1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "ConstantEmitter.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Intrinsics.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 struct MemberCallInfo { 30 RequiredArgs ReqArgs; 31 // Number of prefix arguments for the call. Ignores the `this` pointer. 32 unsigned PrefixSize; 33 }; 34 } 35 36 static MemberCallInfo 37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 38 llvm::Value *This, llvm::Value *ImplicitParam, 39 QualType ImplicitParamTy, const CallExpr *CE, 40 CallArgList &Args, CallArgList *RtlArgs) { 41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 42 isa<CXXOperatorCallExpr>(CE)); 43 assert(MD->isInstance() && 44 "Trying to emit a member or operator call expr on a static method!"); 45 ASTContext &C = CGF.getContext(); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 50 Args.add(RValue::get(This), 51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 52 53 // If there is an implicit parameter (e.g. VTT), emit it. 54 if (ImplicitParam) { 55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 56 } 57 58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 60 unsigned PrefixSize = Args.size() - 1; 61 62 // And the rest of the call args. 63 if (RtlArgs) { 64 // Special case: if the caller emitted the arguments right-to-left already 65 // (prior to emitting the *this argument), we're done. This happens for 66 // assignment operators. 67 Args.addFrom(*RtlArgs); 68 } else if (CE) { 69 // Special case: skip first argument of CXXOperatorCall (it is "this"). 70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 72 CE->getDirectCallee()); 73 } else { 74 assert( 75 FPT->getNumParams() == 0 && 76 "No CallExpr specified for function with non-zero number of arguments"); 77 } 78 return {required, PrefixSize}; 79 } 80 81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 82 const CXXMethodDecl *MD, const CGCallee &Callee, 83 ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 92 return EmitCall(FnInfo, Callee, ReturnValue, Args); 93 } 94 95 RValue CodeGenFunction::EmitCXXDestructorCall( 96 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 97 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 98 StructorType Type) { 99 CallArgList Args; 100 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 101 ImplicitParamTy, CE, Args, nullptr); 102 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 103 Callee, ReturnValueSlot(), Args); 104 } 105 106 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 107 const CXXPseudoDestructorExpr *E) { 108 QualType DestroyedType = E->getDestroyedType(); 109 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 110 // Automatic Reference Counting: 111 // If the pseudo-expression names a retainable object with weak or 112 // strong lifetime, the object shall be released. 113 Expr *BaseExpr = E->getBase(); 114 Address BaseValue = Address::invalid(); 115 Qualifiers BaseQuals; 116 117 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 118 if (E->isArrow()) { 119 BaseValue = EmitPointerWithAlignment(BaseExpr); 120 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 121 BaseQuals = PTy->getPointeeType().getQualifiers(); 122 } else { 123 LValue BaseLV = EmitLValue(BaseExpr); 124 BaseValue = BaseLV.getAddress(); 125 QualType BaseTy = BaseExpr->getType(); 126 BaseQuals = BaseTy.getQualifiers(); 127 } 128 129 switch (DestroyedType.getObjCLifetime()) { 130 case Qualifiers::OCL_None: 131 case Qualifiers::OCL_ExplicitNone: 132 case Qualifiers::OCL_Autoreleasing: 133 break; 134 135 case Qualifiers::OCL_Strong: 136 EmitARCRelease(Builder.CreateLoad(BaseValue, 137 DestroyedType.isVolatileQualified()), 138 ARCPreciseLifetime); 139 break; 140 141 case Qualifiers::OCL_Weak: 142 EmitARCDestroyWeak(BaseValue); 143 break; 144 } 145 } else { 146 // C++ [expr.pseudo]p1: 147 // The result shall only be used as the operand for the function call 148 // operator (), and the result of such a call has type void. The only 149 // effect is the evaluation of the postfix-expression before the dot or 150 // arrow. 151 EmitIgnoredExpr(E->getBase()); 152 } 153 154 return RValue::get(nullptr); 155 } 156 157 static CXXRecordDecl *getCXXRecord(const Expr *E) { 158 QualType T = E->getType(); 159 if (const PointerType *PTy = T->getAs<PointerType>()) 160 T = PTy->getPointeeType(); 161 const RecordType *Ty = T->castAs<RecordType>(); 162 return cast<CXXRecordDecl>(Ty->getDecl()); 163 } 164 165 // Note: This function also emit constructor calls to support a MSVC 166 // extensions allowing explicit constructor function call. 167 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 168 ReturnValueSlot ReturnValue) { 169 const Expr *callee = CE->getCallee()->IgnoreParens(); 170 171 if (isa<BinaryOperator>(callee)) 172 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 173 174 const MemberExpr *ME = cast<MemberExpr>(callee); 175 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 176 177 if (MD->isStatic()) { 178 // The method is static, emit it as we would a regular call. 179 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 180 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 181 ReturnValue); 182 } 183 184 bool HasQualifier = ME->hasQualifier(); 185 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 186 bool IsArrow = ME->isArrow(); 187 const Expr *Base = ME->getBase(); 188 189 return EmitCXXMemberOrOperatorMemberCallExpr( 190 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 191 } 192 193 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 194 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 195 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 196 const Expr *Base) { 197 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 198 199 // Compute the object pointer. 200 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 201 202 const CXXMethodDecl *DevirtualizedMethod = nullptr; 203 if (CanUseVirtualCall && 204 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 205 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 206 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 207 assert(DevirtualizedMethod); 208 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 209 const Expr *Inner = Base->ignoreParenBaseCasts(); 210 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 211 MD->getReturnType().getCanonicalType()) 212 // If the return types are not the same, this might be a case where more 213 // code needs to run to compensate for it. For example, the derived 214 // method might return a type that inherits form from the return 215 // type of MD and has a prefix. 216 // For now we just avoid devirtualizing these covariant cases. 217 DevirtualizedMethod = nullptr; 218 else if (getCXXRecord(Inner) == DevirtualizedClass) 219 // If the class of the Inner expression is where the dynamic method 220 // is defined, build the this pointer from it. 221 Base = Inner; 222 else if (getCXXRecord(Base) != DevirtualizedClass) { 223 // If the method is defined in a class that is not the best dynamic 224 // one or the one of the full expression, we would have to build 225 // a derived-to-base cast to compute the correct this pointer, but 226 // we don't have support for that yet, so do a virtual call. 227 DevirtualizedMethod = nullptr; 228 } 229 } 230 231 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 232 // operator before the LHS. 233 CallArgList RtlArgStorage; 234 CallArgList *RtlArgs = nullptr; 235 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 236 if (OCE->isAssignmentOp()) { 237 RtlArgs = &RtlArgStorage; 238 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 239 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 240 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 241 } 242 } 243 244 Address This = Address::invalid(); 245 if (IsArrow) 246 This = EmitPointerWithAlignment(Base); 247 else 248 This = EmitLValue(Base).getAddress(); 249 250 251 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 252 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 253 if (isa<CXXConstructorDecl>(MD) && 254 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 255 return RValue::get(nullptr); 256 257 if (!MD->getParent()->mayInsertExtraPadding()) { 258 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 259 // We don't like to generate the trivial copy/move assignment operator 260 // when it isn't necessary; just produce the proper effect here. 261 LValue RHS = isa<CXXOperatorCallExpr>(CE) 262 ? MakeNaturalAlignAddrLValue( 263 (*RtlArgs)[0].RV.getScalarVal(), 264 (*(CE->arg_begin() + 1))->getType()) 265 : EmitLValue(*CE->arg_begin()); 266 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 267 return RValue::get(This.getPointer()); 268 } 269 270 if (isa<CXXConstructorDecl>(MD) && 271 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 272 // Trivial move and copy ctor are the same. 273 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 274 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 275 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 276 return RValue::get(This.getPointer()); 277 } 278 llvm_unreachable("unknown trivial member function"); 279 } 280 } 281 282 // Compute the function type we're calling. 283 const CXXMethodDecl *CalleeDecl = 284 DevirtualizedMethod ? DevirtualizedMethod : MD; 285 const CGFunctionInfo *FInfo = nullptr; 286 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 287 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 288 Dtor, StructorType::Complete); 289 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 290 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 291 Ctor, StructorType::Complete); 292 else 293 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 294 295 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 296 297 // C++11 [class.mfct.non-static]p2: 298 // If a non-static member function of a class X is called for an object that 299 // is not of type X, or of a type derived from X, the behavior is undefined. 