1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29   RequiredArgs ReqArgs;
30   // Number of prefix arguments for the call. Ignores the `this` pointer.
31   unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37                                   llvm::Value *This, llvm::Value *ImplicitParam,
38                                   QualType ImplicitParamTy, const CallExpr *CE,
39                                   CallArgList &Args, CallArgList *RtlArgs) {
40   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41          isa<CXXOperatorCallExpr>(CE));
42   assert(MD->isInstance() &&
43          "Trying to emit a member or operator call expr on a static method!");
44   ASTContext &C = CGF.getContext();
45 
46   // Push the this ptr.
47   const CXXRecordDecl *RD =
48       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
49   Args.add(RValue::get(This),
50            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
51 
52   // If there is an implicit parameter (e.g. VTT), emit it.
53   if (ImplicitParam) {
54     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55   }
56 
57   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
59   unsigned PrefixSize = Args.size() - 1;
60 
61   // And the rest of the call args.
62   if (RtlArgs) {
63     // Special case: if the caller emitted the arguments right-to-left already
64     // (prior to emitting the *this argument), we're done. This happens for
65     // assignment operators.
66     Args.addFrom(*RtlArgs);
67   } else if (CE) {
68     // Special case: skip first argument of CXXOperatorCall (it is "this").
69     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
70     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
71                      CE->getDirectCallee());
72   } else {
73     assert(
74         FPT->getNumParams() == 0 &&
75         "No CallExpr specified for function with non-zero number of arguments");
76   }
77   return {required, PrefixSize};
78 }
79 
80 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
81     const CXXMethodDecl *MD, const CGCallee &Callee,
82     ReturnValueSlot ReturnValue,
83     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
84     const CallExpr *CE, CallArgList *RtlArgs) {
85   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
86   CallArgList Args;
87   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
88       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
89   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
90       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
91   return EmitCall(FnInfo, Callee, ReturnValue, Args);
92 }
93 
94 RValue CodeGenFunction::EmitCXXDestructorCall(
95     const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
96     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
97     StructorType Type) {
98   CallArgList Args;
99   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
100                                     ImplicitParamTy, CE, Args, nullptr);
101   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
102                   Callee, ReturnValueSlot(), Args);
103 }
104 
105 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
106                                             const CXXPseudoDestructorExpr *E) {
107   QualType DestroyedType = E->getDestroyedType();
108   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
109     // Automatic Reference Counting:
110     //   If the pseudo-expression names a retainable object with weak or
111     //   strong lifetime, the object shall be released.
112     Expr *BaseExpr = E->getBase();
113     Address BaseValue = Address::invalid();
114     Qualifiers BaseQuals;
115 
116     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
117     if (E->isArrow()) {
118       BaseValue = EmitPointerWithAlignment(BaseExpr);
119       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
120       BaseQuals = PTy->getPointeeType().getQualifiers();
121     } else {
122       LValue BaseLV = EmitLValue(BaseExpr);
123       BaseValue = BaseLV.getAddress();
124       QualType BaseTy = BaseExpr->getType();
125       BaseQuals = BaseTy.getQualifiers();
126     }
127 
128     switch (DestroyedType.getObjCLifetime()) {
129     case Qualifiers::OCL_None:
130     case Qualifiers::OCL_ExplicitNone:
131     case Qualifiers::OCL_Autoreleasing:
132       break;
133 
134     case Qualifiers::OCL_Strong:
135       EmitARCRelease(Builder.CreateLoad(BaseValue,
136                         DestroyedType.isVolatileQualified()),
137                      ARCPreciseLifetime);
138       break;
139 
140     case Qualifiers::OCL_Weak:
141       EmitARCDestroyWeak(BaseValue);
142       break;
143     }
144   } else {
145     // C++ [expr.pseudo]p1:
146     //   The result shall only be used as the operand for the function call
147     //   operator (), and the result of such a call has type void. The only
148     //   effect is the evaluation of the postfix-expression before the dot or
149     //   arrow.
150     EmitIgnoredExpr(E->getBase());
151   }
152 
153   return RValue::get(nullptr);
154 }
155 
156 static CXXRecordDecl *getCXXRecord(const Expr *E) {
157   QualType T = E->getType();
158   if (const PointerType *PTy = T->getAs<PointerType>())
159     T = PTy->getPointeeType();
160   const RecordType *Ty = T->castAs<RecordType>();
161   return cast<CXXRecordDecl>(Ty->getDecl());
162 }
163 
164 // Note: This function also emit constructor calls to support a MSVC
165 // extensions allowing explicit constructor function call.
166 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
167                                               ReturnValueSlot ReturnValue) {
168   const Expr *callee = CE->getCallee()->IgnoreParens();
169 
170   if (isa<BinaryOperator>(callee))
171     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
172 
173   const MemberExpr *ME = cast<MemberExpr>(callee);
174   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
175 
176   if (MD->isStatic()) {
177     // The method is static, emit it as we would a regular call.
178     CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
179     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
180                     ReturnValue);
181   }
182 
183   bool HasQualifier = ME->hasQualifier();
184   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
185   bool IsArrow = ME->isArrow();
186   const Expr *Base = ME->getBase();
187 
188   return EmitCXXMemberOrOperatorMemberCallExpr(
189       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
190 }
191 
192 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
193     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
194     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
195     const Expr *Base) {
196   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
197 
198   // Compute the object pointer.
199   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
200 
201   const CXXMethodDecl *DevirtualizedMethod = nullptr;
202   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
203     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205     assert(DevirtualizedMethod);
206     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207     const Expr *Inner = Base->ignoreParenBaseCasts();
208     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
209         MD->getReturnType().getCanonicalType())
210       // If the return types are not the same, this might be a case where more
211       // code needs to run to compensate for it. For example, the derived
212       // method might return a type that inherits form from the return
213       // type of MD and has a prefix.
214       // For now we just avoid devirtualizing these covariant cases.
215       DevirtualizedMethod = nullptr;
216     else if (getCXXRecord(Inner) == DevirtualizedClass)
217       // If the class of the Inner expression is where the dynamic method
218       // is defined, build the this pointer from it.
219       Base = Inner;
220     else if (getCXXRecord(Base) != DevirtualizedClass) {
221       // If the method is defined in a class that is not the best dynamic
222       // one or the one of the full expression, we would have to build
223       // a derived-to-base cast to compute the correct this pointer, but
224       // we don't have support for that yet, so do a virtual call.
225       DevirtualizedMethod = nullptr;
226     }
227   }
228 
229   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
230   // operator before the LHS.
231   CallArgList RtlArgStorage;
232   CallArgList *RtlArgs = nullptr;
233   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
234     if (OCE->isAssignmentOp()) {
235       RtlArgs = &RtlArgStorage;
236       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
237                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
238                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
239     }
240   }
241 
242   Address This = Address::invalid();
243   if (IsArrow)
244     This = EmitPointerWithAlignment(Base);
245   else
246     This = EmitLValue(Base).getAddress();
247 
248 
249   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
250     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
251     if (isa<CXXConstructorDecl>(MD) &&
252         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
253       return RValue::get(nullptr);
254 
255     if (!MD->getParent()->mayInsertExtraPadding()) {
256       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
257         // We don't like to generate the trivial copy/move assignment operator
258         // when it isn't necessary; just produce the proper effect here.
259         LValue RHS = isa<CXXOperatorCallExpr>(CE)
260                          ? MakeNaturalAlignAddrLValue(
261                                (*RtlArgs)[0].RV.getScalarVal(),
262                                (*(CE->arg_begin() + 1))->getType())
263                          : EmitLValue(*CE->arg_begin());
264         EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
265         return RValue::get(This.getPointer());
266       }
267 
268       if (isa<CXXConstructorDecl>(MD) &&
269           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
270         // Trivial move and copy ctor are the same.
271         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
272         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
273         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
274         return RValue::get(This.getPointer());
275       }
276       llvm_unreachable("unknown trivial member function");
277     }
278   }
279 
280   // Compute the function type we're calling.
281   const CXXMethodDecl *CalleeDecl =
282       DevirtualizedMethod ? DevirtualizedMethod : MD;
283   const CGFunctionInfo *FInfo = nullptr;
284   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
285     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
286         Dtor, StructorType::Complete);
287   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
288     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
289         Ctor, StructorType::Complete);
290   else
291     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
292 
293   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
294 
295   // C++11 [class.mfct.non-static]p2:
296   //   If a non-static member function of a class X is called for an object that
297   //   is not of type X, or of a type derived from X, the behavior is undefined.
