->getConstructor(); 551 552 // If we require zero initialization before (or instead of) calling the 553 // constructor, as can be the case with a non-user-provided default 554 // constructor, emit the zero initialization now, unless destination is 555 // already zeroed. 556 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 557 switch (E->getConstructionKind()) { 558 case CXXConstructExpr::CK_Delegating: 559 case CXXConstructExpr::CK_Complete: 560 EmitNullInitialization(Dest.getAddress(), E->getType()); 561 break; 562 case CXXConstructExpr::CK_VirtualBase: 563 case CXXConstructExpr::CK_NonVirtualBase: 564 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 565 CD->getParent()); 566 break; 567 } 568 } 569 570 // If this is a call to a trivial default constructor, do nothing. 571 if (CD->isTrivial() && CD->isDefaultConstructor()) 572 return; 573 574 // Elide the constructor if we're constructing from a temporary. 575 // The temporary check is required because Sema sets this on NRVO 576 // returns. 577 if (getLangOpts().ElideConstructors && E->isElidable()) { 578 assert(getContext().hasSameUnqualifiedType(E->getType(), 579 E->getArg(0)->getType())); 580 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 581 EmitAggExpr(E->getArg(0), Dest); 582 return; 583 } 584 } 585 586 if (const ArrayType *arrayType 587 = getContext().getAsArrayType(E->getType())) { 588 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 589 } else { 590 CXXCtorType Type = Ctor_Complete; 591 bool ForVirtualBase = false; 592 bool Delegating = false; 593 594 switch (E->getConstructionKind()) { 595 case CXXConstructExpr::CK_Delegating: 596 // We should be emitting a constructor; GlobalDecl will assert this 597 Type = CurGD.getCtorType(); 598 Delegating = true; 599 break; 600 601 case CXXConstructExpr::CK_Complete: 602 Type = Ctor_Complete; 603 break; 604 605 case CXXConstructExpr::CK_VirtualBase: 606 ForVirtualBase = true; 607 // fall-through 608 609 case CXXConstructExpr::CK_NonVirtualBase: 610 Type = Ctor_Base; 611 } 612 613 // Call the constructor. 614 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 615 Dest.getAddress(), E); 616 } 617 } 618 619 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 620 const Expr *Exp) { 621 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 622 Exp = E->getSubExpr(); 623 assert(isa<CXXConstructExpr>(Exp) && 624 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 625 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 626 const CXXConstructorDecl *CD = E->getConstructor(); 627 RunCleanupsScope Scope(*this); 628 629 // If we require zero initialization before (or instead of) calling the 630 // constructor, as can be the case with a non-user-provided default 631 // constructor, emit the zero initialization now. 632 // FIXME. Do I still need this for a copy ctor synthesis? 633 if (E->requiresZeroInitialization()) 634 EmitNullInitialization(Dest, E->getType()); 635 636 assert(!getContext().getAsConstantArrayType(E->getType()) 637 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 638 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 639 } 640 641 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 642 const CXXNewExpr *E) { 643 if (!E->isArray()) 644 return CharUnits::Zero(); 645 646 // No cookie is required if the operator new[] being used is the 647 // reserved placement operator new[]. 648 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 649 return CharUnits::Zero(); 650 651 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 652 } 653 654 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 655 const CXXNewExpr *e, 656 unsigned minElements, 657 llvm::Value *&numElements, 658 llvm::Value *&sizeWithoutCookie) { 659 QualType type = e->getAllocatedType(); 660 661 if (!e->isArray()) { 662 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 663 sizeWithoutCookie 664 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 665 return sizeWithoutCookie; 666 } 667 668 // The width of size_t. 669 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 670 671 // Figure out the cookie size. 672 llvm::APInt cookieSize(sizeWidth, 673 CalculateCookiePadding(CGF, e).getQuantity()); 674 675 // Emit the array size expression. 676 // We multiply the size of all dimensions for NumElements. 677 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 678 numElements = CGF.CGM.EmitConstantExpr(e->getArraySize(), 679 CGF.getContext().getSizeType(), &CGF); 680 if (!numElements) 681 numElements = CGF.EmitScalarExpr(e->getArraySize()); 682 assert(isa<llvm::IntegerType>(numElements->getType())); 683 684 // The number of elements can be have an arbitrary integer type; 685 // essentially, we need to multiply it by a constant factor, add a 686 // cookie size, and verify that the result is representable as a 687 // size_t. That's just a gloss, though, and it's wrong in one 688 // important way: if the count is negative, it's an error even if 689 // the cookie size would bring the total size >= 0. 690 bool isSigned 691 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 692 llvm::IntegerType *numElementsType 693 = cast<llvm::IntegerType>(numElements->getType()); 694 unsigned numElementsWidth = numElementsType->getBitWidth(); 695 696 // Compute the constant factor. 697 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 698 while (const ConstantArrayType *CAT 699 = CGF.getContext().getAsConstantArrayType(type)) { 700 type = CAT->getElementType(); 701 arraySizeMultiplier *= CAT->getSize(); 702 } 703 704 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 705 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 706 typeSizeMultiplier *= arraySizeMultiplier; 707 708 // This will be a size_t. 709 llvm::Value *size; 710 711 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 712 // Don't bloat the -O0 code. 713 if (llvm::ConstantInt *numElementsC = 714 dyn_cast<llvm::ConstantInt>(numElements)) { 715 const llvm::APInt &count = numElementsC->getValue(); 716 717 bool hasAnyOverflow = false; 718 719 // If 'count' was a negative number, it's an overflow. 720 if (isSigned && count.isNegative()) 721 hasAnyOverflow = true; 722 723 // We want to do all this arithmetic in size_t. If numElements is 724 // wider than that, check whether it's already too big, and if so, 725 // overflow. 726 else if (numElementsWidth > sizeWidth && 727 numElementsWidth - sizeWidth > count.countLeadingZeros()) 728 hasAnyOverflow = true; 729 730 // Okay, compute a count at the right width. 731 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 732 733 // If there is a brace-initializer, we cannot allocate fewer elements than 734 // there are initializers. If we do, that's treated like an overflow. 735 if (adjustedCount.ult(minElements)) 736 hasAnyOverflow = true; 737 738 // Scale numElements by that. This might overflow, but we don't 739 // care because it only overflows if allocationSize does, too, and 740 // if that overflows then we shouldn't use this. 741 numElements = llvm::ConstantInt::get(CGF.SizeTy, 742 adjustedCount * arraySizeMultiplier); 743 744 // Compute the size before cookie, and track whether it overflowed. 745 bool overflow; 746 llvm::APInt allocationSize 747 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 748 hasAnyOverflow |= overflow; 749 750 // Add in the cookie, and check whether it's overflowed. 