1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs 28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 29 llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, 31 CallArgList &Args, CallArgList *RtlArgs) { 32 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 33 isa<CXXOperatorCallExpr>(CE)); 34 assert(MD->isInstance() && 35 "Trying to emit a member or operator call expr on a static method!"); 36 ASTContext &C = CGF.getContext(); 37 38 // C++11 [class.mfct.non-static]p2: 39 // If a non-static member function of a class X is called for an object that 40 // is not of type X, or of a type derived from X, the behavior is undefined. 41 SourceLocation CallLoc; 42 if (CE) 43 CallLoc = CE->getExprLoc(); 44 CGF.EmitTypeCheck(isa<CXXConstructorDecl>(MD) 45 ? CodeGenFunction::TCK_ConstructorCall 46 : CodeGenFunction::TCK_MemberCall, 47 CallLoc, This, C.getRecordType(MD->getParent())); 48 49 // Push the this ptr. 50 const CXXRecordDecl *RD = 51 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 52 Args.add(RValue::get(This), 53 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 54 55 // If there is an implicit parameter (e.g. VTT), emit it. 56 if (ImplicitParam) { 57 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 58 } 59 60 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 61 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 62 63 // And the rest of the call args. 64 if (RtlArgs) { 65 // Special case: if the caller emitted the arguments right-to-left already 66 // (prior to emitting the *this argument), we're done. This happens for 67 // assignment operators. 68 Args.addFrom(*RtlArgs); 69 } else if (CE) { 70 // Special case: skip first argument of CXXOperatorCall (it is "this"). 71 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 72 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 73 CE->getDirectCallee()); 74 } else { 75 assert( 76 FPT->getNumParams() == 0 && 77 "No CallExpr specified for function with non-zero number of arguments"); 78 } 79 return required; 80 } 81 82 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 83 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 91 Callee, ReturnValue, Args, MD); 92 } 93 94 RValue CodeGenFunction::EmitCXXDestructorCall( 95 const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This, 96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 97 StructorType Type) { 98 CallArgList Args; 99 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 100 ImplicitParamTy, CE, Args, nullptr); 101 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 102 Callee, ReturnValueSlot(), Args, DD); 103 } 104 105 static CXXRecordDecl *getCXXRecord(const Expr *E) { 106 QualType T = E->getType(); 107 if (const PointerType *PTy = T->getAs<PointerType>()) 108 T = PTy->getPointeeType(); 109 const RecordType *Ty = T->castAs<RecordType>(); 110 return cast<CXXRecordDecl>(Ty->getDecl()); 111 } 112 113 // Note: This function also emit constructor calls to support a MSVC 114 // extensions allowing explicit constructor function call. 115 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 116 ReturnValueSlot ReturnValue) { 117 const Expr *callee = CE->getCallee()->IgnoreParens(); 118 119 if (isa<BinaryOperator>(callee)) 120 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 121 122 const MemberExpr *ME = cast<MemberExpr>(callee); 123 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 124 125 if (MD->isStatic()) { 126 // The method is static, emit it as we would a regular call. 127 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 128 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 129 ReturnValue); 130 } 131 132 bool HasQualifier = ME->hasQualifier(); 133 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 134 bool IsArrow = ME->isArrow(); 135 const Expr *Base = ME->getBase(); 136 137 return EmitCXXMemberOrOperatorMemberCallExpr( 138 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 139 } 140 141 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 142 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 143 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 144 const Expr *Base) { 145 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 146 147 // Compute the object pointer. 148 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 149 150 const CXXMethodDecl *DevirtualizedMethod = nullptr; 151 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 152 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 153 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 154 assert(DevirtualizedMethod); 155 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 156 const Expr *Inner = Base->ignoreParenBaseCasts(); 157 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 158 MD->getReturnType().getCanonicalType()) 159 // If the return types are not the same, this might be a case where more 160 // code needs to run to compensate for it. For example, the derived 161 // method might return a type that inherits form from the return 162 // type of MD and has a prefix. 163 // For now we just avoid devirtualizing these covariant cases. 164 DevirtualizedMethod = nullptr; 165 else if (getCXXRecord(Inner) == DevirtualizedClass) 166 // If the class of the Inner expression is where the dynamic method 167 // is defined, build the this pointer from it. 168 Base = Inner; 169 else if (getCXXRecord(Base) != DevirtualizedClass) { 170 // If the method is defined in a class that is not the best dynamic 171 // one or the one of the full expression, we would have to build 172 // a derived-to-base cast to compute the correct this pointer, but 173 // we don't have support for that yet, so do a virtual call. 174 DevirtualizedMethod = nullptr; 175 } 176 } 177 178 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 179 // operator before the LHS. 180 CallArgList RtlArgStorage; 181 CallArgList *RtlArgs = nullptr; 182 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 183 if (OCE->isAssignmentOp()) { 184 RtlArgs = &RtlArgStorage; 185 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 186 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 187 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 188 } 189 } 190 191 Address This = Address::invalid(); 192 if (IsArrow) 193 This = EmitPointerWithAlignment(Base); 194 else 195 This = EmitLValue(Base).getAddress(); 196 197 198 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 199 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 200 if (isa<CXXConstructorDecl>(MD) && 201 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 202 return RValue::get(nullptr); 203 204 if (!MD->getParent()->mayInsertExtraPadding()) { 205 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 206 // We don't like to generate the trivial copy/move assignment operator 207 // when it isn't necessary; just produce the proper effect here. 208 LValue RHS = isa<CXXOperatorCallExpr>(CE) 209 ? MakeNaturalAlignAddrLValue( 210 (*RtlArgs)[0].RV.getScalarVal(), 211 (*(CE->arg_begin() + 1))->getType()) 212 : EmitLValue(*CE->arg_begin()); 213 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 214 return RValue::get(This.getPointer()); 215 } 216 217 if (isa<CXXConstructorDecl>(MD) && 218 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 219 // Trivial move and copy ctor are the same. 220 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 221 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 222 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 223 return RValue::get(This.getPointer()); 224 } 225 llvm_unreachable("unknown trivial member function"); 226 } 227 } 228 229 // Compute the function type we're calling. 230 const CXXMethodDecl *CalleeDecl = 231 DevirtualizedMethod ? DevirtualizedMethod : MD; 232 const CGFunctionInfo *FInfo = nullptr; 233 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 234 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 235 Dtor, StructorType::Complete); 236 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 237 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 238 Ctor, StructorType::Complete); 239 else 240 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 241 242 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 243 244 // C++ [class.virtual]p12: 245 // Explicit qualification with the scope operator (5.1) suppresses the 246 // virtual call mechanism. 