1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static RequiredArgs
28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
29                                   llvm::Value *This, llvm::Value *ImplicitParam,
30                                   QualType ImplicitParamTy, const CallExpr *CE,
31                                   CallArgList &Args, CallArgList *RtlArgs) {
32   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
33          isa<CXXOperatorCallExpr>(CE));
34   assert(MD->isInstance() &&
35          "Trying to emit a member or operator call expr on a static method!");
36   ASTContext &C = CGF.getContext();
37 
38   // C++11 [class.mfct.non-static]p2:
39   //   If a non-static member function of a class X is called for an object that
40   //   is not of type X, or of a type derived from X, the behavior is undefined.
41   SourceLocation CallLoc;
42   if (CE)
43     CallLoc = CE->getExprLoc();
44   CGF.EmitTypeCheck(isa<CXXConstructorDecl>(MD)
45                         ? CodeGenFunction::TCK_ConstructorCall
46                         : CodeGenFunction::TCK_MemberCall,
47                     CallLoc, This, C.getRecordType(MD->getParent()));
48 
49   // Push the this ptr.
50   const CXXRecordDecl *RD =
51       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
52   Args.add(RValue::get(This),
53            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
54 
55   // If there is an implicit parameter (e.g. VTT), emit it.
56   if (ImplicitParam) {
57     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
58   }
59 
60   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
61   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
62 
63   // And the rest of the call args.
64   if (RtlArgs) {
65     // Special case: if the caller emitted the arguments right-to-left already
66     // (prior to emitting the *this argument), we're done. This happens for
67     // assignment operators.
68     Args.addFrom(*RtlArgs);
69   } else if (CE) {
70     // Special case: skip first argument of CXXOperatorCall (it is "this").
71     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
72     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
73                      CE->getDirectCallee());
74   } else {
75     assert(
76         FPT->getNumParams() == 0 &&
77         "No CallExpr specified for function with non-zero number of arguments");
78   }
79   return required;
80 }
81 
82 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
83     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
84     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85     const CallExpr *CE, CallArgList *RtlArgs) {
86   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87   CallArgList Args;
88   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
89       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
91                   Callee, ReturnValue, Args, MD);
92 }
93 
94 RValue CodeGenFunction::EmitCXXDestructorCall(
95     const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This,
96     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
97     StructorType Type) {
98   CallArgList Args;
99   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
100                                     ImplicitParamTy, CE, Args, nullptr);
101   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
102                   Callee, ReturnValueSlot(), Args, DD);
103 }
104 
105 static CXXRecordDecl *getCXXRecord(const Expr *E) {
106   QualType T = E->getType();
107   if (const PointerType *PTy = T->getAs<PointerType>())
108     T = PTy->getPointeeType();
109   const RecordType *Ty = T->castAs<RecordType>();
110   return cast<CXXRecordDecl>(Ty->getDecl());
111 }
112 
113 // Note: This function also emit constructor calls to support a MSVC
114 // extensions allowing explicit constructor function call.
115 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
116                                               ReturnValueSlot ReturnValue) {
117   const Expr *callee = CE->getCallee()->IgnoreParens();
118 
119   if (isa<BinaryOperator>(callee))
120     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
121 
122   const MemberExpr *ME = cast<MemberExpr>(callee);
123   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
124 
125   if (MD->isStatic()) {
126     // The method is static, emit it as we would a regular call.
127     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
128     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
129                     ReturnValue);
130   }
131 
132   bool HasQualifier = ME->hasQualifier();
133   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
134   bool IsArrow = ME->isArrow();
135   const Expr *Base = ME->getBase();
136 
137   return EmitCXXMemberOrOperatorMemberCallExpr(
138       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
139 }
140 
141 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
142     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
143     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
144     const Expr *Base) {
145   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
146 
147   // Compute the object pointer.
148   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
149 
150   const CXXMethodDecl *DevirtualizedMethod = nullptr;
151   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
152     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
153     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
154     assert(DevirtualizedMethod);
155     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
156     const Expr *Inner = Base->ignoreParenBaseCasts();
157     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
158         MD->getReturnType().getCanonicalType())
159       // If the return types are not the same, this might be a case where more
160       // code needs to run to compensate for it. For example, the derived
161       // method might return a type that inherits form from the return
162       // type of MD and has a prefix.
163       // For now we just avoid devirtualizing these covariant cases.
164       DevirtualizedMethod = nullptr;
165     else if (getCXXRecord(Inner) == DevirtualizedClass)
166       // If the class of the Inner expression is where the dynamic method
167       // is defined, build the this pointer from it.
168       Base = Inner;
169     else if (getCXXRecord(Base) != DevirtualizedClass) {
170       // If the method is defined in a class that is not the best dynamic
171       // one or the one of the full expression, we would have to build
172       // a derived-to-base cast to compute the correct this pointer, but
173       // we don't have support for that yet, so do a virtual call.
174       DevirtualizedMethod = nullptr;
175     }
176   }
177 
178   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
179   // operator before the LHS.
180   CallArgList RtlArgStorage;
181   CallArgList *RtlArgs = nullptr;
182   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
183     if (OCE->isAssignmentOp()) {
184       RtlArgs = &RtlArgStorage;
185       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
186                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
187                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
188     }
189   }
190 
191   Address This = Address::invalid();
192   if (IsArrow)
193     This = EmitPointerWithAlignment(Base);
194   else
195     This = EmitLValue(Base).getAddress();
196 
197 
198   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
199     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
200     if (isa<CXXConstructorDecl>(MD) &&
201         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
202       return RValue::get(nullptr);
203 
204     if (!MD->getParent()->mayInsertExtraPadding()) {
205       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
206         // We don't like to generate the trivial copy/move assignment operator
207         // when it isn't necessary; just produce the proper effect here.
208         LValue RHS = isa<CXXOperatorCallExpr>(CE)
209                          ? MakeNaturalAlignAddrLValue(
210                                (*RtlArgs)[0].RV.getScalarVal(),
211                                (*(CE->arg_begin() + 1))->getType())
212                          : EmitLValue(*CE->arg_begin());
213         EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
214         return RValue::get(This.getPointer());
215       }
216 
217       if (isa<CXXConstructorDecl>(MD) &&
218           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
219         // Trivial move and copy ctor are the same.
220         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
221         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
222         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
223         return RValue::get(This.getPointer());
224       }
225       llvm_unreachable("unknown trivial member function");
226     }
227   }
228 
229   // Compute the function type we're calling.
230   const CXXMethodDecl *CalleeDecl =
231       DevirtualizedMethod ? DevirtualizedMethod : MD;
232   const CGFunctionInfo *FInfo = nullptr;
233   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
234     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
235         Dtor, StructorType::Complete);
236   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
237     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
238         Ctor, StructorType::Complete);
239   else
240     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
241 
242   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
243 
244   // C++ [class.virtual]p12:
245   //   Explicit qualification with the scope operator (5.1) suppresses the
246   //   virtual call mechanism.
247   //
248   // We also don't emit a virtual call if the base expression has a record type
249   // because then we know what the type is.
250   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
251   llvm::Value *Callee;
252 
253   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
254     assert(CE->arg_begin() == CE->arg_end() &&
255            "Destructor shouldn't have explicit parameters");
256     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
257     if (UseVirtualCall) {
258       CGM.getCXXABI().EmitVirtualDestructorCall(
259           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
260     } else {
261       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
262         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
263       else if (!DevirtualizedMethod)
264         Callee =
265             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
266       else {
267         const CXXDestructorDecl *DDtor =
268           cast<CXXDestructorDecl>(DevirtualizedMethod);
269         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
270       }
271       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
272                                   /*ImplicitParam=*/nullptr, QualType(), CE,
273                                   nullptr);
274     }
275     return RValue::get(nullptr);
276   }
277 
278   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
279     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
280   } else if (UseVirtualCall) {
281     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
282                                                        CE->getLocStart());
283   } else {
284     if (SanOpts.has(SanitizerKind::CFINVCall) &&
285         MD->getParent()->isDynamicClass()) {
286       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
287       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
288                                 CE->getLocStart());
289     }
290 
291     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
292       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
293     else if (!DevirtualizedMethod)
294       Callee = CGM.GetAddrOfFunction(MD, Ty);
295     else {
296       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
297     }
298   }
299 
300   if (MD->isVirtual()) {
301     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
302         *this, CalleeDecl, This, UseVirtualCall);
303   }
304 
305   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
306                                      /*ImplicitParam=*/nullptr, QualType(), CE,
307                                      RtlArgs);
308 }
309 
310 RValue
311 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
312                                               ReturnValueSlot ReturnValue) {
313   const BinaryOperator *BO =
314       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
315   const Expr *BaseExpr = BO->getLHS();
316   const Expr *MemFnExpr = BO->getRHS();
317 
318   const MemberPointerType *MPT =
319     MemFnExpr->getType()->castAs<MemberPointerType>();
320 
321   const FunctionProtoType *FPT =
322     MPT->getPointeeType()->castAs<FunctionProtoType>();
323   const CXXRecordDecl *RD =
324     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
325 
326   // Emit the 'this' pointer.