298   SourceLocation CallLoc;
299   ASTContext &C = getContext();
300   if (CE)
301     CallLoc = CE->getExprLoc();
302 
303   SanitizerSet SkippedChecks;
304   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE))
305     if (IsDeclRefOrWrappedCXXThis(CMCE->getImplicitObjectArgument()))
306       SkippedChecks.set(SanitizerKind::Null, true);
307   EmitTypeCheck(
308       isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
309                                           : CodeGenFunction::TCK_MemberCall,
310       CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
311       /*Alignment=*/CharUnits::Zero(), SkippedChecks);
312 
313   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
314   // 'CalleeDecl' instead.
315 
316   // C++ [class.virtual]p12:
317   //   Explicit qualification with the scope operator (5.1) suppresses the
318   //   virtual call mechanism.
319   //
320   // We also don't emit a virtual call if the base expression has a record type
321   // because then we know what the type is.
322   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
323 
324   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
325     assert(CE->arg_begin() == CE->arg_end() &&
326            "Destructor shouldn't have explicit parameters");
327     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
328     if (UseVirtualCall) {
329       CGM.getCXXABI().EmitVirtualDestructorCall(
330           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
331     } else {
332       CGCallee Callee;
333       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
334         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
335       else if (!DevirtualizedMethod)
336         Callee = CGCallee::forDirect(
337             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
338                                      Dtor);
339       else {
340         const CXXDestructorDecl *DDtor =
341           cast<CXXDestructorDecl>(DevirtualizedMethod);
342         Callee = CGCallee::forDirect(
343                   CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
344                                      DDtor);
345       }
346       EmitCXXMemberOrOperatorCall(
347           CalleeDecl, Callee, ReturnValue, This.getPointer(),
348           /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
349     }
350     return RValue::get(nullptr);
351   }
352 
353   CGCallee Callee;
354   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
355     Callee = CGCallee::forDirect(
356                   CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
357                                  Ctor);
358   } else if (UseVirtualCall) {
359     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
360                                                        CE->getLocStart());
361   } else {
362     if (SanOpts.has(SanitizerKind::CFINVCall) &&
363         MD->getParent()->isDynamicClass()) {
364       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
365       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
366                                 CE->getLocStart());
367     }
368 
369     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
370       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
371     else if (!DevirtualizedMethod)
372       Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
373     else {
374       Callee = CGCallee::forDirect(
375                                 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
376                                    DevirtualizedMethod);
377     }
378   }
379 
380   if (MD->isVirtual()) {
381     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
382         *this, CalleeDecl, This, UseVirtualCall);
383   }
384 
385   return EmitCXXMemberOrOperatorCall(
386       CalleeDecl, Callee, ReturnValue, This.getPointer(),
387       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
388 }
389 
390 RValue
391 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
392                                               ReturnValueSlot ReturnValue) {
393   const BinaryOperator *BO =
394       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
395   const Expr *BaseExpr = BO->getLHS();
396   const Expr *MemFnExpr = BO->getRHS();
397 
398   const MemberPointerType *MPT =
399     MemFnExpr->getType()->castAs<MemberPointerType>();
400 
401   const FunctionProtoType *FPT =
402     MPT->getPointeeType()->castAs<FunctionProtoType>();
403   const CXXRecordDecl *RD =
404     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
405 
406   // Emit the 'this' pointer.
407   Address This = Address::invalid();
408   if (BO->getOpcode() == BO_PtrMemI)
409     This = EmitPointerWithAlignment(BaseExpr);
410   else
411     This = EmitLValue(BaseExpr).getAddress();
412 
413   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
414                 QualType(MPT->getClass(), 0));
415 
416   // Get the member function pointer.
417   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
418 
419   // Ask the ABI to load the callee.  Note that This is modified.
420   llvm::Value *ThisPtrForCall = nullptr;
421   CGCallee Callee =
422     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
423                                              ThisPtrForCall, MemFnPtr, MPT);
424 
425   CallArgList Args;
426 
427   QualType ThisType =
428     getContext().getPointerType(getContext().getTagDeclType(RD));
429 
430   // Push the this ptr.
431   Args.add(RValue::get(ThisPtrForCall), ThisType);
432 
433   RequiredArgs required =
434       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
435 
436   // And the rest of the call args
437   EmitCallArgs(Args, FPT, E->arguments());
438   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
439                                                       /*PrefixSize=*/0),
440                   Callee, ReturnValue, Args);
441 }
442 
443 RValue
444 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
445                                                const CXXMethodDecl *MD,
446                                                ReturnValueSlot ReturnValue) {
447   assert(MD->isInstance() &&
448          "Trying to emit a member call expr on a static method!");
449   return EmitCXXMemberOrOperatorMemberCallExpr(
450       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
451       /*IsArrow=*/false, E->getArg(0));
452 }
453 
454 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
455                                                ReturnValueSlot ReturnValue) {
456   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
457 }
458 
459 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
460                                             Address DestPtr,
461                                             const CXXRecordDecl *Base) {
462   if (Base->isEmpty())
463     return;
464 
465   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
466 
467   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
468   CharUnits NVSize = Layout.getNonVirtualSize();
469 
470   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
471   // present, they are initialized by the most derived class before calling the
472   // constructor.
473   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
474   Stores.emplace_back(CharUnits::Zero(), NVSize);
475 
476   // Each store is split by the existence of a vbptr.
477   CharUnits VBPtrWidth = CGF.getPointerSize();
478   std::vector<CharUnits> VBPtrOffsets =
479       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
480   for (CharUnits VBPtrOffset : VBPtrOffsets) {
481     // Stop before we hit any virtual base pointers located in virtual bases.
482     if (VBPtrOffset >= NVSize)
483       break;
484     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
485     CharUnits LastStoreOffset = LastStore.first;
486     CharUnits LastStoreSize = LastStore.second;
487 
488     CharUnits SplitBeforeOffset = LastStoreOffset;
489     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
490     assert(!SplitBeforeSize.isNegative() && "negative store size!");
491     if (!SplitBeforeSize.isZero())
492       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
493 
494     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
495     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
496     assert(!SplitAfterSize.isNegative() && "negative store size!");
497     if (!SplitAfterSize.isZero())
498       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
499   }
500 
501   // If the type contains a pointer to data member we can't memset it to zero.
502   // Instead, create a null constant and copy it to the destination.
503   // TODO: there are other patterns besides zero that we can usefully memset,
504   // like -1, which happens to be the pattern used by member-pointers.
505   // TODO: isZeroInitializable can be over-conservative in the case where a
506   // virtual base contains a member pointer.
507   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
508   if (!NullConstantForBase->isNullValue()) {
509     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
510         CGF.CGM.getModule(), NullConstantForBase->getType(),
511         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
512         NullConstantForBase, Twine());
513 
514     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
515                                DestPtr.getAlignment());
516     NullVariable->setAlignment(Align.getQuantity());
517 
518     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
519 
520     // Get and call the appropriate llvm.memcpy overload.
521     for (std::pair<CharUnits, CharUnits> Store : Stores) {
522       CharUnits StoreOffset = Store.first;
523       CharUnits StoreSize = Store.second;
524       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
525       CGF.Builder.CreateMemCpy(
526           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
527           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
528           StoreSizeVal);
529     }
530 
531   // Otherwise, just memset the whole thing to zero.  This is legal
532   // because in LLVM, all default initializers (other than the ones we just
533   // handled above) are guaranteed to have a bit pattern of all zeros.
534   } else {
535     for (std::pair<CharUnits, CharUnits> Store : Stores) {
536       CharUnits StoreOffset = Store.first;
537       CharUnits StoreSize = Store.second;
538       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
539       CGF.Builder.CreateMemSet(
540           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
541           CGF.Builder.getInt8(0), StoreSizeVal);
542     }
543   }
544 }
545 
546 void
547 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
548                                       AggValueSlot Dest) {
549   assert(!Dest.isIgnored() && "Must have a destination!");
550   const CXXConstructorDecl *CD = E->getConstructor();
551 
552   // If we require zero initialization before (or instead of) calling the
553   // constructor, as can be the case with a non-user-provided default
554   // constructor, emit the zero initialization now, unless destination is
555   // already zeroed.
556   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
557     switch (E->getConstructionKind()) {
558     case CXXConstructExpr::CK_Delegating:
559     case CXXConstructExpr::CK_Complete:
560       EmitNullInitialization(Dest.getAddress(), E->getType());
561       break;
562     case CXXConstructExpr::CK_VirtualBase:
563     case CXXConstructExpr::CK_NonVirtualBase:
564       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
565                                       CD->getParent());
566       break;
567     }
568   }
569 
570   // If this is a call to a trivial default constructor, do nothing.