247 // 248 // We also don't emit a virtual call if the base expression has a record type 249 // because then we know what the type is. 250 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 251 llvm::Value *Callee; 252 253 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 254 assert(CE->arg_begin() == CE->arg_end() && 255 "Destructor shouldn't have explicit parameters"); 256 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 257 if (UseVirtualCall) { 258 CGM.getCXXABI().EmitVirtualDestructorCall( 259 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 260 } else { 261 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 262 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 263 else if (!DevirtualizedMethod) 264 Callee = 265 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 266 else { 267 const CXXDestructorDecl *DDtor = 268 cast<CXXDestructorDecl>(DevirtualizedMethod); 269 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 270 } 271 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 272 /*ImplicitParam=*/nullptr, QualType(), CE, 273 nullptr); 274 } 275 return RValue::get(nullptr); 276 } 277 278 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 279 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 280 } else if (UseVirtualCall) { 281 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 282 CE->getLocStart()); 283 } else { 284 if (SanOpts.has(SanitizerKind::CFINVCall) && 285 MD->getParent()->isDynamicClass()) { 286 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 287 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 288 CE->getLocStart()); 289 } 290 291 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 292 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 293 else if (!DevirtualizedMethod) 294 Callee = CGM.GetAddrOfFunction(MD, Ty); 295 else { 296 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 297 } 298 } 299 300 if (MD->isVirtual()) { 301 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 302 *this, CalleeDecl, This, UseVirtualCall); 303 } 304 305 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 306 /*ImplicitParam=*/nullptr, QualType(), CE, 307 RtlArgs); 308 } 309 310 RValue 311 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 312 ReturnValueSlot ReturnValue) { 313 const BinaryOperator *BO = 314 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 315 const Expr *BaseExpr = BO->getLHS(); 316 const Expr *MemFnExpr = BO->getRHS(); 317 318 const MemberPointerType *MPT = 319 MemFnExpr->getType()->castAs<MemberPointerType>(); 320 321 const FunctionProtoType *FPT = 322 MPT->getPointeeType()->castAs<FunctionProtoType>(); 323 const CXXRecordDecl *RD = 324 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 325 326 // Emit the 'this' pointer. 327 Address This = Address::invalid(); 328 if (BO->getOpcode() == BO_PtrMemI) 329 This = EmitPointerWithAlignment(BaseExpr); 330 else 331 This = EmitLValue(BaseExpr).getAddress(); 332 333 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 334 QualType(MPT->getClass(), 0)); 335 336 // Get the member function pointer. 337 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 338 339 // Ask the ABI to load the callee. Note that This is modified. 340 llvm::Value *ThisPtrForCall = nullptr; 341 llvm::Value *Callee = 342 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 343 ThisPtrForCall, MemFnPtr, MPT); 344 345 CallArgList Args; 346 347 QualType ThisType = 348 getContext().getPointerType(getContext().getTagDeclType(RD)); 349 350 // Push the this ptr. 351 Args.add(RValue::get(ThisPtrForCall), ThisType); 352 353 RequiredArgs required = 354 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 355 356 // And the rest of the call args 357 EmitCallArgs(Args, FPT, E->arguments()); 358 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 359 Callee, ReturnValue, Args); 360 } 361 362 RValue 363 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 364 const CXXMethodDecl *MD, 365 ReturnValueSlot ReturnValue) { 366 assert(MD->isInstance() && 367 "Trying to emit a member call expr on a static method!"); 368 return EmitCXXMemberOrOperatorMemberCallExpr( 369 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 370 /*IsArrow=*/false, E->getArg(0)); 371 } 372 373 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 374 ReturnValueSlot ReturnValue) { 375 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 376 } 377 378 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 379 Address DestPtr, 380 const CXXRecordDecl *Base) { 381 if (Base->isEmpty()) 382 return; 383 384 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 385 386 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 387 CharUnits NVSize = Layout.getNonVirtualSize(); 388 389 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 390 // present, they are initialized by the most derived class before calling the 391 // constructor. 392 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 393 Stores.emplace_back(CharUnits::Zero(), NVSize); 394 395 // Each store is split by the existence of a vbptr. 396 CharUnits VBPtrWidth = CGF.getPointerSize(); 397 std::vector<CharUnits> VBPtrOffsets = 398 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 399 for (CharUnits VBPtrOffset : VBPtrOffsets) { 400 // Stop before we hit any virtual base pointers located in virtual bases. 401 if (VBPtrOffset >= NVSize) 402 break; 403 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 404 CharUnits LastStoreOffset = LastStore.first; 405 CharUnits LastStoreSize = LastStore.second; 406 407 CharUnits SplitBeforeOffset = LastStoreOffset; 408 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 409 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 410 if (!SplitBeforeSize.isZero()) 411 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 412 413 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 414 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 415 assert(!SplitAfterSize.isNegative() && "negative store size!"); 416 if (!SplitAfterSize.isZero()) 417 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 418 } 419 420 // If the type contains a pointer to data member we can't memset it to zero. 421 // Instead, create a null constant and copy it to the destination. 422 // TODO: there are other patterns besides zero that we can usefully memset, 423 // like -1, which happens to be the pattern used by member-pointers. 424 // TODO: isZeroInitializable can be over-conservative in the case where a 425 // virtual base contains a member pointer. 426 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 427 if (!NullConstantForBase->isNullValue()) { 428 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 429 CGF.CGM.getModule(), NullConstantForBase->getType(), 430 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 431 NullConstantForBase, Twine()); 432 433 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 434 DestPtr.getAlignment()); 435 NullVariable->setAlignment(Align.getQuantity()); 436 437 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 438 439 // Get and call the appropriate llvm.memcpy overload. 440 for (std::pair<CharUnits, CharUnits> Store : Stores) { 441 CharUnits StoreOffset = Store.first; 442 CharUnits StoreSize = Store.second; 443 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 444 CGF.Builder.CreateMemCpy( 445 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 446 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 447 StoreSizeVal); 448 } 449 450 // Otherwise, just memset the whole thing to zero. This is legal 451 // because in LLVM, all default initializers (other than the ones we just 452 // handled above) are guaranteed to have a bit pattern of all zeros. 453 } else { 454 for (std::pair<CharUnits, CharUnits> Store : Stores) { 455 CharUnits StoreOffset = Store.first; 456 CharUnits StoreSize = Store.second; 457 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 458 CGF.Builder.CreateMemSet( 459 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 460 CGF.Builder.getInt8(0), StoreSizeVal); 461 } 462 } 463 } 464 465 void 466 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 467 AggValueSlot Dest) { 468 assert(!Dest.isIgnored() && "Must have a destination!"); 469 const CXXConstructorDecl *CD = E->getConstructor(); 470 471 // If we require zero initialization before (or instead of) calling the 472 // constructor, as can be the case with a non-user-provided default 473 // constructor, emit the zero initialization now, unless destination is 474 // already zeroed. 475 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 476 switch (E->getConstructionKind()) { 477 case CXXConstructExpr::CK_Delegating: 478 case CXXConstructExpr::CK_Complete: 479 EmitNullInitialization(Dest.getAddress(), E->getType()); 480 break; 481 case CXXConstructExpr::CK_VirtualBase: 482 case CXXConstructExpr::CK_NonVirtualBase: 483 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 484 CD->getParent()); 485 break; 486 } 487 } 488 489 // If this is a call to a trivial default constructor, do nothing. 490 if (CD->isTrivial() && CD->isDefaultConstructor()) 491 return; 492 493 // Elide the constructor if we're constructing from a temporary. 494 // The temporary check is required because Sema sets this on NRVO 495 // returns. 496 if (getLangOpts().ElideConstructors && E->isElidable()) { 497 assert(getContext().hasSameUnqualifiedType(E->getType(), 498 E->getArg(0)->getType())); 499 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 500 EmitAggExpr(E->getArg(0), Dest); 501 return; 502 } 503 } 504 505 if (const ArrayType *arrayType 506 = getContext().getAsArrayType(E->getType())) { 507 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 508 } else { 509 CXXCtorType Type = Ctor_Complete; 510 bool ForVirtualBase = false; 511 bool Delegating = false; 512 513 switch (E->getConstructionKind()) { 514 case CXXConstructExpr::CK_Delegating: 515 // We should be emitting a constructor; GlobalDecl will assert this 516 Type = CurGD.getCtorType(); 517 Delegating = true; 518 break; 519 520 case CXXConstructExpr::CK_Complete: 521 Type = Ctor_Complete; 522 break; 523 524 case CXXConstructExpr::CK_VirtualBase: 525 ForVirtualBase = true; 526 // fall-through 527 528 case CXXConstructExpr::CK_NonVirtualBase: 529 Type = Ctor_Base; 530 } 531 532 // Call the constructor. 