300 SourceLocation CallLoc; 301 ASTContext &C = getContext(); 302 if (CE) 303 CallLoc = CE->getExprLoc(); 304 305 SanitizerSet SkippedChecks; 306 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 307 auto *IOA = CMCE->getImplicitObjectArgument(); 308 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 309 if (IsImplicitObjectCXXThis) 310 SkippedChecks.set(SanitizerKind::Alignment, true); 311 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 312 SkippedChecks.set(SanitizerKind::Null, true); 313 } 314 EmitTypeCheck( 315 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 316 : CodeGenFunction::TCK_MemberCall, 317 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 318 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 319 320 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 321 // 'CalleeDecl' instead. 322 323 // C++ [class.virtual]p12: 324 // Explicit qualification with the scope operator (5.1) suppresses the 325 // virtual call mechanism. 326 // 327 // We also don't emit a virtual call if the base expression has a record type 328 // because then we know what the type is. 329 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 330 331 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 332 assert(CE->arg_begin() == CE->arg_end() && 333 "Destructor shouldn't have explicit parameters"); 334 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 335 if (UseVirtualCall) { 336 CGM.getCXXABI().EmitVirtualDestructorCall( 337 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 338 } else { 339 CGCallee Callee; 340 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 341 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 342 else if (!DevirtualizedMethod) 343 Callee = CGCallee::forDirect( 344 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 345 Dtor); 346 else { 347 const CXXDestructorDecl *DDtor = 348 cast<CXXDestructorDecl>(DevirtualizedMethod); 349 Callee = CGCallee::forDirect( 350 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 351 DDtor); 352 } 353 EmitCXXMemberOrOperatorCall( 354 CalleeDecl, Callee, ReturnValue, This.getPointer(), 355 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 356 } 357 return RValue::get(nullptr); 358 } 359 360 CGCallee Callee; 361 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 362 Callee = CGCallee::forDirect( 363 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 364 Ctor); 365 } else if (UseVirtualCall) { 366 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 367 CE->getLocStart()); 368 } else { 369 if (SanOpts.has(SanitizerKind::CFINVCall) && 370 MD->getParent()->isDynamicClass()) { 371 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 372 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 373 CE->getLocStart()); 374 } 375 376 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 377 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 378 else if (!DevirtualizedMethod) 379 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 380 else { 381 Callee = CGCallee::forDirect( 382 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 383 DevirtualizedMethod); 384 } 385 } 386 387 if (MD->isVirtual()) { 388 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 389 *this, CalleeDecl, This, UseVirtualCall); 390 } 391 392 return EmitCXXMemberOrOperatorCall( 393 CalleeDecl, Callee, ReturnValue, This.getPointer(), 394 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 395 } 396 397 RValue 398 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 399 ReturnValueSlot ReturnValue) { 400 const BinaryOperator *BO = 401 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 402 const Expr *BaseExpr = BO->getLHS(); 403 const Expr *MemFnExpr = BO->getRHS(); 404 405 const MemberPointerType *MPT = 406 MemFnExpr->getType()->castAs<MemberPointerType>(); 407 408 const FunctionProtoType *FPT = 409 MPT->getPointeeType()->castAs<FunctionProtoType>(); 410 const CXXRecordDecl *RD = 411 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 412 413 // Emit the 'this' pointer. 414 Address This = Address::invalid(); 415 if (BO->getOpcode() == BO_PtrMemI) 416 This = EmitPointerWithAlignment(BaseExpr); 417 else 418 This = EmitLValue(BaseExpr).getAddress(); 419 420 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 421 QualType(MPT->getClass(), 0)); 422 423 // Get the member function pointer. 424 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 425 426 // Ask the ABI to load the callee. Note that This is modified. 427 llvm::Value *ThisPtrForCall = nullptr; 428 CGCallee Callee = 429 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 430 ThisPtrForCall, MemFnPtr, MPT); 431 432 CallArgList Args; 433 434 QualType ThisType = 435 getContext().getPointerType(getContext().getTagDeclType(RD)); 436 437 // Push the this ptr. 438 Args.add(RValue::get(ThisPtrForCall), ThisType); 439 440 RequiredArgs required = 441 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 442 443 // And the rest of the call args 444 EmitCallArgs(Args, FPT, E->arguments()); 445 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 446 /*PrefixSize=*/0), 447 Callee, ReturnValue, Args); 448 } 449 450 RValue 451 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 452 const CXXMethodDecl *MD, 453 ReturnValueSlot ReturnValue) { 454 assert(MD->isInstance() && 455 "Trying to emit a member call expr on a static method!"); 456 return EmitCXXMemberOrOperatorMemberCallExpr( 457 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 458 /*IsArrow=*/false, E->getArg(0)); 459 } 460 461 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 462 ReturnValueSlot ReturnValue) { 463 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 464 } 465 466 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 467 Address DestPtr, 468 const CXXRecordDecl *Base) { 469 if (Base->isEmpty()) 470 return; 471 472 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 473 474 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 475 CharUnits NVSize = Layout.getNonVirtualSize(); 476 477 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 478 // present, they are initialized by the most derived class before calling the 479 // constructor. 480 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 481 Stores.emplace_back(CharUnits::Zero(), NVSize); 482 483 // Each store is split by the existence of a vbptr. 484 CharUnits VBPtrWidth = CGF.getPointerSize(); 485 std::vector<CharUnits> VBPtrOffsets = 486 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 487 for (CharUnits VBPtrOffset : VBPtrOffsets) { 488 // Stop before we hit any virtual base pointers located in virtual bases. 489 if (VBPtrOffset >= NVSize) 490 break; 491 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 492 CharUnits LastStoreOffset = LastStore.first; 493 CharUnits LastStoreSize = LastStore.second; 494 495 CharUnits SplitBeforeOffset = LastStoreOffset; 496 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 497 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 498 if (!SplitBeforeSize.isZero()) 499 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 500 501 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 502 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 503 assert(!SplitAfterSize.isNegative() && "negative store size!"); 504 if (!SplitAfterSize.isZero()) 505 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 506 } 507 508 // If the type contains a pointer to data member we can't memset it to zero. 509 // Instead, create a null constant and copy it to the destination. 510 // TODO: there are other patterns besides zero that we can usefully memset, 511 // like -1, which happens to be the pattern used by member-pointers. 512 // TODO: isZeroInitializable can be over-conservative in the case where a 513 // virtual base contains a member pointer. 514 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 515 if (!NullConstantForBase->isNullValue()) { 516 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 517 CGF.CGM.getModule(), NullConstantForBase->getType(), 518 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 519 NullConstantForBase, Twine()); 520 521 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 522 DestPtr.getAlignment()); 523 NullVariable->setAlignment(Align.getQuantity()); 524 525 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 526 527 // Get and call the appropriate llvm.memcpy overload. 528 for (std::pair<CharUnits, CharUnits> Store : Stores) { 529 CharUnits StoreOffset = Store.first; 530 CharUnits StoreSize = Store.second; 531 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 532 CGF.Builder.CreateMemCpy( 533 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 534 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 535 StoreSizeVal); 536 } 537 538 // Otherwise, just memset the whole thing to zero. This is legal 539 // because in LLVM, all default initializers (other than the ones we just 540 // handled above) are guaranteed to have a bit pattern of all zeros. 541 } else { 542 for (std::pair<CharUnits, CharUnits> Store : Stores) { 543 CharUnits StoreOffset = Store.first; 544 CharUnits StoreSize = Store.second; 545 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 546 CGF.Builder.CreateMemSet( 547 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 548 CGF.Builder.getInt8(0), StoreSizeVal); 549 } 550 } 551 } 552 553 void 554 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 555 AggValueSlot Dest) { 556 assert(!Dest.isIgnored() && "Must have a destination!"); 557 const CXXConstructorDecl *CD = E->getConstructor(); 558 559 // If we require zero initialization before (or instead of) calling the 560 // constructor, as can be the case with a non-user-provided default 561 // constructor, emit the zero initialization now, unless destination is 562 // already zeroed. 