1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/Frontend/CodeGenOptions.h" 20 #include "llvm/IR/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 SourceLocation CallLoc, 28 llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, 30 llvm::Value *This, 31 llvm::Value *ImplicitParam, 32 QualType ImplicitParamTy, 33 CallExpr::const_arg_iterator ArgBeg, 34 CallExpr::const_arg_iterator ArgEnd) { 35 assert(MD->isInstance() && 36 "Trying to emit a member call expr on a static method!"); 37 38 // C++11 [class.mfct.non-static]p2: 39 // If a non-static member function of a class X is called for an object that 40 // is not of type X, or of a type derived from X, the behavior is undefined. 41 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 42 : TCK_MemberCall, 43 CallLoc, This, getContext().getRecordType(MD->getParent())); 44 45 CallArgList Args; 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 60 61 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 62 Callee, ReturnValue, Args, MD); 63 } 64 65 static CXXRecordDecl *getCXXRecord(const Expr *E) { 66 QualType T = E->getType(); 67 if (const PointerType *PTy = T->getAs<PointerType>()) 68 T = PTy->getPointeeType(); 69 const RecordType *Ty = T->castAs<RecordType>(); 70 return cast<CXXRecordDecl>(Ty->getDecl()); 71 } 72 73 // Note: This function also emit constructor calls to support a MSVC 74 // extensions allowing explicit constructor function call. 75 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 76 ReturnValueSlot ReturnValue) { 77 const Expr *callee = CE->getCallee()->IgnoreParens(); 78 79 if (isa<BinaryOperator>(callee)) 80 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 81 82 const MemberExpr *ME = cast<MemberExpr>(callee); 83 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 84 85 if (MD->isStatic()) { 86 // The method is static, emit it as we would a regular call. 87 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 88 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 89 CE->getLocStart(), ReturnValue, CE->arg_begin(), 90 CE->arg_end()); 91 } 92 93 // Compute the object pointer. 94 const Expr *Base = ME->getBase(); 95 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 96 97 const CXXMethodDecl *DevirtualizedMethod = NULL; 98 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 99 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 100 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 101 assert(DevirtualizedMethod); 102 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 103 const Expr *Inner = Base->ignoreParenBaseCasts(); 104 if (getCXXRecord(Inner) == DevirtualizedClass) 105 // If the class of the Inner expression is where the dynamic method 106 // is defined, build the this pointer from it. 107 Base = Inner; 108 else if (getCXXRecord(Base) != DevirtualizedClass) { 109 // If the method is defined in a class that is not the best dynamic 110 // one or the one of the full expression, we would have to build 111 // a derived-to-base cast to compute the correct this pointer, but 112 // we don't have support for that yet, so do a virtual call. 113 DevirtualizedMethod = NULL; 114 } 115 // If the return types are not the same, this might be a case where more 116 // code needs to run to compensate for it. For example, the derived 117 // method might return a type that inherits form from the return 118 // type of MD and has a prefix. 119 // For now we just avoid devirtualizing these covariant cases. 120 if (DevirtualizedMethod && 121 DevirtualizedMethod->getResultType().getCanonicalType() != 122 MD->getResultType().getCanonicalType()) 123 DevirtualizedMethod = NULL; 124 } 125 126 llvm::Value *This; 127 if (ME->isArrow()) 128 This = EmitScalarExpr(Base); 129 else 130 This = EmitLValue(Base).getAddress(); 131 132 133 if (MD->isTrivial()) { 134 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 135 if (isa<CXXConstructorDecl>(MD) && 136 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 137 return RValue::get(0); 138 139 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 140 // We don't like to generate the trivial copy/move assignment operator 141 // when it isn't necessary; just produce the proper effect here. 142 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 143 EmitAggregateAssign(This, RHS, CE->getType()); 144 return RValue::get(This); 145 } 146 147 if (isa<CXXConstructorDecl>(MD) && 148 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 149 // Trivial move and copy ctor are the same. 150 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 151 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 152 CE->arg_begin(), CE->arg_end()); 153 return RValue::get(This); 154 } 155 llvm_unreachable("unknown trivial member function"); 156 } 157 158 // Compute the function type we're calling. 159 const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 160 const CGFunctionInfo *FInfo = 0; 161 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 162 FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 163 Dtor_Complete); 164 else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 165 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 166 Ctor_Complete); 167 else 168 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 169 170 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 171 172 // C++ [class.virtual]p12: 173 // Explicit qualification with the scope operator (5.1) suppresses the 174 // virtual call mechanism. 175 // 176 // We also don't emit a virtual call if the base expression has a record type 177 // because then we know what the type is. 178 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 179 llvm::Value *Callee; 180 181 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 182 assert(CE->arg_begin() == CE->arg_end() && 183 "Destructor shouldn't have explicit parameters"); 184 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 185 if (UseVirtualCall) { 186 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 187 CE->getExprLoc(), This); 188 } else { 189 if (getLangOpts().AppleKext && 190 MD->isVirtual() && 191 ME->hasQualifier()) 192 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 193 else if (!DevirtualizedMethod) 194 Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty); 195 else { 196 const CXXDestructorDecl *DDtor = 197 cast<CXXDestructorDecl>(DevirtualizedMethod); 198 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 199 } 200 EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 201 /*ImplicitParam=*/0, QualType(), 0, 0); 202 } 203 return RValue::get(0); 204 } 205 206 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 207 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 208 } else if (UseVirtualCall) { 209 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty); 210 } else { 211 if (getLangOpts().AppleKext && 212 MD->isVirtual() && 213 ME->hasQualifier()) 214 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 215 else if (!DevirtualizedMethod) 216 Callee = CGM.GetAddrOfFunction(MD, Ty); 217 else { 218 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 219 } 220 } 221 222 if (MD->isVirtual()) 223 This = CGM.getCXXABI().adjustThisArgumentForVirtualCall(*this, MD, This); 224 225 return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 226 /*ImplicitParam=*/0, QualType(), 227 CE->arg_begin(), CE->arg_end()); 228 } 229 230 RValue 231 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 232 ReturnValueSlot ReturnValue) { 233 const BinaryOperator *BO = 234 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 235 const Expr *BaseExpr = BO->getLHS(); 236 const Expr *MemFnExpr = BO->getRHS(); 237 238 const MemberPointerType *MPT = 239 MemFnExpr->getType()->castAs<MemberPointerType>(); 240 241 const FunctionProtoType *FPT = 242 MPT->getPointeeType()->castAs<FunctionProtoType>(); 243 const CXXRecordDecl *RD = 244 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 245 246 // Get the member function pointer. 247 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 248 249 // Emit the 'this' pointer. 