533 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 534 Dest.getAddress(), E); 535 } 536 } 537 538 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 539 const Expr *Exp) { 540 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 541 Exp = E->getSubExpr(); 542 assert(isa<CXXConstructExpr>(Exp) && 543 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 544 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 545 const CXXConstructorDecl *CD = E->getConstructor(); 546 RunCleanupsScope Scope(*this); 547 548 // If we require zero initialization before (or instead of) calling the 549 // constructor, as can be the case with a non-user-provided default 550 // constructor, emit the zero initialization now. 551 // FIXME. Do I still need this for a copy ctor synthesis? 552 if (E->requiresZeroInitialization()) 553 EmitNullInitialization(Dest, E->getType()); 554 555 assert(!getContext().getAsConstantArrayType(E->getType()) 556 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 557 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 558 } 559 560 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 561 const CXXNewExpr *E) { 562 if (!E->isArray()) 563 return CharUnits::Zero(); 564 565 // No cookie is required if the operator new[] being used is the 566 // reserved placement operator new[]. 567 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 568 return CharUnits::Zero(); 569 570 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 571 } 572 573 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 574 const CXXNewExpr *e, 575 unsigned minElements, 576 llvm::Value *&numElements, 577 llvm::Value *&sizeWithoutCookie) { 578 QualType type = e->getAllocatedType(); 579 580 if (!e->isArray()) { 581 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 582 sizeWithoutCookie 583 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 584 return sizeWithoutCookie; 585 } 586 587 // The width of size_t. 588 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 589 590 // Figure out the cookie size. 591 llvm::APInt cookieSize(sizeWidth, 592 CalculateCookiePadding(CGF, e).getQuantity()); 593 594 // Emit the array size expression. 595 // We multiply the size of all dimensions for NumElements. 596 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 597 numElements = CGF.EmitScalarExpr(e->getArraySize()); 598 assert(isa<llvm::IntegerType>(numElements->getType())); 599 600 // The number of elements can be have an arbitrary integer type; 601 // essentially, we need to multiply it by a constant factor, add a 602 // cookie size, and verify that the result is representable as a 603 // size_t. That's just a gloss, though, and it's wrong in one 604 // important way: if the count is negative, it's an error even if 605 // the cookie size would bring the total size >= 0. 606 bool isSigned 607 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 608 llvm::IntegerType *numElementsType 609 = cast<llvm::IntegerType>(numElements->getType()); 610 unsigned numElementsWidth = numElementsType->getBitWidth(); 611 612 // Compute the constant factor. 613 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 614 while (const ConstantArrayType *CAT 615 = CGF.getContext().getAsConstantArrayType(type)) { 616 type = CAT->getElementType(); 617 arraySizeMultiplier *= CAT->getSize(); 618 } 619 620 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 621 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 622 typeSizeMultiplier *= arraySizeMultiplier; 623 624 // This will be a size_t. 625 llvm::Value *size; 626 627 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 628 // Don't bloat the -O0 code. 629 if (llvm::ConstantInt *numElementsC = 630 dyn_cast<llvm::ConstantInt>(numElements)) { 631 const llvm::APInt &count = numElementsC->getValue(); 632 633 bool hasAnyOverflow = false; 634 635 // If 'count' was a negative number, it's an overflow. 636 if (isSigned && count.isNegative()) 637 hasAnyOverflow = true; 638 639 // We want to do all this arithmetic in size_t. If numElements is 640 // wider than that, check whether it's already too big, and if so, 641 // overflow. 642 else if (numElementsWidth > sizeWidth && 643 numElementsWidth - sizeWidth > count.countLeadingZeros()) 644 hasAnyOverflow = true; 645 646 // Okay, compute a count at the right width. 647 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 648 649 // If there is a brace-initializer, we cannot allocate fewer elements than 650 // there are initializers. If we do, that's treated like an overflow. 651 if (adjustedCount.ult(minElements)) 652 hasAnyOverflow = true; 653 654 // Scale numElements by that. This might overflow, but we don't 655 // care because it only overflows if allocationSize does, too, and 656 // if that overflows then we shouldn't use this. 657 numElements = llvm::ConstantInt::get(CGF.SizeTy, 658 adjustedCount * arraySizeMultiplier); 659 660 // Compute the size before cookie, and track whether it overflowed. 661 bool overflow; 662 llvm::APInt allocationSize 663 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 664 hasAnyOverflow |= overflow; 665 666 // Add in the cookie, and check whether it's overflowed. 667 if (cookieSize != 0) { 668 // Save the current size without a cookie. This shouldn't be 669 // used if there was overflow. 670 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 671 672 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 673 hasAnyOverflow |= overflow; 674 } 675 676 // On overflow, produce a -1 so operator new will fail. 677 if (hasAnyOverflow) { 678 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 679 } else { 680 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 681 } 682 683 // Otherwise, we might need to use the overflow intrinsics. 684 } else { 685 // There are up to five conditions we need to test for: 686 // 1) if isSigned, we need to check whether numElements is negative; 687 // 2) if numElementsWidth > sizeWidth, we need to check whether 688 // numElements is larger than something representable in size_t; 689 // 3) if minElements > 0, we need to check whether numElements is smaller 690 // than that. 691 // 4) we need to compute 692 // sizeWithoutCookie := numElements * typeSizeMultiplier 693 // and check whether it overflows; and 694 // 5) if we need a cookie, we need to compute 695 // size := sizeWithoutCookie + cookieSize 696 // and check whether it overflows. 697 698 llvm::Value *hasOverflow = nullptr; 699 700 // If numElementsWidth > sizeWidth, then one way or another, we're 701 // going to have to do a comparison for (2), and this happens to 702 // take care of (1), too. 703 if (numElementsWidth > sizeWidth) { 704 llvm::APInt threshold(numElementsWidth, 1); 705 threshold <<= sizeWidth; 706 707 llvm::Value *thresholdV 708 = llvm::ConstantInt::get(numElementsType, threshold); 709 710 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 711 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 712 713 // Otherwise, if we're signed, we want to sext up to size_t. 714 } else if (isSigned) { 715 if (numElementsWidth < sizeWidth) 716 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 717 718 // If there's a non-1 type size multiplier, then we can do the 719 // signedness check at the same time as we do the multiply 720 // because a negative number times anything will cause an 721 // unsigned overflow. Otherwise, we have to do it here. But at least 722 // in this case, we can subsume the >= minElements check. 723 if (typeSizeMultiplier == 1) 724 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 725 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 726 727 // Otherwise, zext up to size_t if necessary. 728 } else if (numElementsWidth < sizeWidth) { 729 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 730 } 731 732 assert(numElements->getType() == CGF.SizeTy); 733 734 if (minElements) { 735 // Don't allow allocation of fewer elements than we have initializers. 736 if (!hasOverflow) { 737 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 738 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 739 } else if (numElementsWidth > sizeWidth) { 740 // The other existing overflow subsumes this check. 741 // We do an unsigned comparison, since any signed value < -1 is 742 // taken care of either above or below. 743 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 744 CGF.Builder.CreateICmpULT(numElements, 745 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 746 } 747 } 748 749 size = numElements; 750 751 // Multiply by the type size if necessary. This multiplier 752 // includes all the factors for nested arrays. 753 // 754 // This step also causes numElements to be scaled up by the 755 // nested-array factor if necessary. Overflow on this computation 756 // can be ignored because the result shouldn't be used if 757 // allocation fails. 758 if (typeSizeMultiplier != 1) { 759 llvm::Value *umul_with_overflow 760 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 761 762 llvm::Value *tsmV = 763 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 764 llvm::Value *result = 765 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 766 767 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 768 if (hasOverflow) 769 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 770 else 771 hasOverflow = overflowed; 772 773 size = CGF.Builder.CreateExtractValue(result, 0); 774 775 // Also scale up numElements by the array size multiplier. 