563 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 564 switch (E->getConstructionKind()) { 565 case CXXConstructExpr::CK_Delegating: 566 case CXXConstructExpr::CK_Complete: 567 EmitNullInitialization(Dest.getAddress(), E->getType()); 568 break; 569 case CXXConstructExpr::CK_VirtualBase: 570 case CXXConstructExpr::CK_NonVirtualBase: 571 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 572 CD->getParent()); 573 break; 574 } 575 } 576 577 // If this is a call to a trivial default constructor, do nothing. 578 if (CD->isTrivial() && CD->isDefaultConstructor()) 579 return; 580 581 // Elide the constructor if we're constructing from a temporary. 582 // The temporary check is required because Sema sets this on NRVO 583 // returns. 584 if (getLangOpts().ElideConstructors && E->isElidable()) { 585 assert(getContext().hasSameUnqualifiedType(E->getType(), 586 E->getArg(0)->getType())); 587 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 588 EmitAggExpr(E->getArg(0), Dest); 589 return; 590 } 591 } 592 593 if (const ArrayType *arrayType 594 = getContext().getAsArrayType(E->getType())) { 595 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 596 } else { 597 CXXCtorType Type = Ctor_Complete; 598 bool ForVirtualBase = false; 599 bool Delegating = false; 600 601 switch (E->getConstructionKind()) { 602 case CXXConstructExpr::CK_Delegating: 603 // We should be emitting a constructor; GlobalDecl will assert this 604 Type = CurGD.getCtorType(); 605 Delegating = true; 606 break; 607 608 case CXXConstructExpr::CK_Complete: 609 Type = Ctor_Complete; 610 break; 611 612 case CXXConstructExpr::CK_VirtualBase: 613 ForVirtualBase = true; 614 // fall-through 615 616 case CXXConstructExpr::CK_NonVirtualBase: 617 Type = Ctor_Base; 618 } 619 620 // Call the constructor. 621 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 622 Dest.getAddress(), E); 623 } 624 } 625 626 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 627 const Expr *Exp) { 628 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 629 Exp = E->getSubExpr(); 630 assert(isa<CXXConstructExpr>(Exp) && 631 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 632 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 633 const CXXConstructorDecl *CD = E->getConstructor(); 634 RunCleanupsScope Scope(*this); 635 636 // If we require zero initialization before (or instead of) calling the 637 // constructor, as can be the case with a non-user-provided default 638 // constructor, emit the zero initialization now. 639 // FIXME. Do I still need this for a copy ctor synthesis? 640 if (E->requiresZeroInitialization()) 641 EmitNullInitialization(Dest, E->getType()); 642 643 assert(!getContext().getAsConstantArrayType(E->getType()) 644 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 645 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 646 } 647 648 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 649 const CXXNewExpr *E) { 650 if (!E->isArray()) 651 return CharUnits::Zero(); 652 653 // No cookie is required if the operator new[] being used is the 654 // reserved placement operator new[]. 655 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 656 return CharUnits::Zero(); 657 658 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 659 } 660 661 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 662 const CXXNewExpr *e, 663 unsigned minElements, 664 llvm::Value *&numElements, 665 llvm::Value *&sizeWithoutCookie) { 666 QualType type = e->getAllocatedType(); 667 668 if (!e->isArray()) { 669 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 670 sizeWithoutCookie 671 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 672 return sizeWithoutCookie; 673 } 674 675 // The width of size_t. 676 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 677 678 // Figure out the cookie size. 679 llvm::APInt cookieSize(sizeWidth, 680 CalculateCookiePadding(CGF, e).getQuantity()); 681 682 // Emit the array size expression. 683 // We multiply the size of all dimensions for NumElements. 684 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 685 numElements = 686 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 687 if (!numElements) 688 numElements = CGF.EmitScalarExpr(e->getArraySize()); 689 assert(isa<llvm::IntegerType>(numElements->getType())); 690 691 // The number of elements can be have an arbitrary integer type; 692 // essentially, we need to multiply it by a constant factor, add a 693 // cookie size, and verify that the result is representable as a 694 // size_t. That's just a gloss, though, and it's wrong in one 695 // important way: if the count is negative, it's an error even if 696 // the cookie size would bring the total size >= 0. 697 bool isSigned 698 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 699 llvm::IntegerType *numElementsType 700 = cast<llvm::IntegerType>(numElements->getType()); 701 unsigned numElementsWidth = numElementsType->getBitWidth(); 702 703 // Compute the constant factor. 704 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 705 while (const ConstantArrayType *CAT 706 = CGF.getContext().getAsConstantArrayType(type)) { 707 type = CAT->getElementType(); 708 arraySizeMultiplier *= CAT->getSize(); 709 } 710 711 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 712 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 713 typeSizeMultiplier *= arraySizeMultiplier; 714 715 // This will be a size_t. 716 llvm::Value *size; 717 718 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 719 // Don't bloat the -O0 code. 720 if (llvm::ConstantInt *numElementsC = 721 dyn_cast<llvm::ConstantInt>(numElements)) { 722 const llvm::APInt &count = numElementsC->getValue(); 723 724 bool hasAnyOverflow = false; 725 726 // If 'count' was a negative number, it's an overflow. 727 if (isSigned && count.isNegative()) 728 hasAnyOverflow = true; 729 730 // We want to do all this arithmetic in size_t. If numElements is 731 // wider than that, check whether it's already too big, and if so, 732 // overflow. 733 else if (numElementsWidth > sizeWidth && 734 numElementsWidth - sizeWidth > count.countLeadingZeros()) 735 hasAnyOverflow = true; 736 737 // Okay, compute a count at the right width. 738 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 739 740 // If there is a brace-initializer, we cannot allocate fewer elements than 741 // there are initializers. If we do, that's treated like an overflow. 742 if (adjustedCount.ult(minElements)) 743 hasAnyOverflow = true; 744 745 // Scale numElements by that. This might overflow, but we don't 746 // care because it only overflows if allocationSize does, too, and 747 // if that overflows then we shouldn't use this. 748 numElements = llvm::ConstantInt::get(CGF.SizeTy, 749 adjustedCount * arraySizeMultiplier); 750 751 // Compute the size before cookie, and track whether it overflowed. 752 bool overflow; 753 llvm::APInt allocationSize 754 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 755 hasAnyOverflow |= overflow; 756 757 // Add in the cookie, and check whether it's overflowed. 758 if (cookieSize != 0) { 759 // Save the current size without a cookie. This shouldn't be 760 // used if there was overflow. 761 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 762 763 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 764 hasAnyOverflow |= overflow; 765 } 766 767 // On overflow, produce a -1 so operator new will fail. 768 if (hasAnyOverflow) { 769 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 770 } else { 771 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 772 } 773 774 // Otherwise, we might need to use the overflow intrinsics. 775 } else { 776 // There are up to five conditions we need to test for: 777 // 1) if isSigned, we need to check whether numElements is negative; 778 // 2) if numElementsWidth > sizeWidth, we need to check whether 779 // numElements is larger than something representable in size_t; 780 // 3) if minElements > 0, we need to check whether numElements is smaller 781 // than that. 782 // 4) we need to compute 783 // sizeWithoutCookie := numElements * typeSizeMultiplier 784 // and check whether it overflows; and 785 // 5) if we need a cookie, we need to compute 786 // size := sizeWithoutCookie + cookieSize 787 // and check whether it overflows. 788 789 llvm::Value *hasOverflow = nullptr; 790 791 // If numElementsWidth > sizeWidth, then one way or another, we're 792 // going to have to do a comparison for (2), and this happens to 793 // take care of (1), too. 794 if (numElementsWidth > sizeWidth) { 795 llvm::APInt threshold(numElementsWidth, 1); 796 threshold <<= sizeWidth; 797 798 llvm::Value *thresholdV 799 = llvm::ConstantInt::get(numElementsType, threshold); 800 801 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 802 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 803 804 // Otherwise, if we're signed, we want to sext up to size_t. 805 } else if (isSigned) { 806 if (numElementsWidth < sizeWidth) 807 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 808 809 // If there's a non-1 type size multiplier, then we can do the 810 // signedness check at the same time as we do the multiply 811 // because a negative number times anything will cause an 812 // unsigned overflow. Otherwise, we have to do it here. But at least 813 // in this case, we can subsume the >= minElements check. 814 if (typeSizeMultiplier == 1) 815 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 816 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 817 818 // Otherwise, zext up to size_t if necessary. 819 } else if (numElementsWidth < sizeWidth) { 820 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 821 } 822 823 assert(numElements->getType() == CGF.SizeTy); 824 825 if (minElements) { 826 // Don't allow allocation of fewer elements than we have initializers. 827 if (!hasOverflow) { 828 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 829 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 830 } else if (numElementsWidth > sizeWidth) { 831 // The other existing overflow subsumes this check. 832 // We do an unsigned comparison, since any signed value < -1 is 833 // taken care of either above or below. 