250 llvm::Value *This; 251 252 if (BO->getOpcode() == BO_PtrMemI) 253 This = EmitScalarExpr(BaseExpr); 254 else 255 This = EmitLValue(BaseExpr).getAddress(); 256 257 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 258 QualType(MPT->getClass(), 0)); 259 260 // Ask the ABI to load the callee. Note that This is modified. 261 llvm::Value *Callee = 262 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 263 264 CallArgList Args; 265 266 QualType ThisType = 267 getContext().getPointerType(getContext().getTagDeclType(RD)); 268 269 // Push the this ptr. 270 Args.add(RValue::get(This), ThisType); 271 272 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 273 274 // And the rest of the call args 275 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 276 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 277 Callee, ReturnValue, Args); 278 } 279 280 RValue 281 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 282 const CXXMethodDecl *MD, 283 ReturnValueSlot ReturnValue) { 284 assert(MD->isInstance() && 285 "Trying to emit a member call expr on a static method!"); 286 LValue LV = EmitLValue(E->getArg(0)); 287 llvm::Value *This = LV.getAddress(); 288 289 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 290 MD->isTrivial()) { 291 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 292 QualType Ty = E->getType(); 293 EmitAggregateAssign(This, Src, Ty); 294 return RValue::get(This); 295 } 296 297 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 298 return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 299 /*ImplicitParam=*/0, QualType(), 300 E->arg_begin() + 1, E->arg_end()); 301 } 302 303 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 304 ReturnValueSlot ReturnValue) { 305 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 306 } 307 308 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 309 llvm::Value *DestPtr, 310 const CXXRecordDecl *Base) { 311 if (Base->isEmpty()) 312 return; 313 314 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 315 316 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 317 CharUnits Size = Layout.getNonVirtualSize(); 318 CharUnits Align = Layout.getNonVirtualAlign(); 319 320 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 321 322 // If the type contains a pointer to data member we can't memset it to zero. 323 // Instead, create a null constant and copy it to the destination. 324 // TODO: there are other patterns besides zero that we can usefully memset, 325 // like -1, which happens to be the pattern used by member-pointers. 326 // TODO: isZeroInitializable can be over-conservative in the case where a 327 // virtual base contains a member pointer. 328 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 329 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 330 331 llvm::GlobalVariable *NullVariable = 332 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 333 /*isConstant=*/true, 334 llvm::GlobalVariable::PrivateLinkage, 335 NullConstant, Twine()); 336 NullVariable->setAlignment(Align.getQuantity()); 337 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 338 339 // Get and call the appropriate llvm.memcpy overload. 340 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 341 return; 342 } 343 344 // Otherwise, just memset the whole thing to zero. This is legal 345 // because in LLVM, all default initializers (other than the ones we just 346 // handled above) are guaranteed to have a bit pattern of all zeros. 347 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 348 Align.getQuantity()); 349 } 350 351 void 352 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 353 AggValueSlot Dest) { 354 assert(!Dest.isIgnored() && "Must have a destination!"); 355 const CXXConstructorDecl *CD = E->getConstructor(); 356 357 // If we require zero initialization before (or instead of) calling the 358 // constructor, as can be the case with a non-user-provided default 359 // constructor, emit the zero initialization now, unless destination is 360 // already zeroed. 361 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 362 switch (E->getConstructionKind()) { 363 case CXXConstructExpr::CK_Delegating: 364 case CXXConstructExpr::CK_Complete: 365 EmitNullInitialization(Dest.getAddr(), E->getType()); 366 break; 367 case CXXConstructExpr::CK_VirtualBase: 368 case CXXConstructExpr::CK_NonVirtualBase: 369 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 370 break; 371 } 372 } 373 374 // If this is a call to a trivial default constructor, do nothing. 375 if (CD->isTrivial() && CD->isDefaultConstructor()) 376 return; 377 378 // Elide the constructor if we're constructing from a temporary. 379 // The temporary check is required because Sema sets this on NRVO 380 // returns. 381 if (getLangOpts().ElideConstructors && E->isElidable()) { 382 assert(getContext().hasSameUnqualifiedType(E->getType(), 383 E->getArg(0)->getType())); 384 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 385 EmitAggExpr(E->getArg(0), Dest); 386 return; 387 } 388 } 389 390 if (const ConstantArrayType *arrayType 391 = getContext().getAsConstantArrayType(E->getType())) { 392 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 393 E->arg_begin(), E->arg_end()); 394 } else { 395 CXXCtorType Type = Ctor_Complete; 396 bool ForVirtualBase = false; 397 bool Delegating = false; 398 399 switch (E->getConstructionKind()) { 400 case CXXConstructExpr::CK_Delegating: 401 // We should be emitting a constructor; GlobalDecl will assert this 402 Type = CurGD.getCtorType(); 403 Delegating = true; 404 break; 405 406 case CXXConstructExpr::CK_Complete: 407 Type = Ctor_Complete; 408 break; 409 410 case CXXConstructExpr::CK_VirtualBase: 411 ForVirtualBase = true; 412 // fall-through 413 414 case CXXConstructExpr::CK_NonVirtualBase: 415 Type = Ctor_Base; 416 } 417 418 // Call the constructor. 419 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 420 E->arg_begin(), E->arg_end()); 421 } 422 } 423 424 void 425 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 426 llvm::Value *Src, 427 const Expr *Exp) { 428 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 429 Exp = E->getSubExpr(); 430 assert(isa<CXXConstructExpr>(Exp) && 431 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 432 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 433 const CXXConstructorDecl *CD = E->getConstructor(); 434 RunCleanupsScope Scope(*this); 435 436 // If we require zero initialization before (or instead of) calling the 437 // constructor, as can be the case with a non-user-provided default 438 // constructor, emit the zero initialization now. 439 // FIXME. Do I still need this for a copy ctor synthesis? 440 if (E->requiresZeroInitialization()) 441 EmitNullInitialization(Dest, E->getType()); 442 443 assert(!getContext().getAsConstantArrayType(E->getType()) 444 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 445 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end()); 446 } 447 448 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 449 const CXXNewExpr *E) { 450 if (!E->isArray()) 451 return CharUnits::Zero(); 452 453 // No cookie is required if the operator new[] being used is the 454 // reserved placement operator new[]. 455 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 456 return CharUnits::Zero(); 457 458 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 459 } 460 461 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 462 const CXXNewExpr *e, 463 unsigned minElements, 464 llvm::Value *&numElements, 465 llvm::Value *&sizeWithoutCookie) { 466 QualType type = e->getAllocatedType(); 467 468 if (!e->isArray()) { 469 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 470 sizeWithoutCookie 471 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 472 return sizeWithoutCookie; 473 } 474 475 // The width of size_t. 476 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 477 478 // Figure out the cookie size. 479 llvm::APInt cookieSize(sizeWidth, 480 CalculateCookiePadding(CGF, e).getQuantity()); 481 482 // Emit the array size expression. 483 // We multiply the size of all dimensions for NumElements. 