776 if (arraySizeMultiplier != 1) { 777 // If the base element type size is 1, then we can re-use the 778 // multiply we just did. 779 if (typeSize.isOne()) { 780 assert(arraySizeMultiplier == typeSizeMultiplier); 781 numElements = size; 782 783 // Otherwise we need a separate multiply. 784 } else { 785 llvm::Value *asmV = 786 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 787 numElements = CGF.Builder.CreateMul(numElements, asmV); 788 } 789 } 790 } else { 791 // numElements doesn't need to be scaled. 792 assert(arraySizeMultiplier == 1); 793 } 794 795 // Add in the cookie size if necessary. 796 if (cookieSize != 0) { 797 sizeWithoutCookie = size; 798 799 llvm::Value *uadd_with_overflow 800 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 801 802 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 803 llvm::Value *result = 804 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 805 806 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 807 if (hasOverflow) 808 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 809 else 810 hasOverflow = overflowed; 811 812 size = CGF.Builder.CreateExtractValue(result, 0); 813 } 814 815 // If we had any possibility of dynamic overflow, make a select to 816 // overwrite 'size' with an all-ones value, which should cause 817 // operator new to throw. 818 if (hasOverflow) 819 size = CGF.Builder.CreateSelect(hasOverflow, 820 llvm::Constant::getAllOnesValue(CGF.SizeTy), 821 size); 822 } 823 824 if (cookieSize == 0) 825 sizeWithoutCookie = size; 826 else 827 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 828 829 return size; 830 } 831 832 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 833 QualType AllocType, Address NewPtr) { 834 // FIXME: Refactor with EmitExprAsInit. 835 switch (CGF.getEvaluationKind(AllocType)) { 836 case TEK_Scalar: 837 CGF.EmitScalarInit(Init, nullptr, 838 CGF.MakeAddrLValue(NewPtr, AllocType), false); 839 return; 840 case TEK_Complex: 841 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 842 /*isInit*/ true); 843 return; 844 case TEK_Aggregate: { 845 AggValueSlot Slot 846 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 847 AggValueSlot::IsDestructed, 848 AggValueSlot::DoesNotNeedGCBarriers, 849 AggValueSlot::IsNotAliased); 850 CGF.EmitAggExpr(Init, Slot); 851 return; 852 } 853 } 854 llvm_unreachable("bad evaluation kind"); 855 } 856 857 void CodeGenFunction::EmitNewArrayInitializer( 858 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 859 Address BeginPtr, llvm::Value *NumElements, 860 llvm::Value *AllocSizeWithoutCookie) { 861 // If we have a type with trivial initialization and no initializer, 862 // there's nothing to do. 863 if (!E->hasInitializer()) 864 return; 865 866 Address CurPtr = BeginPtr; 867 868 unsigned InitListElements = 0; 869 870 const Expr *Init = E->getInitializer(); 871 Address EndOfInit = Address::invalid(); 872 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 873 EHScopeStack::stable_iterator Cleanup; 874 llvm::Instruction *CleanupDominator = nullptr; 875 876 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 877 CharUnits ElementAlign = 878 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 879 880 // Attempt to perform zero-initialization using memset. 881 auto TryMemsetInitialization = [&]() -> bool { 882 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 883 // we can initialize with a memset to -1. 884 if (!CGM.getTypes().isZeroInitializable(ElementType)) 885 return false; 886 887 // Optimization: since zero initialization will just set the memory 888 // to all zeroes, generate a single memset to do it in one shot. 889 890 // Subtract out the size of any elements we've already initialized. 891 auto *RemainingSize = AllocSizeWithoutCookie; 892 if (InitListElements) { 893 // We know this can't overflow; we check this when doing the allocation. 894 auto *InitializedSize = llvm::ConstantInt::get( 895 RemainingSize->getType(), 896 getContext().getTypeSizeInChars(ElementType).getQuantity() * 897 InitListElements); 898 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 899 } 900 901 // Create the memset. 902 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 903 return true; 904 }; 905 906 // If the initializer is an initializer list, first do the explicit elements. 907 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 908 // Initializing from a (braced) string literal is a special case; the init 909 // list element does not initialize a (single) array element. 910 if (ILE->isStringLiteralInit()) { 911 // Initialize the initial portion of length equal to that of the string 912 // literal. The allocation must be for at least this much; we emitted a 913 // check for that earlier. 914 AggValueSlot Slot = 915 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 916 AggValueSlot::IsDestructed, 917 AggValueSlot::DoesNotNeedGCBarriers, 918 AggValueSlot::IsNotAliased); 919 EmitAggExpr(ILE->getInit(0), Slot); 920 921 // Move past these elements. 922 InitListElements = 923 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 924 ->getSize().getZExtValue(); 925 CurPtr = 926 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 927 Builder.getSize(InitListElements), 928 "string.init.end"), 929 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 930 ElementSize)); 931 932 // Zero out the rest, if any remain. 933 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 934 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 935 bool OK = TryMemsetInitialization(); 936 (void)OK; 937 assert(OK && "couldn't memset character type?"); 938 } 939 return; 940 } 941 942 InitListElements = ILE->getNumInits(); 943 944 // If this is a multi-dimensional array new, we will initialize multiple 945 // elements with each init list element. 946 QualType AllocType = E->getAllocatedType(); 947 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 948 AllocType->getAsArrayTypeUnsafe())) { 949 ElementTy = ConvertTypeForMem(AllocType); 950 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 951 InitListElements *= getContext().getConstantArrayElementCount(CAT); 952 } 953 954 // Enter a partial-destruction Cleanup if necessary. 955 if (needsEHCleanup(DtorKind)) { 956 // In principle we could tell the Cleanup where we are more 957 // directly, but the control flow can get so varied here that it 958 // would actually be quite complex. Therefore we go through an 959 // alloca. 960 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 961 "array.init.end"); 962 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 963 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 964 ElementType, ElementAlign, 965 getDestroyer(DtorKind)); 966 Cleanup = EHStack.stable_begin(); 967 } 968 969 CharUnits StartAlign = CurPtr.getAlignment(); 970 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 971 // Tell the cleanup that it needs to destroy up to this 972 // element. TODO: some of these stores can be trivially 973 // observed to be unnecessary. 974 if (EndOfInit.isValid()) { 975 auto FinishedPtr = 976 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 977 Builder.CreateStore(FinishedPtr, EndOfInit); 978 } 979 // FIXME: If the last initializer is an incomplete initializer list for 980 // an array, and we have an array filler, we can fold together the two 981 // initialization loops. 982 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 983 ILE->getInit(i)->getType(), CurPtr); 984 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 985 Builder.getSize(1), 986 "array.exp.next"), 987 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 988 } 989 990 // The remaining elements are filled with the array filler expression. 991 Init = ILE->getArrayFiller(); 992 993 // Extract the initializer for the individual array elements by pulling 994 // out the array filler from all the nested initializer lists. This avoids 995 // generating a nested loop for the initialization. 996 while (Init && Init->getType()->isConstantArrayType()) { 997 auto *SubILE = dyn_cast<InitListExpr>(Init); 998 if (!SubILE) 999 break; 1000 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1001 Init = SubILE->getArrayFiller(); 1002 } 1003 1004 // Switch back to initializing one base element at a time. 1005 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1006 } 1007 1008 // If all elements have already been initialized, skip any further 1009 // initialization. 1010 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1011 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1012 // If there was a Cleanup, deactivate it. 1013 if (CleanupDominator) 1014 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1015 return; 1016 } 1017 1018 assert(Init && "have trailing elements to initialize but no initializer"); 1019 1020 // If this is a constructor call, try to optimize it out, and failing that 1021 // emit a single loop to initialize all remaining elements. 1022 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1023 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1024 if (Ctor->isTrivial()) { 1025 // If new expression did not specify value-initialization, then there 1026 // is no initialization. 