751 if (cookieSize != 0) { 752 // Save the current size without a cookie. This shouldn't be 753 // used if there was overflow. 754 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 755 756 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 757 hasAnyOverflow |= overflow; 758 } 759 760 // On overflow, produce a -1 so operator new will fail. 761 if (hasAnyOverflow) { 762 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 763 } else { 764 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 765 } 766 767 // Otherwise, we might need to use the overflow intrinsics. 768 } else { 769 // There are up to five conditions we need to test for: 770 // 1) if isSigned, we need to check whether numElements is negative; 771 // 2) if numElementsWidth > sizeWidth, we need to check whether 772 // numElements is larger than something representable in size_t; 773 // 3) if minElements > 0, we need to check whether numElements is smaller 774 // than that. 775 // 4) we need to compute 776 // sizeWithoutCookie := numElements * typeSizeMultiplier 777 // and check whether it overflows; and 778 // 5) if we need a cookie, we need to compute 779 // size := sizeWithoutCookie + cookieSize 780 // and check whether it overflows. 781 782 llvm::Value *hasOverflow = nullptr; 783 784 // If numElementsWidth > sizeWidth, then one way or another, we're 785 // going to have to do a comparison for (2), and this happens to 786 // take care of (1), too. 787 if (numElementsWidth > sizeWidth) { 788 llvm::APInt threshold(numElementsWidth, 1); 789 threshold <<= sizeWidth; 790 791 llvm::Value *thresholdV 792 = llvm::ConstantInt::get(numElementsType, threshold); 793 794 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 795 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 796 797 // Otherwise, if we're signed, we want to sext up to size_t. 798 } else if (isSigned) { 799 if (numElementsWidth < sizeWidth) 800 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 801 802 // If there's a non-1 type size multiplier, then we can do the 803 // signedness check at the same time as we do the multiply 804 // because a negative number times anything will cause an 805 // unsigned overflow. Otherwise, we have to do it here. But at least 806 // in this case, we can subsume the >= minElements check. 807 if (typeSizeMultiplier == 1) 808 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 809 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 810 811 // Otherwise, zext up to size_t if necessary. 812 } else if (numElementsWidth < sizeWidth) { 813 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 814 } 815 816 assert(numElements->getType() == CGF.SizeTy); 817 818 if (minElements) { 819 // Don't allow allocation of fewer elements than we have initializers. 820 if (!hasOverflow) { 821 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 822 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 823 } else if (numElementsWidth > sizeWidth) { 824 // The other existing overflow subsumes this check. 825 // We do an unsigned comparison, since any signed value < -1 is 826 // taken care of either above or below. 827 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 828 CGF.Builder.CreateICmpULT(numElements, 829 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 830 } 831 } 832 833 size = numElements; 834 835 // Multiply by the type size if necessary. This multiplier 836 // includes all the factors for nested arrays. 837 // 838 // This step also causes numElements to be scaled up by the 839 // nested-array factor if necessary. Overflow on this computation 840 // can be ignored because the result shouldn't be used if 841 // allocation fails. 842 if (typeSizeMultiplier != 1) { 843 llvm::Value *umul_with_overflow 844 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 845 846 llvm::Value *tsmV = 847 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 848 llvm::Value *result = 849 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 850 851 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 852 if (hasOverflow) 853 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 854 else 855 hasOverflow = overflowed; 856 857 size = CGF.Builder.CreateExtractValue(result, 0); 858 859 // Also scale up numElements by the array size multiplier. 860 if (arraySizeMultiplier != 1) { 861 // If the base element type size is 1, then we can re-use the 862 // multiply we just did. 863 if (typeSize.isOne()) { 864 assert(arraySizeMultiplier == typeSizeMultiplier); 865 numElements = size; 866 867 // Otherwise we need a separate multiply. 868 } else { 869 llvm::Value *asmV = 870 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 871 numElements = CGF.Builder.CreateMul(numElements, asmV); 872 } 873 } 874 } else { 875 // numElements doesn't need to be scaled. 876 assert(arraySizeMultiplier == 1); 877 } 878 879 // Add in the cookie size if necessary. 880 if (cookieSize != 0) { 881 sizeWithoutCookie = size; 882 883 llvm::Value *uadd_with_overflow 884 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 885 886 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 887 llvm::Value *result = 888 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 889 890 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 891 if (hasOverflow) 892 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 893 else 894 hasOverflow = overflowed; 895 896 size = CGF.Builder.CreateExtractValue(result, 0); 897 } 898 899 // If we had any possibility of dynamic overflow, make a select to 900 // overwrite 'size' with an all-ones value, which should cause 901 // operator new to throw. 902 if (hasOverflow) 903 size = CGF.Builder.CreateSelect(hasOverflow, 904 llvm::Constant::getAllOnesValue(CGF.SizeTy), 905 size); 906 } 907 908 if (cookieSize == 0) 909 sizeWithoutCookie = size; 910 else 911 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 912 913 return size; 914 } 915 916 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 917 QualType AllocType, Address NewPtr) { 918 // FIXME: Refactor with EmitExprAsInit. 919 switch (CGF.getEvaluationKind(AllocType)) { 920 case TEK_Scalar: 921 CGF.EmitScalarInit(Init, nullptr, 922 CGF.MakeAddrLValue(NewPtr, AllocType), false); 923 return; 924 case TEK_Complex: 925 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 926 /*isInit*/ true); 927 return; 928 case TEK_Aggregate: { 929 AggValueSlot Slot 930 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 931 AggValueSlot::IsDestructed, 932 AggValueSlot::DoesNotNeedGCBarriers, 933 AggValueSlot::IsNotAliased); 934 CGF.EmitAggExpr(Init, Slot); 935 return; 936 } 937 } 938 llvm_unreachable("bad evaluation kind"); 939 } 940 941 void CodeGenFunction::EmitNewArrayInitializer( 942 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 943 Address BeginPtr, llvm::Value *NumElements, 944 llvm::Value *AllocSizeWithoutCookie) { 945 // If we have a type with trivial initialization and no initializer, 946 // there's nothing to do. 947 if (!E->hasInitializer()) 948 return; 949 950 Address CurPtr = BeginPtr; 951 952 unsigned InitListElements = 0; 953 954 const Expr *Init = E->getInitializer(); 955 Address EndOfInit = Address::invalid(); 956 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 957 EHScopeStack::stable_iterator Cleanup; 958 llvm::Instruction *CleanupDominator = nullptr; 959 960 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 961 CharUnits ElementAlign = 962 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 963 964 // Attempt to perform zero-initialization using memset. 