484 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 485 numElements = CGF.EmitScalarExpr(e->getArraySize()); 486 assert(isa<llvm::IntegerType>(numElements->getType())); 487 488 // The number of elements can be have an arbitrary integer type; 489 // essentially, we need to multiply it by a constant factor, add a 490 // cookie size, and verify that the result is representable as a 491 // size_t. That's just a gloss, though, and it's wrong in one 492 // important way: if the count is negative, it's an error even if 493 // the cookie size would bring the total size >= 0. 494 bool isSigned 495 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 496 llvm::IntegerType *numElementsType 497 = cast<llvm::IntegerType>(numElements->getType()); 498 unsigned numElementsWidth = numElementsType->getBitWidth(); 499 500 // Compute the constant factor. 501 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 502 while (const ConstantArrayType *CAT 503 = CGF.getContext().getAsConstantArrayType(type)) { 504 type = CAT->getElementType(); 505 arraySizeMultiplier *= CAT->getSize(); 506 } 507 508 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 509 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 510 typeSizeMultiplier *= arraySizeMultiplier; 511 512 // This will be a size_t. 513 llvm::Value *size; 514 515 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 516 // Don't bloat the -O0 code. 517 if (llvm::ConstantInt *numElementsC = 518 dyn_cast<llvm::ConstantInt>(numElements)) { 519 const llvm::APInt &count = numElementsC->getValue(); 520 521 bool hasAnyOverflow = false; 522 523 // If 'count' was a negative number, it's an overflow. 524 if (isSigned && count.isNegative()) 525 hasAnyOverflow = true; 526 527 // We want to do all this arithmetic in size_t. If numElements is 528 // wider than that, check whether it's already too big, and if so, 529 // overflow. 530 else if (numElementsWidth > sizeWidth && 531 numElementsWidth - sizeWidth > count.countLeadingZeros()) 532 hasAnyOverflow = true; 533 534 // Okay, compute a count at the right width. 535 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 536 537 // If there is a brace-initializer, we cannot allocate fewer elements than 538 // there are initializers. If we do, that's treated like an overflow. 539 if (adjustedCount.ult(minElements)) 540 hasAnyOverflow = true; 541 542 // Scale numElements by that. This might overflow, but we don't 543 // care because it only overflows if allocationSize does, too, and 544 // if that overflows then we shouldn't use this. 545 numElements = llvm::ConstantInt::get(CGF.SizeTy, 546 adjustedCount * arraySizeMultiplier); 547 548 // Compute the size before cookie, and track whether it overflowed. 549 bool overflow; 550 llvm::APInt allocationSize 551 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 552 hasAnyOverflow |= overflow; 553 554 // Add in the cookie, and check whether it's overflowed. 555 if (cookieSize != 0) { 556 // Save the current size without a cookie. This shouldn't be 557 // used if there was overflow. 558 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 559 560 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 561 hasAnyOverflow |= overflow; 562 } 563 564 // On overflow, produce a -1 so operator new will fail. 565 if (hasAnyOverflow) { 566 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 567 } else { 568 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 569 } 570 571 // Otherwise, we might need to use the overflow intrinsics. 572 } else { 573 // There are up to five conditions we need to test for: 574 // 1) if isSigned, we need to check whether numElements is negative; 575 // 2) if numElementsWidth > sizeWidth, we need to check whether 576 // numElements is larger than something representable in size_t; 577 // 3) if minElements > 0, we need to check whether numElements is smaller 578 // than that. 579 // 4) we need to compute 580 // sizeWithoutCookie := numElements * typeSizeMultiplier 581 // and check whether it overflows; and 582 // 5) if we need a cookie, we need to compute 583 // size := sizeWithoutCookie + cookieSize 584 // and check whether it overflows. 585 586 llvm::Value *hasOverflow = 0; 587 588 // If numElementsWidth > sizeWidth, then one way or another, we're 589 // going to have to do a comparison for (2), and this happens to 590 // take care of (1), too. 591 if (numElementsWidth > sizeWidth) { 592 llvm::APInt threshold(numElementsWidth, 1); 593 threshold <<= sizeWidth; 594 595 llvm::Value *thresholdV 596 = llvm::ConstantInt::get(numElementsType, threshold); 597 598 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 599 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 600 601 // Otherwise, if we're signed, we want to sext up to size_t. 602 } else if (isSigned) { 603 if (numElementsWidth < sizeWidth) 604 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 605 606 // If there's a non-1 type size multiplier, then we can do the 607 // signedness check at the same time as we do the multiply 608 // because a negative number times anything will cause an 609 // unsigned overflow. Otherwise, we have to do it here. But at least 610 // in this case, we can subsume the >= minElements check. 611 if (typeSizeMultiplier == 1) 612 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 613 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 614 615 // Otherwise, zext up to size_t if necessary. 616 } else if (numElementsWidth < sizeWidth) { 617 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 618 } 619 620 assert(numElements->getType() == CGF.SizeTy); 621 622 if (minElements) { 623 // Don't allow allocation of fewer elements than we have initializers. 624 if (!hasOverflow) { 625 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 626 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 627 } else if (numElementsWidth > sizeWidth) { 628 // The other existing overflow subsumes this check. 629 // We do an unsigned comparison, since any signed value < -1 is 630 // taken care of either above or below. 631 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 632 CGF.Builder.CreateICmpULT(numElements, 633 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 634 } 635 } 636 637 size = numElements; 638 639 // Multiply by the type size if necessary. This multiplier 640 // includes all the factors for nested arrays. 641 // 642 // This step also causes numElements to be scaled up by the 643 // nested-array factor if necessary. Overflow on this computation 644 // can be ignored because the result shouldn't be used if 645 // allocation fails. 646 if (typeSizeMultiplier != 1) { 647 llvm::Value *umul_with_overflow 648 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 649 650 llvm::Value *tsmV = 651 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 652 llvm::Value *result = 653 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 654 655 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 656 if (hasOverflow) 657 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 658 else 659 hasOverflow = overflowed; 660 661 size = CGF.Builder.CreateExtractValue(result, 0); 662 663 // Also scale up numElements by the array size multiplier. 664 if (arraySizeMultiplier != 1) { 665 // If the base element type size is 1, then we can re-use the 666 // multiply we just did. 667 if (typeSize.isOne()) { 668 assert(arraySizeMultiplier == typeSizeMultiplier); 669 numElements = size; 670 671 // Otherwise we need a separate multiply. 672 } else { 673 llvm::Value *asmV = 674 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 675 numElements = CGF.Builder.CreateMul(numElements, asmV); 676 } 677 } 678 } else { 679 // numElements doesn't need to be scaled. 680 assert(arraySizeMultiplier == 1); 681 } 682 683 // Add in the cookie size if necessary. 