834 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 835 CGF.Builder.CreateICmpULT(numElements, 836 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 837 } 838 } 839 840 size = numElements; 841 842 // Multiply by the type size if necessary. This multiplier 843 // includes all the factors for nested arrays. 844 // 845 // This step also causes numElements to be scaled up by the 846 // nested-array factor if necessary. Overflow on this computation 847 // can be ignored because the result shouldn't be used if 848 // allocation fails. 849 if (typeSizeMultiplier != 1) { 850 llvm::Value *umul_with_overflow 851 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 852 853 llvm::Value *tsmV = 854 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 855 llvm::Value *result = 856 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 857 858 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 859 if (hasOverflow) 860 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 861 else 862 hasOverflow = overflowed; 863 864 size = CGF.Builder.CreateExtractValue(result, 0); 865 866 // Also scale up numElements by the array size multiplier. 867 if (arraySizeMultiplier != 1) { 868 // If the base element type size is 1, then we can re-use the 869 // multiply we just did. 870 if (typeSize.isOne()) { 871 assert(arraySizeMultiplier == typeSizeMultiplier); 872 numElements = size; 873 874 // Otherwise we need a separate multiply. 875 } else { 876 llvm::Value *asmV = 877 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 878 numElements = CGF.Builder.CreateMul(numElements, asmV); 879 } 880 } 881 } else { 882 // numElements doesn't need to be scaled. 883 assert(arraySizeMultiplier == 1); 884 } 885 886 // Add in the cookie size if necessary. 887 if (cookieSize != 0) { 888 sizeWithoutCookie = size; 889 890 llvm::Value *uadd_with_overflow 891 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 892 893 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 894 llvm::Value *result = 895 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 896 897 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 898 if (hasOverflow) 899 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 900 else 901 hasOverflow = overflowed; 902 903 size = CGF.Builder.CreateExtractValue(result, 0); 904 } 905 906 // If we had any possibility of dynamic overflow, make a select to 907 // overwrite 'size' with an all-ones value, which should cause 908 // operator new to throw. 909 if (hasOverflow) 910 size = CGF.Builder.CreateSelect(hasOverflow, 911 llvm::Constant::getAllOnesValue(CGF.SizeTy), 912 size); 913 } 914 915 if (cookieSize == 0) 916 sizeWithoutCookie = size; 917 else 918 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 919 920 return size; 921 } 922 923 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 924 QualType AllocType, Address NewPtr) { 925 // FIXME: Refactor with EmitExprAsInit. 926 switch (CGF.getEvaluationKind(AllocType)) { 927 case TEK_Scalar: 928 CGF.EmitScalarInit(Init, nullptr, 929 CGF.MakeAddrLValue(NewPtr, AllocType), false); 930 return; 931 case TEK_Complex: 932 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 933 /*isInit*/ true); 934 return; 935 case TEK_Aggregate: { 936 AggValueSlot Slot 937 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 938 AggValueSlot::IsDestructed, 939 AggValueSlot::DoesNotNeedGCBarriers, 940 AggValueSlot::IsNotAliased); 941 CGF.EmitAggExpr(Init, Slot); 942 return; 943 } 944 } 945 llvm_unreachable("bad evaluation kind"); 946 } 947 948 void CodeGenFunction::EmitNewArrayInitializer( 949 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 950 Address BeginPtr, llvm::Value *NumElements, 951 llvm::Value *AllocSizeWithoutCookie) { 952 // If we have a type with trivial initialization and no initializer, 953 // there's nothing to do. 954 if (!E->hasInitializer()) 955 return; 956 957 Address CurPtr = BeginPtr; 958 959 unsigned InitListElements = 0; 960 961 const Expr *Init = E->getInitializer(); 962 Address EndOfInit = Address::invalid(); 963 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 964 EHScopeStack::stable_iterator Cleanup; 965 llvm::Instruction *CleanupDominator = nullptr; 966 967 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 968 CharUnits ElementAlign = 969 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 970 971 // Attempt to perform zero-initialization using memset. 972 auto TryMemsetInitialization = [&]() -> bool { 973 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 974 // we can initialize with a memset to -1. 975 if (!CGM.getTypes().isZeroInitializable(ElementType)) 976 return false; 977 978 // Optimization: since zero initialization will just set the memory 979 // to all zeroes, generate a single memset to do it in one shot. 980 981 // Subtract out the size of any elements we've already initialized. 982 auto *RemainingSize = AllocSizeWithoutCookie; 983 if (InitListElements) { 984 // We know this can't overflow; we check this when doing the allocation. 985 auto *InitializedSize = llvm::ConstantInt::get( 986 RemainingSize->getType(), 987 getContext().getTypeSizeInChars(ElementType).getQuantity() * 988 InitListElements); 989 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 990 } 991 992 // Create the memset. 993 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 994 return true; 995 }; 996 997 // If the initializer is an initializer list, first do the explicit elements. 998 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 999 // Initializing from a (braced) string literal is a special case; the init 1000 // list element does not initialize a (single) array element. 1001 if (ILE->isStringLiteralInit()) { 1002 // Initialize the initial portion of length equal to that of the string 1003 // literal. The allocation must be for at least this much; we emitted a 1004 // check for that earlier. 1005 AggValueSlot Slot = 1006 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1007 AggValueSlot::IsDestructed, 1008 AggValueSlot::DoesNotNeedGCBarriers, 1009 AggValueSlot::IsNotAliased); 1010 EmitAggExpr(ILE->getInit(0), Slot); 1011 1012 // Move past these elements. 1013 InitListElements = 1014 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1015 ->getSize().getZExtValue(); 1016 CurPtr = 1017 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1018 Builder.getSize(InitListElements), 1019 "string.init.end"), 1020 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1021 ElementSize)); 1022 1023 // Zero out the rest, if any remain. 1024 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1025 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1026 bool OK = TryMemsetInitialization(); 1027 (void)OK; 1028 assert(OK && "couldn't memset character type?"); 1029 } 1030 return; 1031 } 1032 1033 InitListElements = ILE->getNumInits(); 1034 1035 // If this is a multi-dimensional array new, we will initialize multiple 1036 // elements with each init list element. 1037 QualType AllocType = E->getAllocatedType(); 1038 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1039 AllocType->getAsArrayTypeUnsafe())) { 1040 ElementTy = ConvertTypeForMem(AllocType); 1041 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1042 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1043 } 1044 1045 // Enter a partial-destruction Cleanup if necessary. 1046 if (needsEHCleanup(DtorKind)) { 1047 // In principle we could tell the Cleanup where we are more 1048 // directly, but the control flow can get so varied here that it 1049 // would actually be quite complex. Therefore we go through an 1050 // alloca. 1051 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1052 "array.init.end"); 1053 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1054 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1055 ElementType, ElementAlign, 1056 getDestroyer(DtorKind)); 1057 Cleanup = EHStack.stable_begin(); 1058 } 1059 1060 CharUnits StartAlign = CurPtr.getAlignment(); 1061 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1062 // Tell the cleanup that it needs to destroy up to this 1063 // element. TODO: some of these stores can be trivially 1064 // observed to be unnecessary. 1065 if (EndOfInit.isValid()) { 1066 auto FinishedPtr = 1067 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1068 Builder.CreateStore(FinishedPtr, EndOfInit); 1069 } 1070 // FIXME: If the last initializer is an incomplete initializer list for 1071 // an array, and we have an array filler, we can fold together the two 1072 // initialization loops. 1073 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1074 ILE->getInit(i)->getType(), CurPtr); 1075 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1076 Builder.getSize(1), 1077 "array.exp.next"), 1078 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1079 } 1080 1081 // The remaining elements are filled with the array filler expression. 1082 Init = ILE->getArrayFiller(); 1083 1084 // Extract the initializer for the individual array elements by pulling 1085 // out the array filler from all the nested initializer lists. This avoids 1086 // generating a nested loop for the initialization. 1087 while (Init && Init->getType()->isConstantArrayType()) { 1088 auto *SubILE = dyn_cast<InitListExpr>(Init); 1089 if (!SubILE) 1090 break; 1091 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1092 Init = SubILE->getArrayFiller(); 1093 } 1094 1095 // Switch back to initializing one base element at a time. 1096 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1097 } 1098 1099 // If all elements have already been initialized, skip any further 1100 // initialization. 1101 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1102 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1103 // If there was a Cleanup, deactivate it. 1104 if (CleanupDominator) 1105 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1106 return; 1107 } 1108 1109 assert(Init && "have trailing elements to initialize but no initializer"); 1110 1111 // If this is a constructor call, try to optimize it out, and failing that 1112 // emit a single loop to initialize all remaining elements. 