1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGObjCRuntime.h" 19 #include "CGDebugInfo.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 llvm::Value *Callee, 28 ReturnValueSlot ReturnValue, 29 llvm::Value *This, 30 llvm::Value *VTT, 31 CallExpr::const_arg_iterator ArgBeg, 32 CallExpr::const_arg_iterator ArgEnd) { 33 assert(MD->isInstance() && 34 "Trying to emit a member call expr on a static method!"); 35 36 CallArgList Args; 37 38 // Push the this ptr. 39 Args.add(RValue::get(This), MD->getThisType(getContext())); 40 41 // If there is a VTT parameter, emit it. 42 if (VTT) { 43 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 44 Args.add(RValue::get(VTT), T); 45 } 46 47 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 48 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 49 50 // And the rest of the call args. 51 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 52 53 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 54 Callee, ReturnValue, Args, MD); 55 } 56 57 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 58 // quite what we want. 59 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 60 while (true) { 61 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 62 E = PE->getSubExpr(); 63 continue; 64 } 65 66 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 67 if (CE->getCastKind() == CK_NoOp) { 68 E = CE->getSubExpr(); 69 continue; 70 } 71 } 72 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 73 if (UO->getOpcode() == UO_Extension) { 74 E = UO->getSubExpr(); 75 continue; 76 } 77 } 78 return E; 79 } 80 } 81 82 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 83 /// expr can be devirtualized. 84 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 85 const Expr *Base, 86 const CXXMethodDecl *MD) { 87 88 // When building with -fapple-kext, all calls must go through the vtable since 89 // the kernel linker can do runtime patching of vtables. 90 if (Context.getLangOpts().AppleKext) 91 return false; 92 93 // If the most derived class is marked final, we know that no subclass can 94 // override this member function and so we can devirtualize it. For example: 95 // 96 // struct A { virtual void f(); } 97 // struct B final : A { }; 98 // 99 // void f(B *b) { 100 // b->f(); 101 // } 102 // 103 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 104 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 105 return true; 106 107 // If the member function is marked 'final', we know that it can't be 108 // overridden and can therefore devirtualize it. 109 if (MD->hasAttr<FinalAttr>()) 110 return true; 111 112 // Similarly, if the class itself is marked 'final' it can't be overridden 113 // and we can therefore devirtualize the member function call. 114 if (MD->getParent()->hasAttr<FinalAttr>()) 115 return true; 116 117 Base = skipNoOpCastsAndParens(Base); 118 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 119 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 120 // This is a record decl. We know the type and can devirtualize it. 121 return VD->getType()->isRecordType(); 122 } 123 124 return false; 125 } 126 127 // We can devirtualize calls on an object accessed by a class member access 128 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 129 // a derived class object constructed in the same location. 130 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 131 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 132 return VD->getType()->isRecordType(); 133 134 // We can always devirtualize calls on temporary object expressions. 135 if (isa<CXXConstructExpr>(Base)) 136 return true; 137 138 // And calls on bound temporaries. 139 if (isa<CXXBindTemporaryExpr>(Base)) 140 return true; 141 142 // Check if this is a call expr that returns a record type. 143 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 144 return CE->getCallReturnType()->isRecordType(); 145 146 // We can't devirtualize the call. 147 return false; 148 } 149 150 static CXXRecordDecl *getCXXRecord(const Expr *E) { 151 QualType T = E->getType(); 152 if (const PointerType *PTy = T->getAs<PointerType>()) 153 T = PTy->getPointeeType(); 154 const RecordType *Ty = T->castAs<RecordType>(); 155 return cast<CXXRecordDecl>(Ty->getDecl()); 156 } 157 158 // Note: This function also emit constructor calls to support a MSVC 159 // extensions allowing explicit constructor function call. 160 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 161 ReturnValueSlot ReturnValue) { 162 const Expr *callee = CE->getCallee()->IgnoreParens(); 163 164 if (isa<BinaryOperator>(callee)) 165 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 166 167 const MemberExpr *ME = cast<MemberExpr>(callee); 168 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 169 170 CGDebugInfo *DI = getDebugInfo(); 171 if (DI && CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo 172 && !isa<CallExpr>(ME->getBase())) { 173 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 174 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 175 DI->getOrCreateRecordType(PTy->getPointeeType(), 176 MD->getParent()->getLocation()); 177 } 178 } 179 180 if (MD->isStatic()) { 181 // The method is static, emit it as we would a regular call. 182 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 183 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 184 ReturnValue, CE->arg_begin(), CE->arg_end()); 185 } 186 187 // Compute the object pointer. 188 const Expr *Base = ME->getBase(); 189 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 190 191 const CXXMethodDecl *DevirtualizedMethod = NULL; 192 if (CanUseVirtualCall && 193 canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 194 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 195 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 196 assert(DevirtualizedMethod); 197 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 198 const Expr *Inner = Base->ignoreParenBaseCasts(); 199 if (getCXXRecord(Inner) == DevirtualizedClass) 200 // If the class of the Inner expression is where the dynamic method 201 // is defined, build the this pointer from it. 202 Base = Inner; 203 else if (getCXXRecord(Base) != DevirtualizedClass) { 204 // If the method is defined in a class that is not the best dynamic 205 // one or the one of the full expression, we would have to build 206 // a derived-to-base cast to compute the correct this pointer, but 207 // we don't have support for that yet, so do a virtual call. 208 DevirtualizedMethod = NULL; 209 } 210 // If the return types are not the same, this might be a case where more 211 // code needs to run to compensate for it. For example, the derived 212 // method might return a type that inherits form from the return 213 // type of MD and has a prefix. 214 // For now we just avoid devirtualizing these covariant cases. 215 if (DevirtualizedMethod && 216 DevirtualizedMethod->getResultType().getCanonicalType() != 217 MD->getResultType().getCanonicalType()) 218 DevirtualizedMethod = NULL; 219 } 220 221 llvm::Value *This; 222 if (ME->isArrow()) 223 This = EmitScalarExpr(Base); 224 else 225 This = EmitLValue(Base).getAddress(); 226 227 228 if (MD->isTrivial()) { 229 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 230 if (isa<CXXConstructorDecl>(MD) && 231 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 232 return RValue::get(0); 233 234 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 235 // We don't like to generate the trivial copy/move assignment operator 236 // when it isn't necessary; just produce the proper effect here. 237 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 238 EmitAggregateCopy(This, RHS, CE->getType()); 239 return RValue::get(This); 240 } 241 242 if (isa<CXXConstructorDecl>(MD) && 243 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 244 // Trivial move and copy ctor are the same. 245 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 246 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 247 CE->arg_begin(), CE->arg_end()); 248 return RValue::get(This); 249 } 250 llvm_unreachable("unknown trivial member function"); 251 } 252 253 // Compute the function type we're calling. 