684 if (cookieSize != 0) { 685 sizeWithoutCookie = size; 686 687 llvm::Value *uadd_with_overflow 688 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 689 690 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 691 llvm::Value *result = 692 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 693 694 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 695 if (hasOverflow) 696 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 697 else 698 hasOverflow = overflowed; 699 700 size = CGF.Builder.CreateExtractValue(result, 0); 701 } 702 703 // If we had any possibility of dynamic overflow, make a select to 704 // overwrite 'size' with an all-ones value, which should cause 705 // operator new to throw. 706 if (hasOverflow) 707 size = CGF.Builder.CreateSelect(hasOverflow, 708 llvm::Constant::getAllOnesValue(CGF.SizeTy), 709 size); 710 } 711 712 if (cookieSize == 0) 713 sizeWithoutCookie = size; 714 else 715 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 716 717 return size; 718 } 719 720 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 721 QualType AllocType, llvm::Value *NewPtr) { 722 723 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 724 switch (CGF.getEvaluationKind(AllocType)) { 725 case TEK_Scalar: 726 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 727 Alignment), 728 false); 729 return; 730 case TEK_Complex: 731 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 732 Alignment), 733 /*isInit*/ true); 734 return; 735 case TEK_Aggregate: { 736 AggValueSlot Slot 737 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 738 AggValueSlot::IsDestructed, 739 AggValueSlot::DoesNotNeedGCBarriers, 740 AggValueSlot::IsNotAliased); 741 CGF.EmitAggExpr(Init, Slot); 742 return; 743 } 744 } 745 llvm_unreachable("bad evaluation kind"); 746 } 747 748 void 749 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 750 QualType elementType, 751 llvm::Value *beginPtr, 752 llvm::Value *numElements) { 753 if (!E->hasInitializer()) 754 return; // We have a POD type. 755 756 llvm::Value *explicitPtr = beginPtr; 757 // Find the end of the array, hoisted out of the loop. 758 llvm::Value *endPtr = 759 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 760 761 unsigned initializerElements = 0; 762 763 const Expr *Init = E->getInitializer(); 764 llvm::AllocaInst *endOfInit = 0; 765 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 766 EHScopeStack::stable_iterator cleanup; 767 llvm::Instruction *cleanupDominator = 0; 768 // If the initializer is an initializer list, first do the explicit elements. 769 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 770 initializerElements = ILE->getNumInits(); 771 772 // Enter a partial-destruction cleanup if necessary. 773 if (needsEHCleanup(dtorKind)) { 774 // In principle we could tell the cleanup where we are more 775 // directly, but the control flow can get so varied here that it 776 // would actually be quite complex. Therefore we go through an 777 // alloca. 778 endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 779 cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 780 pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 781 getDestroyer(dtorKind)); 782 cleanup = EHStack.stable_begin(); 783 } 784 785 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 786 // Tell the cleanup that it needs to destroy up to this 787 // element. TODO: some of these stores can be trivially 788 // observed to be unnecessary. 789 if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 790 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 791 explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 792 } 793 794 // The remaining elements are filled with the array filler expression. 795 Init = ILE->getArrayFiller(); 796 } 797 798 // Create the continuation block. 799 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 800 801 // If the number of elements isn't constant, we have to now check if there is 802 // anything left to initialize. 803 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 804 // If all elements have already been initialized, skip the whole loop. 805 if (constNum->getZExtValue() <= initializerElements) { 806 // If there was a cleanup, deactivate it. 807 if (cleanupDominator) 808 DeactivateCleanupBlock(cleanup, cleanupDominator); 809 return; 810 } 811 } else { 812 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 813 llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 814 "array.isempty"); 815 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 816 EmitBlock(nonEmptyBB); 817 } 818 819 // Enter the loop. 820 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 821 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 822 823 EmitBlock(loopBB); 824 825 // Set up the current-element phi. 826 llvm::PHINode *curPtr = 827 Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 828 curPtr->addIncoming(explicitPtr, entryBB); 829 830 // Store the new cleanup position for irregular cleanups. 831 if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 832 833 // Enter a partial-destruction cleanup if necessary. 834 if (!cleanupDominator && needsEHCleanup(dtorKind)) { 835 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 836 getDestroyer(dtorKind)); 837 cleanup = EHStack.stable_begin(); 838 cleanupDominator = Builder.CreateUnreachable(); 839 } 840 841 // Emit the initializer into this element. 842 StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 843 844 // Leave the cleanup if we entered one. 845 if (cleanupDominator) { 846 DeactivateCleanupBlock(cleanup, cleanupDominator); 847 cleanupDominator->eraseFromParent(); 848 } 849 850 // Advance to the next element. 851 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 852 853 // Check whether we've gotten to the end of the array and, if so, 854 // exit the loop. 855 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 856 Builder.CreateCondBr(isEnd, contBB, loopBB); 857 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 858 859 EmitBlock(contBB); 860 } 861 862 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 863 llvm::Value *NewPtr, llvm::Value *Size) { 864 CGF.EmitCastToVoidPtr(NewPtr); 865 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 866 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 867 Alignment.getQuantity(), false); 868 } 869 870 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 871 QualType ElementType, 872 llvm::Value *NewPtr, 873 llvm::Value *NumElements, 874 llvm::Value *AllocSizeWithoutCookie) { 875 const Expr *Init = E->getInitializer(); 876 if (E->isArray()) { 877 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 878 CXXConstructorDecl *Ctor = CCE->getConstructor(); 879 if (Ctor->isTrivial()) { 880 // If new expression did not specify value-initialization, then there 881 // is no initialization. 882 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 883 return; 884 885 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 886 // Optimization: since zero initialization will just set the memory 887 // to all zeroes, generate a single memset to do it in one shot. 888 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 889 return; 890 } 891 } 892 893 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 894 CCE->arg_begin(), CCE->arg_end(), 895 CCE->requiresZeroInitialization()); 896 return; 897 } else if (Init && isa<ImplicitValueInitExpr>(Init) && 898 CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 899 // Optimization: since zero initialization will just set the memory 900 // to all zeroes, generate a single memset to do it in one shot. 901 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 902 return; 903 } 904 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 905 return; 906 } 907 908 if (!Init) 909 return; 910 911 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 912 } 913 914 /// Emit a call to an operator new or operator delete function, as implicitly 915 /// created by new-expressions and delete-expressions. 916 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 917 const FunctionDecl *Callee, 918 const FunctionProtoType *CalleeType, 919 const CallArgList &Args) { 920 llvm::Instruction *CallOrInvoke; 921 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 922 RValue RV = 923 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType), 924 CalleeAddr, ReturnValueSlot(), Args, 925 Callee, &CallOrInvoke); 926 927 /// C++1y [expr.new]p10: 928 /// [In a new-expression,] an implementation is allowed to omit a call 929 /// to a replaceable global allocation function. 