327   Address This = Address::invalid();
328   if (BO->getOpcode() == BO_PtrMemI)
329     This = EmitPointerWithAlignment(BaseExpr);
330   else
331     This = EmitLValue(BaseExpr).getAddress();
332 
333   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
334                 QualType(MPT->getClass(), 0));
335 
336   // Get the member function pointer.
337   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
338 
339   // Ask the ABI to load the callee.  Note that This is modified.
340   llvm::Value *ThisPtrForCall = nullptr;
341   llvm::Value *Callee =
342     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
343                                              ThisPtrForCall, MemFnPtr, MPT);
344 
345   CallArgList Args;
346 
347   QualType ThisType =
348     getContext().getPointerType(getContext().getTagDeclType(RD));
349 
350   // Push the this ptr.
351   Args.add(RValue::get(ThisPtrForCall), ThisType);
352 
353   RequiredArgs required =
354       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
355 
356   // And the rest of the call args
357   EmitCallArgs(Args, FPT, E->arguments());
358   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
359                   Callee, ReturnValue, Args);
360 }
361 
362 RValue
363 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
364                                                const CXXMethodDecl *MD,
365                                                ReturnValueSlot ReturnValue) {
366   assert(MD->isInstance() &&
367          "Trying to emit a member call expr on a static method!");
368   return EmitCXXMemberOrOperatorMemberCallExpr(
369       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
370       /*IsArrow=*/false, E->getArg(0));
371 }
372 
373 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
374                                                ReturnValueSlot ReturnValue) {
375   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
376 }
377 
378 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
379                                             Address DestPtr,
380                                             const CXXRecordDecl *Base) {
381   if (Base->isEmpty())
382     return;
383 
384   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
385 
386   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
387   CharUnits NVSize = Layout.getNonVirtualSize();
388 
389   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
390   // present, they are initialized by the most derived class before calling the
391   // constructor.
392   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
393   Stores.emplace_back(CharUnits::Zero(), NVSize);
394 
395   // Each store is split by the existence of a vbptr.
396   CharUnits VBPtrWidth = CGF.getPointerSize();
397   std::vector<CharUnits> VBPtrOffsets =
398       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
399   for (CharUnits VBPtrOffset : VBPtrOffsets) {
400     // Stop before we hit any virtual base pointers located in virtual bases.
401     if (VBPtrOffset >= NVSize)
402       break;
403     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
404     CharUnits LastStoreOffset = LastStore.first;
405     CharUnits LastStoreSize = LastStore.second;
406 
407     CharUnits SplitBeforeOffset = LastStoreOffset;
408     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
409     assert(!SplitBeforeSize.isNegative() && "negative store size!");
410     if (!SplitBeforeSize.isZero())
411       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
412 
413     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
414     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
415     assert(!SplitAfterSize.isNegative() && "negative store size!");
416     if (!SplitAfterSize.isZero())
417       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
418   }
419 
420   // If the type contains a pointer to data member we can't memset it to zero.
421   // Instead, create a null constant and copy it to the destination.
422   // TODO: there are other patterns besides zero that we can usefully memset,
423   // like -1, which happens to be the pattern used by member-pointers.
424   // TODO: isZeroInitializable can be over-conservative in the case where a
425   // virtual base contains a member pointer.
426   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
427   if (!NullConstantForBase->isNullValue()) {
428     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
429         CGF.CGM.getModule(), NullConstantForBase->getType(),
430         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
431         NullConstantForBase, Twine());
432 
433     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
434                                DestPtr.getAlignment());
435     NullVariable->setAlignment(Align.getQuantity());
436 
437     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
438 
439     // Get and call the appropriate llvm.memcpy overload.
440     for (std::pair<CharUnits, CharUnits> Store : Stores) {
441       CharUnits StoreOffset = Store.first;
442       CharUnits StoreSize = Store.second;
443       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
444       CGF.Builder.CreateMemCpy(
445           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
446           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
447           StoreSizeVal);
448     }
449 
450   // Otherwise, just memset the whole thing to zero.  This is legal
451   // because in LLVM, all default initializers (other than the ones we just
452   // handled above) are guaranteed to have a bit pattern of all zeros.
453   } else {
454     for (std::pair<CharUnits, CharUnits> Store : Stores) {
455       CharUnits StoreOffset = Store.first;
456       CharUnits StoreSize = Store.second;
457       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
458       CGF.Builder.CreateMemSet(
459           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
460           CGF.Builder.getInt8(0), StoreSizeVal);
461     }
462   }
463 }
464 
465 void
466 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
467                                       AggValueSlot Dest) {
468   assert(!Dest.isIgnored() && "Must have a destination!");
469   const CXXConstructorDecl *CD = E->getConstructor();
470 
471   // If we require zero initialization before (or instead of) calling the
472   // constructor, as can be the case with a non-user-provided default
473   // constructor, emit the zero initialization now, unless destination is
474   // already zeroed.
475   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
476     switch (E->getConstructionKind()) {
477     case CXXConstructExpr::CK_Delegating:
478     case CXXConstructExpr::CK_Complete:
479       EmitNullInitialization(Dest.getAddress(), E->getType());
480       break;
481     case CXXConstructExpr::CK_VirtualBase:
482     case CXXConstructExpr::CK_NonVirtualBase:
483       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
484                                       CD->getParent());
485       break;
486     }
487   }
488 
489   // If this is a call to a trivial default constructor, do nothing.
490   if (CD->isTrivial() && CD->isDefaultConstructor())
491     return;
492 
493   // Elide the constructor if we're constructing from a temporary.
494   // The temporary check is required because Sema sets this on NRVO
495   // returns.
496   if (getLangOpts().ElideConstructors && E->isElidable()) {
497     assert(getContext().hasSameUnqualifiedType(E->getType(),
498                                                E->getArg(0)->getType()));
499     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
500       EmitAggExpr(E->getArg(0), Dest);
501       return;
502     }
503   }
504 
505   if (const ArrayType *arrayType
506         = getContext().getAsArrayType(E->getType())) {
507     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
508   } else {
509     CXXCtorType Type = Ctor_Complete;
510     bool ForVirtualBase = false;
511     bool Delegating = false;
512 
513     switch (E->getConstructionKind()) {
514      case CXXConstructExpr::CK_Delegating:
515       // We should be emitting a constructor; GlobalDecl will assert this
516       Type = CurGD.getCtorType();
517       Delegating = true;
518       break;
519 
520      case CXXConstructExpr::CK_Complete:
521       Type = Ctor_Complete;
522       break;
523 
524      case CXXConstructExpr::CK_VirtualBase:
525       ForVirtualBase = true;
526       // fall-through
527 
528      case CXXConstructExpr::CK_NonVirtualBase:
529       Type = Ctor_Base;
530     }
531 
532     // Call the constructor.
533     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
534                            Dest.getAddress(), E);
535   }
536 }
537 
538 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
539                                                  const Expr *Exp) {
540   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
541     Exp = E->getSubExpr();
542   assert(isa<CXXConstructExpr>(Exp) &&
543          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
544   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
545   const CXXConstructorDecl *CD = E->getConstructor();
546   RunCleanupsScope Scope(*this);
547 
548   // If we require zero initialization before (or instead of) calling the
549   // constructor, as can be the case with a non-user-provided default
550   // constructor, emit the zero initialization now.