254 const CGFunctionInfo *FInfo = 0; 255 if (isa<CXXDestructorDecl>(MD)) 256 FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), 257 Dtor_Complete); 258 else if (isa<CXXConstructorDecl>(MD)) 259 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration( 260 cast<CXXConstructorDecl>(MD), 261 Ctor_Complete); 262 else 263 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD); 264 265 llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 266 267 // C++ [class.virtual]p12: 268 // Explicit qualification with the scope operator (5.1) suppresses the 269 // virtual call mechanism. 270 // 271 // We also don't emit a virtual call if the base expression has a record type 272 // because then we know what the type is. 273 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 274 275 llvm::Value *Callee; 276 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 277 if (UseVirtualCall) { 278 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 279 } else { 280 if (getContext().getLangOpts().AppleKext && 281 MD->isVirtual() && 282 ME->hasQualifier()) 283 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 284 else if (!DevirtualizedMethod) 285 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 286 else { 287 const CXXDestructorDecl *DDtor = 288 cast<CXXDestructorDecl>(DevirtualizedMethod); 289 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 290 } 291 } 292 } else if (const CXXConstructorDecl *Ctor = 293 dyn_cast<CXXConstructorDecl>(MD)) { 294 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 295 } else if (UseVirtualCall) { 296 Callee = BuildVirtualCall(MD, This, Ty); 297 } else { 298 if (getContext().getLangOpts().AppleKext && 299 MD->isVirtual() && 300 ME->hasQualifier()) 301 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 302 else if (!DevirtualizedMethod) 303 Callee = CGM.GetAddrOfFunction(MD, Ty); 304 else { 305 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 306 } 307 } 308 309 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 310 CE->arg_begin(), CE->arg_end()); 311 } 312 313 RValue 314 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 315 ReturnValueSlot ReturnValue) { 316 const BinaryOperator *BO = 317 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 318 const Expr *BaseExpr = BO->getLHS(); 319 const Expr *MemFnExpr = BO->getRHS(); 320 321 const MemberPointerType *MPT = 322 MemFnExpr->getType()->castAs<MemberPointerType>(); 323 324 const FunctionProtoType *FPT = 325 MPT->getPointeeType()->castAs<FunctionProtoType>(); 326 const CXXRecordDecl *RD = 327 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 328 329 // Get the member function pointer. 330 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 331 332 // Emit the 'this' pointer. 333 llvm::Value *This; 334 335 if (BO->getOpcode() == BO_PtrMemI) 336 This = EmitScalarExpr(BaseExpr); 337 else 338 This = EmitLValue(BaseExpr).getAddress(); 339 340 // Ask the ABI to load the callee. Note that This is modified. 341 llvm::Value *Callee = 342 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 343 344 CallArgList Args; 345 346 QualType ThisType = 347 getContext().getPointerType(getContext().getTagDeclType(RD)); 348 349 // Push the this ptr. 350 Args.add(RValue::get(This), ThisType); 351 352 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 353 354 // And the rest of the call args 355 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 356 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 357 ReturnValue, Args); 358 } 359 360 RValue 361 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 362 const CXXMethodDecl *MD, 363 ReturnValueSlot ReturnValue) { 364 assert(MD->isInstance() && 365 "Trying to emit a member call expr on a static method!"); 366 LValue LV = EmitLValue(E->getArg(0)); 367 llvm::Value *This = LV.getAddress(); 368 369 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 370 MD->isTrivial()) { 371 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 372 QualType Ty = E->getType(); 373 EmitAggregateCopy(This, Src, Ty); 374 return RValue::get(This); 375 } 376 377 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 378 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 379 E->arg_begin() + 1, E->arg_end()); 380 } 381 382 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 383 ReturnValueSlot ReturnValue) { 384 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 385 } 386 387 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 388 llvm::Value *DestPtr, 389 const CXXRecordDecl *Base) { 390 if (Base->isEmpty()) 391 return; 392 393 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 394 395 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 396 CharUnits Size = Layout.getNonVirtualSize(); 397 CharUnits Align = Layout.getNonVirtualAlign(); 398 399 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 400 401 // If the type contains a pointer to data member we can't memset it to zero. 402 // Instead, create a null constant and copy it to the destination. 403 // TODO: there are other patterns besides zero that we can usefully memset, 404 // like -1, which happens to be the pattern used by member-pointers. 405 // TODO: isZeroInitializable can be over-conservative in the case where a 406 // virtual base contains a member pointer. 407 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 408 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 409 410 llvm::GlobalVariable *NullVariable = 411 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 412 /*isConstant=*/true, 413 llvm::GlobalVariable::PrivateLinkage, 414 NullConstant, Twine()); 415 NullVariable->setAlignment(Align.getQuantity()); 416 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 417 418 // Get and call the appropriate llvm.memcpy overload. 419 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 420 return; 421 } 422 423 // Otherwise, just memset the whole thing to zero. This is legal 424 // because in LLVM, all default initializers (other than the ones we just 425 // handled above) are guaranteed to have a bit pattern of all zeros. 426 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 427 Align.getQuantity()); 428 } 429 430 void 431 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 432 AggValueSlot Dest) { 433 assert(!Dest.isIgnored() && "Must have a destination!"); 434 const CXXConstructorDecl *CD = E->getConstructor(); 435 436 // If we require zero initialization before (or instead of) calling the 437 // constructor, as can be the case with a non-user-provided default 438 // constructor, emit the zero initialization now, unless destination is 439 // already zeroed. 440 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 441 switch (E->getConstructionKind()) { 442 case CXXConstructExpr::CK_Delegating: 443 case CXXConstructExpr::CK_Complete: 444 EmitNullInitialization(Dest.getAddr(), E->getType()); 445 break; 446 case CXXConstructExpr::CK_VirtualBase: 447 case CXXConstructExpr::CK_NonVirtualBase: 448 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 449 break; 450 } 451 } 452 453 // If this is a call to a trivial default constructor, do nothing. 454 if (CD->isTrivial() && CD->isDefaultConstructor()) 455 return; 456 457 // Elide the constructor if we're constructing from a temporary. 458 // The temporary check is required because Sema sets this on NRVO 459 // returns. 460 if (getContext().getLangOpts().ElideConstructors && E->isElidable()) { 461 assert(getContext().hasSameUnqualifiedType(E->getType(), 462 E->getArg(0)->getType())); 463 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 464 EmitAggExpr(E->getArg(0), Dest); 465 return; 466 } 467 } 468 469 if (const ConstantArrayType *arrayType 470 = getContext().getAsConstantArrayType(E->getType())) { 471 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 472 E->arg_begin(), E->arg_end()); 473 } else { 474 CXXCtorType Type = Ctor_Complete; 475 bool ForVirtualBase = false; 476 477 switch (E->getConstructionKind()) { 478 case CXXConstructExpr::CK_Delegating: 479 // We should be emitting a constructor; GlobalDecl will assert this 480 Type = CurGD.getCtorType(); 481 break; 482 483 case CXXConstructExpr::CK_Complete: 484 Type = Ctor_Complete; 485 break; 486 487 case CXXConstructExpr::CK_VirtualBase: 488 ForVirtualBase = true; 489 // fall-through 490 491 case CXXConstructExpr::CK_NonVirtualBase: 492 Type = Ctor_Base; 493 } 494 495 // Call the constructor. 