1113 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1114 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1115 if (Ctor->isTrivial()) { 1116 // If new expression did not specify value-initialization, then there 1117 // is no initialization. 1118 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1119 return; 1120 1121 if (TryMemsetInitialization()) 1122 return; 1123 } 1124 1125 // Store the new Cleanup position for irregular Cleanups. 1126 // 1127 // FIXME: Share this cleanup with the constructor call emission rather than 1128 // having it create a cleanup of its own. 1129 if (EndOfInit.isValid()) 1130 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1131 1132 // Emit a constructor call loop to initialize the remaining elements. 1133 if (InitListElements) 1134 NumElements = Builder.CreateSub( 1135 NumElements, 1136 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1137 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1138 CCE->requiresZeroInitialization()); 1139 return; 1140 } 1141 1142 // If this is value-initialization, we can usually use memset. 1143 ImplicitValueInitExpr IVIE(ElementType); 1144 if (isa<ImplicitValueInitExpr>(Init)) { 1145 if (TryMemsetInitialization()) 1146 return; 1147 1148 // Switch to an ImplicitValueInitExpr for the element type. This handles 1149 // only one case: multidimensional array new of pointers to members. In 1150 // all other cases, we already have an initializer for the array element. 1151 Init = &IVIE; 1152 } 1153 1154 // At this point we should have found an initializer for the individual 1155 // elements of the array. 1156 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1157 "got wrong type of element to initialize"); 1158 1159 // If we have an empty initializer list, we can usually use memset. 1160 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1161 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1162 return; 1163 1164 // If we have a struct whose every field is value-initialized, we can 1165 // usually use memset. 1166 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1167 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1168 if (RType->getDecl()->isStruct()) { 1169 unsigned NumElements = 0; 1170 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1171 NumElements = CXXRD->getNumBases(); 1172 for (auto *Field : RType->getDecl()->fields()) 1173 if (!Field->isUnnamedBitfield()) 1174 ++NumElements; 1175 // FIXME: Recurse into nested InitListExprs. 1176 if (ILE->getNumInits() == NumElements) 1177 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1178 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1179 --NumElements; 1180 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1181 return; 1182 } 1183 } 1184 } 1185 1186 // Create the loop blocks. 1187 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1188 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1189 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1190 1191 // Find the end of the array, hoisted out of the loop. 1192 llvm::Value *EndPtr = 1193 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1194 1195 // If the number of elements isn't constant, we have to now check if there is 1196 // anything left to initialize. 1197 if (!ConstNum) { 1198 llvm::Value *IsEmpty = 1199 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1200 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1201 } 1202 1203 // Enter the loop. 1204 EmitBlock(LoopBB); 1205 1206 // Set up the current-element phi. 1207 llvm::PHINode *CurPtrPhi = 1208 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1209 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1210 1211 CurPtr = Address(CurPtrPhi, ElementAlign); 1212 1213 // Store the new Cleanup position for irregular Cleanups. 1214 if (EndOfInit.isValid()) 1215 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1216 1217 // Enter a partial-destruction Cleanup if necessary. 1218 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1219 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1220 ElementType, ElementAlign, 1221 getDestroyer(DtorKind)); 1222 Cleanup = EHStack.stable_begin(); 1223 CleanupDominator = Builder.CreateUnreachable(); 1224 } 1225 1226 // Emit the initializer into this element. 1227 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1228 1229 // Leave the Cleanup if we entered one. 1230 if (CleanupDominator) { 1231 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1232 CleanupDominator->eraseFromParent(); 1233 } 1234 1235 // Advance to the next element by adjusting the pointer type as necessary. 1236 llvm::Value *NextPtr = 1237 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1238 "array.next"); 1239 1240 // Check whether we've gotten to the end of the array and, if so, 1241 // exit the loop. 1242 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1243 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1244 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1245 1246 EmitBlock(ContBB); 1247 } 1248 1249 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1250 QualType ElementType, llvm::Type *ElementTy, 1251 Address NewPtr, llvm::Value *NumElements, 1252 llvm::Value *AllocSizeWithoutCookie) { 1253 ApplyDebugLocation DL(CGF, E); 1254 if (E->isArray()) 1255 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1256 AllocSizeWithoutCookie); 1257 else if (const Expr *Init = E->getInitializer()) 1258 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1259 } 1260 1261 /// Emit a call to an operator new or operator delete function, as implicitly 1262 /// created by new-expressions and delete-expressions. 1263 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1264 const FunctionDecl *CalleeDecl, 1265 const FunctionProtoType *CalleeType, 1266 const CallArgList &Args) { 1267 llvm::Instruction *CallOrInvoke; 1268 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1269 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1270 RValue RV = 1271 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1272 Args, CalleeType, /*chainCall=*/false), 1273 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1274 1275 /// C++1y [expr.new]p10: 1276 /// [In a new-expression,] an implementation is allowed to omit a call 1277 /// to a replaceable global allocation function. 1278 /// 1279 /// We model such elidable calls with the 'builtin' attribute. 1280 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1281 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1282 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1283 // FIXME: Add addAttribute to CallSite. 1284 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1285 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1286 llvm::Attribute::Builtin); 1287 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1288 II->addAttribute(llvm::AttributeList::FunctionIndex, 1289 llvm::Attribute::Builtin); 1290 else 1291 llvm_unreachable("unexpected kind of call instruction"); 1292 } 1293 1294 return RV; 1295 } 1296 1297 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1298 const Expr *Arg, 1299 bool IsDelete) { 1300 CallArgList Args; 1301 const Stmt *ArgS = Arg; 1302 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1303 // Find the allocation or deallocation function that we're calling. 1304 ASTContext &Ctx = getContext(); 1305 DeclarationName Name = Ctx.DeclarationNames 1306 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1307 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1308 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1309 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1310 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1311 llvm_unreachable("predeclared global operator new/delete is missing"); 1312 } 1313 1314 namespace { 1315 /// The parameters to pass to a usual operator delete. 1316 struct UsualDeleteParams { 1317 bool DestroyingDelete = false; 1318 bool Size = false; 1319 bool Alignment = false; 1320 }; 1321 } 1322 1323 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1324 UsualDeleteParams Params; 1325 1326 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1327 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1328 1329 // The first argument is always a void*. 1330 ++AI; 1331 1332 // The next parameter may be a std::destroying_delete_t. 1333 if (FD->isDestroyingOperatorDelete()) { 1334 Params.DestroyingDelete = true; 1335 assert(AI != AE); 1336 ++AI; 1337 } 1338 1339 // Figure out what other parameters we should be implicitly passing. 1340 if (AI != AE && (*AI)->isIntegerType()) { 1341 Params.Size = true; 1342 ++AI; 1343 } 1344 1345 if (AI != AE && (*AI)->isAlignValT()) { 1346 Params.Alignment = true; 1347 ++AI; 1348 } 1349 1350 assert(AI == AE && "unexpected usual deallocation function parameter"); 1351 return Params; 1352 } 1353 1354 namespace { 1355 /// A cleanup to call the given 'operator delete' function upon abnormal 1356 /// exit from a new expression. Templated on a traits type that deals with 1357 /// ensuring that the arguments dominate the cleanup if necessary. 1358 template<typename Traits> 1359 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1360 /// Type used to hold llvm::Value*s. 1361 typedef typename Traits::ValueTy ValueTy; 1362 /// Type used to hold RValues. 