571   if (CD->isTrivial() && CD->isDefaultConstructor())
572     return;
573 
574   // Elide the constructor if we're constructing from a temporary.
575   // The temporary check is required because Sema sets this on NRVO
576   // returns.
577   if (getLangOpts().ElideConstructors && E->isElidable()) {
578     assert(getContext().hasSameUnqualifiedType(E->getType(),
579                                                E->getArg(0)->getType()));
580     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
581       EmitAggExpr(E->getArg(0), Dest);
582       return;
583     }
584   }
585 
586   if (const ArrayType *arrayType
587         = getContext().getAsArrayType(E->getType())) {
588     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
589   } else {
590     CXXCtorType Type = Ctor_Complete;
591     bool ForVirtualBase = false;
592     bool Delegating = false;
593 
594     switch (E->getConstructionKind()) {
595      case CXXConstructExpr::CK_Delegating:
596       // We should be emitting a constructor; GlobalDecl will assert this
597       Type = CurGD.getCtorType();
598       Delegating = true;
599       break;
600 
601      case CXXConstructExpr::CK_Complete:
602       Type = Ctor_Complete;
603       break;
604 
605      case CXXConstructExpr::CK_VirtualBase:
606       ForVirtualBase = true;
607       // fall-through
608 
609      case CXXConstructExpr::CK_NonVirtualBase:
610       Type = Ctor_Base;
611     }
612 
613     // Call the constructor.
614     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
615                            Dest.getAddress(), E);
616   }
617 }
618 
619 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
620                                                  const Expr *Exp) {
621   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
622     Exp = E->getSubExpr();
623   assert(isa<CXXConstructExpr>(Exp) &&
624          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
625   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
626   const CXXConstructorDecl *CD = E->getConstructor();
627   RunCleanupsScope Scope(*this);
628 
629   // If we require zero initialization before (or instead of) calling the
630   // constructor, as can be the case with a non-user-provided default
631   // constructor, emit the zero initialization now.
632   // FIXME. Do I still need this for a copy ctor synthesis?
633   if (E->requiresZeroInitialization())
634     EmitNullInitialization(Dest, E->getType());
635 
636   assert(!getContext().getAsConstantArrayType(E->getType())
637          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
638   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
639 }
640 
641 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
642                                         const CXXNewExpr *E) {
643   if (!E->isArray())
644     return CharUnits::Zero();
645 
646   // No cookie is required if the operator new[] being used is the
647   // reserved placement operator new[].
648   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
649     return CharUnits::Zero();
650 
651   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
652 }
653 
654 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
655                                         const CXXNewExpr *e,
656                                         unsigned minElements,
657                                         llvm::Value *&numElements,
658                                         llvm::Value *&sizeWithoutCookie) {
659   QualType type = e->getAllocatedType();
660 
661   if (!e->isArray()) {
662     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
663     sizeWithoutCookie
664       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
665     return sizeWithoutCookie;
666   }
667 
668   // The width of size_t.
669   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
670 
671   // Figure out the cookie size.
672   llvm::APInt cookieSize(sizeWidth,
673                          CalculateCookiePadding(CGF, e).getQuantity());
674 
675   // Emit the array size expression.
676   // We multiply the size of all dimensions for NumElements.
677   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
678   numElements = CGF.CGM.EmitConstantExpr(e->getArraySize(),
679                                          CGF.getContext().getSizeType(), &CGF);
680   if (!numElements)
681     numElements = CGF.EmitScalarExpr(e->getArraySize());
682   assert(isa<llvm::IntegerType>(numElements->getType()));
683 
684   // The number of elements can be have an arbitrary integer type;
685   // essentially, we need to multiply it by a constant factor, add a
686   // cookie size, and verify that the result is representable as a
687   // size_t.  That's just a gloss, though, and it's wrong in one
688   // important way: if the count is negative, it's an error even if
689   // the cookie size would bring the total size >= 0.
690   bool isSigned
691     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
692   llvm::IntegerType *numElementsType
693     = cast<llvm::IntegerType>(numElements->getType());
694   unsigned numElementsWidth = numElementsType->getBitWidth();
695 
696   // Compute the constant factor.
697   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
698   while (const ConstantArrayType *CAT
699              = CGF.getContext().getAsConstantArrayType(type)) {
700     type = CAT->getElementType();
701     arraySizeMultiplier *= CAT->getSize();
702   }
703 
704   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
705   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
706   typeSizeMultiplier *= arraySizeMultiplier;
707 
708   // This will be a size_t.
709   llvm::Value *size;
710 
711   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
712   // Don't bloat the -O0 code.
713   if (llvm::ConstantInt *numElementsC =
714         dyn_cast<llvm::ConstantInt>(numElements)) {
715     const llvm::APInt &count = numElementsC->getValue();
716 
717     bool hasAnyOverflow = false;
718 
719     // If 'count' was a negative number, it's an overflow.
720     if (isSigned && count.isNegative())
721       hasAnyOverflow = true;
722 
723     // We want to do all this arithmetic in size_t.  If numElements is
724     // wider than that, check whether it's already too big, and if so,
725     // overflow.
726     else if (numElementsWidth > sizeWidth &&
727              numElementsWidth - sizeWidth > count.countLeadingZeros())
728       hasAnyOverflow = true;
729 
730     // Okay, compute a count at the right width.
731     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
732 
733     // If there is a brace-initializer, we cannot allocate fewer elements than
734     // there are initializers. If we do, that's treated like an overflow.
735     if (adjustedCount.ult(minElements))
736       hasAnyOverflow = true;
737 
738     // Scale numElements by that.  This might overflow, but we don't
739     // care because it only overflows if allocationSize does, too, and
740     // if that overflows then we shouldn't use this.
741     numElements = llvm::ConstantInt::get(CGF.SizeTy,
742                                          adjustedCount * arraySizeMultiplier);
743 
744     // Compute the size before cookie, and track whether it overflowed.
745     bool overflow;
746     llvm::APInt allocationSize
747       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
748     hasAnyOverflow |= overflow;
749 
750     // Add in the cookie, and check whether it's overflowed.
751     if (cookieSize != 0) {
752       // Save the current size without a cookie.  This shouldn't be
753       // used if there was overflow.
754       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
755 
756       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
757       hasAnyOverflow |= overflow;
758     }
759 
760     // On overflow, produce a -1 so operator new will fail.
761     if (hasAnyOverflow) {
762       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
763     } else {
764       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
765     }
766 
767   // Otherwise, we might need to use the overflow intrinsics.
768   } else {
769     // There are up to five conditions we need to test for:
770     // 1) if isSigned, we need to check whether numElements is negative;
771     // 2) if numElementsWidth > sizeWidth, we need to check whether
772     //   numElements is larger than something representable in size_t;
773     // 3) if minElements > 0, we need to check whether numElements is smaller
774     //    than that.
775     // 4) we need to compute
776     //      sizeWithoutCookie := numElements * typeSizeMultiplier
777     //    and check whether it overflows; and
778     // 5) if we need a cookie, we need to compute
779     //      size := sizeWithoutCookie + cookieSize
780     //    and check whether it overflows.
781 
782     llvm::Value *hasOverflow = nullptr;
783 
784     // If numElementsWidth > sizeWidth, then one way or another, we're
785     // going to have to do a comparison for (2), and this happens to
786     // take care of (1), too.
787     if (numElementsWidth > sizeWidth) {
788       llvm::APInt threshold(numElementsWidth, 1);
789       threshold <<= sizeWidth;
790 
791       llvm::Value *thresholdV
792         = llvm::ConstantInt::get(numElementsType, threshold);
793 
794       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
795       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
796 
797     // Otherwise, if we're signed, we want to sext up to size_t.
798     } else if (isSigned) {
799       if (numElementsWidth < sizeWidth)
800         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
801 
802       // If there's a non-1 type size multiplier, then we can do the
803       // signedness check at the same time as we do the multiply
804       // because a negative number times anything will cause an
805       // unsigned overflow.  Otherwise, we have to do it here. But at least
806       // in this case, we can subsume the >= minElements check.
807       if (typeSizeMultiplier == 1)
808         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
809                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
810 
811     // Otherwise, zext up to size_t if necessary.
812     } else if (numElementsWidth < sizeWidth) {
813       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
814     }
815 
816     assert(numElements->getType() == CGF.SizeTy);
817 
818     if (minElements) {
819       // Don't allow allocation of fewer elements than we have initializers.