965 auto TryMemsetInitialization = [&]() -> bool { 966 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 967 // we can initialize with a memset to -1. 968 if (!CGM.getTypes().isZeroInitializable(ElementType)) 969 return false; 970 971 // Optimization: since zero initialization will just set the memory 972 // to all zeroes, generate a single memset to do it in one shot. 973 974 // Subtract out the size of any elements we've already initialized. 975 auto *RemainingSize = AllocSizeWithoutCookie; 976 if (InitListElements) { 977 // We know this can't overflow; we check this when doing the allocation. 978 auto *InitializedSize = llvm::ConstantInt::get( 979 RemainingSize->getType(), 980 getContext().getTypeSizeInChars(ElementType).getQuantity() * 981 InitListElements); 982 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 983 } 984 985 // Create the memset. 986 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 987 return true; 988 }; 989 990 // If the initializer is an initializer list, first do the explicit elements. 991 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 992 // Initializing from a (braced) string literal is a special case; the init 993 // list element does not initialize a (single) array element. 994 if (ILE->isStringLiteralInit()) { 995 // Initialize the initial portion of length equal to that of the string 996 // literal. The allocation must be for at least this much; we emitted a 997 // check for that earlier. 998 AggValueSlot Slot = 999 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1000 AggValueSlot::IsDestructed, 1001 AggValueSlot::DoesNotNeedGCBarriers, 1002 AggValueSlot::IsNotAliased); 1003 EmitAggExpr(ILE->getInit(0), Slot); 1004 1005 // Move past these elements. 1006 InitListElements = 1007 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1008 ->getSize().getZExtValue(); 1009 CurPtr = 1010 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1011 Builder.getSize(InitListElements), 1012 "string.init.end"), 1013 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1014 ElementSize)); 1015 1016 // Zero out the rest, if any remain. 1017 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1018 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1019 bool OK = TryMemsetInitialization(); 1020 (void)OK; 1021 assert(OK && "couldn't memset character type?"); 1022 } 1023 return; 1024 } 1025 1026 InitListElements = ILE->getNumInits(); 1027 1028 // If this is a multi-dimensional array new, we will initialize multiple 1029 // elements with each init list element. 1030 QualType AllocType = E->getAllocatedType(); 1031 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1032 AllocType->getAsArrayTypeUnsafe())) { 1033 ElementTy = ConvertTypeForMem(AllocType); 1034 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1035 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1036 } 1037 1038 // Enter a partial-destruction Cleanup if necessary. 1039 if (needsEHCleanup(DtorKind)) { 1040 // In principle we could tell the Cleanup where we are more 1041 // directly, but the control flow can get so varied here that it 1042 // would actually be quite complex. Therefore we go through an 1043 // alloca. 1044 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1045 "array.init.end"); 1046 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1047 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1048 ElementType, ElementAlign, 1049 getDestroyer(DtorKind)); 1050 Cleanup = EHStack.stable_begin(); 1051 } 1052 1053 CharUnits StartAlign = CurPtr.getAlignment(); 1054 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1055 // Tell the cleanup that it needs to destroy up to this 1056 // element. TODO: some of these stores can be trivially 1057 // observed to be unnecessary. 1058 if (EndOfInit.isValid()) { 1059 auto FinishedPtr = 1060 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1061 Builder.CreateStore(FinishedPtr, EndOfInit); 1062 } 1063 // FIXME: If the last initializer is an incomplete initializer list for 1064 // an array, and we have an array filler, we can fold together the two 1065 // initialization loops. 1066 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1067 ILE->getInit(i)->getType(), CurPtr); 1068 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1069 Builder.getSize(1), 1070 "array.exp.next"), 1071 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1072 } 1073 1074 // The remaining elements are filled with the array filler expression. 1075 Init = ILE->getArrayFiller(); 1076 1077 // Extract the initializer for the individual array elements by pulling 1078 // out the array filler from all the nested initializer lists. This avoids 1079 // generating a nested loop for the initialization. 1080 while (Init && Init->getType()->isConstantArrayType()) { 1081 auto *SubILE = dyn_cast<InitListExpr>(Init); 1082 if (!SubILE) 1083 break; 1084 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1085 Init = SubILE->getArrayFiller(); 1086 } 1087 1088 // Switch back to initializing one base element at a time. 1089 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1090 } 1091 1092 // If all elements have already been initialized, skip any further 1093 // initialization. 1094 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1095 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1096 // If there was a Cleanup, deactivate it. 1097 if (CleanupDominator) 1098 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1099 return; 1100 } 1101 1102 assert(Init && "have trailing elements to initialize but no initializer"); 1103 1104 // If this is a constructor call, try to optimize it out, and failing that 1105 // emit a single loop to initialize all remaining elements. 1106 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1107 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1108 if (Ctor->isTrivial()) { 1109 // If new expression did not specify value-initialization, then there 1110 // is no initialization. 1111 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1112 return; 1113 1114 if (TryMemsetInitialization()) 1115 return; 1116 } 1117 1118 // Store the new Cleanup position for irregular Cleanups. 1119 // 1120 // FIXME: Share this cleanup with the constructor call emission rather than 1121 // having it create a cleanup of its own. 1122 if (EndOfInit.isValid()) 1123 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1124 1125 // Emit a constructor call loop to initialize the remaining elements. 1126 if (InitListElements) 1127 NumElements = Builder.CreateSub( 1128 NumElements, 1129 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1130 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1131 CCE->requiresZeroInitialization()); 1132 return; 1133 } 1134 1135 // If this is value-initialization, we can usually use memset. 1136 ImplicitValueInitExpr IVIE(ElementType); 1137 if (isa<ImplicitValueInitExpr>(Init)) { 1138 if (TryMemsetInitialization()) 1139 return; 1140 1141 // Switch to an ImplicitValueInitExpr for the element type. This handles 1142 // only one case: multidimensional array new of pointers to members. In 1143 // all other cases, we already have an initializer for the array element. 