1363 typedef typename Traits::RValueTy RValueTy; 1364 struct PlacementArg { 1365 RValueTy ArgValue; 1366 QualType ArgType; 1367 }; 1368 1369 unsigned NumPlacementArgs : 31; 1370 unsigned PassAlignmentToPlacementDelete : 1; 1371 const FunctionDecl *OperatorDelete; 1372 ValueTy Ptr; 1373 ValueTy AllocSize; 1374 CharUnits AllocAlign; 1375 1376 PlacementArg *getPlacementArgs() { 1377 return reinterpret_cast<PlacementArg *>(this + 1); 1378 } 1379 1380 public: 1381 static size_t getExtraSize(size_t NumPlacementArgs) { 1382 return NumPlacementArgs * sizeof(PlacementArg); 1383 } 1384 1385 CallDeleteDuringNew(size_t NumPlacementArgs, 1386 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1387 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1388 CharUnits AllocAlign) 1389 : NumPlacementArgs(NumPlacementArgs), 1390 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1391 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1392 AllocAlign(AllocAlign) {} 1393 1394 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1395 assert(I < NumPlacementArgs && "index out of range"); 1396 getPlacementArgs()[I] = {Arg, Type}; 1397 } 1398 1399 void Emit(CodeGenFunction &CGF, Flags flags) override { 1400 const FunctionProtoType *FPT = 1401 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1402 CallArgList DeleteArgs; 1403 1404 // The first argument is always a void* (or C* for a destroying operator 1405 // delete for class type C). 1406 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1407 1408 // Figure out what other parameters we should be implicitly passing. 1409 UsualDeleteParams Params; 1410 if (NumPlacementArgs) { 1411 // A placement deallocation function is implicitly passed an alignment 1412 // if the placement allocation function was, but is never passed a size. 1413 Params.Alignment = PassAlignmentToPlacementDelete; 1414 } else { 1415 // For a non-placement new-expression, 'operator delete' can take a 1416 // size and/or an alignment if it has the right parameters. 1417 Params = getUsualDeleteParams(OperatorDelete); 1418 } 1419 1420 assert(!Params.DestroyingDelete && 1421 "should not call destroying delete in a new-expression"); 1422 1423 // The second argument can be a std::size_t (for non-placement delete). 1424 if (Params.Size) 1425 DeleteArgs.add(Traits::get(CGF, AllocSize), 1426 CGF.getContext().getSizeType()); 1427 1428 // The next (second or third) argument can be a std::align_val_t, which 1429 // is an enum whose underlying type is std::size_t. 1430 // FIXME: Use the right type as the parameter type. Note that in a call 1431 // to operator delete(size_t, ...), we may not have it available. 1432 if (Params.Alignment) 1433 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1434 CGF.SizeTy, AllocAlign.getQuantity())), 1435 CGF.getContext().getSizeType()); 1436 1437 // Pass the rest of the arguments, which must match exactly. 1438 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1439 auto Arg = getPlacementArgs()[I]; 1440 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1441 } 1442 1443 // Call 'operator delete'. 1444 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1445 } 1446 }; 1447 } 1448 1449 /// Enter a cleanup to call 'operator delete' if the initializer in a 1450 /// new-expression throws. 1451 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1452 const CXXNewExpr *E, 1453 Address NewPtr, 1454 llvm::Value *AllocSize, 1455 CharUnits AllocAlign, 1456 const CallArgList &NewArgs) { 1457 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1458 1459 // If we're not inside a conditional branch, then the cleanup will 1460 // dominate and we can do the easier (and more efficient) thing. 1461 if (!CGF.isInConditionalBranch()) { 1462 struct DirectCleanupTraits { 1463 typedef llvm::Value *ValueTy; 1464 typedef RValue RValueTy; 1465 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1466 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1467 }; 1468 1469 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1470 1471 DirectCleanup *Cleanup = CGF.EHStack 1472 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1473 E->getNumPlacementArgs(), 1474 E->getOperatorDelete(), 1475 NewPtr.getPointer(), 1476 AllocSize, 1477 E->passAlignment(), 1478 AllocAlign); 1479 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1480 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1481 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1482 } 1483 1484 return; 1485 } 1486 1487 // Otherwise, we need to save all this stuff. 1488 DominatingValue<RValue>::saved_type SavedNewPtr = 1489 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1490 DominatingValue<RValue>::saved_type SavedAllocSize = 1491 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1492 1493 struct ConditionalCleanupTraits { 1494 typedef DominatingValue<RValue>::saved_type ValueTy; 1495 typedef DominatingValue<RValue>::saved_type RValueTy; 1496 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1497 return V.restore(CGF); 1498 } 1499 }; 1500 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1501 1502 ConditionalCleanup *Cleanup = CGF.EHStack 1503 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1504 E->getNumPlacementArgs(), 1505 E->getOperatorDelete(), 1506 SavedNewPtr, 1507 SavedAllocSize, 1508 E->passAlignment(), 1509 AllocAlign); 1510 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1511 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1512 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1513 Arg.Ty); 1514 } 1515 1516 CGF.initFullExprCleanup(); 1517 } 1518 1519 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1520 // The element type being allocated. 1521 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1522 1523 // 1. Build a call to the allocation function. 1524 FunctionDecl *allocator = E->getOperatorNew(); 1525 1526 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1527 unsigned minElements = 0; 1528 if (E->isArray() && E->hasInitializer()) { 1529 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1530 if (ILE && ILE->isStringLiteralInit()) 1531 minElements = 1532 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1533 ->getSize().getZExtValue(); 1534 else if (ILE) 1535 minElements = ILE->getNumInits(); 1536 } 1537 1538 llvm::Value *numElements = nullptr; 1539 llvm::Value *allocSizeWithoutCookie = nullptr; 1540 llvm::Value *allocSize = 1541 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1542 allocSizeWithoutCookie); 1543 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1544 1545 // Emit the allocation call. If the allocator is a global placement 1546 // operator, just "inline" it directly. 1547 Address allocation = Address::invalid(); 1548 CallArgList allocatorArgs; 1549 if (allocator->isReservedGlobalPlacementOperator()) { 1550 assert(E->getNumPlacementArgs() == 1); 1551 const Expr *arg = *E->placement_arguments().begin(); 1552 1553 LValueBaseInfo BaseInfo; 1554 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1555 1556 // The pointer expression will, in many cases, be an opaque void*. 1557 // In these cases, discard the computed alignment and use the 1558 // formal alignment of the allocated type. 1559 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1560 allocation = Address(allocation.getPointer(), allocAlign); 1561 1562 // Set up allocatorArgs for the call to operator delete if it's not 1563 // the reserved global operator. 1564 if (E->getOperatorDelete() && 1565 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1566 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1567 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1568 } 1569 1570 } else { 1571 const FunctionProtoType *allocatorType = 1572 allocator->getType()->castAs<FunctionProtoType>(); 1573 unsigned ParamsToSkip = 0; 1574 1575 // The allocation size is the first argument. 1576 QualType sizeType = getContext().getSizeType(); 1577 allocatorArgs.add(RValue::get(allocSize), sizeType); 1578 ++ParamsToSkip; 1579 1580 if (allocSize != allocSizeWithoutCookie) { 1581 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1582 allocAlign = std::max(allocAlign, cookieAlign); 1583 } 1584 1585 // The allocation alignment may be passed as the second argument. 1586 if (E->passAlignment()) { 1587 QualType AlignValT = sizeType; 1588 if (allocatorType->getNumParams() > 1) { 1589 AlignValT = allocatorType->getParamType(1); 1590 assert(getContext().hasSameUnqualifiedType( 1591 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1592 sizeType) && 1593 "wrong type for alignment parameter"); 1594 ++ParamsToSkip; 1595 } else { 1596 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1597 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1598 } 1599 allocatorArgs.add( 1600 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1601 AlignValT); 1602 } 1603 1604 // FIXME: Why do we not pass a CalleeDecl here? 1605 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1606 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1607 1608 RValue RV = 1609 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1610 1611 // If this was a call to a global replaceable allocation function that does 1612 // not take an alignment argument, the allocator is known to produce 1613 // storage that's suitably aligned for any object that fits, up to a known 1614 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1615 CharUnits allocationAlign = allocAlign; 1616 if (!E->passAlignment() && 1617 allocator->isReplaceableGlobalAllocationFunction()) { 1618 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1619 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1620 allocationAlign = std::max( 1621 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1622 } 1623 1624 allocation = Address(RV.getScalarVal(), allocationAlign); 1625 } 1626 1627 // Emit a null check on the allocation result if the allocation 1628 // function is allowed to return null (because it has a non-throwing 1629 // exception spec or is the reserved placement new) and we have an 1630 // interesting initializer. 1631 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1632 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1633 1634 llvm::BasicBlock *nullCheckBB = nullptr; 1635 llvm::BasicBlock *contBB = nullptr; 1636 1637 // The null-check means that the initializer is conditionally 1638 // evaluated. 