820       if (!hasOverflow) {
821         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
822                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
823       } else if (numElementsWidth > sizeWidth) {
824         // The other existing overflow subsumes this check.
825         // We do an unsigned comparison, since any signed value < -1 is
826         // taken care of either above or below.
827         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
828                           CGF.Builder.CreateICmpULT(numElements,
829                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
830       }
831     }
832 
833     size = numElements;
834 
835     // Multiply by the type size if necessary.  This multiplier
836     // includes all the factors for nested arrays.
837     //
838     // This step also causes numElements to be scaled up by the
839     // nested-array factor if necessary.  Overflow on this computation
840     // can be ignored because the result shouldn't be used if
841     // allocation fails.
842     if (typeSizeMultiplier != 1) {
843       llvm::Value *umul_with_overflow
844         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
845 
846       llvm::Value *tsmV =
847         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
848       llvm::Value *result =
849           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
850 
851       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
852       if (hasOverflow)
853         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
854       else
855         hasOverflow = overflowed;
856 
857       size = CGF.Builder.CreateExtractValue(result, 0);
858 
859       // Also scale up numElements by the array size multiplier.
860       if (arraySizeMultiplier != 1) {
861         // If the base element type size is 1, then we can re-use the
862         // multiply we just did.
863         if (typeSize.isOne()) {
864           assert(arraySizeMultiplier == typeSizeMultiplier);
865           numElements = size;
866 
867         // Otherwise we need a separate multiply.
868         } else {
869           llvm::Value *asmV =
870             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
871           numElements = CGF.Builder.CreateMul(numElements, asmV);
872         }
873       }
874     } else {
875       // numElements doesn't need to be scaled.
876       assert(arraySizeMultiplier == 1);
877     }
878 
879     // Add in the cookie size if necessary.
880     if (cookieSize != 0) {
881       sizeWithoutCookie = size;
882 
883       llvm::Value *uadd_with_overflow
884         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
885 
886       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
887       llvm::Value *result =
888           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
889 
890       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
891       if (hasOverflow)
892         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
893       else
894         hasOverflow = overflowed;
895 
896       size = CGF.Builder.CreateExtractValue(result, 0);
897     }
898 
899     // If we had any possibility of dynamic overflow, make a select to
900     // overwrite 'size' with an all-ones value, which should cause
901     // operator new to throw.
902     if (hasOverflow)
903       size = CGF.Builder.CreateSelect(hasOverflow,
904                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
905                                       size);
906   }
907 
908   if (cookieSize == 0)
909     sizeWithoutCookie = size;
910   else
911     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
912 
913   return size;
914 }
915 
916 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
917                                     QualType AllocType, Address NewPtr) {
918   // FIXME: Refactor with EmitExprAsInit.
919   switch (CGF.getEvaluationKind(AllocType)) {
920   case TEK_Scalar:
921     CGF.EmitScalarInit(Init, nullptr,
922                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
923     return;
924   case TEK_Complex:
925     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
926                                   /*isInit*/ true);
927     return;
928   case TEK_Aggregate: {
929     AggValueSlot Slot
930       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
931                               AggValueSlot::IsDestructed,
932                               AggValueSlot::DoesNotNeedGCBarriers,
933                               AggValueSlot::IsNotAliased);
934     CGF.EmitAggExpr(Init, Slot);
935     return;
936   }
937   }
938   llvm_unreachable("bad evaluation kind");
939 }
940 
941 void CodeGenFunction::EmitNewArrayInitializer(
942     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
943     Address BeginPtr, llvm::Value *NumElements,
944     llvm::Value *AllocSizeWithoutCookie) {
945   // If we have a type with trivial initialization and no initializer,
946   // there's nothing to do.
947   if (!E->hasInitializer())
948     return;
949 
950   Address CurPtr = BeginPtr;
951 
952   unsigned InitListElements = 0;
953 
954   const Expr *Init = E->getInitializer();
955   Address EndOfInit = Address::invalid();
956   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
957   EHScopeStack::stable_iterator Cleanup;
958   llvm::Instruction *CleanupDominator = nullptr;
959 
960   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
961   CharUnits ElementAlign =
962     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
963 
964   // Attempt to perform zero-initialization using memset.
965   auto TryMemsetInitialization = [&]() -> bool {
966     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
967     // we can initialize with a memset to -1.
968     if (!CGM.getTypes().isZeroInitializable(ElementType))
969       return false;
970 
971     // Optimization: since zero initialization will just set the memory
972     // to all zeroes, generate a single memset to do it in one shot.
973 
974     // Subtract out the size of any elements we've already initialized.
975     auto *RemainingSize = AllocSizeWithoutCookie;
976     if (InitListElements) {
977       // We know this can't overflow; we check this when doing the allocation.
978       auto *InitializedSize = llvm::ConstantInt::get(
979           RemainingSize->getType(),
980           getContext().getTypeSizeInChars(ElementType).getQuantity() *
981               InitListElements);
982       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
983     }
984 
985     // Create the memset.
986     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
987     return true;
988   };
989 
990   // If the initializer is an initializer list, first do the explicit elements.
991   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
992     // Initializing from a (braced) string literal is a special case; the init
993     // list element does not initialize a (single) array element.
994     if (ILE->isStringLiteralInit()) {
995       // Initialize the initial portion of length equal to that of the string
996       // literal. The allocation must be for at least this much; we emitted a
997       // check for that earlier.
998       AggValueSlot Slot =
999           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1000                                 AggValueSlot::IsDestructed,
1001                                 AggValueSlot::DoesNotNeedGCBarriers,
1002                                 AggValueSlot::IsNotAliased);
1003       EmitAggExpr(ILE->getInit(0), Slot);
1004 
1005       // Move past these elements.
1006       InitListElements =
1007           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1008               ->getSize().getZExtValue();
1009       CurPtr =
1010           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1011                                             Builder.getSize(InitListElements),
1012                                             "string.init.end"),
1013                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1014                                                           ElementSize));
1015 
1016       // Zero out the rest, if any remain.
1017       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1018       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1019         bool OK = TryMemsetInitialization();
1020         (void)OK;
1021         assert(OK && "couldn't memset character type?");
1022       }
1023       return;
1024     }
1025 
1026     InitListElements = ILE->getNumInits();
1027 
1028     // If this is a multi-dimensional array new, we will initialize multiple
1029     // elements with each init list element.
1030     QualType AllocType = E->getAllocatedType();
1031     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1032             AllocType->getAsArrayTypeUnsafe())) {
1033       ElementTy = ConvertTypeForMem(AllocType);
1034       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1035       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1036     }
1037 
1038     // Enter a partial-destruction Cleanup if necessary.
1039     if (needsEHCleanup(DtorKind)) {
1040       // In principle we could tell the Cleanup where we are more
1041       // directly, but the control flow can get so varied here that it
1042       // would actually be quite complex.  Therefore we go through an
1043       // alloca.
1044       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1045                                    "array.init.end");
1046       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1047       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1048                                        ElementType, ElementAlign,
1049                                        getDestroyer(DtorKind));
1050       Cleanup = EHStack.stable_begin();
1051     }
1052 
1053     CharUnits StartAlign = CurPtr.getAlignment();
1054     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1055       // Tell the cleanup that it needs to destroy up to this
1056       // element.  TODO: some of these stores can be trivially
1057       // observed to be unnecessary.
1058       if (EndOfInit.isValid()) {
1059         auto FinishedPtr =
1060           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1061         Builder.CreateStore(FinishedPtr, EndOfInit);
1062       }
1063       // FIXME: If the last initializer is an incomplete initializer list for
1064       // an array, and we have an array filler, we can fold together the two
1065       // initialization loops.
1066       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1067                               ILE->getInit(i)->getType(), CurPtr);
1068       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1069                                                  Builder.getSize(1),
1070                                                  "array.exp.next"),
1071                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1072     }
1073 
1074     // The remaining elements are filled with the array filler expression.
1075     Init = ILE->getArrayFiller();
1076 
1077     // Extract the initializer for the individual array elements by pulling
1078     // out the array filler from all the nested initializer lists. This avoids
1079     // generating a nested loop for the initialization.
1080     while (Init && Init->getType()->isConstantArrayType()) {
1081       auto *SubILE = dyn_cast<InitListExpr>(Init);
1082       if (!SubILE)
1083         break;
1084       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1085       Init = SubILE->getArrayFiller();
1086     }
1087 
1088     // Switch back to initializing one base element at a time.