1027 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1028 return; 1029 1030 if (TryMemsetInitialization()) 1031 return; 1032 } 1033 1034 // Store the new Cleanup position for irregular Cleanups. 1035 // 1036 // FIXME: Share this cleanup with the constructor call emission rather than 1037 // having it create a cleanup of its own. 1038 if (EndOfInit.isValid()) 1039 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1040 1041 // Emit a constructor call loop to initialize the remaining elements. 1042 if (InitListElements) 1043 NumElements = Builder.CreateSub( 1044 NumElements, 1045 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1046 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1047 CCE->requiresZeroInitialization()); 1048 return; 1049 } 1050 1051 // If this is value-initialization, we can usually use memset. 1052 ImplicitValueInitExpr IVIE(ElementType); 1053 if (isa<ImplicitValueInitExpr>(Init)) { 1054 if (TryMemsetInitialization()) 1055 return; 1056 1057 // Switch to an ImplicitValueInitExpr for the element type. This handles 1058 // only one case: multidimensional array new of pointers to members. In 1059 // all other cases, we already have an initializer for the array element. 1060 Init = &IVIE; 1061 } 1062 1063 // At this point we should have found an initializer for the individual 1064 // elements of the array. 1065 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1066 "got wrong type of element to initialize"); 1067 1068 // If we have an empty initializer list, we can usually use memset. 1069 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1070 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1071 return; 1072 1073 // If we have a struct whose every field is value-initialized, we can 1074 // usually use memset. 1075 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1076 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1077 if (RType->getDecl()->isStruct()) { 1078 unsigned NumElements = 0; 1079 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1080 NumElements = CXXRD->getNumBases(); 1081 for (auto *Field : RType->getDecl()->fields()) 1082 if (!Field->isUnnamedBitfield()) 1083 ++NumElements; 1084 // FIXME: Recurse into nested InitListExprs. 1085 if (ILE->getNumInits() == NumElements) 1086 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1087 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1088 --NumElements; 1089 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1090 return; 1091 } 1092 } 1093 } 1094 1095 // Create the loop blocks. 1096 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1097 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1098 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1099 1100 // Find the end of the array, hoisted out of the loop. 1101 llvm::Value *EndPtr = 1102 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1103 1104 // If the number of elements isn't constant, we have to now check if there is 1105 // anything left to initialize. 1106 if (!ConstNum) { 1107 llvm::Value *IsEmpty = 1108 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1109 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1110 } 1111 1112 // Enter the loop. 1113 EmitBlock(LoopBB); 1114 1115 // Set up the current-element phi. 1116 llvm::PHINode *CurPtrPhi = 1117 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1118 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1119 1120 CurPtr = Address(CurPtrPhi, ElementAlign); 1121 1122 // Store the new Cleanup position for irregular Cleanups. 1123 if (EndOfInit.isValid()) 1124 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1125 1126 // Enter a partial-destruction Cleanup if necessary. 1127 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1128 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1129 ElementType, ElementAlign, 1130 getDestroyer(DtorKind)); 1131 Cleanup = EHStack.stable_begin(); 1132 CleanupDominator = Builder.CreateUnreachable(); 1133 } 1134 1135 // Emit the initializer into this element. 1136 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1137 1138 // Leave the Cleanup if we entered one. 1139 if (CleanupDominator) { 1140 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1141 CleanupDominator->eraseFromParent(); 1142 } 1143 1144 // Advance to the next element by adjusting the pointer type as necessary. 1145 llvm::Value *NextPtr = 1146 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1147 "array.next"); 1148 1149 // Check whether we've gotten to the end of the array and, if so, 1150 // exit the loop. 1151 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1152 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1153 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1154 1155 EmitBlock(ContBB); 1156 } 1157 1158 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1159 QualType ElementType, llvm::Type *ElementTy, 1160 Address NewPtr, llvm::Value *NumElements, 1161 llvm::Value *AllocSizeWithoutCookie) { 1162 ApplyDebugLocation DL(CGF, E); 1163 if (E->isArray()) 1164 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1165 AllocSizeWithoutCookie); 1166 else if (const Expr *Init = E->getInitializer()) 1167 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1168 } 1169 1170 /// Emit a call to an operator new or operator delete function, as implicitly 1171 /// created by new-expressions and delete-expressions. 1172 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1173 const FunctionDecl *Callee, 1174 const FunctionProtoType *CalleeType, 1175 const CallArgList &Args) { 1176 llvm::Instruction *CallOrInvoke; 1177 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1178 RValue RV = 1179 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1180 Args, CalleeType, /*chainCall=*/false), 1181 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1182 1183 /// C++1y [expr.new]p10: 1184 /// [In a new-expression,] an implementation is allowed to omit a call 1185 /// to a replaceable global allocation function. 1186 /// 1187 /// We model such elidable calls with the 'builtin' attribute. 1188 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1189 if (Callee->isReplaceableGlobalAllocationFunction() && 1190 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1191 // FIXME: Add addAttribute to CallSite. 1192 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1193 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1194 llvm::Attribute::Builtin); 1195 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1196 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1197 llvm::Attribute::Builtin); 1198 else 1199 llvm_unreachable("unexpected kind of call instruction"); 1200 } 1201 1202 return RV; 1203 } 1204 1205 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1206 const Expr *Arg, 1207 bool IsDelete) { 1208 CallArgList Args; 1209 const Stmt *ArgS = Arg; 1210 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1211 // Find the allocation or deallocation function that we're calling. 1212 ASTContext &Ctx = getContext(); 1213 DeclarationName Name = Ctx.DeclarationNames 1214 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1215 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1216 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1217 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1218 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1219 llvm_unreachable("predeclared global operator new/delete is missing"); 1220 } 1221 1222 static std::pair<bool, bool> 1223 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) { 1224 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1225 1226 // The first argument is always a void*. 1227 ++AI; 1228 1229 // Figure out what other parameters we should be implicitly passing. 1230 bool PassSize = false; 1231 bool PassAlignment = false; 1232 1233 if (AI != AE && (*AI)->isIntegerType()) { 1234 PassSize = true; 1235 ++AI; 1236 } 1237 1238 if (AI != AE && (*AI)->isAlignValT()) { 1239 PassAlignment = true; 1240 ++AI; 1241 } 1242 1243 assert(AI == AE && "unexpected usual deallocation function parameter"); 1244 return {PassSize, PassAlignment}; 1245 } 1246 1247 namespace { 1248 /// A cleanup to call the given 'operator delete' function upon abnormal 1249 /// exit from a new expression. Templated on a traits type that deals with 1250 /// ensuring that the arguments dominate the cleanup if necessary. 1251 template<typename Traits> 1252 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1253 /// Type used to hold llvm::Value*s. 1254 typedef typename Traits::ValueTy ValueTy; 1255 /// Type used to hold RValues. 1256 typedef typename Traits::RValueTy RValueTy; 1257 struct PlacementArg { 1258 RValueTy ArgValue; 1259 QualType ArgType; 1260 }; 1261 1262 unsigned NumPlacementArgs : 31; 1263 unsigned PassAlignmentToPlacementDelete : 1; 1264 const FunctionDecl *OperatorDelete; 1265 ValueTy Ptr; 1266 ValueTy AllocSize; 1267 CharUnits AllocAlign; 1268 1269 PlacementArg *getPlacementArgs() { 1270 return reinterpret_cast<PlacementArg *>(this + 1); 1271 } 1272 1273 public: 1274 static size_t getExtraSize(size_t NumPlacementArgs) { 1275 return NumPlacementArgs * sizeof(PlacementArg); 1276 } 1277 1278 CallDeleteDuringNew(size_t NumPlacementArgs, 1279 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1280 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1281 CharUnits AllocAlign) 1282 : NumPlacementArgs(NumPlacementArgs), 1283 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1284 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1285 AllocAlign(AllocAlign) {} 1286 1287 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1288 assert(I < NumPlacementArgs && "index out of range"); 1289 getPlacementArgs()[I] = {Arg, Type}; 1290 } 1291 1292 void Emit(CodeGenFunction &CGF, Flags flags) override { 1293 const FunctionProtoType *FPT = 1294 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1295 CallArgList DeleteArgs; 1296 1297 // The first argument is always a void*. 