1639 ConditionalEvaluation conditional(*this); 1640 1641 if (nullCheck) { 1642 conditional.begin(*this); 1643 1644 nullCheckBB = Builder.GetInsertBlock(); 1645 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1646 contBB = createBasicBlock("new.cont"); 1647 1648 llvm::Value *isNull = 1649 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1650 Builder.CreateCondBr(isNull, contBB, notNullBB); 1651 EmitBlock(notNullBB); 1652 } 1653 1654 // If there's an operator delete, enter a cleanup to call it if an 1655 // exception is thrown. 1656 EHScopeStack::stable_iterator operatorDeleteCleanup; 1657 llvm::Instruction *cleanupDominator = nullptr; 1658 if (E->getOperatorDelete() && 1659 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1660 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1661 allocatorArgs); 1662 operatorDeleteCleanup = EHStack.stable_begin(); 1663 cleanupDominator = Builder.CreateUnreachable(); 1664 } 1665 1666 assert((allocSize == allocSizeWithoutCookie) == 1667 CalculateCookiePadding(*this, E).isZero()); 1668 if (allocSize != allocSizeWithoutCookie) { 1669 assert(E->isArray()); 1670 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1671 numElements, 1672 E, allocType); 1673 } 1674 1675 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1676 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1677 1678 // Passing pointer through invariant.group.barrier to avoid propagation of 1679 // vptrs information which may be included in previous type. 1680 // To not break LTO with different optimizations levels, we do it regardless 1681 // of optimization level. 1682 if (CGM.getCodeGenOpts().StrictVTablePointers && 1683 allocator->isReservedGlobalPlacementOperator()) 1684 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1685 result.getAlignment()); 1686 1687 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1688 allocSizeWithoutCookie); 1689 if (E->isArray()) { 1690 // NewPtr is a pointer to the base element type. If we're 1691 // allocating an array of arrays, we'll need to cast back to the 1692 // array pointer type. 1693 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1694 if (result.getType() != resultType) 1695 result = Builder.CreateBitCast(result, resultType); 1696 } 1697 1698 // Deactivate the 'operator delete' cleanup if we finished 1699 // initialization. 1700 if (operatorDeleteCleanup.isValid()) { 1701 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1702 cleanupDominator->eraseFromParent(); 1703 } 1704 1705 llvm::Value *resultPtr = result.getPointer(); 1706 if (nullCheck) { 1707 conditional.end(*this); 1708 1709 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1710 EmitBlock(contBB); 1711 1712 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1713 PHI->addIncoming(resultPtr, notNullBB); 1714 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1715 nullCheckBB); 1716 1717 resultPtr = PHI; 1718 } 1719 1720 return resultPtr; 1721 } 1722 1723 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1724 llvm::Value *Ptr, QualType DeleteTy, 1725 llvm::Value *NumElements, 1726 CharUnits CookieSize) { 1727 assert((!NumElements && CookieSize.isZero()) || 1728 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1729 1730 const FunctionProtoType *DeleteFTy = 1731 DeleteFD->getType()->getAs<FunctionProtoType>(); 1732 1733 CallArgList DeleteArgs; 1734 1735 auto Params = getUsualDeleteParams(DeleteFD); 1736 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1737 1738 // Pass the pointer itself. 1739 QualType ArgTy = *ParamTypeIt++; 1740 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1741 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1742 1743 // Pass the std::destroying_delete tag if present. 1744 if (Params.DestroyingDelete) { 1745 QualType DDTag = *ParamTypeIt++; 1746 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1747 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1748 DeleteArgs.add(RValue::get(V), DDTag); 1749 } 1750 1751 // Pass the size if the delete function has a size_t parameter. 1752 if (Params.Size) { 1753 QualType SizeType = *ParamTypeIt++; 1754 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1755 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1756 DeleteTypeSize.getQuantity()); 1757 1758 // For array new, multiply by the number of elements. 1759 if (NumElements) 1760 Size = Builder.CreateMul(Size, NumElements); 1761 1762 // If there is a cookie, add the cookie size. 1763 if (!CookieSize.isZero()) 1764 Size = Builder.CreateAdd( 1765 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1766 1767 DeleteArgs.add(RValue::get(Size), SizeType); 1768 } 1769 1770 // Pass the alignment if the delete function has an align_val_t parameter. 1771 if (Params.Alignment) { 1772 QualType AlignValType = *ParamTypeIt++; 1773 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1774 getContext().getTypeAlignIfKnown(DeleteTy)); 1775 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1776 DeleteTypeAlign.getQuantity()); 1777 DeleteArgs.add(RValue::get(Align), AlignValType); 1778 } 1779 1780 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1781 "unknown parameter to usual delete function"); 1782 1783 // Emit the call to delete. 1784 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1785 } 1786 1787 namespace { 1788 /// Calls the given 'operator delete' on a single object. 1789 struct CallObjectDelete final : EHScopeStack::Cleanup { 1790 llvm::Value *Ptr; 1791 const FunctionDecl *OperatorDelete; 1792 QualType ElementType; 1793 1794 CallObjectDelete(llvm::Value *Ptr, 1795 const FunctionDecl *OperatorDelete, 1796 QualType ElementType) 1797 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1798 1799 void Emit(CodeGenFunction &CGF, Flags flags) override { 1800 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1801 } 1802 }; 1803 } 1804 1805 void 1806 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1807 llvm::Value *CompletePtr, 1808 QualType ElementType) { 1809 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1810 OperatorDelete, ElementType); 1811 } 1812 1813 /// Emit the code for deleting a single object with a destroying operator 1814 /// delete. If the element type has a non-virtual destructor, Ptr has already 1815 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1816 /// Ptr points to an object of the static type. 1817 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1818 const CXXDeleteExpr *DE, Address Ptr, 1819 QualType ElementType) { 1820 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1821 if (Dtor && Dtor->isVirtual()) 1822 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1823 Dtor); 1824 else 1825 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1826 } 1827 1828 /// Emit the code for deleting a single object. 1829 static void EmitObjectDelete(CodeGenFunction &CGF, 1830 const CXXDeleteExpr *DE, 1831 Address Ptr, 1832 QualType ElementType) { 1833 // C++11 [expr.delete]p3: 1834 // If the static type of the object to be deleted is different from its 1835 // dynamic type, the static type shall be a base class of the dynamic type 1836 // of the object to be deleted and the static type shall have a virtual 1837 // destructor or the behavior is undefined. 1838 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1839 DE->getExprLoc(), Ptr.getPointer(), 1840 ElementType); 1841 1842 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1843 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1844 1845 // Find the destructor for the type, if applicable. If the 1846 // destructor is virtual, we'll just emit the vcall and return. 1847 const CXXDestructorDecl *Dtor = nullptr; 1848 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1849 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1850 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1851 Dtor = RD->getDestructor(); 1852 1853 if (Dtor->isVirtual()) { 1854 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1855 Dtor); 1856 return; 1857 } 1858 } 1859 } 1860 1861 // Make sure that we call delete even if the dtor throws. 1862 // This doesn't have to a conditional cleanup because we're going 1863 // to pop it off in a second. 1864 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1865 Ptr.getPointer(), 1866 OperatorDelete, ElementType); 1867 1868 if (Dtor) 1869 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1870 /*ForVirtualBase=*/false, 1871 /*Delegating=*/false, 1872 Ptr); 1873 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1874 switch (Lifetime) { 1875 case Qualifiers::OCL_None: 1876 case Qualifiers::OCL_ExplicitNone: 1877 case Qualifiers::OCL_Autoreleasing: 1878 break; 1879 1880 case Qualifiers::OCL_Strong: 1881 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1882 break; 1883 1884 case Qualifiers::OCL_Weak: 1885 CGF.EmitARCDestroyWeak(Ptr); 1886 break; 1887 } 1888 } 1889 1890 CGF.PopCleanupBlock(); 1891 } 1892 1893 namespace { 1894 /// Calls the given 'operator delete' on an array of objects. 1895 struct CallArrayDelete final : EHScopeStack::Cleanup { 1896 llvm::Value *Ptr; 1897 const FunctionDecl *OperatorDelete; 1898 llvm::Value *NumElements; 1899 QualType ElementType; 1900 CharUnits CookieSize; 1901 1902 CallArrayDelete(llvm::Value *Ptr, 1903 const FunctionDecl *OperatorDelete, 1904 llvm::Value *NumElements, 1905 QualType ElementType, 1906 CharUnits CookieSize) 1907 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1908 ElementType(ElementType), CookieSize(CookieSize) {} 1909 1910 void Emit(CodeGenFunction &CGF, Flags flags) override { 1911 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1912 CookieSize); 1913 } 1914 }; 1915 } 1916 1917 /// Emit the code for deleting an array of objects. 1918 static void EmitArrayDelete(CodeGenFunction &CGF, 1919 const CXXDeleteExpr *E, 1920 Address deletedPtr, 1921 QualType elementType) { 1922 llvm::Value *numElements = nullptr; 1923 llvm::Value *allocatedPtr = nullptr; 1924 CharUnits cookieSize; 1925 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1926 numElements, allocatedPtr, cookieSize); 1927 1928 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1929 1930 // Make sure that we call delete even if one of the dtors throws. 