496 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 497 E->arg_begin(), E->arg_end()); 498 } 499 } 500 501 void 502 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 503 llvm::Value *Src, 504 const Expr *Exp) { 505 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 506 Exp = E->getSubExpr(); 507 assert(isa<CXXConstructExpr>(Exp) && 508 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 509 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 510 const CXXConstructorDecl *CD = E->getConstructor(); 511 RunCleanupsScope Scope(*this); 512 513 // If we require zero initialization before (or instead of) calling the 514 // constructor, as can be the case with a non-user-provided default 515 // constructor, emit the zero initialization now. 516 // FIXME. Do I still need this for a copy ctor synthesis? 517 if (E->requiresZeroInitialization()) 518 EmitNullInitialization(Dest, E->getType()); 519 520 assert(!getContext().getAsConstantArrayType(E->getType()) 521 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 522 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 523 E->arg_begin(), E->arg_end()); 524 } 525 526 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 527 const CXXNewExpr *E) { 528 if (!E->isArray()) 529 return CharUnits::Zero(); 530 531 // No cookie is required if the operator new[] being used is the 532 // reserved placement operator new[]. 533 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 534 return CharUnits::Zero(); 535 536 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 537 } 538 539 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 540 const CXXNewExpr *e, 541 unsigned minElements, 542 llvm::Value *&numElements, 543 llvm::Value *&sizeWithoutCookie) { 544 QualType type = e->getAllocatedType(); 545 546 if (!e->isArray()) { 547 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 548 sizeWithoutCookie 549 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 550 return sizeWithoutCookie; 551 } 552 553 // The width of size_t. 554 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 555 556 // Figure out the cookie size. 557 llvm::APInt cookieSize(sizeWidth, 558 CalculateCookiePadding(CGF, e).getQuantity()); 559 560 // Emit the array size expression. 561 // We multiply the size of all dimensions for NumElements. 562 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 563 numElements = CGF.EmitScalarExpr(e->getArraySize()); 564 assert(isa<llvm::IntegerType>(numElements->getType())); 565 566 // The number of elements can be have an arbitrary integer type; 567 // essentially, we need to multiply it by a constant factor, add a 568 // cookie size, and verify that the result is representable as a 569 // size_t. That's just a gloss, though, and it's wrong in one 570 // important way: if the count is negative, it's an error even if 571 // the cookie size would bring the total size >= 0. 572 bool isSigned 573 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 574 llvm::IntegerType *numElementsType 575 = cast<llvm::IntegerType>(numElements->getType()); 576 unsigned numElementsWidth = numElementsType->getBitWidth(); 577 578 // Compute the constant factor. 579 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 580 while (const ConstantArrayType *CAT 581 = CGF.getContext().getAsConstantArrayType(type)) { 582 type = CAT->getElementType(); 583 arraySizeMultiplier *= CAT->getSize(); 584 } 585 586 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 587 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 588 typeSizeMultiplier *= arraySizeMultiplier; 589 590 // This will be a size_t. 591 llvm::Value *size; 592 593 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 594 // Don't bloat the -O0 code. 595 if (llvm::ConstantInt *numElementsC = 596 dyn_cast<llvm::ConstantInt>(numElements)) { 597 const llvm::APInt &count = numElementsC->getValue(); 598 599 bool hasAnyOverflow = false; 600 601 // If 'count' was a negative number, it's an overflow. 602 if (isSigned && count.isNegative()) 603 hasAnyOverflow = true; 604 605 // We want to do all this arithmetic in size_t. If numElements is 606 // wider than that, check whether it's already too big, and if so, 607 // overflow. 608 else if (numElementsWidth > sizeWidth && 609 numElementsWidth - sizeWidth > count.countLeadingZeros()) 610 hasAnyOverflow = true; 611 612 // Okay, compute a count at the right width. 613 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 614 615 // If there is a brace-initializer, we cannot allocate fewer elements than 616 // there are initializers. If we do, that's treated like an overflow. 617 if (adjustedCount.ult(minElements)) 618 hasAnyOverflow = true; 619 620 // Scale numElements by that. This might overflow, but we don't 621 // care because it only overflows if allocationSize does, too, and 622 // if that overflows then we shouldn't use this. 623 numElements = llvm::ConstantInt::get(CGF.SizeTy, 624 adjustedCount * arraySizeMultiplier); 625 626 // Compute the size before cookie, and track whether it overflowed. 627 bool overflow; 628 llvm::APInt allocationSize 629 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 630 hasAnyOverflow |= overflow; 631 632 // Add in the cookie, and check whether it's overflowed. 633 if (cookieSize != 0) { 634 // Save the current size without a cookie. This shouldn't be 635 // used if there was overflow. 636 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 637 638 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 639 hasAnyOverflow |= overflow; 640 } 641 642 // On overflow, produce a -1 so operator new will fail. 643 if (hasAnyOverflow) { 644 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 645 } else { 646 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 647 } 648 649 // Otherwise, we might need to use the overflow intrinsics. 650 } else { 651 // There are up to five conditions we need to test for: 652 // 1) if isSigned, we need to check whether numElements is negative; 653 // 2) if numElementsWidth > sizeWidth, we need to check whether 654 // numElements is larger than something representable in size_t; 655 // 3) if minElements > 0, we need to check whether numElements is smaller 656 // than that. 657 // 4) we need to compute 658 // sizeWithoutCookie := numElements * typeSizeMultiplier 659 // and check whether it overflows; and 660 // 5) if we need a cookie, we need to compute 661 // size := sizeWithoutCookie + cookieSize 662 // and check whether it overflows. 663 664 llvm::Value *hasOverflow = 0; 665 666 // If numElementsWidth > sizeWidth, then one way or another, we're 667 // going to have to do a comparison for (2), and this happens to 668 // take care of (1), too. 669 if (numElementsWidth > sizeWidth) { 670 llvm::APInt threshold(numElementsWidth, 1); 671 threshold <<= sizeWidth; 672 673 llvm::Value *thresholdV 674 = llvm::ConstantInt::get(numElementsType, threshold); 675 676 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 677 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 678 679 // Otherwise, if we're signed, we want to sext up to size_t. 680 } else if (isSigned) { 681 if (numElementsWidth < sizeWidth) 682 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 683 684 // If there's a non-1 type size multiplier, then we can do the 685 // signedness check at the same time as we do the multiply 686 // because a negative number times anything will cause an 687 // unsigned overflow. Otherwise, we have to do it here. But at least 688 // in this case, we can subsume the >= minElements check. 