930 /// 931 /// We model such elidable calls with the 'builtin' attribute. 932 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 933 if (Callee->isReplaceableGlobalAllocationFunction() && 934 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 935 // FIXME: Add addAttribute to CallSite. 936 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 937 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 938 llvm::Attribute::Builtin); 939 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 940 II->addAttribute(llvm::AttributeSet::FunctionIndex, 941 llvm::Attribute::Builtin); 942 else 943 llvm_unreachable("unexpected kind of call instruction"); 944 } 945 946 return RV; 947 } 948 949 namespace { 950 /// A cleanup to call the given 'operator delete' function upon 951 /// abnormal exit from a new expression. 952 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 953 size_t NumPlacementArgs; 954 const FunctionDecl *OperatorDelete; 955 llvm::Value *Ptr; 956 llvm::Value *AllocSize; 957 958 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 959 960 public: 961 static size_t getExtraSize(size_t NumPlacementArgs) { 962 return NumPlacementArgs * sizeof(RValue); 963 } 964 965 CallDeleteDuringNew(size_t NumPlacementArgs, 966 const FunctionDecl *OperatorDelete, 967 llvm::Value *Ptr, 968 llvm::Value *AllocSize) 969 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 970 Ptr(Ptr), AllocSize(AllocSize) {} 971 972 void setPlacementArg(unsigned I, RValue Arg) { 973 assert(I < NumPlacementArgs && "index out of range"); 974 getPlacementArgs()[I] = Arg; 975 } 976 977 void Emit(CodeGenFunction &CGF, Flags flags) { 978 const FunctionProtoType *FPT 979 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 980 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 981 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 982 983 CallArgList DeleteArgs; 984 985 // The first argument is always a void*. 986 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 987 DeleteArgs.add(RValue::get(Ptr), *AI++); 988 989 // A member 'operator delete' can take an extra 'size_t' argument. 990 if (FPT->getNumArgs() == NumPlacementArgs + 2) 991 DeleteArgs.add(RValue::get(AllocSize), *AI++); 992 993 // Pass the rest of the arguments, which must match exactly. 994 for (unsigned I = 0; I != NumPlacementArgs; ++I) 995 DeleteArgs.add(getPlacementArgs()[I], *AI++); 996 997 // Call 'operator delete'. 998 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 999 } 1000 }; 1001 1002 /// A cleanup to call the given 'operator delete' function upon 1003 /// abnormal exit from a new expression when the new expression is 1004 /// conditional. 1005 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1006 size_t NumPlacementArgs; 1007 const FunctionDecl *OperatorDelete; 1008 DominatingValue<RValue>::saved_type Ptr; 1009 DominatingValue<RValue>::saved_type AllocSize; 1010 1011 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1012 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1013 } 1014 1015 public: 1016 static size_t getExtraSize(size_t NumPlacementArgs) { 1017 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1018 } 1019 1020 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1021 const FunctionDecl *OperatorDelete, 1022 DominatingValue<RValue>::saved_type Ptr, 1023 DominatingValue<RValue>::saved_type AllocSize) 1024 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1025 Ptr(Ptr), AllocSize(AllocSize) {} 1026 1027 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1028 assert(I < NumPlacementArgs && "index out of range"); 1029 getPlacementArgs()[I] = Arg; 1030 } 1031 1032 void Emit(CodeGenFunction &CGF, Flags flags) { 1033 const FunctionProtoType *FPT 1034 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1035 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1036 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1037 1038 CallArgList DeleteArgs; 1039 1040 // The first argument is always a void*. 1041 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1042 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1043 1044 // A member 'operator delete' can take an extra 'size_t' argument. 1045 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1046 RValue RV = AllocSize.restore(CGF); 1047 DeleteArgs.add(RV, *AI++); 1048 } 1049 1050 // Pass the rest of the arguments, which must match exactly. 1051 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1052 RValue RV = getPlacementArgs()[I].restore(CGF); 1053 DeleteArgs.add(RV, *AI++); 1054 } 1055 1056 // Call 'operator delete'. 1057 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1058 } 1059 }; 1060 } 1061 1062 /// Enter a cleanup to call 'operator delete' if the initializer in a 1063 /// new-expression throws. 1064 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1065 const CXXNewExpr *E, 1066 llvm::Value *NewPtr, 1067 llvm::Value *AllocSize, 1068 const CallArgList &NewArgs) { 1069 // If we're not inside a conditional branch, then the cleanup will 1070 // dominate and we can do the easier (and more efficient) thing. 1071 if (!CGF.isInConditionalBranch()) { 1072 CallDeleteDuringNew *Cleanup = CGF.EHStack 1073 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1074 E->getNumPlacementArgs(), 1075 E->getOperatorDelete(), 1076 NewPtr, AllocSize); 1077 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1078 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1079 1080 return; 1081 } 1082 1083 // Otherwise, we need to save all this stuff. 1084 DominatingValue<RValue>::saved_type SavedNewPtr = 1085 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1086 DominatingValue<RValue>::saved_type SavedAllocSize = 1087 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1088 1089 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1090 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1091 E->getNumPlacementArgs(), 1092 E->getOperatorDelete(), 1093 SavedNewPtr, 1094 SavedAllocSize); 1095 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1096 Cleanup->setPlacementArg(I, 1097 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1098 1099 CGF.initFullExprCleanup(); 1100 } 1101 1102 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1103 // The element type being allocated. 1104 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1105 1106 // 1. Build a call to the allocation function. 1107 FunctionDecl *allocator = E->getOperatorNew(); 1108 const FunctionProtoType *allocatorType = 1109 allocator->getType()->castAs<FunctionProtoType>(); 1110 1111 CallArgList allocatorArgs; 1112 1113 // The allocation size is the first argument. 1114 QualType sizeType = getContext().getSizeType(); 1115 1116 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1117 unsigned minElements = 0; 1118 if (E->isArray() && E->hasInitializer()) { 1119 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1120 minElements = ILE->getNumInits(); 1121 } 1122 1123 llvm::Value *numElements = 0; 1124 llvm::Value *allocSizeWithoutCookie = 0; 1125 llvm::Value *allocSize = 1126 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1127 allocSizeWithoutCookie); 1128 1129 allocatorArgs.add(RValue::get(allocSize), sizeType); 1130 1131 // Emit the rest of the arguments. 1132 // FIXME: Ideally, this should just use EmitCallArgs. 1133 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1134 1135 // First, use the types from the function type. 1136 // We start at 1 here because the first argument (the allocation size) 1137 // has already been emitted. 1138 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1139 ++i, ++placementArg) { 1140 QualType argType = allocatorType->getArgType(i); 1141 1142 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1143 placementArg->getType()) && 1144 "type mismatch in call argument!"); 1145 1146 EmitCallArg(allocatorArgs, *placementArg, argType); 1147 } 1148 1149 // Either we've emitted all the call args, or we have a call to a 1150 // variadic function. 