1089     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1090   }
1091 
1092   // If all elements have already been initialized, skip any further
1093   // initialization.
1094   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1095   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1096     // If there was a Cleanup, deactivate it.
1097     if (CleanupDominator)
1098       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1099     return;
1100   }
1101 
1102   assert(Init && "have trailing elements to initialize but no initializer");
1103 
1104   // If this is a constructor call, try to optimize it out, and failing that
1105   // emit a single loop to initialize all remaining elements.
1106   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1107     CXXConstructorDecl *Ctor = CCE->getConstructor();
1108     if (Ctor->isTrivial()) {
1109       // If new expression did not specify value-initialization, then there
1110       // is no initialization.
1111       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1112         return;
1113 
1114       if (TryMemsetInitialization())
1115         return;
1116     }
1117 
1118     // Store the new Cleanup position for irregular Cleanups.
1119     //
1120     // FIXME: Share this cleanup with the constructor call emission rather than
1121     // having it create a cleanup of its own.
1122     if (EndOfInit.isValid())
1123       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1124 
1125     // Emit a constructor call loop to initialize the remaining elements.
1126     if (InitListElements)
1127       NumElements = Builder.CreateSub(
1128           NumElements,
1129           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1130     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1131                                CCE->requiresZeroInitialization());
1132     return;
1133   }
1134 
1135   // If this is value-initialization, we can usually use memset.
1136   ImplicitValueInitExpr IVIE(ElementType);
1137   if (isa<ImplicitValueInitExpr>(Init)) {
1138     if (TryMemsetInitialization())
1139       return;
1140 
1141     // Switch to an ImplicitValueInitExpr for the element type. This handles
1142     // only one case: multidimensional array new of pointers to members. In
1143     // all other cases, we already have an initializer for the array element.
1144     Init = &IVIE;
1145   }
1146 
1147   // At this point we should have found an initializer for the individual
1148   // elements of the array.
1149   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1150          "got wrong type of element to initialize");
1151 
1152   // If we have an empty initializer list, we can usually use memset.
1153   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1154     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1155       return;
1156 
1157   // If we have a struct whose every field is value-initialized, we can
1158   // usually use memset.
1159   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1160     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1161       if (RType->getDecl()->isStruct()) {
1162         unsigned NumElements = 0;
1163         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1164           NumElements = CXXRD->getNumBases();
1165         for (auto *Field : RType->getDecl()->fields())
1166           if (!Field->isUnnamedBitfield())
1167             ++NumElements;
1168         // FIXME: Recurse into nested InitListExprs.
1169         if (ILE->getNumInits() == NumElements)
1170           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1171             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1172               --NumElements;
1173         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1174           return;
1175       }
1176     }
1177   }
1178 
1179   // Create the loop blocks.
1180   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1181   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1182   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1183 
1184   // Find the end of the array, hoisted out of the loop.
1185   llvm::Value *EndPtr =
1186     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1187 
1188   // If the number of elements isn't constant, we have to now check if there is
1189   // anything left to initialize.
1190   if (!ConstNum) {
1191     llvm::Value *IsEmpty =
1192       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1193     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1194   }
1195 
1196   // Enter the loop.
1197   EmitBlock(LoopBB);
1198 
1199   // Set up the current-element phi.
1200   llvm::PHINode *CurPtrPhi =
1201     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1202   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1203 
1204   CurPtr = Address(CurPtrPhi, ElementAlign);
1205 
1206   // Store the new Cleanup position for irregular Cleanups.
1207   if (EndOfInit.isValid())
1208     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1209 
1210   // Enter a partial-destruction Cleanup if necessary.
1211   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1212     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1213                                    ElementType, ElementAlign,
1214                                    getDestroyer(DtorKind));
1215     Cleanup = EHStack.stable_begin();
1216     CleanupDominator = Builder.CreateUnreachable();
1217   }
1218 
1219   // Emit the initializer into this element.
1220   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1221 
1222   // Leave the Cleanup if we entered one.
1223   if (CleanupDominator) {
1224     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1225     CleanupDominator->eraseFromParent();
1226   }
1227 
1228   // Advance to the next element by adjusting the pointer type as necessary.
1229   llvm::Value *NextPtr =
1230     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1231                                        "array.next");
1232 
1233   // Check whether we've gotten to the end of the array and, if so,
1234   // exit the loop.
1235   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1236   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1237   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1238 
1239   EmitBlock(ContBB);
1240 }
1241 
1242 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1243                                QualType ElementType, llvm::Type *ElementTy,
1244                                Address NewPtr, llvm::Value *NumElements,
1245                                llvm::Value *AllocSizeWithoutCookie) {
1246   ApplyDebugLocation DL(CGF, E);
1247   if (E->isArray())
1248     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1249                                 AllocSizeWithoutCookie);
1250   else if (const Expr *Init = E->getInitializer())
1251     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1252 }
1253 
1254 /// Emit a call to an operator new or operator delete function, as implicitly
1255 /// created by new-expressions and delete-expressions.
1256 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1257                                 const FunctionDecl *CalleeDecl,
1258                                 const FunctionProtoType *CalleeType,
1259                                 const CallArgList &Args) {
1260   llvm::Instruction *CallOrInvoke;
1261   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1262   CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1263   RValue RV =
1264       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1265                        Args, CalleeType, /*chainCall=*/false),
1266                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1267 
1268   /// C++1y [expr.new]p10:
1269   ///   [In a new-expression,] an implementation is allowed to omit a call
1270   ///   to a replaceable global allocation function.
1271   ///
1272   /// We model such elidable calls with the 'builtin' attribute.
1273   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1274   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1275       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1276     // FIXME: Add addAttribute to CallSite.
1277     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1278       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1279                        llvm::Attribute::Builtin);
1280     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1281       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1282                        llvm::Attribute::Builtin);
1283     else
1284       llvm_unreachable("unexpected kind of call instruction");
1285   }
1286 
1287   return RV;
1288 }
1289 
1290 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1291                                                  const Expr *Arg,
1292                                                  bool IsDelete) {
1293   CallArgList Args;
1294   const Stmt *ArgS = Arg;
1295   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1296   // Find the allocation or deallocation function that we're calling.
1297   ASTContext &Ctx = getContext();
1298   DeclarationName Name = Ctx.DeclarationNames
1299       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1300   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1301     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1302       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1303         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1304   llvm_unreachable("predeclared global operator new/delete is missing");
1305 }
1306 
1307 static std::pair<bool, bool>
1308 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) {
1309   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1310 
1311   // The first argument is always a void*.
1312   ++AI;
1313 
1314   // Figure out what other parameters we should be implicitly passing.
1315   bool PassSize = false;
1316   bool PassAlignment = false;
1317 
1318   if (AI != AE && (*AI)->isIntegerType()) {
1319     PassSize = true;
1320     ++AI;
1321   }
1322 
1323   if (AI != AE && (*AI)->isAlignValT()) {
1324     PassAlignment = true;
1325     ++AI;
1326   }
1327 
1328   assert(AI == AE && "unexpected usual deallocation function parameter");
1329   return {PassSize, PassAlignment};
1330 }
1331 
1332 namespace {
1333   /// A cleanup to call the given 'operator delete' function upon abnormal
1334   /// exit from a new expression. Templated on a traits type that deals with
1335   /// ensuring that the arguments dominate the cleanup if necessary.
1336   template<typename Traits>
1337   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1338     /// Type used to hold llvm::Value*s.
1339     typedef typename Traits::ValueTy ValueTy;
1340     /// Type used to hold RValues.
1341     typedef typename Traits::RValueTy RValueTy;
1342     struct PlacementArg {
1343       RValueTy ArgValue;
1344       QualType ArgType;
1345     };
1346 
1347     unsigned NumPlacementArgs : 31;
1348     unsigned PassAlignmentToPlacementDelete : 1;
1349     const FunctionDecl *OperatorDelete;
1350     ValueTy Ptr;
1351     ValueTy AllocSize;
1352     CharUnits AllocAlign;
1353 
1354     PlacementArg *getPlacementArgs() {
1355       return reinterpret_cast<PlacementArg *>(this + 1);
1356     }
1357 
1358   public:
1359     static size_t getExtraSize(size_t NumPlacementArgs) {
1360       return NumPlacementArgs * sizeof(PlacementArg);
1361     }
1362 
1363     CallDeleteDuringNew(size_t NumPlacementArgs,
1364                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1365                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1366                         CharUnits AllocAlign)
1367       : NumPlacementArgs(NumPlacementArgs),
1368         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1369         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1370         AllocAlign(AllocAlign) {}
1371 
1372     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1373       assert(I < NumPlacementArgs && "index out of range");
1374       getPlacementArgs()[I] = {Arg, Type};
1375     }
1376 
1377     void Emit(CodeGenFunction &CGF, Flags flags) override {
1378       const FunctionProtoType *FPT =
1379           OperatorDelete->getType()->getAs<FunctionProtoType>();
1380       CallArgList DeleteArgs;
1381 
1382       // The first argument is always a void*.