689 if (typeSizeMultiplier == 1) 690 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 691 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 692 693 // Otherwise, zext up to size_t if necessary. 694 } else if (numElementsWidth < sizeWidth) { 695 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 696 } 697 698 assert(numElements->getType() == CGF.SizeTy); 699 700 if (minElements) { 701 // Don't allow allocation of fewer elements than we have initializers. 702 if (!hasOverflow) { 703 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 704 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 705 } else if (numElementsWidth > sizeWidth) { 706 // The other existing overflow subsumes this check. 707 // We do an unsigned comparison, since any signed value < -1 is 708 // taken care of either above or below. 709 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 710 CGF.Builder.CreateICmpULT(numElements, 711 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 712 } 713 } 714 715 size = numElements; 716 717 // Multiply by the type size if necessary. This multiplier 718 // includes all the factors for nested arrays. 719 // 720 // This step also causes numElements to be scaled up by the 721 // nested-array factor if necessary. Overflow on this computation 722 // can be ignored because the result shouldn't be used if 723 // allocation fails. 724 if (typeSizeMultiplier != 1) { 725 llvm::Value *umul_with_overflow 726 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 727 728 llvm::Value *tsmV = 729 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 730 llvm::Value *result = 731 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 732 733 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 734 if (hasOverflow) 735 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 736 else 737 hasOverflow = overflowed; 738 739 size = CGF.Builder.CreateExtractValue(result, 0); 740 741 // Also scale up numElements by the array size multiplier. 742 if (arraySizeMultiplier != 1) { 743 // If the base element type size is 1, then we can re-use the 744 // multiply we just did. 745 if (typeSize.isOne()) { 746 assert(arraySizeMultiplier == typeSizeMultiplier); 747 numElements = size; 748 749 // Otherwise we need a separate multiply. 750 } else { 751 llvm::Value *asmV = 752 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 753 numElements = CGF.Builder.CreateMul(numElements, asmV); 754 } 755 } 756 } else { 757 // numElements doesn't need to be scaled. 758 assert(arraySizeMultiplier == 1); 759 } 760 761 // Add in the cookie size if necessary. 762 if (cookieSize != 0) { 763 sizeWithoutCookie = size; 764 765 llvm::Value *uadd_with_overflow 766 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 767 768 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 769 llvm::Value *result = 770 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 771 772 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 773 if (hasOverflow) 774 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 775 else 776 hasOverflow = overflowed; 777 778 size = CGF.Builder.CreateExtractValue(result, 0); 779 } 780 781 // If we had any possibility of dynamic overflow, make a select to 782 // overwrite 'size' with an all-ones value, which should cause 783 // operator new to throw. 784 if (hasOverflow) 785 size = CGF.Builder.CreateSelect(hasOverflow, 786 llvm::Constant::getAllOnesValue(CGF.SizeTy), 787 size); 788 } 789 790 if (cookieSize == 0) 791 sizeWithoutCookie = size; 792 else 793 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 794 795 return size; 796 } 797 798 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 799 QualType AllocType, llvm::Value *NewPtr) { 800 801 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 802 if (!CGF.hasAggregateLLVMType(AllocType)) 803 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 804 Alignment), 805 false); 806 else if (AllocType->isAnyComplexType()) 807 CGF.EmitComplexExprIntoAddr(Init, NewPtr, 808 AllocType.isVolatileQualified()); 809 else { 810 AggValueSlot Slot 811 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 812 AggValueSlot::IsDestructed, 813 AggValueSlot::DoesNotNeedGCBarriers, 814 AggValueSlot::IsNotAliased); 815 CGF.EmitAggExpr(Init, Slot); 816 817 CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init); 818 } 819 } 820 821 void 822 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 823 QualType elementType, 824 llvm::Value *beginPtr, 825 llvm::Value *numElements) { 826 if (!E->hasInitializer()) 827 return; // We have a POD type. 828 829 llvm::Value *explicitPtr = beginPtr; 830 // Find the end of the array, hoisted out of the loop. 831 llvm::Value *endPtr = 832 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 833 834 unsigned initializerElements = 0; 835 836 const Expr *Init = E->getInitializer(); 837 llvm::AllocaInst *endOfInit = 0; 838 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 839 EHScopeStack::stable_iterator cleanup; 840 llvm::Instruction *cleanupDominator = 0; 841 // If the initializer is an initializer list, first do the explicit elements. 842 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 843 initializerElements = ILE->getNumInits(); 844 845 // Enter a partial-destruction cleanup if necessary. 846 if (needsEHCleanup(dtorKind)) { 847 // In principle we could tell the cleanup where we are more 848 // directly, but the control flow can get so varied here that it 849 // would actually be quite complex. Therefore we go through an 850 // alloca. 851 endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 852 cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 853 pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 854 getDestroyer(dtorKind)); 855 cleanup = EHStack.stable_begin(); 856 } 857 858 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 859 // Tell the cleanup that it needs to destroy up to this 860 // element. TODO: some of these stores can be trivially 861 // observed to be unnecessary. 862 if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 863 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 864 explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 865 } 866 867 // The remaining elements are filled with the array filler expression. 868 Init = ILE->getArrayFiller(); 869 } 870 871 // Create the continuation block. 872 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 873 874 // If the number of elements isn't constant, we have to now check if there is 875 // anything left to initialize. 876 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 877 // If all elements have already been initialized, skip the whole loop. 878 if (constNum->getZExtValue() <= initializerElements) { 879 // If there was a cleanup, deactivate it. 880 if (cleanupDominator) 881 DeactivateCleanupBlock(cleanup, cleanupDominator);; 882 return; 883 } 884 } else { 885 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 886 llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 887 "array.isempty"); 888 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 889 EmitBlock(nonEmptyBB); 890 } 891 892 // Enter the loop. 893 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 894 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 895 896 EmitBlock(loopBB); 897 898 // Set up the current-element phi. 899 llvm::PHINode *curPtr = 900 Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 901 curPtr->addIncoming(explicitPtr, entryBB); 902 903 // Store the new cleanup position for irregular cleanups. 904 if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 905 906 // Enter a partial-destruction cleanup if necessary. 907 if (!cleanupDominator && needsEHCleanup(dtorKind)) { 908 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 909 getDestroyer(dtorKind)); 910 cleanup = EHStack.stable_begin(); 911 cleanupDominator = Builder.CreateUnreachable(); 912 } 913 914 // Emit the initializer into this element. 