1298 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1299 1300 // Figure out what other parameters we should be implicitly passing. 1301 bool PassSize = false; 1302 bool PassAlignment = false; 1303 if (NumPlacementArgs) { 1304 // A placement deallocation function is implicitly passed an alignment 1305 // if the placement allocation function was, but is never passed a size. 1306 PassAlignment = PassAlignmentToPlacementDelete; 1307 } else { 1308 // For a non-placement new-expression, 'operator delete' can take a 1309 // size and/or an alignment if it has the right parameters. 1310 std::tie(PassSize, PassAlignment) = 1311 shouldPassSizeAndAlignToUsualDelete(FPT); 1312 } 1313 1314 // The second argument can be a std::size_t (for non-placement delete). 1315 if (PassSize) 1316 DeleteArgs.add(Traits::get(CGF, AllocSize), 1317 CGF.getContext().getSizeType()); 1318 1319 // The next (second or third) argument can be a std::align_val_t, which 1320 // is an enum whose underlying type is std::size_t. 1321 // FIXME: Use the right type as the parameter type. Note that in a call 1322 // to operator delete(size_t, ...), we may not have it available. 1323 if (PassAlignment) 1324 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1325 CGF.SizeTy, AllocAlign.getQuantity())), 1326 CGF.getContext().getSizeType()); 1327 1328 // Pass the rest of the arguments, which must match exactly. 1329 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1330 auto Arg = getPlacementArgs()[I]; 1331 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1332 } 1333 1334 // Call 'operator delete'. 1335 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1336 } 1337 }; 1338 } 1339 1340 /// Enter a cleanup to call 'operator delete' if the initializer in a 1341 /// new-expression throws. 1342 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1343 const CXXNewExpr *E, 1344 Address NewPtr, 1345 llvm::Value *AllocSize, 1346 CharUnits AllocAlign, 1347 const CallArgList &NewArgs) { 1348 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1349 1350 // If we're not inside a conditional branch, then the cleanup will 1351 // dominate and we can do the easier (and more efficient) thing. 1352 if (!CGF.isInConditionalBranch()) { 1353 struct DirectCleanupTraits { 1354 typedef llvm::Value *ValueTy; 1355 typedef RValue RValueTy; 1356 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1357 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1358 }; 1359 1360 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1361 1362 DirectCleanup *Cleanup = CGF.EHStack 1363 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1364 E->getNumPlacementArgs(), 1365 E->getOperatorDelete(), 1366 NewPtr.getPointer(), 1367 AllocSize, 1368 E->passAlignment(), 1369 AllocAlign); 1370 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1371 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1372 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1373 } 1374 1375 return; 1376 } 1377 1378 // Otherwise, we need to save all this stuff. 1379 DominatingValue<RValue>::saved_type SavedNewPtr = 1380 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1381 DominatingValue<RValue>::saved_type SavedAllocSize = 1382 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1383 1384 struct ConditionalCleanupTraits { 1385 typedef DominatingValue<RValue>::saved_type ValueTy; 1386 typedef DominatingValue<RValue>::saved_type RValueTy; 1387 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1388 return V.restore(CGF); 1389 } 1390 }; 1391 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1392 1393 ConditionalCleanup *Cleanup = CGF.EHStack 1394 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1395 E->getNumPlacementArgs(), 1396 E->getOperatorDelete(), 1397 SavedNewPtr, 1398 SavedAllocSize, 1399 E->passAlignment(), 1400 AllocAlign); 1401 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1402 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1403 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1404 Arg.Ty); 1405 } 1406 1407 CGF.initFullExprCleanup(); 1408 } 1409 1410 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1411 // The element type being allocated. 1412 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1413 1414 // 1. Build a call to the allocation function. 1415 FunctionDecl *allocator = E->getOperatorNew(); 1416 1417 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1418 unsigned minElements = 0; 1419 if (E->isArray() && E->hasInitializer()) { 1420 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1421 if (ILE && ILE->isStringLiteralInit()) 1422 minElements = 1423 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1424 ->getSize().getZExtValue(); 1425 else if (ILE) 1426 minElements = ILE->getNumInits(); 1427 } 1428 1429 llvm::Value *numElements = nullptr; 1430 llvm::Value *allocSizeWithoutCookie = nullptr; 1431 llvm::Value *allocSize = 1432 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1433 allocSizeWithoutCookie); 1434 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1435 1436 // Emit the allocation call. If the allocator is a global placement 1437 // operator, just "inline" it directly. 1438 Address allocation = Address::invalid(); 1439 CallArgList allocatorArgs; 1440 if (allocator->isReservedGlobalPlacementOperator()) { 1441 assert(E->getNumPlacementArgs() == 1); 1442 const Expr *arg = *E->placement_arguments().begin(); 1443 1444 AlignmentSource alignSource; 1445 allocation = EmitPointerWithAlignment(arg, &alignSource); 1446 1447 // The pointer expression will, in many cases, be an opaque void*. 1448 // In these cases, discard the computed alignment and use the 1449 // formal alignment of the allocated type. 1450 if (alignSource != AlignmentSource::Decl) 1451 allocation = Address(allocation.getPointer(), allocAlign); 1452 1453 // Set up allocatorArgs for the call to operator delete if it's not 1454 // the reserved global operator. 1455 if (E->getOperatorDelete() && 1456 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1457 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1458 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1459 } 1460 1461 } else { 1462 const FunctionProtoType *allocatorType = 1463 allocator->getType()->castAs<FunctionProtoType>(); 1464 unsigned ParamsToSkip = 0; 1465 1466 // The allocation size is the first argument. 1467 QualType sizeType = getContext().getSizeType(); 1468 allocatorArgs.add(RValue::get(allocSize), sizeType); 1469 ++ParamsToSkip; 1470 1471 if (allocSize != allocSizeWithoutCookie) { 1472 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1473 allocAlign = std::max(allocAlign, cookieAlign); 1474 } 1475 1476 // The allocation alignment may be passed as the second argument. 1477 if (E->passAlignment()) { 1478 QualType AlignValT = sizeType; 1479 if (allocatorType->getNumParams() > 1) { 1480 AlignValT = allocatorType->getParamType(1); 1481 assert(getContext().hasSameUnqualifiedType( 1482 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1483 sizeType) && 1484 "wrong type for alignment parameter"); 1485 ++ParamsToSkip; 1486 } else { 1487 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1488 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1489 } 1490 allocatorArgs.add( 1491 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1492 AlignValT); 1493 } 1494 1495 // FIXME: Why do we not pass a CalleeDecl here? 1496 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1497 /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip); 1498 1499 RValue RV = 1500 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1501 1502 // If this was a call to a global replaceable allocation function that does 1503 // not take an alignment argument, the allocator is known to produce 1504 // storage that's suitably aligned for any object that fits, up to a known 1505 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1506 CharUnits allocationAlign = allocAlign; 1507 if (!E->passAlignment() && 1508 allocator->isReplaceableGlobalAllocationFunction()) { 1509 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1510 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1511 allocationAlign = std::max( 1512 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1513 } 1514 1515 allocation = Address(RV.getScalarVal(), allocationAlign); 1516 } 1517 1518 // Emit a null check on the allocation result if the allocation 1519 // function is allowed to return null (because it has a non-throwing 1520 // exception spec or is the reserved placement new) and we have an 1521 // interesting initializer. 1522 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1523 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1524 1525 llvm::BasicBlock *nullCheckBB = nullptr; 1526 llvm::BasicBlock *contBB = nullptr; 1527 1528 // The null-check means that the initializer is conditionally 1529 // evaluated. 