551   // FIXME. Do I still need this for a copy ctor synthesis?
552   if (E->requiresZeroInitialization())
553     EmitNullInitialization(Dest, E->getType());
554 
555   assert(!getContext().getAsConstantArrayType(E->getType())
556          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
557   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
558 }
559 
560 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
561                                         const CXXNewExpr *E) {
562   if (!E->isArray())
563     return CharUnits::Zero();
564 
565   // No cookie is required if the operator new[] being used is the
566   // reserved placement operator new[].
567   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
568     return CharUnits::Zero();
569 
570   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
571 }
572 
573 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
574                                         const CXXNewExpr *e,
575                                         unsigned minElements,
576                                         llvm::Value *&numElements,
577                                         llvm::Value *&sizeWithoutCookie) {
578   QualType type = e->getAllocatedType();
579 
580   if (!e->isArray()) {
581     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
582     sizeWithoutCookie
583       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
584     return sizeWithoutCookie;
585   }
586 
587   // The width of size_t.
588   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
589 
590   // Figure out the cookie size.
591   llvm::APInt cookieSize(sizeWidth,
592                          CalculateCookiePadding(CGF, e).getQuantity());
593 
594   // Emit the array size expression.
595   // We multiply the size of all dimensions for NumElements.
596   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
597   numElements = CGF.EmitScalarExpr(e->getArraySize());
598   assert(isa<llvm::IntegerType>(numElements->getType()));
599 
600   // The number of elements can be have an arbitrary integer type;
601   // essentially, we need to multiply it by a constant factor, add a
602   // cookie size, and verify that the result is representable as a
603   // size_t.  That's just a gloss, though, and it's wrong in one
604   // important way: if the count is negative, it's an error even if
605   // the cookie size would bring the total size >= 0.
606   bool isSigned
607     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
608   llvm::IntegerType *numElementsType
609     = cast<llvm::IntegerType>(numElements->getType());
610   unsigned numElementsWidth = numElementsType->getBitWidth();
611 
612   // Compute the constant factor.
613   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
614   while (const ConstantArrayType *CAT
615              = CGF.getContext().getAsConstantArrayType(type)) {
616     type = CAT->getElementType();
617     arraySizeMultiplier *= CAT->getSize();
618   }
619 
620   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
621   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
622   typeSizeMultiplier *= arraySizeMultiplier;
623 
624   // This will be a size_t.
625   llvm::Value *size;
626 
627   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
628   // Don't bloat the -O0 code.
629   if (llvm::ConstantInt *numElementsC =
630         dyn_cast<llvm::ConstantInt>(numElements)) {
631     const llvm::APInt &count = numElementsC->getValue();
632 
633     bool hasAnyOverflow = false;
634 
635     // If 'count' was a negative number, it's an overflow.
636     if (isSigned && count.isNegative())
637       hasAnyOverflow = true;
638 
639     // We want to do all this arithmetic in size_t.  If numElements is
640     // wider than that, check whether it's already too big, and if so,
641     // overflow.
642     else if (numElementsWidth > sizeWidth &&
643              numElementsWidth - sizeWidth > count.countLeadingZeros())
644       hasAnyOverflow = true;
645 
646     // Okay, compute a count at the right width.
647     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
648 
649     // If there is a brace-initializer, we cannot allocate fewer elements than
650     // there are initializers. If we do, that's treated like an overflow.
651     if (adjustedCount.ult(minElements))
652       hasAnyOverflow = true;
653 
654     // Scale numElements by that.  This might overflow, but we don't
655     // care because it only overflows if allocationSize does, too, and
656     // if that overflows then we shouldn't use this.
657     numElements = llvm::ConstantInt::get(CGF.SizeTy,
658                                          adjustedCount * arraySizeMultiplier);
659 
660     // Compute the size before cookie, and track whether it overflowed.
661     bool overflow;
662     llvm::APInt allocationSize
663       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
664     hasAnyOverflow |= overflow;
665 
666     // Add in the cookie, and check whether it's overflowed.
667     if (cookieSize != 0) {
668       // Save the current size without a cookie.  This shouldn't be
669       // used if there was overflow.
670       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
671 
672       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
673       hasAnyOverflow |= overflow;
674     }
675 
676     // On overflow, produce a -1 so operator new will fail.
677     if (hasAnyOverflow) {
678       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
679     } else {
680       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
681     }
682 
683   // Otherwise, we might need to use the overflow intrinsics.
684   } else {
685     // There are up to five conditions we need to test for:
686     // 1) if isSigned, we need to check whether numElements is negative;
687     // 2) if numElementsWidth > sizeWidth, we need to check whether
688     //   numElements is larger than something representable in size_t;
689     // 3) if minElements > 0, we need to check whether numElements is smaller
690     //    than that.
691     // 4) we need to compute
692     //      sizeWithoutCookie := numElements * typeSizeMultiplier
693     //    and check whether it overflows; and
694     // 5) if we need a cookie, we need to compute
695     //      size := sizeWithoutCookie + cookieSize
696     //    and check whether it overflows.
697 
698     llvm::Value *hasOverflow = nullptr;
699 
700     // If numElementsWidth > sizeWidth, then one way or another, we're
701     // going to have to do a comparison for (2), and this happens to
702     // take care of (1), too.
703     if (numElementsWidth > sizeWidth) {
704       llvm::APInt threshold(numElementsWidth, 1);
705       threshold <<= sizeWidth;
706 
707       llvm::Value *thresholdV
708         = llvm::ConstantInt::get(numElementsType, threshold);
709 
710       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
711       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
712 
713     // Otherwise, if we're signed, we want to sext up to size_t.
714     } else if (isSigned) {
715       if (numElementsWidth < sizeWidth)
716         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
717 
718       // If there's a non-1 type size multiplier, then we can do the
719       // signedness check at the same time as we do the multiply
720       // because a negative number times anything will cause an
721       // unsigned overflow.  Otherwise, we have to do it here. But at least
722       // in this case, we can subsume the >= minElements check.
723       if (typeSizeMultiplier == 1)
724         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
725                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
726 
727     // Otherwise, zext up to size_t if necessary.
728     } else if (numElementsWidth < sizeWidth) {
729       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
730     }
731 
732     assert(numElements->getType() == CGF.SizeTy);
733 
734     if (minElements) {
735       // Don't allow allocation of fewer elements than we have initializers.
736       if (!hasOverflow) {
737         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
738                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
739       } else if (numElementsWidth > sizeWidth) {
740         // The other existing overflow subsumes this check.
741         // We do an unsigned comparison, since any signed value < -1 is
742         // taken care of either above or below.
743         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
744                           CGF.Builder.CreateICmpULT(numElements,
745                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
746       }
747     }
748 
749     size = numElements;
750 
751     // Multiply by the type size if necessary.  This multiplier
752     // includes all the factors for nested arrays.
753     //
754     // This step also causes numElements to be scaled up by the
755     // nested-array factor if necessary.  Overflow on this computation
756     // can be ignored because the result shouldn't be used if
757     // allocation fails.
758     if (typeSizeMultiplier != 1) {
759       llvm::Value *umul_with_overflow
760         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
761 
762       llvm::Value *tsmV =
763         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
764       llvm::Value *result =
765           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
766 
767       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
768       if (hasOverflow)
769         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
770       else
771         hasOverflow = overflowed;
772 
773       size = CGF.Builder.CreateExtractValue(result, 0);
774 
775       // Also scale up numElements by the array size multiplier.
776       if (arraySizeMultiplier != 1) {
777         // If the base element type size is 1, then we can re-use the
778         // multiply we just did.
779         if (typeSize.isOne()) {
780           assert(arraySizeMultiplier == typeSizeMultiplier);
781           numElements = size;
782 
783         // Otherwise we need a separate multiply.
784         } else {
785           llvm::Value *asmV =
786             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
787           numElements = CGF.Builder.CreateMul(numElements, asmV);
788         }
789       }
790     } else {
791       // numElements doesn't need to be scaled.