1144 Init = &IVIE; 1145 } 1146 1147 // At this point we should have found an initializer for the individual 1148 // elements of the array. 1149 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1150 "got wrong type of element to initialize"); 1151 1152 // If we have an empty initializer list, we can usually use memset. 1153 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1154 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1155 return; 1156 1157 // If we have a struct whose every field is value-initialized, we can 1158 // usually use memset. 1159 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1160 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1161 if (RType->getDecl()->isStruct()) { 1162 unsigned NumElements = 0; 1163 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1164 NumElements = CXXRD->getNumBases(); 1165 for (auto *Field : RType->getDecl()->fields()) 1166 if (!Field->isUnnamedBitfield()) 1167 ++NumElements; 1168 // FIXME: Recurse into nested InitListExprs. 1169 if (ILE->getNumInits() == NumElements) 1170 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1171 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1172 --NumElements; 1173 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1174 return; 1175 } 1176 } 1177 } 1178 1179 // Create the loop blocks. 1180 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1181 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1182 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1183 1184 // Find the end of the array, hoisted out of the loop. 1185 llvm::Value *EndPtr = 1186 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1187 1188 // If the number of elements isn't constant, we have to now check if there is 1189 // anything left to initialize. 1190 if (!ConstNum) { 1191 llvm::Value *IsEmpty = 1192 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1193 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1194 } 1195 1196 // Enter the loop. 1197 EmitBlock(LoopBB); 1198 1199 // Set up the current-element phi. 1200 llvm::PHINode *CurPtrPhi = 1201 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1202 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1203 1204 CurPtr = Address(CurPtrPhi, ElementAlign); 1205 1206 // Store the new Cleanup position for irregular Cleanups. 1207 if (EndOfInit.isValid()) 1208 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1209 1210 // Enter a partial-destruction Cleanup if necessary. 1211 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1212 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1213 ElementType, ElementAlign, 1214 getDestroyer(DtorKind)); 1215 Cleanup = EHStack.stable_begin(); 1216 CleanupDominator = Builder.CreateUnreachable(); 1217 } 1218 1219 // Emit the initializer into this element. 1220 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1221 1222 // Leave the Cleanup if we entered one. 1223 if (CleanupDominator) { 1224 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1225 CleanupDominator->eraseFromParent(); 1226 } 1227 1228 // Advance to the next element by adjusting the pointer type as necessary. 1229 llvm::Value *NextPtr = 1230 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1231 "array.next"); 1232 1233 // Check whether we've gotten to the end of the array and, if so, 1234 // exit the loop. 1235 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1236 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1237 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1238 1239 EmitBlock(ContBB); 1240 } 1241 1242 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1243 QualType ElementType, llvm::Type *ElementTy, 1244 Address NewPtr, llvm::Value *NumElements, 1245 llvm::Value *AllocSizeWithoutCookie) { 1246 ApplyDebugLocation DL(CGF, E); 1247 if (E->isArray()) 1248 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1249 AllocSizeWithoutCookie); 1250 else if (const Expr *Init = E->getInitializer()) 1251 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1252 } 1253 1254 /// Emit a call to an operator new or operator delete function, as implicitly 1255 /// created by new-expressions and delete-expressions. 1256 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1257 const FunctionDecl *CalleeDecl, 1258 const FunctionProtoType *CalleeType, 1259 const CallArgList &Args) { 1260 llvm::Instruction *CallOrInvoke; 1261 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1262 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1263 RValue RV = 1264 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1265 Args, CalleeType, /*chainCall=*/false), 1266 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1267 1268 /// C++1y [expr.new]p10: 1269 /// [In a new-expression,] an implementation is allowed to omit a call 1270 /// to a replaceable global allocation function. 1271 /// 1272 /// We model such elidable calls with the 'builtin' attribute. 1273 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1274 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1275 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1276 // FIXME: Add addAttribute to CallSite. 1277 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1278 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1279 llvm::Attribute::Builtin); 1280 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1281 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1282 llvm::Attribute::Builtin); 1283 else 1284 llvm_unreachable("unexpected kind of call instruction"); 1285 } 1286 1287 return RV; 1288 } 1289 1290 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1291 const Expr *Arg, 1292 bool IsDelete) { 1293 CallArgList Args; 1294 const Stmt *ArgS = Arg; 1295 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1296 // Find the allocation or deallocation function that we're calling. 1297 ASTContext &Ctx = getContext(); 1298 DeclarationName Name = Ctx.DeclarationNames 1299 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1300 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1301 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1302 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1303 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1304 llvm_unreachable("predeclared global operator new/delete is missing"); 1305 } 1306 1307 static std::pair<bool, bool> 1308 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) { 1309 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1310 1311 // The first argument is always a void*. 1312 ++AI; 1313 1314 // Figure out what other parameters we should be implicitly passing. 1315 bool PassSize = false; 1316 bool PassAlignment = false; 1317 1318 if (AI != AE && (*AI)->isIntegerType()) { 1319 PassSize = true; 1320 ++AI; 1321 } 1322 1323 if (AI != AE && (*AI)->isAlignValT()) { 1324 PassAlignment = true; 1325 ++AI; 1326 } 1327 1328 assert(AI == AE && "unexpected usual deallocation function parameter"); 1329 return {PassSize, PassAlignment}; 1330 } 1331 1332 namespace { 1333 /// A cleanup to call the given 'operator delete' function upon abnormal 1334 /// exit from a new expression. Templated on a traits type that deals with 1335 /// ensuring that the arguments dominate the cleanup if necessary. 