1383       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1384 
1385       // Figure out what other parameters we should be implicitly passing.
1386       bool PassSize = false;
1387       bool PassAlignment = false;
1388       if (NumPlacementArgs) {
1389         // A placement deallocation function is implicitly passed an alignment
1390         // if the placement allocation function was, but is never passed a size.
1391         PassAlignment = PassAlignmentToPlacementDelete;
1392       } else {
1393         // For a non-placement new-expression, 'operator delete' can take a
1394         // size and/or an alignment if it has the right parameters.
1395         std::tie(PassSize, PassAlignment) =
1396             shouldPassSizeAndAlignToUsualDelete(FPT);
1397       }
1398 
1399       // The second argument can be a std::size_t (for non-placement delete).
1400       if (PassSize)
1401         DeleteArgs.add(Traits::get(CGF, AllocSize),
1402                        CGF.getContext().getSizeType());
1403 
1404       // The next (second or third) argument can be a std::align_val_t, which
1405       // is an enum whose underlying type is std::size_t.
1406       // FIXME: Use the right type as the parameter type. Note that in a call
1407       // to operator delete(size_t, ...), we may not have it available.
1408       if (PassAlignment)
1409         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1410                            CGF.SizeTy, AllocAlign.getQuantity())),
1411                        CGF.getContext().getSizeType());
1412 
1413       // Pass the rest of the arguments, which must match exactly.
1414       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1415         auto Arg = getPlacementArgs()[I];
1416         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1417       }
1418 
1419       // Call 'operator delete'.
1420       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1421     }
1422   };
1423 }
1424 
1425 /// Enter a cleanup to call 'operator delete' if the initializer in a
1426 /// new-expression throws.
1427 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1428                                   const CXXNewExpr *E,
1429                                   Address NewPtr,
1430                                   llvm::Value *AllocSize,
1431                                   CharUnits AllocAlign,
1432                                   const CallArgList &NewArgs) {
1433   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1434 
1435   // If we're not inside a conditional branch, then the cleanup will
1436   // dominate and we can do the easier (and more efficient) thing.
1437   if (!CGF.isInConditionalBranch()) {
1438     struct DirectCleanupTraits {
1439       typedef llvm::Value *ValueTy;
1440       typedef RValue RValueTy;
1441       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1442       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1443     };
1444 
1445     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1446 
1447     DirectCleanup *Cleanup = CGF.EHStack
1448       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1449                                            E->getNumPlacementArgs(),
1450                                            E->getOperatorDelete(),
1451                                            NewPtr.getPointer(),
1452                                            AllocSize,
1453                                            E->passAlignment(),
1454                                            AllocAlign);
1455     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1456       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1457       Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1458     }
1459 
1460     return;
1461   }
1462 
1463   // Otherwise, we need to save all this stuff.
1464   DominatingValue<RValue>::saved_type SavedNewPtr =
1465     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1466   DominatingValue<RValue>::saved_type SavedAllocSize =
1467     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1468 
1469   struct ConditionalCleanupTraits {
1470     typedef DominatingValue<RValue>::saved_type ValueTy;
1471     typedef DominatingValue<RValue>::saved_type RValueTy;
1472     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1473       return V.restore(CGF);
1474     }
1475   };
1476   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1477 
1478   ConditionalCleanup *Cleanup = CGF.EHStack
1479     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1480                                               E->getNumPlacementArgs(),
1481                                               E->getOperatorDelete(),
1482                                               SavedNewPtr,
1483                                               SavedAllocSize,
1484                                               E->passAlignment(),
1485                                               AllocAlign);
1486   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1487     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1488     Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1489                              Arg.Ty);
1490   }
1491 
1492   CGF.initFullExprCleanup();
1493 }
1494 
1495 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1496   // The element type being allocated.
1497   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1498 
1499   // 1. Build a call to the allocation function.
1500   FunctionDecl *allocator = E->getOperatorNew();
1501 
1502   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1503   unsigned minElements = 0;
1504   if (E->isArray() && E->hasInitializer()) {
1505     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1506     if (ILE && ILE->isStringLiteralInit())
1507       minElements =
1508           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1509               ->getSize().getZExtValue();
1510     else if (ILE)
1511       minElements = ILE->getNumInits();
1512   }
1513 
1514   llvm::Value *numElements = nullptr;
1515   llvm::Value *allocSizeWithoutCookie = nullptr;
1516   llvm::Value *allocSize =
1517     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1518                         allocSizeWithoutCookie);
1519   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1520 
1521   // Emit the allocation call.  If the allocator is a global placement
1522   // operator, just "inline" it directly.
1523   Address allocation = Address::invalid();
1524   CallArgList allocatorArgs;
1525   if (allocator->isReservedGlobalPlacementOperator()) {
1526     assert(E->getNumPlacementArgs() == 1);
1527     const Expr *arg = *E->placement_arguments().begin();
1528 
1529     AlignmentSource alignSource;
1530     allocation = EmitPointerWithAlignment(arg, &alignSource);
1531 
1532     // The pointer expression will, in many cases, be an opaque void*.
1533     // In these cases, discard the computed alignment and use the
1534     // formal alignment of the allocated type.
1535     if (alignSource != AlignmentSource::Decl)
1536       allocation = Address(allocation.getPointer(), allocAlign);
1537 
1538     // Set up allocatorArgs for the call to operator delete if it's not
1539     // the reserved global operator.
1540     if (E->getOperatorDelete() &&
1541         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1542       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1543       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1544     }
1545 
1546   } else {
1547     const FunctionProtoType *allocatorType =
1548       allocator->getType()->castAs<FunctionProtoType>();
1549     unsigned ParamsToSkip = 0;
1550 
1551     // The allocation size is the first argument.
1552     QualType sizeType = getContext().getSizeType();
1553     allocatorArgs.add(RValue::get(allocSize), sizeType);
1554     ++ParamsToSkip;
1555 
1556     if (allocSize != allocSizeWithoutCookie) {
1557       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1558       allocAlign = std::max(allocAlign, cookieAlign);
1559     }
1560 
1561     // The allocation alignment may be passed as the second argument.
1562     if (E->passAlignment()) {
1563       QualType AlignValT = sizeType;
1564       if (allocatorType->getNumParams() > 1) {
1565         AlignValT = allocatorType->getParamType(1);
1566         assert(getContext().hasSameUnqualifiedType(
1567                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1568                    sizeType) &&
1569                "wrong type for alignment parameter");
1570         ++ParamsToSkip;
1571       } else {
1572         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1573         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1574       }
1575       allocatorArgs.add(
1576           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1577           AlignValT);
1578     }
1579 
1580     // FIXME: Why do we not pass a CalleeDecl here?
1581     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1582                  /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip);
1583 
1584     RValue RV =
1585       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1586 
1587     // If this was a call to a global replaceable allocation function that does
1588     // not take an alignment argument, the allocator is known to produce
1589     // storage that's suitably aligned for any object that fits, up to a known
1590     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1591     CharUnits allocationAlign = allocAlign;
1592     if (!E->passAlignment() &&
1593         allocator->isReplaceableGlobalAllocationFunction()) {
1594       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1595           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1596       allocationAlign = std::max(
1597           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1598     }
1599 
1600     allocation = Address(RV.getScalarVal(), allocationAlign);
1601   }
1602 
1603   // Emit a null check on the allocation result if the allocation
1604   // function is allowed to return null (because it has a non-throwing
1605   // exception spec or is the reserved placement new) and we have an
1606   // interesting initializer.
1607   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1608     (!allocType.isPODType(getContext()) || E->hasInitializer());
1609 
1610   llvm::BasicBlock *nullCheckBB = nullptr;
1611   llvm::BasicBlock *contBB = nullptr;
1612 
1613   // The null-check means that the initializer is conditionally
1614   // evaluated.