1151 assert((placementArg == E->placement_arg_end() || 1152 allocatorType->isVariadic()) && 1153 "Extra arguments to non-variadic function!"); 1154 1155 // If we still have any arguments, emit them using the type of the argument. 1156 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1157 placementArg != placementArgsEnd; ++placementArg) { 1158 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1159 } 1160 1161 // Emit the allocation call. If the allocator is a global placement 1162 // operator, just "inline" it directly. 1163 RValue RV; 1164 if (allocator->isReservedGlobalPlacementOperator()) { 1165 assert(allocatorArgs.size() == 2); 1166 RV = allocatorArgs[1].RV; 1167 // TODO: kill any unnecessary computations done for the size 1168 // argument. 1169 } else { 1170 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1171 } 1172 1173 // Emit a null check on the allocation result if the allocation 1174 // function is allowed to return null (because it has a non-throwing 1175 // exception spec; for this part, we inline 1176 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1177 // interesting initializer. 1178 bool nullCheck = allocatorType->isNothrow(getContext()) && 1179 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1180 1181 llvm::BasicBlock *nullCheckBB = 0; 1182 llvm::BasicBlock *contBB = 0; 1183 1184 llvm::Value *allocation = RV.getScalarVal(); 1185 unsigned AS = allocation->getType()->getPointerAddressSpace(); 1186 1187 // The null-check means that the initializer is conditionally 1188 // evaluated. 1189 ConditionalEvaluation conditional(*this); 1190 1191 if (nullCheck) { 1192 conditional.begin(*this); 1193 1194 nullCheckBB = Builder.GetInsertBlock(); 1195 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1196 contBB = createBasicBlock("new.cont"); 1197 1198 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1199 Builder.CreateCondBr(isNull, contBB, notNullBB); 1200 EmitBlock(notNullBB); 1201 } 1202 1203 // If there's an operator delete, enter a cleanup to call it if an 1204 // exception is thrown. 1205 EHScopeStack::stable_iterator operatorDeleteCleanup; 1206 llvm::Instruction *cleanupDominator = 0; 1207 if (E->getOperatorDelete() && 1208 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1209 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1210 operatorDeleteCleanup = EHStack.stable_begin(); 1211 cleanupDominator = Builder.CreateUnreachable(); 1212 } 1213 1214 assert((allocSize == allocSizeWithoutCookie) == 1215 CalculateCookiePadding(*this, E).isZero()); 1216 if (allocSize != allocSizeWithoutCookie) { 1217 assert(E->isArray()); 1218 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1219 numElements, 1220 E, allocType); 1221 } 1222 1223 llvm::Type *elementPtrTy 1224 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1225 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1226 1227 EmitNewInitializer(*this, E, allocType, result, numElements, 1228 allocSizeWithoutCookie); 1229 if (E->isArray()) { 1230 // NewPtr is a pointer to the base element type. If we're 1231 // allocating an array of arrays, we'll need to cast back to the 1232 // array pointer type. 1233 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1234 if (result->getType() != resultType) 1235 result = Builder.CreateBitCast(result, resultType); 1236 } 1237 1238 // Deactivate the 'operator delete' cleanup if we finished 1239 // initialization. 1240 if (operatorDeleteCleanup.isValid()) { 1241 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1242 cleanupDominator->eraseFromParent(); 1243 } 1244 1245 if (nullCheck) { 1246 conditional.end(*this); 1247 1248 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1249 EmitBlock(contBB); 1250 1251 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1252 PHI->addIncoming(result, notNullBB); 1253 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1254 nullCheckBB); 1255 1256 result = PHI; 1257 } 1258 1259 return result; 1260 } 1261 1262 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1263 llvm::Value *Ptr, 1264 QualType DeleteTy) { 1265 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1266 1267 const FunctionProtoType *DeleteFTy = 1268 DeleteFD->getType()->getAs<FunctionProtoType>(); 1269 1270 CallArgList DeleteArgs; 1271 1272 // Check if we need to pass the size to the delete operator. 1273 llvm::Value *Size = 0; 1274 QualType SizeTy; 1275 if (DeleteFTy->getNumArgs() == 2) { 1276 SizeTy = DeleteFTy->getArgType(1); 1277 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1278 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1279 DeleteTypeSize.getQuantity()); 1280 } 1281 1282 QualType ArgTy = DeleteFTy->getArgType(0); 1283 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1284 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1285 1286 if (Size) 1287 DeleteArgs.add(RValue::get(Size), SizeTy); 1288 1289 // Emit the call to delete. 1290 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1291 } 1292 1293 namespace { 1294 /// Calls the given 'operator delete' on a single object. 1295 struct CallObjectDelete : EHScopeStack::Cleanup { 1296 llvm::Value *Ptr; 1297 const FunctionDecl *OperatorDelete; 1298 QualType ElementType; 1299 1300 CallObjectDelete(llvm::Value *Ptr, 1301 const FunctionDecl *OperatorDelete, 1302 QualType ElementType) 1303 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1304 1305 void Emit(CodeGenFunction &CGF, Flags flags) { 1306 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1307 } 1308 }; 1309 } 1310 1311 /// Emit the code for deleting a single object. 1312 static void EmitObjectDelete(CodeGenFunction &CGF, 1313 const FunctionDecl *OperatorDelete, 1314 llvm::Value *Ptr, 1315 QualType ElementType, 1316 bool UseGlobalDelete) { 1317 // Find the destructor for the type, if applicable. If the 1318 // destructor is virtual, we'll just emit the vcall and return. 1319 const CXXDestructorDecl *Dtor = 0; 1320 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1321 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1322 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1323 Dtor = RD->getDestructor(); 1324 1325 if (Dtor->isVirtual()) { 1326 if (UseGlobalDelete) { 1327 // If we're supposed to call the global delete, make sure we do so 1328 // even if the destructor throws. 1329 1330 // Derive the complete-object pointer, which is what we need 1331 // to pass to the deallocation function. 1332 llvm::Value *completePtr = 1333 CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 1334 1335 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1336 completePtr, OperatorDelete, 1337 ElementType); 1338 } 1339 1340 // FIXME: Provide a source location here. 1341 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1342 CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 1343 SourceLocation(), Ptr); 1344 1345 if (UseGlobalDelete) { 1346 CGF.PopCleanupBlock(); 1347 } 1348 1349 return; 1350 } 1351 } 1352 } 1353 1354 // Make sure that we call delete even if the dtor throws. 1355 // This doesn't have to a conditional cleanup because we're going 1356 // to pop it off in a second. 1357 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1358 Ptr, OperatorDelete, ElementType); 1359 1360 if (Dtor) 1361 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1362 /*ForVirtualBase=*/false, 1363 /*Delegating=*/false, 1364 Ptr); 1365 else if (CGF.getLangOpts().ObjCAutoRefCount && 1366 ElementType->isObjCLifetimeType()) { 1367 switch (ElementType.getObjCLifetime()) { 1368 case Qualifiers::OCL_None: 1369 case Qualifiers::OCL_ExplicitNone: 1370 case Qualifiers::OCL_Autoreleasing: 1371 break; 1372 1373 case Qualifiers::OCL_Strong: { 1374 // Load the pointer value. 1375 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1376 ElementType.isVolatileQualified()); 1377 1378 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 1379 break; 1380 } 1381 1382 case Qualifiers::OCL_Weak: 1383 CGF.EmitARCDestroyWeak(Ptr); 1384 break; 1385 } 1386 } 1387 1388 CGF.PopCleanupBlock(); 1389 } 1390 1391 namespace { 1392 /// Calls the given 'operator delete' on an array of objects. 