1336 template<typename Traits> 1337 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1338 /// Type used to hold llvm::Value*s. 1339 typedef typename Traits::ValueTy ValueTy; 1340 /// Type used to hold RValues. 1341 typedef typename Traits::RValueTy RValueTy; 1342 struct PlacementArg { 1343 RValueTy ArgValue; 1344 QualType ArgType; 1345 }; 1346 1347 unsigned NumPlacementArgs : 31; 1348 unsigned PassAlignmentToPlacementDelete : 1; 1349 const FunctionDecl *OperatorDelete; 1350 ValueTy Ptr; 1351 ValueTy AllocSize; 1352 CharUnits AllocAlign; 1353 1354 PlacementArg *getPlacementArgs() { 1355 return reinterpret_cast<PlacementArg *>(this + 1); 1356 } 1357 1358 public: 1359 static size_t getExtraSize(size_t NumPlacementArgs) { 1360 return NumPlacementArgs * sizeof(PlacementArg); 1361 } 1362 1363 CallDeleteDuringNew(size_t NumPlacementArgs, 1364 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1365 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1366 CharUnits AllocAlign) 1367 : NumPlacementArgs(NumPlacementArgs), 1368 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1369 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1370 AllocAlign(AllocAlign) {} 1371 1372 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1373 assert(I < NumPlacementArgs && "index out of range"); 1374 getPlacementArgs()[I] = {Arg, Type}; 1375 } 1376 1377 void Emit(CodeGenFunction &CGF, Flags flags) override { 1378 const FunctionProtoType *FPT = 1379 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1380 CallArgList DeleteArgs; 1381 1382 // The first argument is always a void*. 1383 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1384 1385 // Figure out what other parameters we should be implicitly passing. 1386 bool PassSize = false; 1387 bool PassAlignment = false; 1388 if (NumPlacementArgs) { 1389 // A placement deallocation function is implicitly passed an alignment 1390 // if the placement allocation function was, but is never passed a size. 1391 PassAlignment = PassAlignmentToPlacementDelete; 1392 } else { 1393 // For a non-placement new-expression, 'operator delete' can take a 1394 // size and/or an alignment if it has the right parameters. 1395 std::tie(PassSize, PassAlignment) = 1396 shouldPassSizeAndAlignToUsualDelete(FPT); 1397 } 1398 1399 // The second argument can be a std::size_t (for non-placement delete). 1400 if (PassSize) 1401 DeleteArgs.add(Traits::get(CGF, AllocSize), 1402 CGF.getContext().getSizeType()); 1403 1404 // The next (second or third) argument can be a std::align_val_t, which 1405 // is an enum whose underlying type is std::size_t. 1406 // FIXME: Use the right type as the parameter type. Note that in a call 1407 // to operator delete(size_t, ...), we may not have it available. 1408 if (PassAlignment) 1409 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1410 CGF.SizeTy, AllocAlign.getQuantity())), 1411 CGF.getContext().getSizeType()); 1412 1413 // Pass the rest of the arguments, which must match exactly. 1414 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1415 auto Arg = getPlacementArgs()[I]; 1416 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1417 } 1418 1419 // Call 'operator delete'. 1420 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1421 } 1422 }; 1423 } 1424 1425 /// Enter a cleanup to call 'operator delete' if the initializer in a 1426 /// new-expression throws. 1427 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1428 const CXXNewExpr *E, 1429 Address NewPtr, 1430 llvm::Value *AllocSize, 1431 CharUnits AllocAlign, 1432 const CallArgList &NewArgs) { 1433 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1434 1435 // If we're not inside a conditional branch, then the cleanup will 1436 // dominate and we can do the easier (and more efficient) thing. 1437 if (!CGF.isInConditionalBranch()) { 1438 struct DirectCleanupTraits { 1439 typedef llvm::Value *ValueTy; 1440 typedef RValue RValueTy; 1441 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1442 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1443 }; 1444 1445 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1446 1447 DirectCleanup *Cleanup = CGF.EHStack 1448 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1449 E->getNumPlacementArgs(), 1450 E->getOperatorDelete(), 1451 NewPtr.getPointer(), 1452 AllocSize, 1453 E->passAlignment(), 1454 AllocAlign); 1455 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1456 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1457 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1458 } 1459 1460 return; 1461 } 1462 1463 // Otherwise, we need to save all this stuff. 1464 DominatingValue<RValue>::saved_type SavedNewPtr = 1465 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1466 DominatingValue<RValue>::saved_type SavedAllocSize = 1467 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1468 1469 struct ConditionalCleanupTraits { 1470 typedef DominatingValue<RValue>::saved_type ValueTy; 1471 typedef DominatingValue<RValue>::saved_type RValueTy; 1472 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1473 return V.restore(CGF); 1474 } 1475 }; 1476 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1477 1478 ConditionalCleanup *Cleanup = CGF.EHStack 1479 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1480 E->getNumPlacementArgs(), 1481 E->getOperatorDelete(), 1482 SavedNewPtr, 1483 SavedAllocSize, 1484 E->passAlignment(), 1485 AllocAlign); 1486 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1487 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1488 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1489 Arg.Ty); 1490 } 1491 1492 CGF.initFullExprCleanup(); 1493 } 1494 1495 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1496 // The element type being allocated. 1497 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1498 1499 // 1. Build a call to the allocation function. 1500 FunctionDecl *allocator = E->getOperatorNew(); 1501 1502 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1503 unsigned minElements = 0; 1504 if (E->isArray() && E->hasInitializer()) { 1505 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1506 if (ILE && ILE->isStringLiteralInit()) 1507 minElements = 1508 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1509 ->getSize().getZExtValue(); 1510 else if (ILE) 1511 minElements = ILE->getNumInits(); 1512 } 1513 1514 llvm::Value *numElements = nullptr; 1515 llvm::Value *allocSizeWithoutCookie = nullptr; 1516 llvm::Value *allocSize = 1517 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1518 allocSizeWithoutCookie); 1519 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1520 1521 // Emit the allocation call. If the allocator is a global placement 1522 // operator, just "inline" it directly. 1523 Address allocation = Address::invalid(); 1524 CallArgList allocatorArgs; 1525 if (allocator->isReservedGlobalPlacementOperator()) { 1526 assert(E->getNumPlacementArgs() == 1); 1527 const Expr *arg = *E->placement_arguments().begin(); 1528 1529 AlignmentSource alignSource; 1530 allocation = EmitPointerWithAlignment(arg, &alignSource); 1531 1532 // The pointer expression will, in many cases, be an opaque void*. 1533 // In these cases, discard the computed alignment and use the 1534 // formal alignment of the allocated type. 1535 if (alignSource != AlignmentSource::Decl) 1536 allocation = Address(allocation.getPointer(), allocAlign); 1537 1538 // Set up allocatorArgs for the call to operator delete if it's not 1539 // the reserved global operator. 