1615   ConditionalEvaluation conditional(*this);
1616 
1617   if (nullCheck) {
1618     conditional.begin(*this);
1619 
1620     nullCheckBB = Builder.GetInsertBlock();
1621     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1622     contBB = createBasicBlock("new.cont");
1623 
1624     llvm::Value *isNull =
1625       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1626     Builder.CreateCondBr(isNull, contBB, notNullBB);
1627     EmitBlock(notNullBB);
1628   }
1629 
1630   // If there's an operator delete, enter a cleanup to call it if an
1631   // exception is thrown.
1632   EHScopeStack::stable_iterator operatorDeleteCleanup;
1633   llvm::Instruction *cleanupDominator = nullptr;
1634   if (E->getOperatorDelete() &&
1635       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1636     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1637                           allocatorArgs);
1638     operatorDeleteCleanup = EHStack.stable_begin();
1639     cleanupDominator = Builder.CreateUnreachable();
1640   }
1641 
1642   assert((allocSize == allocSizeWithoutCookie) ==
1643          CalculateCookiePadding(*this, E).isZero());
1644   if (allocSize != allocSizeWithoutCookie) {
1645     assert(E->isArray());
1646     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1647                                                        numElements,
1648                                                        E, allocType);
1649   }
1650 
1651   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1652   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1653 
1654   // Passing pointer through invariant.group.barrier to avoid propagation of
1655   // vptrs information which may be included in previous type.
1656   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1657       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1658       allocator->isReservedGlobalPlacementOperator())
1659     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1660                      result.getAlignment());
1661 
1662   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1663                      allocSizeWithoutCookie);
1664   if (E->isArray()) {
1665     // NewPtr is a pointer to the base element type.  If we're
1666     // allocating an array of arrays, we'll need to cast back to the
1667     // array pointer type.
1668     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1669     if (result.getType() != resultType)
1670       result = Builder.CreateBitCast(result, resultType);
1671   }
1672 
1673   // Deactivate the 'operator delete' cleanup if we finished
1674   // initialization.
1675   if (operatorDeleteCleanup.isValid()) {
1676     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1677     cleanupDominator->eraseFromParent();
1678   }
1679 
1680   llvm::Value *resultPtr = result.getPointer();
1681   if (nullCheck) {
1682     conditional.end(*this);
1683 
1684     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1685     EmitBlock(contBB);
1686 
1687     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1688     PHI->addIncoming(resultPtr, notNullBB);
1689     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1690                      nullCheckBB);
1691 
1692     resultPtr = PHI;
1693   }
1694 
1695   return resultPtr;
1696 }
1697 
1698 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1699                                      llvm::Value *Ptr, QualType DeleteTy,
1700                                      llvm::Value *NumElements,
1701                                      CharUnits CookieSize) {
1702   assert((!NumElements && CookieSize.isZero()) ||
1703          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1704 
1705   const FunctionProtoType *DeleteFTy =
1706     DeleteFD->getType()->getAs<FunctionProtoType>();
1707 
1708   CallArgList DeleteArgs;
1709 
1710   std::pair<bool, bool> PassSizeAndAlign =
1711       shouldPassSizeAndAlignToUsualDelete(DeleteFTy);
1712 
1713   auto ParamTypeIt = DeleteFTy->param_type_begin();
1714 
1715   // Pass the pointer itself.
1716   QualType ArgTy = *ParamTypeIt++;
1717   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1718   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1719 
1720   // Pass the size if the delete function has a size_t parameter.
1721   if (PassSizeAndAlign.first) {
1722     QualType SizeType = *ParamTypeIt++;
1723     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1724     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1725                                                DeleteTypeSize.getQuantity());
1726 
1727     // For array new, multiply by the number of elements.
1728     if (NumElements)
1729       Size = Builder.CreateMul(Size, NumElements);
1730 
1731     // If there is a cookie, add the cookie size.
1732     if (!CookieSize.isZero())
1733       Size = Builder.CreateAdd(
1734           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1735 
1736     DeleteArgs.add(RValue::get(Size), SizeType);
1737   }
1738 
1739   // Pass the alignment if the delete function has an align_val_t parameter.
1740   if (PassSizeAndAlign.second) {
1741     QualType AlignValType = *ParamTypeIt++;
1742     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1743         getContext().getTypeAlignIfKnown(DeleteTy));
1744     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1745                                                 DeleteTypeAlign.getQuantity());
1746     DeleteArgs.add(RValue::get(Align), AlignValType);
1747   }
1748 
1749   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1750          "unknown parameter to usual delete function");
1751 
1752   // Emit the call to delete.
1753   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1754 }
1755 
1756 namespace {
1757   /// Calls the given 'operator delete' on a single object.
1758   struct CallObjectDelete final : EHScopeStack::Cleanup {
1759     llvm::Value *Ptr;
1760     const FunctionDecl *OperatorDelete;
1761     QualType ElementType;
1762 
1763     CallObjectDelete(llvm::Value *Ptr,
1764                      const FunctionDecl *OperatorDelete,
1765                      QualType ElementType)
1766       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1767 
1768     void Emit(CodeGenFunction &CGF, Flags flags) override {
1769       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1770     }
1771   };
1772 }
1773 
1774 void
1775 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1776                                              llvm::Value *CompletePtr,
1777                                              QualType ElementType) {
1778   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1779                                         OperatorDelete, ElementType);
1780 }
1781 
1782 /// Emit the code for deleting a single object.
1783 static void EmitObjectDelete(CodeGenFunction &CGF,
1784                              const CXXDeleteExpr *DE,
1785                              Address Ptr,
1786                              QualType ElementType) {
1787   // C++11 [expr.delete]p3:
1788   //   If the static type of the object to be deleted is different from its
1789   //   dynamic type, the static type shall be a base class of the dynamic type
1790   //   of the object to be deleted and the static type shall have a virtual
1791   //   destructor or the behavior is undefined.
1792   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1793                     DE->getExprLoc(), Ptr.getPointer(),
1794                     ElementType);
1795 
1796   // Find the destructor for the type, if applicable.  If the
1797   // destructor is virtual, we'll just emit the vcall and return.
1798   const CXXDestructorDecl *Dtor = nullptr;
1799   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1800     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1801     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1802       Dtor = RD->getDestructor();
1803 
1804       if (Dtor->isVirtual()) {
1805         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1806                                                     Dtor);
1807         return;
1808       }
1809     }
1810   }
1811 
1812   // Make sure that we call delete even if the dtor throws.
1813   // This doesn't have to a conditional cleanup because we're going
1814   // to pop it off in a second.
1815   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1816   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1817                                             Ptr.getPointer(),
1818                                             OperatorDelete, ElementType);
1819 
1820   if (Dtor)
1821     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1822                               /*ForVirtualBase=*/false,
1823                               /*Delegating=*/false,
1824                               Ptr);
1825   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1826     switch (Lifetime) {
1827     case Qualifiers::OCL_None:
1828     case Qualifiers::OCL_ExplicitNone:
1829     case Qualifiers::OCL_Autoreleasing:
1830       break;
1831 
1832     case Qualifiers::OCL_Strong:
1833       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1834       break;
1835 
1836     case Qualifiers::OCL_Weak:
1837       CGF.EmitARCDestroyWeak(Ptr);
1838       break;
1839     }
1840   }
1841 
1842   CGF.PopCleanupBlock();
1843 }
1844 
1845 namespace {
1846   /// Calls the given 'operator delete' on an array of objects.
1847   struct CallArrayDelete final : EHScopeStack::Cleanup {
1848     llvm::Value *Ptr;
1849     const FunctionDecl *OperatorDelete;
1850     llvm::Value *NumElements;
1851     QualType ElementType;
1852     CharUnits CookieSize;
1853 
1854     CallArrayDelete(llvm::Value *Ptr,
1855                     const FunctionDecl *OperatorDelete,
1856                     llvm::Value *NumElements,
1857                     QualType ElementType,
1858                     CharUnits CookieSize)
1859       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1860         ElementType(ElementType), CookieSize(CookieSize) {}
1861 
1862     void Emit(CodeGenFunction &CGF, Flags flags) override {
1863       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1864                          CookieSize);
1865     }
1866   };
1867 }
1868 
1869 /// Emit the code for deleting an array of objects.
1870 static void EmitArrayDelete(CodeGenFunction &CGF,
1871                             const CXXDeleteExpr *E,
1872                             Address deletedPtr,
1873                             QualType elementType) {
1874   llvm::Value *numElements = nullptr;
1875   llvm::Value *allocatedPtr = nullptr;
1876   CharUnits cookieSize;
1877   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1878                                       numElements, allocatedPtr, cookieSize);
1879 
1880   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1881 
1882   // Make sure that we call delete even if one of the dtors throws.