1393 struct CallArrayDelete : EHScopeStack::Cleanup { 1394 llvm::Value *Ptr; 1395 const FunctionDecl *OperatorDelete; 1396 llvm::Value *NumElements; 1397 QualType ElementType; 1398 CharUnits CookieSize; 1399 1400 CallArrayDelete(llvm::Value *Ptr, 1401 const FunctionDecl *OperatorDelete, 1402 llvm::Value *NumElements, 1403 QualType ElementType, 1404 CharUnits CookieSize) 1405 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1406 ElementType(ElementType), CookieSize(CookieSize) {} 1407 1408 void Emit(CodeGenFunction &CGF, Flags flags) { 1409 const FunctionProtoType *DeleteFTy = 1410 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1411 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1412 1413 CallArgList Args; 1414 1415 // Pass the pointer as the first argument. 1416 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1417 llvm::Value *DeletePtr 1418 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1419 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1420 1421 // Pass the original requested size as the second argument. 1422 if (DeleteFTy->getNumArgs() == 2) { 1423 QualType size_t = DeleteFTy->getArgType(1); 1424 llvm::IntegerType *SizeTy 1425 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1426 1427 CharUnits ElementTypeSize = 1428 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1429 1430 // The size of an element, multiplied by the number of elements. 1431 llvm::Value *Size 1432 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1433 Size = CGF.Builder.CreateMul(Size, NumElements); 1434 1435 // Plus the size of the cookie if applicable. 1436 if (!CookieSize.isZero()) { 1437 llvm::Value *CookieSizeV 1438 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1439 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1440 } 1441 1442 Args.add(RValue::get(Size), size_t); 1443 } 1444 1445 // Emit the call to delete. 1446 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1447 } 1448 }; 1449 } 1450 1451 /// Emit the code for deleting an array of objects. 1452 static void EmitArrayDelete(CodeGenFunction &CGF, 1453 const CXXDeleteExpr *E, 1454 llvm::Value *deletedPtr, 1455 QualType elementType) { 1456 llvm::Value *numElements = 0; 1457 llvm::Value *allocatedPtr = 0; 1458 CharUnits cookieSize; 1459 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1460 numElements, allocatedPtr, cookieSize); 1461 1462 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1463 1464 // Make sure that we call delete even if one of the dtors throws. 1465 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1466 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1467 allocatedPtr, operatorDelete, 1468 numElements, elementType, 1469 cookieSize); 1470 1471 // Destroy the elements. 1472 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1473 assert(numElements && "no element count for a type with a destructor!"); 1474 1475 llvm::Value *arrayEnd = 1476 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1477 1478 // Note that it is legal to allocate a zero-length array, and we 1479 // can never fold the check away because the length should always 1480 // come from a cookie. 1481 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1482 CGF.getDestroyer(dtorKind), 1483 /*checkZeroLength*/ true, 1484 CGF.needsEHCleanup(dtorKind)); 1485 } 1486 1487 // Pop the cleanup block. 1488 CGF.PopCleanupBlock(); 1489 } 1490 1491 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1492 const Expr *Arg = E->getArgument(); 1493 llvm::Value *Ptr = EmitScalarExpr(Arg); 1494 1495 // Null check the pointer. 1496 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1497 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1498 1499 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1500 1501 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1502 EmitBlock(DeleteNotNull); 1503 1504 // We might be deleting a pointer to array. If so, GEP down to the 1505 // first non-array element. 1506 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1507 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1508 if (DeleteTy->isConstantArrayType()) { 1509 llvm::Value *Zero = Builder.getInt32(0); 1510 SmallVector<llvm::Value*,8> GEP; 1511 1512 GEP.push_back(Zero); // point at the outermost array 1513 1514 // For each layer of array type we're pointing at: 1515 while (const ConstantArrayType *Arr 1516 = getContext().getAsConstantArrayType(DeleteTy)) { 1517 // 1. Unpeel the array type. 1518 DeleteTy = Arr->getElementType(); 1519 1520 // 2. GEP to the first element of the array. 1521 GEP.push_back(Zero); 1522 } 1523 1524 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1525 } 1526 1527 assert(ConvertTypeForMem(DeleteTy) == 1528 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1529 1530 if (E->isArrayForm()) { 1531 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1532 } else { 1533 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1534 E->isGlobalDelete()); 1535 } 1536 1537 EmitBlock(DeleteEnd); 1538 } 1539 1540 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1541 // void __cxa_bad_typeid(); 1542 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1543 1544 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1545 } 1546 1547 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1548 llvm::Value *Fn = getBadTypeidFn(CGF); 1549 CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1550 CGF.Builder.CreateUnreachable(); 1551 } 1552 1553 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1554 const Expr *E, 1555 llvm::Type *StdTypeInfoPtrTy) { 1556 // Get the vtable pointer. 1557 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1558 1559 // C++ [expr.typeid]p2: 1560 // If the glvalue expression is obtained by applying the unary * operator to 1561 // a pointer and the pointer is a null pointer value, the typeid expression 1562 // throws the std::bad_typeid exception. 1563 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1564 if (UO->getOpcode() == UO_Deref) { 1565 llvm::BasicBlock *BadTypeidBlock = 1566 CGF.createBasicBlock("typeid.bad_typeid"); 1567 llvm::BasicBlock *EndBlock = 1568 CGF.createBasicBlock("typeid.end"); 1569 1570 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1571 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1572 1573 CGF.EmitBlock(BadTypeidBlock); 1574 EmitBadTypeidCall(CGF); 1575 CGF.EmitBlock(EndBlock); 1576 } 1577 } 1578 1579 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1580 StdTypeInfoPtrTy->getPointerTo()); 1581 1582 // Load the type info. 1583 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1584 return CGF.Builder.CreateLoad(Value); 1585 } 1586 1587 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1588 llvm::Type *StdTypeInfoPtrTy = 1589 ConvertType(E->getType())->getPointerTo(); 1590 1591 if (E->isTypeOperand()) { 1592 llvm::Constant *TypeInfo = 1593 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1594 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1595 } 1596 1597 // C++ [expr.typeid]p2: 1598 // When typeid is applied to a glvalue expression whose type is a 1599 // polymorphic class type, the result refers to a std::type_info object 1600 // representing the type of the most derived object (that is, the dynamic 1601 // type) to which the glvalue refers. 1602 if (E->isPotentiallyEvaluated()) 1603 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1604 StdTypeInfoPtrTy); 1605 1606 QualType OperandTy = E->getExprOperand()->getType(); 1607 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1608 StdTypeInfoPtrTy); 1609 } 1610 1611 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1612 // void *__dynamic_cast(const void *sub, 1613 // const abi::__class_type_info *src, 1614 // const abi::__class_type_info *dst, 1615 // std::ptrdiff_t src2dst_offset); 1616 1617 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1618 llvm::Type *PtrDiffTy = 1619 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1620 1621 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1622 1623 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); 1624 1625 // Mark the function as nounwind readonly. 