1540 if (E->getOperatorDelete() && 1541 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1542 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1543 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1544 } 1545 1546 } else { 1547 const FunctionProtoType *allocatorType = 1548 allocator->getType()->castAs<FunctionProtoType>(); 1549 unsigned ParamsToSkip = 0; 1550 1551 // The allocation size is the first argument. 1552 QualType sizeType = getContext().getSizeType(); 1553 allocatorArgs.add(RValue::get(allocSize), sizeType); 1554 ++ParamsToSkip; 1555 1556 if (allocSize != allocSizeWithoutCookie) { 1557 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1558 allocAlign = std::max(allocAlign, cookieAlign); 1559 } 1560 1561 // The allocation alignment may be passed as the second argument. 1562 if (E->passAlignment()) { 1563 QualType AlignValT = sizeType; 1564 if (allocatorType->getNumParams() > 1) { 1565 AlignValT = allocatorType->getParamType(1); 1566 assert(getContext().hasSameUnqualifiedType( 1567 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1568 sizeType) && 1569 "wrong type for alignment parameter"); 1570 ++ParamsToSkip; 1571 } else { 1572 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1573 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1574 } 1575 allocatorArgs.add( 1576 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1577 AlignValT); 1578 } 1579 1580 // FIXME: Why do we not pass a CalleeDecl here? 1581 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1582 /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip); 1583 1584 RValue RV = 1585 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1586 1587 // If this was a call to a global replaceable allocation function that does 1588 // not take an alignment argument, the allocator is known to produce 1589 // storage that's suitably aligned for any object that fits, up to a known 1590 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1591 CharUnits allocationAlign = allocAlign; 1592 if (!E->passAlignment() && 1593 allocator->isReplaceableGlobalAllocationFunction()) { 1594 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1595 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1596 allocationAlign = std::max( 1597 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1598 } 1599 1600 allocation = Address(RV.getScalarVal(), allocationAlign); 1601 } 1602 1603 // Emit a null check on the allocation result if the allocation 1604 // function is allowed to return null (because it has a non-throwing 1605 // exception spec or is the reserved placement new) and we have an 1606 // interesting initializer. 1607 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1608 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1609 1610 llvm::BasicBlock *nullCheckBB = nullptr; 1611 llvm::BasicBlock *contBB = nullptr; 1612 1613 // The null-check means that the initializer is conditionally 1614 // evaluated. 1615 ConditionalEvaluation conditional(*this); 1616 1617 if (nullCheck) { 1618 conditional.begin(*this); 1619 1620 nullCheckBB = Builder.GetInsertBlock(); 1621 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1622 contBB = createBasicBlock("new.cont"); 1623 1624 llvm::Value *isNull = 1625 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1626 Builder.CreateCondBr(isNull, contBB, notNullBB); 1627 EmitBlock(notNullBB); 1628 } 1629 1630 // If there's an operator delete, enter a cleanup to call it if an 1631 // exception is thrown. 1632 EHScopeStack::stable_iterator operatorDeleteCleanup; 1633 llvm::Instruction *cleanupDominator = nullptr; 1634 if (E->getOperatorDelete() && 1635 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1636 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1637 allocatorArgs); 1638 operatorDeleteCleanup = EHStack.stable_begin(); 1639 cleanupDominator = Builder.CreateUnreachable(); 1640 } 1641 1642 assert((allocSize == allocSizeWithoutCookie) == 1643 CalculateCookiePadding(*this, E).isZero()); 1644 if (allocSize != allocSizeWithoutCookie) { 1645 assert(E->isArray()); 1646 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1647 numElements, 1648 E, allocType); 1649 } 1650 1651 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1652 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1653 1654 // Passing pointer through invariant.group.barrier to avoid propagation of 1655 // vptrs information which may be included in previous type. 1656 if (CGM.getCodeGenOpts().StrictVTablePointers && 1657 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1658 allocator->isReservedGlobalPlacementOperator()) 1659 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1660 result.getAlignment()); 1661 1662 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1663 allocSizeWithoutCookie); 1664 if (E->isArray()) { 1665 // NewPtr is a pointer to the base element type. If we're 1666 // allocating an array of arrays, we'll need to cast back to the 1667 // array pointer type. 1668 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1669 if (result.getType() != resultType) 1670 result = Builder.CreateBitCast(result, resultType); 1671 } 1672 1673 // Deactivate the 'operator delete' cleanup if we finished 1674 // initialization. 1675 if (operatorDeleteCleanup.isValid()) { 1676 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1677 cleanupDominator->eraseFromParent(); 1678 } 1679 1680 llvm::Value *resultPtr = result.getPointer(); 1681 if (nullCheck) { 1682 conditional.end(*this); 1683 1684 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1685 EmitBlock(contBB); 1686 1687 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1688 PHI->addIncoming(resultPtr, notNullBB); 1689 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1690 nullCheckBB); 1691 1692 resultPtr = PHI; 1693 } 1694 1695 return resultPtr; 1696 } 1697 1698 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1699 llvm::Value *Ptr, QualType DeleteTy, 1700 llvm::Value *NumElements, 1701 CharUnits CookieSize) { 1702 assert((!NumElements && CookieSize.isZero()) || 1703 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1704 1705 const FunctionProtoType *DeleteFTy = 1706 DeleteFD->getType()->getAs<FunctionProtoType>(); 1707 1708 CallArgList DeleteArgs; 1709 1710 std::pair<bool, bool> PassSizeAndAlign = 1711 shouldPassSizeAndAlignToUsualDelete(DeleteFTy); 1712 1713 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1714 1715 // Pass the pointer itself. 1716 QualType ArgTy = *ParamTypeIt++; 1717 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1718 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1719 1720 // Pass the size if the delete function has a size_t parameter. 1721 if (PassSizeAndAlign.first) { 1722 QualType SizeType = *ParamTypeIt++; 1723 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1724 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1725 DeleteTypeSize.getQuantity()); 1726 1727 // For array new, multiply by the number of elements. 1728 if (NumElements) 1729 Size = Builder.CreateMul(Size, NumElements); 1730 1731 // If there is a cookie, add the cookie size. 1732 if (!CookieSize.isZero()) 1733 Size = Builder.CreateAdd( 1734 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1735 1736 DeleteArgs.add(RValue::get(Size), SizeType); 1737 } 1738 1739 // Pass the alignment if the delete function has an align_val_t parameter. 