1883   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1884   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1885                                            allocatedPtr, operatorDelete,
1886                                            numElements, elementType,
1887                                            cookieSize);
1888 
1889   // Destroy the elements.
1890   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1891     assert(numElements && "no element count for a type with a destructor!");
1892 
1893     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1894     CharUnits elementAlign =
1895       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1896 
1897     llvm::Value *arrayBegin = deletedPtr.getPointer();
1898     llvm::Value *arrayEnd =
1899       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1900 
1901     // Note that it is legal to allocate a zero-length array, and we
1902     // can never fold the check away because the length should always
1903     // come from a cookie.
1904     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1905                          CGF.getDestroyer(dtorKind),
1906                          /*checkZeroLength*/ true,
1907                          CGF.needsEHCleanup(dtorKind));
1908   }
1909 
1910   // Pop the cleanup block.
1911   CGF.PopCleanupBlock();
1912 }
1913 
1914 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1915   const Expr *Arg = E->getArgument();
1916   Address Ptr = EmitPointerWithAlignment(Arg);
1917 
1918   // Null check the pointer.
1919   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1920   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1921 
1922   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1923 
1924   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1925   EmitBlock(DeleteNotNull);
1926 
1927   // We might be deleting a pointer to array.  If so, GEP down to the
1928   // first non-array element.
1929   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1930   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1931   if (DeleteTy->isConstantArrayType()) {
1932     llvm::Value *Zero = Builder.getInt32(0);
1933     SmallVector<llvm::Value*,8> GEP;
1934 
1935     GEP.push_back(Zero); // point at the outermost array
1936 
1937     // For each layer of array type we're pointing at:
1938     while (const ConstantArrayType *Arr
1939              = getContext().getAsConstantArrayType(DeleteTy)) {
1940       // 1. Unpeel the array type.
1941       DeleteTy = Arr->getElementType();
1942 
1943       // 2. GEP to the first element of the array.
1944       GEP.push_back(Zero);
1945     }
1946 
1947     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1948                   Ptr.getAlignment());
1949   }
1950 
1951   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1952 
1953   if (E->isArrayForm()) {
1954     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1955   } else {
1956     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1957   }
1958 
1959   EmitBlock(DeleteEnd);
1960 }
1961 
1962 static bool isGLValueFromPointerDeref(const Expr *E) {
1963   E = E->IgnoreParens();
1964 
1965   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1966     if (!CE->getSubExpr()->isGLValue())
1967       return false;
1968     return isGLValueFromPointerDeref(CE->getSubExpr());
1969   }
1970 
1971   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1972     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1973 
1974   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1975     if (BO->getOpcode() == BO_Comma)
1976       return isGLValueFromPointerDeref(BO->getRHS());
1977 
1978   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1979     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1980            isGLValueFromPointerDeref(ACO->getFalseExpr());
1981 
1982   // C++11 [expr.sub]p1:
1983   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1984   if (isa<ArraySubscriptExpr>(E))
1985     return true;
1986 
1987   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1988     if (UO->getOpcode() == UO_Deref)
1989       return true;
1990 
1991   return false;
1992 }
1993 
1994 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1995                                          llvm::Type *StdTypeInfoPtrTy) {
1996   // Get the vtable pointer.
1997   Address ThisPtr = CGF.EmitLValue(E).getAddress();
1998 
1999   // C++ [expr.typeid]p2:
2000   //   If the glvalue expression is obtained by applying the unary * operator to
2001   //   a pointer and the pointer is a null pointer value, the typeid expression
2002   //   throws the std::bad_typeid exception.
2003   //
2004   // However, this paragraph's intent is not clear.  We choose a very generous
2005   // interpretation which implores us to consider comma operators, conditional
2006   // operators, parentheses and other such constructs.
2007   QualType SrcRecordTy = E->getType();
2008   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2009           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2010     llvm::BasicBlock *BadTypeidBlock =
2011         CGF.createBasicBlock("typeid.bad_typeid");
2012     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2013 
2014     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2015     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2016 
2017     CGF.EmitBlock(BadTypeidBlock);
2018     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2019     CGF.EmitBlock(EndBlock);
2020   }
2021 
2022   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2023                                         StdTypeInfoPtrTy);
2024 }
2025 
2026 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2027   llvm::Type *StdTypeInfoPtrTy =
2028     ConvertType(E->getType())->getPointerTo();
2029 
2030   if (E->isTypeOperand()) {
2031     llvm::Constant *TypeInfo =
2032         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2033     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2034   }
2035 
2036   // C++ [expr.typeid]p2:
2037   //   When typeid is applied to a glvalue expression whose type is a
2038   //   polymorphic class type, the result refers to a std::type_info object
2039   //   representing the type of the most derived object (that is, the dynamic
2040   //   type) to which the glvalue refers.
2041   if (E->isPotentiallyEvaluated())
2042     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2043                                 StdTypeInfoPtrTy);
2044 
2045   QualType OperandTy = E->getExprOperand()->getType();
2046   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2047                                StdTypeInfoPtrTy);
2048 }
2049 
2050 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2051                                           QualType DestTy) {
2052   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2053   if (DestTy->isPointerType())
2054     return llvm::Constant::getNullValue(DestLTy);
2055 
2056   /// C++ [expr.dynamic.cast]p9:
2057   ///   A failed cast to reference type throws std::bad_cast
2058   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2059     return nullptr;
2060 
2061   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2062   return llvm::UndefValue::get(DestLTy);
2063 }
2064 
2065 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2066                                               const CXXDynamicCastExpr *DCE) {
2067   CGM.EmitExplicitCastExprType(DCE, this);
2068   QualType DestTy = DCE->getTypeAsWritten();
2069 
2070   if (DCE->isAlwaysNull())
2071     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2072       return T;
2073 
2074   QualType SrcTy = DCE->getSubExpr()->getType();
2075 
2076   // C++ [expr.dynamic.cast]p7:
2077   //   If T is "pointer to cv void," then the result is a pointer to the most
2078   //   derived object pointed to by v.
2079   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2080 
2081   bool isDynamicCastToVoid;
2082   QualType SrcRecordTy;
2083   QualType DestRecordTy;
2084   if (DestPTy) {
2085     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2086     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2087     DestRecordTy = DestPTy->getPointeeType();
2088   } else {
2089     isDynamicCastToVoid = false;
2090     SrcRecordTy = SrcTy;
2091     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2092   }
2093 
2094   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2095 
2096   // C++ [expr.dynamic.cast]p4:
2097   //   If the value of v is a null pointer value in the pointer case, the result
2098   //   is the null pointer value of type T.
2099   bool ShouldNullCheckSrcValue =
2100       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2101                                                          SrcRecordTy);
2102 
2103   llvm::BasicBlock *CastNull = nullptr;
2104   llvm::BasicBlock *CastNotNull = nullptr;
2105   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2106 
2107   if (ShouldNullCheckSrcValue) {
2108     CastNull = createBasicBlock("dynamic_cast.null");
2109     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2110 
2111     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2112     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2113     EmitBlock(CastNotNull);
2114   }
2115 
2116   llvm::Value *Value;
2117   if (isDynamicCastToVoid) {
2118     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2119                                                   DestTy);
2120   } else {
2121     assert(DestRecordTy->isRecordType() &&
2122            "destination type must be a record type!");
2123     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2124                                                 DestTy, DestRecordTy, CastEnd);
2125     CastNotNull = Builder.GetInsertBlock();
2126   }
2127 
2128   if (ShouldNullCheckSrcValue) {
2129     EmitBranch(CastEnd);
2130 
2131     EmitBlock(CastNull);
2132     EmitBranch(CastEnd);
2133   }
2134 
2135   EmitBlock(CastEnd);
2136 
2137   if (ShouldNullCheckSrcValue) {
2138     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2139     PHI->addIncoming(Value, CastNotNull);
2140     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2141 
2142     Value = PHI;
2143   }
2144 
2145   return Value;
2146 }
2147 
2148 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2149   RunCleanupsScope Scope(*this);
2150   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2151 
2152   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2153   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2154                                                e = E->capture_init_end();
2155        i != e; ++i, ++CurField) {
2156     // Emit initialization
2157     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2158     if (CurField->hasCapturedVLAType()) {
2159       auto VAT = CurField->getCapturedVLAType();
2160       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2161     } else {
2162       EmitInitializerForField(*CurField, LV, *i);
2163     }
2164   }
2165 }
2166