915 StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 916 917 // Leave the cleanup if we entered one. 918 if (cleanupDominator) { 919 DeactivateCleanupBlock(cleanup, cleanupDominator); 920 cleanupDominator->eraseFromParent(); 921 } 922 923 // Advance to the next element. 924 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 925 926 // Check whether we've gotten to the end of the array and, if so, 927 // exit the loop. 928 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 929 Builder.CreateCondBr(isEnd, contBB, loopBB); 930 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 931 932 EmitBlock(contBB); 933 } 934 935 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 936 llvm::Value *NewPtr, llvm::Value *Size) { 937 CGF.EmitCastToVoidPtr(NewPtr); 938 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 939 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 940 Alignment.getQuantity(), false); 941 } 942 943 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 944 QualType ElementType, 945 llvm::Value *NewPtr, 946 llvm::Value *NumElements, 947 llvm::Value *AllocSizeWithoutCookie) { 948 const Expr *Init = E->getInitializer(); 949 if (E->isArray()) { 950 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 951 CXXConstructorDecl *Ctor = CCE->getConstructor(); 952 bool RequiresZeroInitialization = false; 953 if (Ctor->isTrivial()) { 954 // If new expression did not specify value-initialization, then there 955 // is no initialization. 956 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 957 return; 958 959 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 960 // Optimization: since zero initialization will just set the memory 961 // to all zeroes, generate a single memset to do it in one shot. 962 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 963 return; 964 } 965 966 RequiresZeroInitialization = true; 967 } 968 969 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 970 CCE->arg_begin(), CCE->arg_end(), 971 RequiresZeroInitialization); 972 return; 973 } else if (Init && isa<ImplicitValueInitExpr>(Init) && 974 CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 975 // Optimization: since zero initialization will just set the memory 976 // to all zeroes, generate a single memset to do it in one shot. 977 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 978 return; 979 } 980 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 981 return; 982 } 983 984 if (!Init) 985 return; 986 987 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 988 } 989 990 namespace { 991 /// A cleanup to call the given 'operator delete' function upon 992 /// abnormal exit from a new expression. 993 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 994 size_t NumPlacementArgs; 995 const FunctionDecl *OperatorDelete; 996 llvm::Value *Ptr; 997 llvm::Value *AllocSize; 998 999 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1000 1001 public: 1002 static size_t getExtraSize(size_t NumPlacementArgs) { 1003 return NumPlacementArgs * sizeof(RValue); 1004 } 1005 1006 CallDeleteDuringNew(size_t NumPlacementArgs, 1007 const FunctionDecl *OperatorDelete, 1008 llvm::Value *Ptr, 1009 llvm::Value *AllocSize) 1010 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1011 Ptr(Ptr), AllocSize(AllocSize) {} 1012 1013 void setPlacementArg(unsigned I, RValue Arg) { 1014 assert(I < NumPlacementArgs && "index out of range"); 1015 getPlacementArgs()[I] = Arg; 1016 } 1017 1018 void Emit(CodeGenFunction &CGF, Flags flags) { 1019 const FunctionProtoType *FPT 1020 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1021 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1022 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1023 1024 CallArgList DeleteArgs; 1025 1026 // The first argument is always a void*. 1027 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1028 DeleteArgs.add(RValue::get(Ptr), *AI++); 1029 1030 // A member 'operator delete' can take an extra 'size_t' argument. 1031 if (FPT->getNumArgs() == NumPlacementArgs + 2) 1032 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1033 1034 // Pass the rest of the arguments, which must match exactly. 1035 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1036 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1037 1038 // Call 'operator delete'. 1039 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1040 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1041 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1042 } 1043 }; 1044 1045 /// A cleanup to call the given 'operator delete' function upon 1046 /// abnormal exit from a new expression when the new expression is 1047 /// conditional. 1048 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1049 size_t NumPlacementArgs; 1050 const FunctionDecl *OperatorDelete; 1051 DominatingValue<RValue>::saved_type Ptr; 1052 DominatingValue<RValue>::saved_type AllocSize; 1053 1054 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1055 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1056 } 1057 1058 public: 1059 static size_t getExtraSize(size_t NumPlacementArgs) { 1060 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1061 } 1062 1063 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1064 const FunctionDecl *OperatorDelete, 1065 DominatingValue<RValue>::saved_type Ptr, 1066 DominatingValue<RValue>::saved_type AllocSize) 1067 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1068 Ptr(Ptr), AllocSize(AllocSize) {} 1069 1070 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1071 assert(I < NumPlacementArgs && "index out of range"); 1072 getPlacementArgs()[I] = Arg; 1073 } 1074 1075 void Emit(CodeGenFunction &CGF, Flags flags) { 1076 const FunctionProtoType *FPT 1077 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1078 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1079 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1080 1081 CallArgList DeleteArgs; 1082 1083 // The first argument is always a void*. 1084 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1085 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1086 1087 // A member 'operator delete' can take an extra 'size_t' argument. 1088 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1089 RValue RV = AllocSize.restore(CGF); 1090 DeleteArgs.add(RV, *AI++); 1091 } 1092 1093 // Pass the rest of the arguments, which must match exactly. 1094 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1095 RValue RV = getPlacementArgs()[I].restore(CGF); 1096 DeleteArgs.add(RV, *AI++); 1097 } 1098 1099 // Call 'operator delete'. 1100 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1101 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1102 ReturnValueSlot(), DeleteArgs, OperatorDelete); 1103 } 1104 }; 1105 } 1106 1107 /// Enter a cleanup to call 'operator delete' if the initializer in a 1108 /// new-expression throws. 1109 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1110 const CXXNewExpr *E, 1111 llvm::Value *NewPtr, 1112 llvm::Value *AllocSize, 1113 const CallArgList &NewArgs) { 1114 // If we're not inside a conditional branch, then the cleanup will 1115 // dominate and we can do the easier (and more efficient) thing. 1116 if (!CGF.isInConditionalBranch()) { 1117 CallDeleteDuringNew *Cleanup = CGF.EHStack 1118 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1119 E->getNumPlacementArgs(), 1120 E->getOperatorDelete(), 1121 NewPtr, AllocSize); 1122 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1123 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1124 1125 return; 1126 } 1127 1128 // Otherwise, we need to save all this stuff. 1129 DominatingValue<RValue>::saved_type SavedNewPtr = 1130 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1131 DominatingValue<RValue>::saved_type SavedAllocSize = 1132 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1133 1134 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1135 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1136 E->getNumPlacementArgs(), 1137 E->getOperatorDelete(), 1138 SavedNewPtr, 1139 SavedAllocSize); 1140 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1141 Cleanup->setPlacementArg(I, 1142 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1143 1144 CGF.initFullExprCleanup(); 1145 } 1146 1147 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1148 // The element type being allocated. 