1740 if (PassSizeAndAlign.second) { 1741 QualType AlignValType = *ParamTypeIt++; 1742 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1743 getContext().getTypeAlignIfKnown(DeleteTy)); 1744 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1745 DeleteTypeAlign.getQuantity()); 1746 DeleteArgs.add(RValue::get(Align), AlignValType); 1747 } 1748 1749 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1750 "unknown parameter to usual delete function"); 1751 1752 // Emit the call to delete. 1753 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1754 } 1755 1756 namespace { 1757 /// Calls the given 'operator delete' on a single object. 1758 struct CallObjectDelete final : EHScopeStack::Cleanup { 1759 llvm::Value *Ptr; 1760 const FunctionDecl *OperatorDelete; 1761 QualType ElementType; 1762 1763 CallObjectDelete(llvm::Value *Ptr, 1764 const FunctionDecl *OperatorDelete, 1765 QualType ElementType) 1766 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1767 1768 void Emit(CodeGenFunction &CGF, Flags flags) override { 1769 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1770 } 1771 }; 1772 } 1773 1774 void 1775 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1776 llvm::Value *CompletePtr, 1777 QualType ElementType) { 1778 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1779 OperatorDelete, ElementType); 1780 } 1781 1782 /// Emit the code for deleting a single object. 1783 static void EmitObjectDelete(CodeGenFunction &CGF, 1784 const CXXDeleteExpr *DE, 1785 Address Ptr, 1786 QualType ElementType) { 1787 // C++11 [expr.delete]p3: 1788 // If the static type of the object to be deleted is different from its 1789 // dynamic type, the static type shall be a base class of the dynamic type 1790 // of the object to be deleted and the static type shall have a virtual 1791 // destructor or the behavior is undefined. 1792 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1793 DE->getExprLoc(), Ptr.getPointer(), 1794 ElementType); 1795 1796 // Find the destructor for the type, if applicable. If the 1797 // destructor is virtual, we'll just emit the vcall and return. 1798 const CXXDestructorDecl *Dtor = nullptr; 1799 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1800 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1801 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1802 Dtor = RD->getDestructor(); 1803 1804 if (Dtor->isVirtual()) { 1805 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1806 Dtor); 1807 return; 1808 } 1809 } 1810 } 1811 1812 // Make sure that we call delete even if the dtor throws. 1813 // This doesn't have to a conditional cleanup because we're going 1814 // to pop it off in a second. 1815 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1816 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1817 Ptr.getPointer(), 1818 OperatorDelete, ElementType); 1819 1820 if (Dtor) 1821 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1822 /*ForVirtualBase=*/false, 1823 /*Delegating=*/false, 1824 Ptr); 1825 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1826 switch (Lifetime) { 1827 case Qualifiers::OCL_None: 1828 case Qualifiers::OCL_ExplicitNone: 1829 case Qualifiers::OCL_Autoreleasing: 1830 break; 1831 1832 case Qualifiers::OCL_Strong: 1833 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1834 break; 1835 1836 case Qualifiers::OCL_Weak: 1837 CGF.EmitARCDestroyWeak(Ptr); 1838 break; 1839 } 1840 } 1841 1842 CGF.PopCleanupBlock(); 1843 } 1844 1845 namespace { 1846 /// Calls the given 'operator delete' on an array of objects. 1847 struct CallArrayDelete final : EHScopeStack::Cleanup { 1848 llvm::Value *Ptr; 1849 const FunctionDecl *OperatorDelete; 1850 llvm::Value *NumElements; 1851 QualType ElementType; 1852 CharUnits CookieSize; 1853 1854 CallArrayDelete(llvm::Value *Ptr, 1855 const FunctionDecl *OperatorDelete, 1856 llvm::Value *NumElements, 1857 QualType ElementType, 1858 CharUnits CookieSize) 1859 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1860 ElementType(ElementType), CookieSize(CookieSize) {} 1861 1862 void Emit(CodeGenFunction &CGF, Flags flags) override { 1863 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1864 CookieSize); 1865 } 1866 }; 1867 } 1868 1869 /// Emit the code for deleting an array of objects. 1870 static void EmitArrayDelete(CodeGenFunction &CGF, 1871 const CXXDeleteExpr *E, 1872 Address deletedPtr, 1873 QualType elementType) { 1874 llvm::Value *numElements = nullptr; 1875 llvm::Value *allocatedPtr = nullptr; 1876 CharUnits cookieSize; 1877 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1878 numElements, allocatedPtr, cookieSize); 1879 1880 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1881 1882 // Make sure that we call delete even if one of the dtors throws. 1883 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1884 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1885 allocatedPtr, operatorDelete, 1886 numElements, elementType, 1887 cookieSize); 1888 1889 // Destroy the elements. 1890 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1891 assert(numElements && "no element count for a type with a destructor!"); 1892 1893 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1894 CharUnits elementAlign = 1895 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1896 1897 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1898 llvm::Value *arrayEnd = 1899 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1900 1901 // Note that it is legal to allocate a zero-length array, and we 1902 // can never fold the check away because the length should always 1903 // come from a cookie. 1904 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1905 CGF.getDestroyer(dtorKind), 1906 /*checkZeroLength*/ true, 1907 CGF.needsEHCleanup(dtorKind)); 1908 } 1909 1910 // Pop the cleanup block. 1911 CGF.PopCleanupBlock(); 1912 } 1913 1914 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1915 const Expr *Arg = E->getArgument(); 1916 Address Ptr = EmitPointerWithAlignment(Arg); 1917 1918 // Null check the pointer. 1919 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1920 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1921 1922 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1923 1924 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1925 EmitBlock(DeleteNotNull); 1926 1927 // We might be deleting a pointer to array. If so, GEP down to the 1928 // first non-array element. 1929 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1930 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1931 if (DeleteTy->isConstantArrayType()) { 1932 llvm::Value *Zero = Builder.getInt32(0); 1933 SmallVector<llvm::Value*,8> GEP; 1934 1935 GEP.push_back(Zero); // point at the outermost array 1936 1937 // For each layer of array type we're pointing at: 1938 while (const ConstantArrayType *Arr 1939 = getContext().getAsConstantArrayType(DeleteTy)) { 1940 // 1. Unpeel the array type. 1941 DeleteTy = Arr->getElementType(); 1942 1943 // 2. GEP to the first element of the array. 