792       assert(arraySizeMultiplier == 1);
793     }
794 
795     // Add in the cookie size if necessary.
796     if (cookieSize != 0) {
797       sizeWithoutCookie = size;
798 
799       llvm::Value *uadd_with_overflow
800         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
801 
802       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
803       llvm::Value *result =
804           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
805 
806       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
807       if (hasOverflow)
808         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
809       else
810         hasOverflow = overflowed;
811 
812       size = CGF.Builder.CreateExtractValue(result, 0);
813     }
814 
815     // If we had any possibility of dynamic overflow, make a select to
816     // overwrite 'size' with an all-ones value, which should cause
817     // operator new to throw.
818     if (hasOverflow)
819       size = CGF.Builder.CreateSelect(hasOverflow,
820                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
821                                       size);
822   }
823 
824   if (cookieSize == 0)
825     sizeWithoutCookie = size;
826   else
827     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
828 
829   return size;
830 }
831 
832 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
833                                     QualType AllocType, Address NewPtr) {
834   // FIXME: Refactor with EmitExprAsInit.
835   switch (CGF.getEvaluationKind(AllocType)) {
836   case TEK_Scalar:
837     CGF.EmitScalarInit(Init, nullptr,
838                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
839     return;
840   case TEK_Complex:
841     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
842                                   /*isInit*/ true);
843     return;
844   case TEK_Aggregate: {
845     AggValueSlot Slot
846       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
847                               AggValueSlot::IsDestructed,
848                               AggValueSlot::DoesNotNeedGCBarriers,
849                               AggValueSlot::IsNotAliased);
850     CGF.EmitAggExpr(Init, Slot);
851     return;
852   }
853   }
854   llvm_unreachable("bad evaluation kind");
855 }
856 
857 void CodeGenFunction::EmitNewArrayInitializer(
858     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
859     Address BeginPtr, llvm::Value *NumElements,
860     llvm::Value *AllocSizeWithoutCookie) {
861   // If we have a type with trivial initialization and no initializer,
862   // there's nothing to do.
863   if (!E->hasInitializer())
864     return;
865 
866   Address CurPtr = BeginPtr;
867 
868   unsigned InitListElements = 0;
869 
870   const Expr *Init = E->getInitializer();
871   Address EndOfInit = Address::invalid();
872   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
873   EHScopeStack::stable_iterator Cleanup;
874   llvm::Instruction *CleanupDominator = nullptr;
875 
876   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
877   CharUnits ElementAlign =
878     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
879 
880   // Attempt to perform zero-initialization using memset.
881   auto TryMemsetInitialization = [&]() -> bool {
882     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
883     // we can initialize with a memset to -1.
884     if (!CGM.getTypes().isZeroInitializable(ElementType))
885       return false;
886 
887     // Optimization: since zero initialization will just set the memory
888     // to all zeroes, generate a single memset to do it in one shot.
889 
890     // Subtract out the size of any elements we've already initialized.
891     auto *RemainingSize = AllocSizeWithoutCookie;
892     if (InitListElements) {
893       // We know this can't overflow; we check this when doing the allocation.
894       auto *InitializedSize = llvm::ConstantInt::get(
895           RemainingSize->getType(),
896           getContext().getTypeSizeInChars(ElementType).getQuantity() *
897               InitListElements);
898       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
899     }
900 
901     // Create the memset.
902     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
903     return true;
904   };
905 
906   // If the initializer is an initializer list, first do the explicit elements.
907   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
908     // Initializing from a (braced) string literal is a special case; the init
909     // list element does not initialize a (single) array element.
910     if (ILE->isStringLiteralInit()) {
911       // Initialize the initial portion of length equal to that of the string
912       // literal. The allocation must be for at least this much; we emitted a
913       // check for that earlier.
914       AggValueSlot Slot =
915           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
916                                 AggValueSlot::IsDestructed,
917                                 AggValueSlot::DoesNotNeedGCBarriers,
918                                 AggValueSlot::IsNotAliased);
919       EmitAggExpr(ILE->getInit(0), Slot);
920 
921       // Move past these elements.
922       InitListElements =
923           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
924               ->getSize().getZExtValue();
925       CurPtr =
926           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
927                                             Builder.getSize(InitListElements),
928                                             "string.init.end"),
929                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
930                                                           ElementSize));
931 
932       // Zero out the rest, if any remain.
933       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
934       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
935         bool OK = TryMemsetInitialization();
936         (void)OK;
937         assert(OK && "couldn't memset character type?");
938       }
939       return;
940     }
941 
942     InitListElements = ILE->getNumInits();
943 
944     // If this is a multi-dimensional array new, we will initialize multiple
945     // elements with each init list element.
946     QualType AllocType = E->getAllocatedType();
947     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
948             AllocType->getAsArrayTypeUnsafe())) {
949       ElementTy = ConvertTypeForMem(AllocType);
950       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
951       InitListElements *= getContext().getConstantArrayElementCount(CAT);
952     }
953 
954     // Enter a partial-destruction Cleanup if necessary.
955     if (needsEHCleanup(DtorKind)) {
956       // In principle we could tell the Cleanup where we are more
957       // directly, but the control flow can get so varied here that it
958       // would actually be quite complex.  Therefore we go through an
959       // alloca.
960       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
961                                    "array.init.end");
962       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
963       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
964                                        ElementType, ElementAlign,
965                                        getDestroyer(DtorKind));
966       Cleanup = EHStack.stable_begin();
967     }
968 
969     CharUnits StartAlign = CurPtr.getAlignment();
970     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
971       // Tell the cleanup that it needs to destroy up to this
972       // element.  TODO: some of these stores can be trivially
973       // observed to be unnecessary.
974       if (EndOfInit.isValid()) {
975         auto FinishedPtr =
976           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
977         Builder.CreateStore(FinishedPtr, EndOfInit);
978       }
979       // FIXME: If the last initializer is an incomplete initializer list for
980       // an array, and we have an array filler, we can fold together the two
981       // initialization loops.
982       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
983                               ILE->getInit(i)->getType(), CurPtr);
984       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
985                                                  Builder.getSize(1),
986                                                  "array.exp.next"),
987                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
988     }
989 
990     // The remaining elements are filled with the array filler expression.
991     Init = ILE->getArrayFiller();
992 
993     // Extract the initializer for the individual array elements by pulling
994     // out the array filler from all the nested initializer lists. This avoids
995     // generating a nested loop for the initialization.
996     while (Init && Init->getType()->isConstantArrayType()) {
997       auto *SubILE = dyn_cast<InitListExpr>(Init);
998       if (!SubILE)
999         break;
1000       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1001       Init = SubILE->getArrayFiller();
1002     }
1003 
1004     // Switch back to initializing one base element at a time.
1005     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1006   }
1007 
1008   // If all elements have already been initialized, skip any further
1009   // initialization.
1010   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1011   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1012     // If there was a Cleanup, deactivate it.
1013     if (CleanupDominator)
1014       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1015     return;
1016   }
1017 
1018   assert(Init && "have trailing elements to initialize but no initializer");
1019 
1020   // If this is a constructor call, try to optimize it out, and failing that
1021   // emit a single loop to initialize all remaining elements.
1022   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1023     CXXConstructorDecl *Ctor = CCE->getConstructor();
1024     if (Ctor->isTrivial()) {
1025       // If new expression did not specify value-initialization, then there
1026       // is no initialization.
1027       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1028         return;
1029 
1030       if (TryMemsetInitialization())
1031         return;
1032     }
1033 
1034     // Store the new Cleanup position for irregular Cleanups.
1035     //
1036     // FIXME: Share this cleanup with the constructor call emission rather than
1037     // having it create a cleanup of its own.
1038     if (EndOfInit.isValid())
1039       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1040 
1041     // Emit a constructor call loop to initialize the remaining elements.
1042     if (InitListElements)
1043       NumElements = Builder.CreateSub(
1044           NumElements,
1045           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1046     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1047                                CCE->requiresZeroInitialization());
1048     return;
1049   }
1050 
1051   // If this is value-initialization, we can usually use memset.