1149 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1150 1151 // 1. Build a call to the allocation function. 1152 FunctionDecl *allocator = E->getOperatorNew(); 1153 const FunctionProtoType *allocatorType = 1154 allocator->getType()->castAs<FunctionProtoType>(); 1155 1156 CallArgList allocatorArgs; 1157 1158 // The allocation size is the first argument. 1159 QualType sizeType = getContext().getSizeType(); 1160 1161 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1162 unsigned minElements = 0; 1163 if (E->isArray() && E->hasInitializer()) { 1164 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1165 minElements = ILE->getNumInits(); 1166 } 1167 1168 llvm::Value *numElements = 0; 1169 llvm::Value *allocSizeWithoutCookie = 0; 1170 llvm::Value *allocSize = 1171 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1172 allocSizeWithoutCookie); 1173 1174 allocatorArgs.add(RValue::get(allocSize), sizeType); 1175 1176 // Emit the rest of the arguments. 1177 // FIXME: Ideally, this should just use EmitCallArgs. 1178 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1179 1180 // First, use the types from the function type. 1181 // We start at 1 here because the first argument (the allocation size) 1182 // has already been emitted. 1183 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1184 ++i, ++placementArg) { 1185 QualType argType = allocatorType->getArgType(i); 1186 1187 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1188 placementArg->getType()) && 1189 "type mismatch in call argument!"); 1190 1191 EmitCallArg(allocatorArgs, *placementArg, argType); 1192 } 1193 1194 // Either we've emitted all the call args, or we have a call to a 1195 // variadic function. 1196 assert((placementArg == E->placement_arg_end() || 1197 allocatorType->isVariadic()) && 1198 "Extra arguments to non-variadic function!"); 1199 1200 // If we still have any arguments, emit them using the type of the argument. 1201 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1202 placementArg != placementArgsEnd; ++placementArg) { 1203 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1204 } 1205 1206 // Emit the allocation call. If the allocator is a global placement 1207 // operator, just "inline" it directly. 1208 RValue RV; 1209 if (allocator->isReservedGlobalPlacementOperator()) { 1210 assert(allocatorArgs.size() == 2); 1211 RV = allocatorArgs[1].RV; 1212 // TODO: kill any unnecessary computations done for the size 1213 // argument. 1214 } else { 1215 RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs, 1216 allocatorType), 1217 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 1218 allocatorArgs, allocator); 1219 } 1220 1221 // Emit a null check on the allocation result if the allocation 1222 // function is allowed to return null (because it has a non-throwing 1223 // exception spec; for this part, we inline 1224 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1225 // interesting initializer. 1226 bool nullCheck = allocatorType->isNothrow(getContext()) && 1227 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1228 1229 llvm::BasicBlock *nullCheckBB = 0; 1230 llvm::BasicBlock *contBB = 0; 1231 1232 llvm::Value *allocation = RV.getScalarVal(); 1233 unsigned AS = 1234 cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 1235 1236 // The null-check means that the initializer is conditionally 1237 // evaluated. 1238 ConditionalEvaluation conditional(*this); 1239 1240 if (nullCheck) { 1241 conditional.begin(*this); 1242 1243 nullCheckBB = Builder.GetInsertBlock(); 1244 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1245 contBB = createBasicBlock("new.cont"); 1246 1247 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1248 Builder.CreateCondBr(isNull, contBB, notNullBB); 1249 EmitBlock(notNullBB); 1250 } 1251 1252 // If there's an operator delete, enter a cleanup to call it if an 1253 // exception is thrown. 1254 EHScopeStack::stable_iterator operatorDeleteCleanup; 1255 llvm::Instruction *cleanupDominator = 0; 1256 if (E->getOperatorDelete() && 1257 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1258 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1259 operatorDeleteCleanup = EHStack.stable_begin(); 1260 cleanupDominator = Builder.CreateUnreachable(); 1261 } 1262 1263 assert((allocSize == allocSizeWithoutCookie) == 1264 CalculateCookiePadding(*this, E).isZero()); 1265 if (allocSize != allocSizeWithoutCookie) { 1266 assert(E->isArray()); 1267 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1268 numElements, 1269 E, allocType); 1270 } 1271 1272 llvm::Type *elementPtrTy 1273 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1274 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1275 1276 EmitNewInitializer(*this, E, allocType, result, numElements, 1277 allocSizeWithoutCookie); 1278 if (E->isArray()) { 1279 // NewPtr is a pointer to the base element type. If we're 1280 // allocating an array of arrays, we'll need to cast back to the 1281 // array pointer type. 1282 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1283 if (result->getType() != resultType) 1284 result = Builder.CreateBitCast(result, resultType); 1285 } 1286 1287 // Deactivate the 'operator delete' cleanup if we finished 1288 // initialization. 1289 if (operatorDeleteCleanup.isValid()) { 1290 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1291 cleanupDominator->eraseFromParent(); 1292 } 1293 1294 if (nullCheck) { 1295 conditional.end(*this); 1296 1297 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1298 EmitBlock(contBB); 1299 1300 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1301 PHI->addIncoming(result, notNullBB); 1302 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1303 nullCheckBB); 1304 1305 result = PHI; 1306 } 1307 1308 return result; 1309 } 1310 1311 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1312 llvm::Value *Ptr, 1313 QualType DeleteTy) { 1314 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1315 1316 const FunctionProtoType *DeleteFTy = 1317 DeleteFD->getType()->getAs<FunctionProtoType>(); 1318 1319 CallArgList DeleteArgs; 1320 1321 // Check if we need to pass the size to the delete operator. 1322 llvm::Value *Size = 0; 1323 QualType SizeTy; 1324 if (DeleteFTy->getNumArgs() == 2) { 1325 SizeTy = DeleteFTy->getArgType(1); 1326 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1327 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1328 DeleteTypeSize.getQuantity()); 1329 } 1330 1331 QualType ArgTy = DeleteFTy->getArgType(0); 1332 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1333 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1334 1335 if (Size) 1336 DeleteArgs.add(RValue::get(Size), SizeTy); 1337 1338 // Emit the call to delete. 1339 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy), 1340 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 1341 DeleteArgs, DeleteFD); 1342 } 1343 1344 namespace { 1345 /// Calls the given 'operator delete' on a single object. 1346 struct CallObjectDelete : EHScopeStack::Cleanup { 1347 llvm::Value *Ptr; 1348 const FunctionDecl *OperatorDelete; 1349 QualType ElementType; 1350 1351 CallObjectDelete(llvm::Value *Ptr, 1352 const FunctionDecl *OperatorDelete, 1353 QualType ElementType) 1354 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1355 1356 void Emit(CodeGenFunction &CGF, Flags flags) { 1357 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1358 } 1359 }; 1360 } 1361 1362 /// Emit the code for deleting a single object. 1363 static void EmitObjectDelete(CodeGenFunction &CGF, 1364 const FunctionDecl *OperatorDelete, 1365 llvm::Value *Ptr, 1366 QualType ElementType, 1367 bool UseGlobalDelete) { 1368 // Find the destructor for the type, if applicable. If the 1369 // destructor is virtual, we'll just emit the vcall and return. 