1944 GEP.push_back(Zero); 1945 } 1946 1947 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1948 Ptr.getAlignment()); 1949 } 1950 1951 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1952 1953 if (E->isArrayForm()) { 1954 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1955 } else { 1956 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1957 } 1958 1959 EmitBlock(DeleteEnd); 1960 } 1961 1962 static bool isGLValueFromPointerDeref(const Expr *E) { 1963 E = E->IgnoreParens(); 1964 1965 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1966 if (!CE->getSubExpr()->isGLValue()) 1967 return false; 1968 return isGLValueFromPointerDeref(CE->getSubExpr()); 1969 } 1970 1971 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1972 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1973 1974 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1975 if (BO->getOpcode() == BO_Comma) 1976 return isGLValueFromPointerDeref(BO->getRHS()); 1977 1978 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1979 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1980 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1981 1982 // C++11 [expr.sub]p1: 1983 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1984 if (isa<ArraySubscriptExpr>(E)) 1985 return true; 1986 1987 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1988 if (UO->getOpcode() == UO_Deref) 1989 return true; 1990 1991 return false; 1992 } 1993 1994 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1995 llvm::Type *StdTypeInfoPtrTy) { 1996 // Get the vtable pointer. 1997 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1998 1999 // C++ [expr.typeid]p2: 2000 // If the glvalue expression is obtained by applying the unary * operator to 2001 // a pointer and the pointer is a null pointer value, the typeid expression 2002 // throws the std::bad_typeid exception. 2003 // 2004 // However, this paragraph's intent is not clear. We choose a very generous 2005 // interpretation which implores us to consider comma operators, conditional 2006 // operators, parentheses and other such constructs. 2007 QualType SrcRecordTy = E->getType(); 2008 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2009 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2010 llvm::BasicBlock *BadTypeidBlock = 2011 CGF.createBasicBlock("typeid.bad_typeid"); 2012 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2013 2014 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2015 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2016 2017 CGF.EmitBlock(BadTypeidBlock); 2018 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2019 CGF.EmitBlock(EndBlock); 2020 } 2021 2022 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2023 StdTypeInfoPtrTy); 2024 } 2025 2026 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2027 llvm::Type *StdTypeInfoPtrTy = 2028 ConvertType(E->getType())->getPointerTo(); 2029 2030 if (E->isTypeOperand()) { 2031 llvm::Constant *TypeInfo = 2032 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2033 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2034 } 2035 2036 // C++ [expr.typeid]p2: 2037 // When typeid is applied to a glvalue expression whose type is a 2038 // polymorphic class type, the result refers to a std::type_info object 2039 // representing the type of the most derived object (that is, the dynamic 2040 // type) to which the glvalue refers. 2041 if (E->isPotentiallyEvaluated()) 2042 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2043 StdTypeInfoPtrTy); 2044 2045 QualType OperandTy = E->getExprOperand()->getType(); 2046 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2047 StdTypeInfoPtrTy); 2048 } 2049 2050 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2051 QualType DestTy) { 2052 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2053 if (DestTy->isPointerType()) 2054 return llvm::Constant::getNullValue(DestLTy); 2055 2056 /// C++ [expr.dynamic.cast]p9: 2057 /// A failed cast to reference type throws std::bad_cast 2058 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2059 return nullptr; 2060 2061 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2062 return llvm::UndefValue::get(DestLTy); 2063 } 2064 2065 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2066 const CXXDynamicCastExpr *DCE) { 2067 CGM.EmitExplicitCastExprType(DCE, this); 2068 QualType DestTy = DCE->getTypeAsWritten(); 2069 2070 if (DCE->isAlwaysNull()) 2071 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2072 return T; 2073 2074 QualType SrcTy = DCE->getSubExpr()->getType(); 2075 2076 // C++ [expr.dynamic.cast]p7: 2077 // If T is "pointer to cv void," then the result is a pointer to the most 2078 // derived object pointed to by v. 2079 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2080 2081 bool isDynamicCastToVoid; 2082 QualType SrcRecordTy; 2083 QualType DestRecordTy; 2084 if (DestPTy) { 2085 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2086 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2087 DestRecordTy = DestPTy->getPointeeType(); 2088 } else { 2089 isDynamicCastToVoid = false; 2090 SrcRecordTy = SrcTy; 2091 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2092 } 2093 2094 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2095 2096 // C++ [expr.dynamic.cast]p4: 2097 // If the value of v is a null pointer value in the pointer case, the result 2098 // is the null pointer value of type T. 2099 bool ShouldNullCheckSrcValue = 2100 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2101 SrcRecordTy); 2102 2103 llvm::BasicBlock *CastNull = nullptr; 2104 llvm::BasicBlock *CastNotNull = nullptr; 2105 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2106 2107 if (ShouldNullCheckSrcValue) { 2108 CastNull = createBasicBlock("dynamic_cast.null"); 2109 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2110 2111 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2112 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2113 EmitBlock(CastNotNull); 2114 } 2115 2116 llvm::Value *Value; 2117 if (isDynamicCastToVoid) { 2118 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2119 DestTy); 2120 } else { 2121 assert(DestRecordTy->isRecordType() && 2122 "destination type must be a record type!"); 2123 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2124 DestTy, DestRecordTy, CastEnd); 2125 CastNotNull = Builder.GetInsertBlock(); 2126 } 2127 2128 if (ShouldNullCheckSrcValue) { 2129 EmitBranch(CastEnd); 2130 2131 EmitBlock(CastNull); 2132 EmitBranch(CastEnd); 2133 } 2134 2135 EmitBlock(CastEnd); 2136 2137 if (ShouldNullCheckSrcValue) { 2138 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2139 PHI->addIncoming(Value, CastNotNull); 2140 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2141 2142 Value = PHI; 2143 } 2144 2145 return Value; 2146 } 2147 2148 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2149 RunCleanupsScope Scope(*this); 2150 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2151 2152 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2153 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2154 e = E->capture_init_end(); 2155 i != e; ++i, ++CurField) { 2156 // Emit initialization 2157 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2158 if (CurField->hasCapturedVLAType()) { 2159 auto VAT = CurField->getCapturedVLAType(); 2160 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2161 } else { 2162 EmitInitializerForField(*CurField, LV, *i); 2163 } 2164 } 2165 } 2166