1052   ImplicitValueInitExpr IVIE(ElementType);
1053   if (isa<ImplicitValueInitExpr>(Init)) {
1054     if (TryMemsetInitialization())
1055       return;
1056 
1057     // Switch to an ImplicitValueInitExpr for the element type. This handles
1058     // only one case: multidimensional array new of pointers to members. In
1059     // all other cases, we already have an initializer for the array element.
1060     Init = &IVIE;
1061   }
1062 
1063   // At this point we should have found an initializer for the individual
1064   // elements of the array.
1065   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1066          "got wrong type of element to initialize");
1067 
1068   // If we have an empty initializer list, we can usually use memset.
1069   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1070     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1071       return;
1072 
1073   // If we have a struct whose every field is value-initialized, we can
1074   // usually use memset.
1075   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1076     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1077       if (RType->getDecl()->isStruct()) {
1078         unsigned NumElements = 0;
1079         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1080           NumElements = CXXRD->getNumBases();
1081         for (auto *Field : RType->getDecl()->fields())
1082           if (!Field->isUnnamedBitfield())
1083             ++NumElements;
1084         // FIXME: Recurse into nested InitListExprs.
1085         if (ILE->getNumInits() == NumElements)
1086           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1087             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1088               --NumElements;
1089         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1090           return;
1091       }
1092     }
1093   }
1094 
1095   // Create the loop blocks.
1096   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1097   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1098   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1099 
1100   // Find the end of the array, hoisted out of the loop.
1101   llvm::Value *EndPtr =
1102     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1103 
1104   // If the number of elements isn't constant, we have to now check if there is
1105   // anything left to initialize.
1106   if (!ConstNum) {
1107     llvm::Value *IsEmpty =
1108       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1109     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1110   }
1111 
1112   // Enter the loop.
1113   EmitBlock(LoopBB);
1114 
1115   // Set up the current-element phi.
1116   llvm::PHINode *CurPtrPhi =
1117     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1118   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1119 
1120   CurPtr = Address(CurPtrPhi, ElementAlign);
1121 
1122   // Store the new Cleanup position for irregular Cleanups.
1123   if (EndOfInit.isValid())
1124     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1125 
1126   // Enter a partial-destruction Cleanup if necessary.
1127   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1128     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1129                                    ElementType, ElementAlign,
1130                                    getDestroyer(DtorKind));
1131     Cleanup = EHStack.stable_begin();
1132     CleanupDominator = Builder.CreateUnreachable();
1133   }
1134 
1135   // Emit the initializer into this element.
1136   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1137 
1138   // Leave the Cleanup if we entered one.
1139   if (CleanupDominator) {
1140     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1141     CleanupDominator->eraseFromParent();
1142   }
1143 
1144   // Advance to the next element by adjusting the pointer type as necessary.
1145   llvm::Value *NextPtr =
1146     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1147                                        "array.next");
1148 
1149   // Check whether we've gotten to the end of the array and, if so,
1150   // exit the loop.
1151   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1152   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1153   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1154 
1155   EmitBlock(ContBB);
1156 }
1157 
1158 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1159                                QualType ElementType, llvm::Type *ElementTy,
1160                                Address NewPtr, llvm::Value *NumElements,
1161                                llvm::Value *AllocSizeWithoutCookie) {
1162   ApplyDebugLocation DL(CGF, E);
1163   if (E->isArray())
1164     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1165                                 AllocSizeWithoutCookie);
1166   else if (const Expr *Init = E->getInitializer())
1167     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1168 }
1169 
1170 /// Emit a call to an operator new or operator delete function, as implicitly
1171 /// created by new-expressions and delete-expressions.
1172 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1173                                 const FunctionDecl *Callee,
1174                                 const FunctionProtoType *CalleeType,
1175                                 const CallArgList &Args) {
1176   llvm::Instruction *CallOrInvoke;
1177   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1178   RValue RV =
1179       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1180                        Args, CalleeType, /*chainCall=*/false),
1181                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1182 
1183   /// C++1y [expr.new]p10:
1184   ///   [In a new-expression,] an implementation is allowed to omit a call
1185   ///   to a replaceable global allocation function.
1186   ///
1187   /// We model such elidable calls with the 'builtin' attribute.
1188   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1189   if (Callee->isReplaceableGlobalAllocationFunction() &&
1190       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1191     // FIXME: Add addAttribute to CallSite.
1192     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1193       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1194                        llvm::Attribute::Builtin);
1195     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1196       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1197                        llvm::Attribute::Builtin);
1198     else
1199       llvm_unreachable("unexpected kind of call instruction");
1200   }
1201 
1202   return RV;
1203 }
1204 
1205 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1206                                                  const Expr *Arg,
1207                                                  bool IsDelete) {
1208   CallArgList Args;
1209   const Stmt *ArgS = Arg;
1210   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1211   // Find the allocation or deallocation function that we're calling.
1212   ASTContext &Ctx = getContext();
1213   DeclarationName Name = Ctx.DeclarationNames
1214       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1215   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1216     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1217       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1218         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1219   llvm_unreachable("predeclared global operator new/delete is missing");
1220 }
1221 
1222 static std::pair<bool, bool>
1223 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) {
1224   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1225 
1226   // The first argument is always a void*.
1227   ++AI;
1228 
1229   // Figure out what other parameters we should be implicitly passing.
1230   bool PassSize = false;
1231   bool PassAlignment = false;
1232 
1233   if (AI != AE && (*AI)->isIntegerType()) {
1234     PassSize = true;
1235     ++AI;
1236   }
1237 
1238   if (AI != AE && (*AI)->isAlignValT()) {
1239     PassAlignment = true;
1240     ++AI;
1241   }
1242 
1243   assert(AI == AE && "unexpected usual deallocation function parameter");
1244   return {PassSize, PassAlignment};
1245 }
1246 
1247 namespace {
1248   /// A cleanup to call the given 'operator delete' function upon abnormal
1249   /// exit from a new expression. Templated on a traits type that deals with
1250   /// ensuring that the arguments dominate the cleanup if necessary.
1251   template<typename Traits>
1252   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1253     /// Type used to hold llvm::Value*s.
1254     typedef typename Traits::ValueTy ValueTy;
1255     /// Type used to hold RValues.
1256     typedef typename Traits::RValueTy RValueTy;
1257     struct PlacementArg {
1258       RValueTy ArgValue;
1259       QualType ArgType;
1260     };
1261 
1262     unsigned NumPlacementArgs : 31;
1263     unsigned PassAlignmentToPlacementDelete : 1;
1264     const FunctionDecl *OperatorDelete;
1265     ValueTy Ptr;
1266     ValueTy AllocSize;
1267     CharUnits AllocAlign;
1268 
1269     PlacementArg *getPlacementArgs() {
1270       return reinterpret_cast<PlacementArg *>(this + 1);
1271     }
1272 
1273   public:
1274     static size_t getExtraSize(size_t NumPlacementArgs) {
1275       return NumPlacementArgs * sizeof(PlacementArg);
1276     }
1277 
1278     CallDeleteDuringNew(size_t NumPlacementArgs,
1279                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1280                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1281                         CharUnits AllocAlign)
1282       : NumPlacementArgs(NumPlacementArgs),
1283         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1284         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1285         AllocAlign(AllocAlign) {}
1286 
1287     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1288       assert(I < NumPlacementArgs && "index out of range");
1289       getPlacementArgs()[I] = {Arg, Type};
1290     }
1291 
1292     void Emit(CodeGenFunction &CGF, Flags flags) override {
1293       const FunctionProtoType *FPT =
1294           OperatorDelete->getType()->getAs<FunctionProtoType>();
1295       CallArgList DeleteArgs;
1296 
1297       // The first argument is always a void*.
1298       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1299 
1300       // Figure out what other parameters we should be implicitly passing.
1301       bool PassSize = false;
1302       bool PassAlignment = false;
1303       if (NumPlacementArgs) {
1304         // A placement deallocation function is implicitly passed an alignment
1305         // if the placement allocation function was, but is never passed a size.