1530 ConditionalEvaluation conditional(*this); 1531 1532 if (nullCheck) { 1533 conditional.begin(*this); 1534 1535 nullCheckBB = Builder.GetInsertBlock(); 1536 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1537 contBB = createBasicBlock("new.cont"); 1538 1539 llvm::Value *isNull = 1540 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1541 Builder.CreateCondBr(isNull, contBB, notNullBB); 1542 EmitBlock(notNullBB); 1543 } 1544 1545 // If there's an operator delete, enter a cleanup to call it if an 1546 // exception is thrown. 1547 EHScopeStack::stable_iterator operatorDeleteCleanup; 1548 llvm::Instruction *cleanupDominator = nullptr; 1549 if (E->getOperatorDelete() && 1550 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1551 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1552 allocatorArgs); 1553 operatorDeleteCleanup = EHStack.stable_begin(); 1554 cleanupDominator = Builder.CreateUnreachable(); 1555 } 1556 1557 assert((allocSize == allocSizeWithoutCookie) == 1558 CalculateCookiePadding(*this, E).isZero()); 1559 if (allocSize != allocSizeWithoutCookie) { 1560 assert(E->isArray()); 1561 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1562 numElements, 1563 E, allocType); 1564 } 1565 1566 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1567 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1568 1569 // Passing pointer through invariant.group.barrier to avoid propagation of 1570 // vptrs information which may be included in previous type. 1571 if (CGM.getCodeGenOpts().StrictVTablePointers && 1572 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1573 allocator->isReservedGlobalPlacementOperator()) 1574 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1575 result.getAlignment()); 1576 1577 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1578 allocSizeWithoutCookie); 1579 if (E->isArray()) { 1580 // NewPtr is a pointer to the base element type. If we're 1581 // allocating an array of arrays, we'll need to cast back to the 1582 // array pointer type. 1583 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1584 if (result.getType() != resultType) 1585 result = Builder.CreateBitCast(result, resultType); 1586 } 1587 1588 // Deactivate the 'operator delete' cleanup if we finished 1589 // initialization. 1590 if (operatorDeleteCleanup.isValid()) { 1591 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1592 cleanupDominator->eraseFromParent(); 1593 } 1594 1595 llvm::Value *resultPtr = result.getPointer(); 1596 if (nullCheck) { 1597 conditional.end(*this); 1598 1599 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1600 EmitBlock(contBB); 1601 1602 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1603 PHI->addIncoming(resultPtr, notNullBB); 1604 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1605 nullCheckBB); 1606 1607 resultPtr = PHI; 1608 } 1609 1610 return resultPtr; 1611 } 1612 1613 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1614 llvm::Value *Ptr, QualType DeleteTy, 1615 llvm::Value *NumElements, 1616 CharUnits CookieSize) { 1617 assert((!NumElements && CookieSize.isZero()) || 1618 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1619 1620 const FunctionProtoType *DeleteFTy = 1621 DeleteFD->getType()->getAs<FunctionProtoType>(); 1622 1623 CallArgList DeleteArgs; 1624 1625 std::pair<bool, bool> PassSizeAndAlign = 1626 shouldPassSizeAndAlignToUsualDelete(DeleteFTy); 1627 1628 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1629 1630 // Pass the pointer itself. 1631 QualType ArgTy = *ParamTypeIt++; 1632 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1633 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1634 1635 // Pass the size if the delete function has a size_t parameter. 1636 if (PassSizeAndAlign.first) { 1637 QualType SizeType = *ParamTypeIt++; 1638 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1639 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1640 DeleteTypeSize.getQuantity()); 1641 1642 // For array new, multiply by the number of elements. 1643 if (NumElements) 1644 Size = Builder.CreateMul(Size, NumElements); 1645 1646 // If there is a cookie, add the cookie size. 1647 if (!CookieSize.isZero()) 1648 Size = Builder.CreateAdd( 1649 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1650 1651 DeleteArgs.add(RValue::get(Size), SizeType); 1652 } 1653 1654 // Pass the alignment if the delete function has an align_val_t parameter. 1655 if (PassSizeAndAlign.second) { 1656 QualType AlignValType = *ParamTypeIt++; 1657 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1658 getContext().getTypeAlignIfKnown(DeleteTy)); 1659 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1660 DeleteTypeAlign.getQuantity()); 1661 DeleteArgs.add(RValue::get(Align), AlignValType); 1662 } 1663 1664 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1665 "unknown parameter to usual delete function"); 1666 1667 // Emit the call to delete. 1668 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1669 } 1670 1671 namespace { 1672 /// Calls the given 'operator delete' on a single object. 1673 struct CallObjectDelete final : EHScopeStack::Cleanup { 1674 llvm::Value *Ptr; 1675 const FunctionDecl *OperatorDelete; 1676 QualType ElementType; 1677 1678 CallObjectDelete(llvm::Value *Ptr, 1679 const FunctionDecl *OperatorDelete, 1680 QualType ElementType) 1681 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1682 1683 void Emit(CodeGenFunction &CGF, Flags flags) override { 1684 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1685 } 1686 }; 1687 } 1688 1689 void 1690 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1691 llvm::Value *CompletePtr, 1692 QualType ElementType) { 1693 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1694 OperatorDelete, ElementType); 1695 } 1696 1697 /// Emit the code for deleting a single object. 1698 static void EmitObjectDelete(CodeGenFunction &CGF, 1699 const CXXDeleteExpr *DE, 1700 Address Ptr, 1701 QualType ElementType) { 1702 // Find the destructor for the type, if applicable. If the 1703 // destructor is virtual, we'll just emit the vcall and return. 1704 const CXXDestructorDecl *Dtor = nullptr; 1705 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1706 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1707 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1708 Dtor = RD->getDestructor(); 1709 1710 if (Dtor->isVirtual()) { 1711 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1712 Dtor); 1713 return; 1714 } 1715 } 1716 } 1717 1718 // Make sure that we call delete even if the dtor throws. 1719 // This doesn't have to a conditional cleanup because we're going 1720 // to pop it off in a second. 1721 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1722 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1723 Ptr.getPointer(), 1724 OperatorDelete, ElementType); 1725 1726 if (Dtor) 1727 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1728 /*ForVirtualBase=*/false, 1729 /*Delegating=*/false, 1730 Ptr); 1731 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1732 switch (Lifetime) { 1733 case Qualifiers::OCL_None: 1734 case Qualifiers::OCL_ExplicitNone: 1735 case Qualifiers::OCL_Autoreleasing: 1736 break; 1737 1738 case Qualifiers::OCL_Strong: 1739 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1740 break; 1741 1742 case Qualifiers::OCL_Weak: 1743 CGF.EmitARCDestroyWeak(Ptr); 1744 break; 1745 } 1746 } 1747 1748 CGF.PopCleanupBlock(); 1749 } 1750 1751 namespace { 1752 /// Calls the given 'operator delete' on an array of objects. 1753 struct CallArrayDelete final : EHScopeStack::Cleanup { 1754 llvm::Value *Ptr; 1755 const FunctionDecl *OperatorDelete; 1756 llvm::Value *NumElements; 1757 QualType ElementType; 1758 CharUnits CookieSize; 1759 1760 CallArrayDelete(llvm::Value *Ptr, 1761 const FunctionDecl *OperatorDelete, 1762 llvm::Value *NumElements, 1763 QualType ElementType, 1764 CharUnits CookieSize) 1765 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1766 ElementType(ElementType), CookieSize(CookieSize) {} 1767 1768 void Emit(CodeGenFunction &CGF, Flags flags) override { 1769 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1770 CookieSize); 1771 } 1772 }; 1773 } 1774 1775 /// Emit the code for deleting an array of objects. 1776 static void EmitArrayDelete(CodeGenFunction &CGF, 1777 const CXXDeleteExpr *E, 1778 Address deletedPtr, 1779 QualType elementType) { 1780 llvm::Value *numElements = nullptr; 1781 llvm::Value *allocatedPtr = nullptr; 1782 CharUnits cookieSize; 1783 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1784 numElements, allocatedPtr, cookieSize); 1785 1786 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1787 1788 // Make sure that we call delete even if one of the dtors throws. 1789 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1790 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1791 allocatedPtr, operatorDelete, 1792 numElements, elementType, 1793 cookieSize); 1794 1795 // Destroy the elements. 