1626 llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, 1627 llvm::Attribute::ReadOnly }; 1628 llvm::AttributeSet Attrs = llvm::AttributeSet::get( 1629 CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); 1630 1631 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); 1632 } 1633 1634 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1635 // void __cxa_bad_cast(); 1636 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1637 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1638 } 1639 1640 static void EmitBadCastCall(CodeGenFunction &CGF) { 1641 llvm::Value *Fn = getBadCastFn(CGF); 1642 CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1643 CGF.Builder.CreateUnreachable(); 1644 } 1645 1646 /// \brief Compute the src2dst_offset hint as described in the 1647 /// Itanium C++ ABI [2.9.7] 1648 static CharUnits computeOffsetHint(ASTContext &Context, 1649 const CXXRecordDecl *Src, 1650 const CXXRecordDecl *Dst) { 1651 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1652 /*DetectVirtual=*/false); 1653 1654 // If Dst is not derived from Src we can skip the whole computation below and 1655 // return that Src is not a public base of Dst. Record all inheritance paths. 1656 if (!Dst->isDerivedFrom(Src, Paths)) 1657 return CharUnits::fromQuantity(-2ULL); 1658 1659 unsigned NumPublicPaths = 0; 1660 CharUnits Offset; 1661 1662 // Now walk all possible inheritance paths. 1663 for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); 1664 I != E; ++I) { 1665 if (I->Access != AS_public) // Ignore non-public inheritance. 1666 continue; 1667 1668 ++NumPublicPaths; 1669 1670 for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 1671 // If the path contains a virtual base class we can't give any hint. 1672 // -1: no hint. 1673 if (J->Base->isVirtual()) 1674 return CharUnits::fromQuantity(-1ULL); 1675 1676 if (NumPublicPaths > 1) // Won't use offsets, skip computation. 1677 continue; 1678 1679 // Accumulate the base class offsets. 1680 const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); 1681 Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); 1682 } 1683 } 1684 1685 // -2: Src is not a public base of Dst. 1686 if (NumPublicPaths == 0) 1687 return CharUnits::fromQuantity(-2ULL); 1688 1689 // -3: Src is a multiple public base type but never a virtual base type. 1690 if (NumPublicPaths > 1) 1691 return CharUnits::fromQuantity(-3ULL); 1692 1693 // Otherwise, the Src type is a unique public nonvirtual base type of Dst. 1694 // Return the offset of Src from the origin of Dst. 1695 return Offset; 1696 } 1697 1698 static llvm::Value * 1699 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1700 QualType SrcTy, QualType DestTy, 1701 llvm::BasicBlock *CastEnd) { 1702 llvm::Type *PtrDiffLTy = 1703 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1704 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1705 1706 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1707 if (PTy->getPointeeType()->isVoidType()) { 1708 // C++ [expr.dynamic.cast]p7: 1709 // If T is "pointer to cv void," then the result is a pointer to the 1710 // most derived object pointed to by v. 1711 1712 // Get the vtable pointer. 1713 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1714 1715 // Get the offset-to-top from the vtable. 1716 llvm::Value *OffsetToTop = 1717 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1718 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1719 1720 // Finally, add the offset to the pointer. 1721 Value = CGF.EmitCastToVoidPtr(Value); 1722 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1723 1724 return CGF.Builder.CreateBitCast(Value, DestLTy); 1725 } 1726 } 1727 1728 QualType SrcRecordTy; 1729 QualType DestRecordTy; 1730 1731 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1732 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1733 DestRecordTy = DestPTy->getPointeeType(); 1734 } else { 1735 SrcRecordTy = SrcTy; 1736 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1737 } 1738 1739 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1740 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1741 1742 llvm::Value *SrcRTTI = 1743 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1744 llvm::Value *DestRTTI = 1745 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1746 1747 // Compute the offset hint. 1748 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1749 const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); 1750 llvm::Value *OffsetHint = 1751 llvm::ConstantInt::get(PtrDiffLTy, 1752 computeOffsetHint(CGF.getContext(), SrcDecl, 1753 DestDecl).getQuantity()); 1754 1755 // Emit the call to __dynamic_cast. 1756 Value = CGF.EmitCastToVoidPtr(Value); 1757 1758 llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; 1759 Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); 1760 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1761 1762 /// C++ [expr.dynamic.cast]p9: 1763 /// A failed cast to reference type throws std::bad_cast 1764 if (DestTy->isReferenceType()) { 1765 llvm::BasicBlock *BadCastBlock = 1766 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1767 1768 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1769 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1770 1771 CGF.EmitBlock(BadCastBlock); 1772 EmitBadCastCall(CGF); 1773 } 1774 1775 return Value; 1776 } 1777 1778 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1779 QualType DestTy) { 1780 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1781 if (DestTy->isPointerType()) 1782 return llvm::Constant::getNullValue(DestLTy); 1783 1784 /// C++ [expr.dynamic.cast]p9: 1785 /// A failed cast to reference type throws std::bad_cast 1786 EmitBadCastCall(CGF); 1787 1788 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1789 return llvm::UndefValue::get(DestLTy); 1790 } 1791 1792 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1793 const CXXDynamicCastExpr *DCE) { 1794 QualType DestTy = DCE->getTypeAsWritten(); 1795 1796 if (DCE->isAlwaysNull()) 1797 return EmitDynamicCastToNull(*this, DestTy); 1798 1799 QualType SrcTy = DCE->getSubExpr()->getType(); 1800 1801 // C++ [expr.dynamic.cast]p4: 1802 // If the value of v is a null pointer value in the pointer case, the result 1803 // is the null pointer value of type T. 1804 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1805 1806 llvm::BasicBlock *CastNull = 0; 1807 llvm::BasicBlock *CastNotNull = 0; 1808 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1809 1810 if (ShouldNullCheckSrcValue) { 1811 CastNull = createBasicBlock("dynamic_cast.null"); 1812 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1813 1814 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1815 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1816 EmitBlock(CastNotNull); 1817 } 1818 1819 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1820 1821 if (ShouldNullCheckSrcValue) { 1822 EmitBranch(CastEnd); 1823 1824 EmitBlock(CastNull); 1825 EmitBranch(CastEnd); 1826 } 1827 1828 EmitBlock(CastEnd); 1829 1830 if (ShouldNullCheckSrcValue) { 1831 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1832 PHI->addIncoming(Value, CastNotNull); 1833 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1834 1835 Value = PHI; 1836 } 1837 1838 return Value; 1839 } 1840 1841 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1842 RunCleanupsScope Scope(*this); 1843 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 1844 Slot.getAlignment()); 1845 1846 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1847 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1848 e = E->capture_init_end(); 1849 i != e; ++i, ++CurField) { 1850 // Emit initialization 1851 1852 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1853 ArrayRef<VarDecl *> ArrayIndexes; 1854 if (CurField->getType()->isArrayType()) 1855 ArrayIndexes = E->getCaptureInitIndexVars(i); 1856 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1857 } 1858 } 1859