1306         PassAlignment = PassAlignmentToPlacementDelete;
1307       } else {
1308         // For a non-placement new-expression, 'operator delete' can take a
1309         // size and/or an alignment if it has the right parameters.
1310         std::tie(PassSize, PassAlignment) =
1311             shouldPassSizeAndAlignToUsualDelete(FPT);
1312       }
1313 
1314       // The second argument can be a std::size_t (for non-placement delete).
1315       if (PassSize)
1316         DeleteArgs.add(Traits::get(CGF, AllocSize),
1317                        CGF.getContext().getSizeType());
1318 
1319       // The next (second or third) argument can be a std::align_val_t, which
1320       // is an enum whose underlying type is std::size_t.
1321       // FIXME: Use the right type as the parameter type. Note that in a call
1322       // to operator delete(size_t, ...), we may not have it available.
1323       if (PassAlignment)
1324         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1325                            CGF.SizeTy, AllocAlign.getQuantity())),
1326                        CGF.getContext().getSizeType());
1327 
1328       // Pass the rest of the arguments, which must match exactly.
1329       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1330         auto Arg = getPlacementArgs()[I];
1331         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1332       }
1333 
1334       // Call 'operator delete'.
1335       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1336     }
1337   };
1338 }
1339 
1340 /// Enter a cleanup to call 'operator delete' if the initializer in a
1341 /// new-expression throws.
1342 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1343                                   const CXXNewExpr *E,
1344                                   Address NewPtr,
1345                                   llvm::Value *AllocSize,
1346                                   CharUnits AllocAlign,
1347                                   const CallArgList &NewArgs) {
1348   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1349 
1350   // If we're not inside a conditional branch, then the cleanup will
1351   // dominate and we can do the easier (and more efficient) thing.
1352   if (!CGF.isInConditionalBranch()) {
1353     struct DirectCleanupTraits {
1354       typedef llvm::Value *ValueTy;
1355       typedef RValue RValueTy;
1356       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1357       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1358     };
1359 
1360     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1361 
1362     DirectCleanup *Cleanup = CGF.EHStack
1363       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1364                                            E->getNumPlacementArgs(),
1365                                            E->getOperatorDelete(),
1366                                            NewPtr.getPointer(),
1367                                            AllocSize,
1368                                            E->passAlignment(),
1369                                            AllocAlign);
1370     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1371       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1372       Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1373     }
1374 
1375     return;
1376   }
1377 
1378   // Otherwise, we need to save all this stuff.
1379   DominatingValue<RValue>::saved_type SavedNewPtr =
1380     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1381   DominatingValue<RValue>::saved_type SavedAllocSize =
1382     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1383 
1384   struct ConditionalCleanupTraits {
1385     typedef DominatingValue<RValue>::saved_type ValueTy;
1386     typedef DominatingValue<RValue>::saved_type RValueTy;
1387     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1388       return V.restore(CGF);
1389     }
1390   };
1391   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1392 
1393   ConditionalCleanup *Cleanup = CGF.EHStack
1394     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1395                                               E->getNumPlacementArgs(),
1396                                               E->getOperatorDelete(),
1397                                               SavedNewPtr,
1398                                               SavedAllocSize,
1399                                               E->passAlignment(),
1400                                               AllocAlign);
1401   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1402     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1403     Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1404                              Arg.Ty);
1405   }
1406 
1407   CGF.initFullExprCleanup();
1408 }
1409 
1410 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1411   // The element type being allocated.
1412   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1413 
1414   // 1. Build a call to the allocation function.
1415   FunctionDecl *allocator = E->getOperatorNew();
1416 
1417   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1418   unsigned minElements = 0;
1419   if (E->isArray() && E->hasInitializer()) {
1420     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1421     if (ILE && ILE->isStringLiteralInit())
1422       minElements =
1423           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1424               ->getSize().getZExtValue();
1425     else if (ILE)
1426       minElements = ILE->getNumInits();
1427   }
1428 
1429   llvm::Value *numElements = nullptr;
1430   llvm::Value *allocSizeWithoutCookie = nullptr;
1431   llvm::Value *allocSize =
1432     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1433                         allocSizeWithoutCookie);
1434   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1435 
1436   // Emit the allocation call.  If the allocator is a global placement
1437   // operator, just "inline" it directly.
1438   Address allocation = Address::invalid();
1439   CallArgList allocatorArgs;
1440   if (allocator->isReservedGlobalPlacementOperator()) {
1441     assert(E->getNumPlacementArgs() == 1);
1442     const Expr *arg = *E->placement_arguments().begin();
1443 
1444     AlignmentSource alignSource;
1445     allocation = EmitPointerWithAlignment(arg, &alignSource);
1446 
1447     // The pointer expression will, in many cases, be an opaque void*.
1448     // In these cases, discard the computed alignment and use the
1449     // formal alignment of the allocated type.
1450     if (alignSource != AlignmentSource::Decl)
1451       allocation = Address(allocation.getPointer(), allocAlign);
1452 
1453     // Set up allocatorArgs for the call to operator delete if it's not
1454     // the reserved global operator.
1455     if (E->getOperatorDelete() &&
1456         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1457       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1458       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1459     }
1460 
1461   } else {
1462     const FunctionProtoType *allocatorType =
1463       allocator->getType()->castAs<FunctionProtoType>();
1464     unsigned ParamsToSkip = 0;
1465 
1466     // The allocation size is the first argument.
1467     QualType sizeType = getContext().getSizeType();
1468     allocatorArgs.add(RValue::get(allocSize), sizeType);
1469     ++ParamsToSkip;
1470 
1471     if (allocSize != allocSizeWithoutCookie) {
1472       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1473       allocAlign = std::max(allocAlign, cookieAlign);
1474     }
1475 
1476     // The allocation alignment may be passed as the second argument.
1477     if (E->passAlignment()) {
1478       QualType AlignValT = sizeType;
1479       if (allocatorType->getNumParams() > 1) {
1480         AlignValT = allocatorType->getParamType(1);
1481         assert(getContext().hasSameUnqualifiedType(
1482                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1483                    sizeType) &&
1484                "wrong type for alignment parameter");
1485         ++ParamsToSkip;
1486       } else {
1487         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1488         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1489       }
1490       allocatorArgs.add(
1491           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1492           AlignValT);
1493     }
1494 
1495     // FIXME: Why do we not pass a CalleeDecl here?
1496     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1497                  /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip);
1498 
1499     RValue RV =
1500       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1501 
1502     // If this was a call to a global replaceable allocation function that does
1503     // not take an alignment argument, the allocator is known to produce
1504     // storage that's suitably aligned for any object that fits, up to a known
1505     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1506     CharUnits allocationAlign = allocAlign;
1507     if (!E->passAlignment() &&
1508         allocator->isReplaceableGlobalAllocationFunction()) {
1509       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1510           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1511       allocationAlign = std::max(
1512           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1513     }
1514 
1515     allocation = Address(RV.getScalarVal(), allocationAlign);
1516   }
1517 
1518   // Emit a null check on the allocation result if the allocation
1519   // function is allowed to return null (because it has a non-throwing
1520   // exception spec or is the reserved placement new) and we have an
1521   // interesting initializer.
1522   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1523     (!allocType.isPODType(getContext()) || E->hasInitializer());
1524 
1525   llvm::BasicBlock *nullCheckBB = nullptr;
1526   llvm::BasicBlock *contBB = nullptr;
1527 
1528   // The null-check means that the initializer is conditionally
1529   // evaluated.
1530   ConditionalEvaluation conditional(*this);
1531 
1532   if (nullCheck) {
1533     conditional.begin(*this);
1534 
1535     nullCheckBB = Builder.GetInsertBlock();
1536     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1537     contBB = createBasicBlock("new.cont");
1538 
1539     llvm::Value *isNull =
1540       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1541     Builder.CreateCondBr(isNull, contBB, notNullBB);
1542     EmitBlock(notNullBB);
1543   }
1544 
1545   // If there's an operator delete, enter a cleanup to call it if an
1546   // exception is thrown.