1796 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1797 assert(numElements && "no element count for a type with a destructor!"); 1798 1799 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1800 CharUnits elementAlign = 1801 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1802 1803 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1804 llvm::Value *arrayEnd = 1805 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1806 1807 // Note that it is legal to allocate a zero-length array, and we 1808 // can never fold the check away because the length should always 1809 // come from a cookie. 1810 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1811 CGF.getDestroyer(dtorKind), 1812 /*checkZeroLength*/ true, 1813 CGF.needsEHCleanup(dtorKind)); 1814 } 1815 1816 // Pop the cleanup block. 1817 CGF.PopCleanupBlock(); 1818 } 1819 1820 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1821 const Expr *Arg = E->getArgument(); 1822 Address Ptr = EmitPointerWithAlignment(Arg); 1823 1824 // Null check the pointer. 1825 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1826 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1827 1828 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1829 1830 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1831 EmitBlock(DeleteNotNull); 1832 1833 // We might be deleting a pointer to array. If so, GEP down to the 1834 // first non-array element. 1835 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1836 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1837 if (DeleteTy->isConstantArrayType()) { 1838 llvm::Value *Zero = Builder.getInt32(0); 1839 SmallVector<llvm::Value*,8> GEP; 1840 1841 GEP.push_back(Zero); // point at the outermost array 1842 1843 // For each layer of array type we're pointing at: 1844 while (const ConstantArrayType *Arr 1845 = getContext().getAsConstantArrayType(DeleteTy)) { 1846 // 1. Unpeel the array type. 1847 DeleteTy = Arr->getElementType(); 1848 1849 // 2. GEP to the first element of the array. 1850 GEP.push_back(Zero); 1851 } 1852 1853 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1854 Ptr.getAlignment()); 1855 } 1856 1857 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1858 1859 if (E->isArrayForm()) { 1860 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1861 } else { 1862 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1863 } 1864 1865 EmitBlock(DeleteEnd); 1866 } 1867 1868 static bool isGLValueFromPointerDeref(const Expr *E) { 1869 E = E->IgnoreParens(); 1870 1871 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1872 if (!CE->getSubExpr()->isGLValue()) 1873 return false; 1874 return isGLValueFromPointerDeref(CE->getSubExpr()); 1875 } 1876 1877 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1878 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1879 1880 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1881 if (BO->getOpcode() == BO_Comma) 1882 return isGLValueFromPointerDeref(BO->getRHS()); 1883 1884 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1885 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1886 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1887 1888 // C++11 [expr.sub]p1: 1889 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1890 if (isa<ArraySubscriptExpr>(E)) 1891 return true; 1892 1893 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1894 if (UO->getOpcode() == UO_Deref) 1895 return true; 1896 1897 return false; 1898 } 1899 1900 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1901 llvm::Type *StdTypeInfoPtrTy) { 1902 // Get the vtable pointer. 1903 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1904 1905 // C++ [expr.typeid]p2: 1906 // If the glvalue expression is obtained by applying the unary * operator to 1907 // a pointer and the pointer is a null pointer value, the typeid expression 1908 // throws the std::bad_typeid exception. 1909 // 1910 // However, this paragraph's intent is not clear. We choose a very generous 1911 // interpretation which implores us to consider comma operators, conditional 1912 // operators, parentheses and other such constructs. 1913 QualType SrcRecordTy = E->getType(); 1914 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1915 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1916 llvm::BasicBlock *BadTypeidBlock = 1917 CGF.createBasicBlock("typeid.bad_typeid"); 1918 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1919 1920 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 1921 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1922 1923 CGF.EmitBlock(BadTypeidBlock); 1924 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1925 CGF.EmitBlock(EndBlock); 1926 } 1927 1928 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1929 StdTypeInfoPtrTy); 1930 } 1931 1932 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1933 llvm::Type *StdTypeInfoPtrTy = 1934 ConvertType(E->getType())->getPointerTo(); 1935 1936 if (E->isTypeOperand()) { 1937 llvm::Constant *TypeInfo = 1938 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1939 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1940 } 1941 1942 // C++ [expr.typeid]p2: 1943 // When typeid is applied to a glvalue expression whose type is a 1944 // polymorphic class type, the result refers to a std::type_info object 1945 // representing the type of the most derived object (that is, the dynamic 1946 // type) to which the glvalue refers. 1947 if (E->isPotentiallyEvaluated()) 1948 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1949 StdTypeInfoPtrTy); 1950 1951 QualType OperandTy = E->getExprOperand()->getType(); 1952 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1953 StdTypeInfoPtrTy); 1954 } 1955 1956 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1957 QualType DestTy) { 1958 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1959 if (DestTy->isPointerType()) 1960 return llvm::Constant::getNullValue(DestLTy); 1961 1962 /// C++ [expr.dynamic.cast]p9: 1963 /// A failed cast to reference type throws std::bad_cast 1964 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1965 return nullptr; 1966 1967 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1968 return llvm::UndefValue::get(DestLTy); 1969 } 1970 1971 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 1972 const CXXDynamicCastExpr *DCE) { 1973 CGM.EmitExplicitCastExprType(DCE, this); 1974 QualType DestTy = DCE->getTypeAsWritten(); 1975 1976 if (DCE->isAlwaysNull()) 1977 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1978 return T; 1979 1980 QualType SrcTy = DCE->getSubExpr()->getType(); 1981 1982 // C++ [expr.dynamic.cast]p7: 1983 // If T is "pointer to cv void," then the result is a pointer to the most 1984 // derived object pointed to by v. 1985 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1986 1987 bool isDynamicCastToVoid; 1988 QualType SrcRecordTy; 1989 QualType DestRecordTy; 1990 if (DestPTy) { 1991 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1992 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1993 DestRecordTy = DestPTy->getPointeeType(); 1994 } else { 1995 isDynamicCastToVoid = false; 1996 SrcRecordTy = SrcTy; 1997 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1998 } 1999 2000 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2001 2002 // C++ [expr.dynamic.cast]p4: 2003 // If the value of v is a null pointer value in the pointer case, the result 2004 // is the null pointer value of type T. 2005 bool ShouldNullCheckSrcValue = 2006 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2007 SrcRecordTy); 2008 2009 llvm::BasicBlock *CastNull = nullptr; 2010 llvm::BasicBlock *CastNotNull = nullptr; 2011 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2012 2013 if (ShouldNullCheckSrcValue) { 2014 CastNull = createBasicBlock("dynamic_cast.null"); 2015 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2016 2017 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2018 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2019 EmitBlock(CastNotNull); 2020 } 2021 2022 llvm::Value *Value; 2023 if (isDynamicCastToVoid) { 2024 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2025 DestTy); 2026 } else { 2027 assert(DestRecordTy->isRecordType() && 2028 "destination type must be a record type!"); 2029 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2030 DestTy, DestRecordTy, CastEnd); 2031 CastNotNull = Builder.GetInsertBlock(); 2032 } 2033 2034 if (ShouldNullCheckSrcValue) { 2035 EmitBranch(CastEnd); 2036 2037 EmitBlock(CastNull); 2038 EmitBranch(CastEnd); 2039 } 2040 2041 EmitBlock(CastEnd); 2042 2043 if (ShouldNullCheckSrcValue) { 2044 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2045 PHI->addIncoming(Value, CastNotNull); 2046 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2047 2048 Value = PHI; 2049 } 2050 2051 return Value; 2052 } 2053 2054 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2055 RunCleanupsScope Scope(*this); 2056 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2057 2058 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2059 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2060 e = E->capture_init_end(); 2061 i != e; ++i, ++CurField) { 2062 // Emit initialization 2063 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2064 if (CurField->hasCapturedVLAType()) { 2065 auto VAT = CurField->getCapturedVLAType(); 2066 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2067 } else { 2068 ArrayRef<VarDecl *> ArrayIndexes; 2069 if (CurField->getType()->isArrayType()) 2070 ArrayIndexes = E->getCaptureInitIndexVars(i); 2071 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 2072 } 2073 } 2074 } 2075