1370 const CXXDestructorDecl *Dtor = 0; 1371 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1372 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1373 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1374 Dtor = RD->getDestructor(); 1375 1376 if (Dtor->isVirtual()) { 1377 if (UseGlobalDelete) { 1378 // If we're supposed to call the global delete, make sure we do so 1379 // even if the destructor throws. 1380 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1381 Ptr, OperatorDelete, 1382 ElementType); 1383 } 1384 1385 llvm::Type *Ty = 1386 CGF.getTypes().GetFunctionType( 1387 CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete)); 1388 1389 llvm::Value *Callee 1390 = CGF.BuildVirtualCall(Dtor, 1391 UseGlobalDelete? Dtor_Complete : Dtor_Deleting, 1392 Ptr, Ty); 1393 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 1394 0, 0); 1395 1396 if (UseGlobalDelete) { 1397 CGF.PopCleanupBlock(); 1398 } 1399 1400 return; 1401 } 1402 } 1403 } 1404 1405 // Make sure that we call delete even if the dtor throws. 1406 // This doesn't have to a conditional cleanup because we're going 1407 // to pop it off in a second. 1408 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1409 Ptr, OperatorDelete, ElementType); 1410 1411 if (Dtor) 1412 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1413 /*ForVirtualBase=*/false, Ptr); 1414 else if (CGF.getLangOpts().ObjCAutoRefCount && 1415 ElementType->isObjCLifetimeType()) { 1416 switch (ElementType.getObjCLifetime()) { 1417 case Qualifiers::OCL_None: 1418 case Qualifiers::OCL_ExplicitNone: 1419 case Qualifiers::OCL_Autoreleasing: 1420 break; 1421 1422 case Qualifiers::OCL_Strong: { 1423 // Load the pointer value. 1424 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1425 ElementType.isVolatileQualified()); 1426 1427 CGF.EmitARCRelease(PtrValue, /*precise*/ true); 1428 break; 1429 } 1430 1431 case Qualifiers::OCL_Weak: 1432 CGF.EmitARCDestroyWeak(Ptr); 1433 break; 1434 } 1435 } 1436 1437 CGF.PopCleanupBlock(); 1438 } 1439 1440 namespace { 1441 /// Calls the given 'operator delete' on an array of objects. 1442 struct CallArrayDelete : EHScopeStack::Cleanup { 1443 llvm::Value *Ptr; 1444 const FunctionDecl *OperatorDelete; 1445 llvm::Value *NumElements; 1446 QualType ElementType; 1447 CharUnits CookieSize; 1448 1449 CallArrayDelete(llvm::Value *Ptr, 1450 const FunctionDecl *OperatorDelete, 1451 llvm::Value *NumElements, 1452 QualType ElementType, 1453 CharUnits CookieSize) 1454 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1455 ElementType(ElementType), CookieSize(CookieSize) {} 1456 1457 void Emit(CodeGenFunction &CGF, Flags flags) { 1458 const FunctionProtoType *DeleteFTy = 1459 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1460 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1461 1462 CallArgList Args; 1463 1464 // Pass the pointer as the first argument. 1465 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1466 llvm::Value *DeletePtr 1467 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1468 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1469 1470 // Pass the original requested size as the second argument. 1471 if (DeleteFTy->getNumArgs() == 2) { 1472 QualType size_t = DeleteFTy->getArgType(1); 1473 llvm::IntegerType *SizeTy 1474 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1475 1476 CharUnits ElementTypeSize = 1477 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1478 1479 // The size of an element, multiplied by the number of elements. 1480 llvm::Value *Size 1481 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1482 Size = CGF.Builder.CreateMul(Size, NumElements); 1483 1484 // Plus the size of the cookie if applicable. 1485 if (!CookieSize.isZero()) { 1486 llvm::Value *CookieSizeV 1487 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1488 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1489 } 1490 1491 Args.add(RValue::get(Size), size_t); 1492 } 1493 1494 // Emit the call to delete. 1495 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy), 1496 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1497 ReturnValueSlot(), Args, OperatorDelete); 1498 } 1499 }; 1500 } 1501 1502 /// Emit the code for deleting an array of objects. 1503 static void EmitArrayDelete(CodeGenFunction &CGF, 1504 const CXXDeleteExpr *E, 1505 llvm::Value *deletedPtr, 1506 QualType elementType) { 1507 llvm::Value *numElements = 0; 1508 llvm::Value *allocatedPtr = 0; 1509 CharUnits cookieSize; 1510 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1511 numElements, allocatedPtr, cookieSize); 1512 1513 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1514 1515 // Make sure that we call delete even if one of the dtors throws. 1516 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1517 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1518 allocatedPtr, operatorDelete, 1519 numElements, elementType, 1520 cookieSize); 1521 1522 // Destroy the elements. 1523 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1524 assert(numElements && "no element count for a type with a destructor!"); 1525 1526 llvm::Value *arrayEnd = 1527 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1528 1529 // Note that it is legal to allocate a zero-length array, and we 1530 // can never fold the check away because the length should always 1531 // come from a cookie. 1532 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1533 CGF.getDestroyer(dtorKind), 1534 /*checkZeroLength*/ true, 1535 CGF.needsEHCleanup(dtorKind)); 1536 } 1537 1538 // Pop the cleanup block. 1539 CGF.PopCleanupBlock(); 1540 } 1541 1542 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1543 const Expr *Arg = E->getArgument(); 1544 llvm::Value *Ptr = EmitScalarExpr(Arg); 1545 1546 // Null check the pointer. 1547 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1548 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1549 1550 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1551 1552 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1553 EmitBlock(DeleteNotNull); 1554 1555 // We might be deleting a pointer to array. If so, GEP down to the 1556 // first non-array element. 1557 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1558 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1559 if (DeleteTy->isConstantArrayType()) { 1560 llvm::Value *Zero = Builder.getInt32(0); 1561 SmallVector<llvm::Value*,8> GEP; 1562 1563 GEP.push_back(Zero); // point at the outermost array 1564 1565 // For each layer of array type we're pointing at: 1566 while (const ConstantArrayType *Arr 1567 = getContext().getAsConstantArrayType(DeleteTy)) { 1568 // 1. Unpeel the array type. 1569 DeleteTy = Arr->getElementType(); 1570 1571 // 2. GEP to the first element of the array. 1572 GEP.push_back(Zero); 1573 } 1574 1575 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1576 } 1577 1578 assert(ConvertTypeForMem(DeleteTy) == 1579 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1580 1581 if (E->isArrayForm()) { 1582 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1583 } else { 1584 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1585 E->isGlobalDelete()); 1586 } 1587 1588 EmitBlock(DeleteEnd); 1589 } 1590 1591 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1592 // void __cxa_bad_typeid(); 1593 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1594 1595 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1596 } 1597 1598 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1599 llvm::Value *Fn = getBadTypeidFn(CGF); 1600 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1601 CGF.Builder.CreateUnreachable(); 1602 } 1603 1604 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1605 const Expr *E, 1606 llvm::Type *StdTypeInfoPtrTy) { 1607 // Get the vtable pointer. 