1547   EHScopeStack::stable_iterator operatorDeleteCleanup;
1548   llvm::Instruction *cleanupDominator = nullptr;
1549   if (E->getOperatorDelete() &&
1550       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1551     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1552                           allocatorArgs);
1553     operatorDeleteCleanup = EHStack.stable_begin();
1554     cleanupDominator = Builder.CreateUnreachable();
1555   }
1556 
1557   assert((allocSize == allocSizeWithoutCookie) ==
1558          CalculateCookiePadding(*this, E).isZero());
1559   if (allocSize != allocSizeWithoutCookie) {
1560     assert(E->isArray());
1561     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1562                                                        numElements,
1563                                                        E, allocType);
1564   }
1565 
1566   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1567   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1568 
1569   // Passing pointer through invariant.group.barrier to avoid propagation of
1570   // vptrs information which may be included in previous type.
1571   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1572       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1573       allocator->isReservedGlobalPlacementOperator())
1574     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1575                      result.getAlignment());
1576 
1577   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1578                      allocSizeWithoutCookie);
1579   if (E->isArray()) {
1580     // NewPtr is a pointer to the base element type.  If we're
1581     // allocating an array of arrays, we'll need to cast back to the
1582     // array pointer type.
1583     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1584     if (result.getType() != resultType)
1585       result = Builder.CreateBitCast(result, resultType);
1586   }
1587 
1588   // Deactivate the 'operator delete' cleanup if we finished
1589   // initialization.
1590   if (operatorDeleteCleanup.isValid()) {
1591     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1592     cleanupDominator->eraseFromParent();
1593   }
1594 
1595   llvm::Value *resultPtr = result.getPointer();
1596   if (nullCheck) {
1597     conditional.end(*this);
1598 
1599     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1600     EmitBlock(contBB);
1601 
1602     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1603     PHI->addIncoming(resultPtr, notNullBB);
1604     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1605                      nullCheckBB);
1606 
1607     resultPtr = PHI;
1608   }
1609 
1610   return resultPtr;
1611 }
1612 
1613 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1614                                      llvm::Value *Ptr, QualType DeleteTy,
1615                                      llvm::Value *NumElements,
1616                                      CharUnits CookieSize) {
1617   assert((!NumElements && CookieSize.isZero()) ||
1618          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1619 
1620   const FunctionProtoType *DeleteFTy =
1621     DeleteFD->getType()->getAs<FunctionProtoType>();
1622 
1623   CallArgList DeleteArgs;
1624 
1625   std::pair<bool, bool> PassSizeAndAlign =
1626       shouldPassSizeAndAlignToUsualDelete(DeleteFTy);
1627 
1628   auto ParamTypeIt = DeleteFTy->param_type_begin();
1629 
1630   // Pass the pointer itself.
1631   QualType ArgTy = *ParamTypeIt++;
1632   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1633   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1634 
1635   // Pass the size if the delete function has a size_t parameter.
1636   if (PassSizeAndAlign.first) {
1637     QualType SizeType = *ParamTypeIt++;
1638     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1639     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1640                                                DeleteTypeSize.getQuantity());
1641 
1642     // For array new, multiply by the number of elements.
1643     if (NumElements)
1644       Size = Builder.CreateMul(Size, NumElements);
1645 
1646     // If there is a cookie, add the cookie size.
1647     if (!CookieSize.isZero())
1648       Size = Builder.CreateAdd(
1649           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1650 
1651     DeleteArgs.add(RValue::get(Size), SizeType);
1652   }
1653 
1654   // Pass the alignment if the delete function has an align_val_t parameter.
1655   if (PassSizeAndAlign.second) {
1656     QualType AlignValType = *ParamTypeIt++;
1657     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1658         getContext().getTypeAlignIfKnown(DeleteTy));
1659     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1660                                                 DeleteTypeAlign.getQuantity());
1661     DeleteArgs.add(RValue::get(Align), AlignValType);
1662   }
1663 
1664   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1665          "unknown parameter to usual delete function");
1666 
1667   // Emit the call to delete.
1668   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1669 }
1670 
1671 namespace {
1672   /// Calls the given 'operator delete' on a single object.
1673   struct CallObjectDelete final : EHScopeStack::Cleanup {
1674     llvm::Value *Ptr;
1675     const FunctionDecl *OperatorDelete;
1676     QualType ElementType;
1677 
1678     CallObjectDelete(llvm::Value *Ptr,
1679                      const FunctionDecl *OperatorDelete,
1680                      QualType ElementType)
1681       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1682 
1683     void Emit(CodeGenFunction &CGF, Flags flags) override {
1684       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1685     }
1686   };
1687 }
1688 
1689 void
1690 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1691                                              llvm::Value *CompletePtr,
1692                                              QualType ElementType) {
1693   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1694                                         OperatorDelete, ElementType);
1695 }
1696 
1697 /// Emit the code for deleting a single object.
1698 static void EmitObjectDelete(CodeGenFunction &CGF,
1699                              const CXXDeleteExpr *DE,
1700                              Address Ptr,
1701                              QualType ElementType) {
1702   // Find the destructor for the type, if applicable.  If the
1703   // destructor is virtual, we'll just emit the vcall and return.
1704   const CXXDestructorDecl *Dtor = nullptr;
1705   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1706     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1707     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1708       Dtor = RD->getDestructor();
1709 
1710       if (Dtor->isVirtual()) {
1711         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1712                                                     Dtor);
1713         return;
1714       }
1715     }
1716   }
1717 
1718   // Make sure that we call delete even if the dtor throws.
1719   // This doesn't have to a conditional cleanup because we're going
1720   // to pop it off in a second.
1721   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1722   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1723                                             Ptr.getPointer(),
1724                                             OperatorDelete, ElementType);
1725 
1726   if (Dtor)
1727     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1728                               /*ForVirtualBase=*/false,
1729                               /*Delegating=*/false,
1730                               Ptr);
1731   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1732     switch (Lifetime) {
1733     case Qualifiers::OCL_None:
1734     case Qualifiers::OCL_ExplicitNone:
1735     case Qualifiers::OCL_Autoreleasing:
1736       break;
1737 
1738     case Qualifiers::OCL_Strong:
1739       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1740       break;
1741 
1742     case Qualifiers::OCL_Weak:
1743       CGF.EmitARCDestroyWeak(Ptr);
1744       break;
1745     }
1746   }
1747 
1748   CGF.PopCleanupBlock();
1749 }
1750 
1751 namespace {
1752   /// Calls the given 'operator delete' on an array of objects.
1753   struct CallArrayDelete final : EHScopeStack::Cleanup {
1754     llvm::Value *Ptr;
1755     const FunctionDecl *OperatorDelete;
1756     llvm::Value *NumElements;
1757     QualType ElementType;
1758     CharUnits CookieSize;
1759 
1760     CallArrayDelete(llvm::Value *Ptr,
1761                     const FunctionDecl *OperatorDelete,
1762                     llvm::Value *NumElements,
1763                     QualType ElementType,
1764                     CharUnits CookieSize)
1765       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1766         ElementType(ElementType), CookieSize(CookieSize) {}
1767 
1768     void Emit(CodeGenFunction &CGF, Flags flags) override {
1769       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1770                          CookieSize);
1771     }
1772   };
1773 }
1774 
1775 /// Emit the code for deleting an array of objects.
1776 static void EmitArrayDelete(CodeGenFunction &CGF,
1777                             const CXXDeleteExpr *E,
1778                             Address deletedPtr,
1779                             QualType elementType) {
1780   llvm::Value *numElements = nullptr;
1781   llvm::Value *allocatedPtr = nullptr;
1782   CharUnits cookieSize;
1783   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1784                                       numElements, allocatedPtr, cookieSize);
1785 
1786   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1787 
1788   // Make sure that we call delete even if one of the dtors throws.
1789   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1790   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1791                                            allocatedPtr, operatorDelete,
1792                                            numElements, elementType,
1793                                            cookieSize);
1794 
1795   // Destroy the elements.
1796   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1797     assert(numElements && "no element count for a type with a destructor!");
1798 
1799     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1800     CharUnits elementAlign =
1801       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1802 
1803     llvm::Value *arrayBegin = deletedPtr.getPointer();
1804     llvm::Value *arrayEnd =
1805       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1806 
1807     // Note that it is legal to allocate a zero-length array, and we
1808     // can never fold the check away because the length should always
1809     // come from a cookie.