1931 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1932 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1933 allocatedPtr, operatorDelete, 1934 numElements, elementType, 1935 cookieSize); 1936 1937 // Destroy the elements. 1938 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1939 assert(numElements && "no element count for a type with a destructor!"); 1940 1941 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1942 CharUnits elementAlign = 1943 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1944 1945 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1946 llvm::Value *arrayEnd = 1947 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1948 1949 // Note that it is legal to allocate a zero-length array, and we 1950 // can never fold the check away because the length should always 1951 // come from a cookie. 1952 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1953 CGF.getDestroyer(dtorKind), 1954 /*checkZeroLength*/ true, 1955 CGF.needsEHCleanup(dtorKind)); 1956 } 1957 1958 // Pop the cleanup block. 1959 CGF.PopCleanupBlock(); 1960 } 1961 1962 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1963 const Expr *Arg = E->getArgument(); 1964 Address Ptr = EmitPointerWithAlignment(Arg); 1965 1966 // Null check the pointer. 1967 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1968 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1969 1970 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1971 1972 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1973 EmitBlock(DeleteNotNull); 1974 1975 QualType DeleteTy = E->getDestroyedType(); 1976 1977 // A destroying operator delete overrides the entire operation of the 1978 // delete expression. 1979 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 1980 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 1981 EmitBlock(DeleteEnd); 1982 return; 1983 } 1984 1985 // We might be deleting a pointer to array. If so, GEP down to the 1986 // first non-array element. 1987 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1988 if (DeleteTy->isConstantArrayType()) { 1989 llvm::Value *Zero = Builder.getInt32(0); 1990 SmallVector<llvm::Value*,8> GEP; 1991 1992 GEP.push_back(Zero); // point at the outermost array 1993 1994 // For each layer of array type we're pointing at: 1995 while (const ConstantArrayType *Arr 1996 = getContext().getAsConstantArrayType(DeleteTy)) { 1997 // 1. Unpeel the array type. 1998 DeleteTy = Arr->getElementType(); 1999 2000 // 2. GEP to the first element of the array. 2001 GEP.push_back(Zero); 2002 } 2003 2004 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2005 Ptr.getAlignment()); 2006 } 2007 2008 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2009 2010 if (E->isArrayForm()) { 2011 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2012 } else { 2013 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2014 } 2015 2016 EmitBlock(DeleteEnd); 2017 } 2018 2019 static bool isGLValueFromPointerDeref(const Expr *E) { 2020 E = E->IgnoreParens(); 2021 2022 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2023 if (!CE->getSubExpr()->isGLValue()) 2024 return false; 2025 return isGLValueFromPointerDeref(CE->getSubExpr()); 2026 } 2027 2028 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2029 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2030 2031 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2032 if (BO->getOpcode() == BO_Comma) 2033 return isGLValueFromPointerDeref(BO->getRHS()); 2034 2035 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2036 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2037 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2038 2039 // C++11 [expr.sub]p1: 2040 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2041 if (isa<ArraySubscriptExpr>(E)) 2042 return true; 2043 2044 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2045 if (UO->getOpcode() == UO_Deref) 2046 return true; 2047 2048 return false; 2049 } 2050 2051 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2052 llvm::Type *StdTypeInfoPtrTy) { 2053 // Get the vtable pointer. 2054 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2055 2056 // C++ [expr.typeid]p2: 2057 // If the glvalue expression is obtained by applying the unary * operator to 2058 // a pointer and the pointer is a null pointer value, the typeid expression 2059 // throws the std::bad_typeid exception. 2060 // 2061 // However, this paragraph's intent is not clear. We choose a very generous 2062 // interpretation which implores us to consider comma operators, conditional 2063 // operators, parentheses and other such constructs. 2064 QualType SrcRecordTy = E->getType(); 2065 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2066 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2067 llvm::BasicBlock *BadTypeidBlock = 2068 CGF.createBasicBlock("typeid.bad_typeid"); 2069 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2070 2071 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2072 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2073 2074 CGF.EmitBlock(BadTypeidBlock); 2075 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2076 CGF.EmitBlock(EndBlock); 2077 } 2078 2079 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2080 StdTypeInfoPtrTy); 2081 } 2082 2083 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2084 llvm::Type *StdTypeInfoPtrTy = 2085 ConvertType(E->getType())->getPointerTo(); 2086 2087 if (E->isTypeOperand()) { 2088 llvm::Constant *TypeInfo = 2089 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2090 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2091 } 2092 2093 // C++ [expr.typeid]p2: 2094 // When typeid is applied to a glvalue expression whose type is a 2095 // polymorphic class type, the result refers to a std::type_info object 2096 // representing the type of the most derived object (that is, the dynamic 2097 // type) to which the glvalue refers. 2098 if (E->isPotentiallyEvaluated()) 2099 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2100 StdTypeInfoPtrTy); 2101 2102 QualType OperandTy = E->getExprOperand()->getType(); 2103 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2104 StdTypeInfoPtrTy); 2105 } 2106 2107 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2108 QualType DestTy) { 2109 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2110 if (DestTy->isPointerType()) 2111 return llvm::Constant::getNullValue(DestLTy); 2112 2113 /// C++ [expr.dynamic.cast]p9: 2114 /// A failed cast to reference type throws std::bad_cast 2115 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2116 return nullptr; 2117 2118 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2119 return llvm::UndefValue::get(DestLTy); 2120 } 2121 2122 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2123 const CXXDynamicCastExpr *DCE) { 2124 CGM.EmitExplicitCastExprType(DCE, this); 2125 QualType DestTy = DCE->getTypeAsWritten(); 2126 2127 if (DCE->isAlwaysNull()) 2128 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2129 return T; 2130 2131 QualType SrcTy = DCE->getSubExpr()->getType(); 2132 2133 // C++ [expr.dynamic.cast]p7: 2134 // If T is "pointer to cv void," then the result is a pointer to the most 2135 // derived object pointed to by v. 2136 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2137 2138 bool isDynamicCastToVoid; 2139 QualType SrcRecordTy; 2140 QualType DestRecordTy; 2141 if (DestPTy) { 2142 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2143 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2144 DestRecordTy = DestPTy->getPointeeType(); 2145 } else { 2146 isDynamicCastToVoid = false; 2147 SrcRecordTy = SrcTy; 2148 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2149 } 2150 2151 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2152 2153 // C++ [expr.dynamic.cast]p4: 2154 // If the value of v is a null pointer value in the pointer case, the result 2155 // is the null pointer value of type T. 2156 bool ShouldNullCheckSrcValue = 2157 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2158 SrcRecordTy); 2159 2160 llvm::BasicBlock *CastNull = nullptr; 2161 llvm::BasicBlock *CastNotNull = nullptr; 2162 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2163 2164 if (ShouldNullCheckSrcValue) { 2165 CastNull = createBasicBlock("dynamic_cast.null"); 2166 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2167 2168 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2169 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2170 EmitBlock(CastNotNull); 2171 } 2172 2173 llvm::Value *Value; 2174 if (isDynamicCastToVoid) { 2175 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2176 DestTy); 2177 } else { 2178 assert(DestRecordTy->isRecordType() && 2179 "destination type must be a record type!"); 2180 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2181 DestTy, DestRecordTy, CastEnd); 2182 CastNotNull = Builder.GetInsertBlock(); 2183 } 2184 2185 if (ShouldNullCheckSrcValue) { 2186 EmitBranch(CastEnd); 2187 2188 EmitBlock(CastNull); 2189 EmitBranch(CastEnd); 2190 } 2191 2192 EmitBlock(CastEnd); 2193 2194 if (ShouldNullCheckSrcValue) { 2195 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2196 PHI->addIncoming(Value, CastNotNull); 2197 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2198 2199 Value = PHI; 2200 } 2201 2202 return Value; 2203 } 2204 2205 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2206 RunCleanupsScope Scope(*this); 2207 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2208 2209 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2210 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2211 e = E->capture_init_end(); 2212 i != e; ++i, ++CurField) { 2213 // Emit initialization 2214 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2215 if (CurField->hasCapturedVLAType()) { 2216 auto VAT = CurField->getCapturedVLAType(); 2217 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2218 } else { 2219 EmitInitializerForField(*CurField, LV, *i); 2220 } 2221 } 2222 } 2223