1608 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1609 1610 // C++ [expr.typeid]p2: 1611 // If the glvalue expression is obtained by applying the unary * operator to 1612 // a pointer and the pointer is a null pointer value, the typeid expression 1613 // throws the std::bad_typeid exception. 1614 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1615 if (UO->getOpcode() == UO_Deref) { 1616 llvm::BasicBlock *BadTypeidBlock = 1617 CGF.createBasicBlock("typeid.bad_typeid"); 1618 llvm::BasicBlock *EndBlock = 1619 CGF.createBasicBlock("typeid.end"); 1620 1621 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1622 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1623 1624 CGF.EmitBlock(BadTypeidBlock); 1625 EmitBadTypeidCall(CGF); 1626 CGF.EmitBlock(EndBlock); 1627 } 1628 } 1629 1630 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1631 StdTypeInfoPtrTy->getPointerTo()); 1632 1633 // Load the type info. 1634 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1635 return CGF.Builder.CreateLoad(Value); 1636 } 1637 1638 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1639 llvm::Type *StdTypeInfoPtrTy = 1640 ConvertType(E->getType())->getPointerTo(); 1641 1642 if (E->isTypeOperand()) { 1643 llvm::Constant *TypeInfo = 1644 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1645 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1646 } 1647 1648 // C++ [expr.typeid]p2: 1649 // When typeid is applied to a glvalue expression whose type is a 1650 // polymorphic class type, the result refers to a std::type_info object 1651 // representing the type of the most derived object (that is, the dynamic 1652 // type) to which the glvalue refers. 1653 if (E->isPotentiallyEvaluated()) 1654 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1655 StdTypeInfoPtrTy); 1656 1657 QualType OperandTy = E->getExprOperand()->getType(); 1658 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1659 StdTypeInfoPtrTy); 1660 } 1661 1662 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1663 // void *__dynamic_cast(const void *sub, 1664 // const abi::__class_type_info *src, 1665 // const abi::__class_type_info *dst, 1666 // std::ptrdiff_t src2dst_offset); 1667 1668 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1669 llvm::Type *PtrDiffTy = 1670 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1671 1672 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1673 1674 llvm::FunctionType *FTy = 1675 llvm::FunctionType::get(Int8PtrTy, Args, false); 1676 1677 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1678 } 1679 1680 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1681 // void __cxa_bad_cast(); 1682 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1683 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1684 } 1685 1686 static void EmitBadCastCall(CodeGenFunction &CGF) { 1687 llvm::Value *Fn = getBadCastFn(CGF); 1688 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1689 CGF.Builder.CreateUnreachable(); 1690 } 1691 1692 static llvm::Value * 1693 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1694 QualType SrcTy, QualType DestTy, 1695 llvm::BasicBlock *CastEnd) { 1696 llvm::Type *PtrDiffLTy = 1697 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1698 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1699 1700 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1701 if (PTy->getPointeeType()->isVoidType()) { 1702 // C++ [expr.dynamic.cast]p7: 1703 // If T is "pointer to cv void," then the result is a pointer to the 1704 // most derived object pointed to by v. 1705 1706 // Get the vtable pointer. 1707 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1708 1709 // Get the offset-to-top from the vtable. 1710 llvm::Value *OffsetToTop = 1711 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1712 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1713 1714 // Finally, add the offset to the pointer. 1715 Value = CGF.EmitCastToVoidPtr(Value); 1716 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1717 1718 return CGF.Builder.CreateBitCast(Value, DestLTy); 1719 } 1720 } 1721 1722 QualType SrcRecordTy; 1723 QualType DestRecordTy; 1724 1725 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1726 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1727 DestRecordTy = DestPTy->getPointeeType(); 1728 } else { 1729 SrcRecordTy = SrcTy; 1730 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1731 } 1732 1733 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1734 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1735 1736 llvm::Value *SrcRTTI = 1737 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1738 llvm::Value *DestRTTI = 1739 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1740 1741 // FIXME: Actually compute a hint here. 1742 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1743 1744 // Emit the call to __dynamic_cast. 1745 Value = CGF.EmitCastToVoidPtr(Value); 1746 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1747 SrcRTTI, DestRTTI, OffsetHint); 1748 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1749 1750 /// C++ [expr.dynamic.cast]p9: 1751 /// A failed cast to reference type throws std::bad_cast 1752 if (DestTy->isReferenceType()) { 1753 llvm::BasicBlock *BadCastBlock = 1754 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1755 1756 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1757 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1758 1759 CGF.EmitBlock(BadCastBlock); 1760 EmitBadCastCall(CGF); 1761 } 1762 1763 return Value; 1764 } 1765 1766 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1767 QualType DestTy) { 1768 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1769 if (DestTy->isPointerType()) 1770 return llvm::Constant::getNullValue(DestLTy); 1771 1772 /// C++ [expr.dynamic.cast]p9: 1773 /// A failed cast to reference type throws std::bad_cast 1774 EmitBadCastCall(CGF); 1775 1776 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1777 return llvm::UndefValue::get(DestLTy); 1778 } 1779 1780 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1781 const CXXDynamicCastExpr *DCE) { 1782 QualType DestTy = DCE->getTypeAsWritten(); 1783 1784 if (DCE->isAlwaysNull()) 1785 return EmitDynamicCastToNull(*this, DestTy); 1786 1787 QualType SrcTy = DCE->getSubExpr()->getType(); 1788 1789 // C++ [expr.dynamic.cast]p4: 1790 // If the value of v is a null pointer value in the pointer case, the result 1791 // is the null pointer value of type T. 1792 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1793 1794 llvm::BasicBlock *CastNull = 0; 1795 llvm::BasicBlock *CastNotNull = 0; 1796 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1797 1798 if (ShouldNullCheckSrcValue) { 1799 CastNull = createBasicBlock("dynamic_cast.null"); 1800 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1801 1802 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1803 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1804 EmitBlock(CastNotNull); 1805 } 1806 1807 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1808 1809 if (ShouldNullCheckSrcValue) { 1810 EmitBranch(CastEnd); 1811 1812 EmitBlock(CastNull); 1813 EmitBranch(CastEnd); 1814 } 1815 1816 EmitBlock(CastEnd); 1817 1818 if (ShouldNullCheckSrcValue) { 1819 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1820 PHI->addIncoming(Value, CastNotNull); 1821 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1822 1823 Value = PHI; 1824 } 1825 1826 return Value; 1827 } 1828 1829 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1830 RunCleanupsScope Scope(*this); 1831 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 1832 Slot.getAlignment()); 1833 1834 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1835 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1836 e = E->capture_init_end(); 1837 i != e; ++i, ++CurField) { 1838 // Emit initialization 1839 1840 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1841 ArrayRef<VarDecl *> ArrayIndexes; 1842 if (CurField->getType()->isArrayType()) 1843 ArrayIndexes = E->getCaptureInitIndexVars(i); 1844 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1845 } 1846 } 1847