1810     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1811                          CGF.getDestroyer(dtorKind),
1812                          /*checkZeroLength*/ true,
1813                          CGF.needsEHCleanup(dtorKind));
1814   }
1815 
1816   // Pop the cleanup block.
1817   CGF.PopCleanupBlock();
1818 }
1819 
1820 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1821   const Expr *Arg = E->getArgument();
1822   Address Ptr = EmitPointerWithAlignment(Arg);
1823 
1824   // Null check the pointer.
1825   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1826   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1827 
1828   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1829 
1830   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1831   EmitBlock(DeleteNotNull);
1832 
1833   // We might be deleting a pointer to array.  If so, GEP down to the
1834   // first non-array element.
1835   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1836   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1837   if (DeleteTy->isConstantArrayType()) {
1838     llvm::Value *Zero = Builder.getInt32(0);
1839     SmallVector<llvm::Value*,8> GEP;
1840 
1841     GEP.push_back(Zero); // point at the outermost array
1842 
1843     // For each layer of array type we're pointing at:
1844     while (const ConstantArrayType *Arr
1845              = getContext().getAsConstantArrayType(DeleteTy)) {
1846       // 1. Unpeel the array type.
1847       DeleteTy = Arr->getElementType();
1848 
1849       // 2. GEP to the first element of the array.
1850       GEP.push_back(Zero);
1851     }
1852 
1853     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1854                   Ptr.getAlignment());
1855   }
1856 
1857   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1858 
1859   if (E->isArrayForm()) {
1860     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1861   } else {
1862     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1863   }
1864 
1865   EmitBlock(DeleteEnd);
1866 }
1867 
1868 static bool isGLValueFromPointerDeref(const Expr *E) {
1869   E = E->IgnoreParens();
1870 
1871   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1872     if (!CE->getSubExpr()->isGLValue())
1873       return false;
1874     return isGLValueFromPointerDeref(CE->getSubExpr());
1875   }
1876 
1877   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1878     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1879 
1880   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1881     if (BO->getOpcode() == BO_Comma)
1882       return isGLValueFromPointerDeref(BO->getRHS());
1883 
1884   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1885     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1886            isGLValueFromPointerDeref(ACO->getFalseExpr());
1887 
1888   // C++11 [expr.sub]p1:
1889   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1890   if (isa<ArraySubscriptExpr>(E))
1891     return true;
1892 
1893   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1894     if (UO->getOpcode() == UO_Deref)
1895       return true;
1896 
1897   return false;
1898 }
1899 
1900 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1901                                          llvm::Type *StdTypeInfoPtrTy) {
1902   // Get the vtable pointer.
1903   Address ThisPtr = CGF.EmitLValue(E).getAddress();
1904 
1905   // C++ [expr.typeid]p2:
1906   //   If the glvalue expression is obtained by applying the unary * operator to
1907   //   a pointer and the pointer is a null pointer value, the typeid expression
1908   //   throws the std::bad_typeid exception.
1909   //
1910   // However, this paragraph's intent is not clear.  We choose a very generous
1911   // interpretation which implores us to consider comma operators, conditional
1912   // operators, parentheses and other such constructs.
1913   QualType SrcRecordTy = E->getType();
1914   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1915           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1916     llvm::BasicBlock *BadTypeidBlock =
1917         CGF.createBasicBlock("typeid.bad_typeid");
1918     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1919 
1920     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
1921     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1922 
1923     CGF.EmitBlock(BadTypeidBlock);
1924     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1925     CGF.EmitBlock(EndBlock);
1926   }
1927 
1928   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1929                                         StdTypeInfoPtrTy);
1930 }
1931 
1932 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1933   llvm::Type *StdTypeInfoPtrTy =
1934     ConvertType(E->getType())->getPointerTo();
1935 
1936   if (E->isTypeOperand()) {
1937     llvm::Constant *TypeInfo =
1938         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1939     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1940   }
1941 
1942   // C++ [expr.typeid]p2:
1943   //   When typeid is applied to a glvalue expression whose type is a
1944   //   polymorphic class type, the result refers to a std::type_info object
1945   //   representing the type of the most derived object (that is, the dynamic
1946   //   type) to which the glvalue refers.
1947   if (E->isPotentiallyEvaluated())
1948     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1949                                 StdTypeInfoPtrTy);
1950 
1951   QualType OperandTy = E->getExprOperand()->getType();
1952   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1953                                StdTypeInfoPtrTy);
1954 }
1955 
1956 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1957                                           QualType DestTy) {
1958   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1959   if (DestTy->isPointerType())
1960     return llvm::Constant::getNullValue(DestLTy);
1961 
1962   /// C++ [expr.dynamic.cast]p9:
1963   ///   A failed cast to reference type throws std::bad_cast
1964   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1965     return nullptr;
1966 
1967   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1968   return llvm::UndefValue::get(DestLTy);
1969 }
1970 
1971 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
1972                                               const CXXDynamicCastExpr *DCE) {
1973   CGM.EmitExplicitCastExprType(DCE, this);
1974   QualType DestTy = DCE->getTypeAsWritten();
1975 
1976   if (DCE->isAlwaysNull())
1977     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1978       return T;
1979 
1980   QualType SrcTy = DCE->getSubExpr()->getType();
1981 
1982   // C++ [expr.dynamic.cast]p7:
1983   //   If T is "pointer to cv void," then the result is a pointer to the most
1984   //   derived object pointed to by v.
1985   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1986 
1987   bool isDynamicCastToVoid;
1988   QualType SrcRecordTy;
1989   QualType DestRecordTy;
1990   if (DestPTy) {
1991     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1992     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1993     DestRecordTy = DestPTy->getPointeeType();
1994   } else {
1995     isDynamicCastToVoid = false;
1996     SrcRecordTy = SrcTy;
1997     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1998   }
1999 
2000   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2001 
2002   // C++ [expr.dynamic.cast]p4:
2003   //   If the value of v is a null pointer value in the pointer case, the result
2004   //   is the null pointer value of type T.
2005   bool ShouldNullCheckSrcValue =
2006       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2007                                                          SrcRecordTy);
2008 
2009   llvm::BasicBlock *CastNull = nullptr;
2010   llvm::BasicBlock *CastNotNull = nullptr;
2011   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2012 
2013   if (ShouldNullCheckSrcValue) {
2014     CastNull = createBasicBlock("dynamic_cast.null");
2015     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2016 
2017     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2018     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2019     EmitBlock(CastNotNull);
2020   }
2021 
2022   llvm::Value *Value;
2023   if (isDynamicCastToVoid) {
2024     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2025                                                   DestTy);
2026   } else {
2027     assert(DestRecordTy->isRecordType() &&
2028            "destination type must be a record type!");
2029     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2030                                                 DestTy, DestRecordTy, CastEnd);
2031     CastNotNull = Builder.GetInsertBlock();
2032   }
2033 
2034   if (ShouldNullCheckSrcValue) {
2035     EmitBranch(CastEnd);
2036 
2037     EmitBlock(CastNull);
2038     EmitBranch(CastEnd);
2039   }
2040 
2041   EmitBlock(CastEnd);
2042 
2043   if (ShouldNullCheckSrcValue) {
2044     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2045     PHI->addIncoming(Value, CastNotNull);
2046     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2047 
2048     Value = PHI;
2049   }
2050 
2051   return Value;
2052 }
2053 
2054 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2055   RunCleanupsScope Scope(*this);
2056   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2057 
2058   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2059   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2060                                                e = E->capture_init_end();
2061        i != e; ++i, ++CurField) {
2062     // Emit initialization
2063     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2064     if (CurField->hasCapturedVLAType()) {
2065       auto VAT = CurField->getCapturedVLAType();
2066       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2067     } else {
2068       ArrayRef<VarDecl *> ArrayIndexes;
2069       if (CurField->getType()->isArrayType())
2070         ArrayIndexes = E->getCaptureInitIndexVars(i);
2071       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
2072     }
2073   }
2074 }
2075