1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "ConstantEmitter.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "llvm/IR/Intrinsics.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 struct MemberCallInfo {
28   RequiredArgs ReqArgs;
29   // Number of prefix arguments for the call. Ignores the `this` pointer.
30   unsigned PrefixSize;
31 };
32 }
33 
34 static MemberCallInfo
35 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
36                                   llvm::Value *This, llvm::Value *ImplicitParam,
37                                   QualType ImplicitParamTy, const CallExpr *CE,
38                                   CallArgList &Args, CallArgList *RtlArgs) {
39   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
40          isa<CXXOperatorCallExpr>(CE));
41   assert(MD->isInstance() &&
42          "Trying to emit a member or operator call expr on a static method!");
43   ASTContext &C = CGF.getContext();
44 
45   // Push the this ptr.
46   const CXXRecordDecl *RD =
47       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48   Args.add(RValue::get(This),
49            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
50 
51   // If there is an implicit parameter (e.g. VTT), emit it.
52   if (ImplicitParam) {
53     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54   }
55 
56   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
58   unsigned PrefixSize = Args.size() - 1;
59 
60   // And the rest of the call args.
61   if (RtlArgs) {
62     // Special case: if the caller emitted the arguments right-to-left already
63     // (prior to emitting the *this argument), we're done. This happens for
64     // assignment operators.
65     Args.addFrom(*RtlArgs);
66   } else if (CE) {
67     // Special case: skip first argument of CXXOperatorCall (it is "this").
68     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
69     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
70                      CE->getDirectCallee());
71   } else {
72     assert(
73         FPT->getNumParams() == 0 &&
74         "No CallExpr specified for function with non-zero number of arguments");
75   }
76   return {required, PrefixSize};
77 }
78 
79 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
80     const CXXMethodDecl *MD, const CGCallee &Callee,
81     ReturnValueSlot ReturnValue,
82     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
83     const CallExpr *CE, CallArgList *RtlArgs) {
84   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
85   CallArgList Args;
86   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
87       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
88   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
89       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
90   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
91                   CE ? CE->getExprLoc() : SourceLocation());
92 }
93 
94 RValue CodeGenFunction::EmitCXXDestructorCall(
95     const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
96     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
97     StructorType Type) {
98   CallArgList Args;
99   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
100                                     ImplicitParamTy, CE, Args, nullptr);
101   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
102                   Callee, ReturnValueSlot(), Args);
103 }
104 
105 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
106                                             const CXXPseudoDestructorExpr *E) {
107   QualType DestroyedType = E->getDestroyedType();
108   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
109     // Automatic Reference Counting:
110     //   If the pseudo-expression names a retainable object with weak or
111     //   strong lifetime, the object shall be released.
112     Expr *BaseExpr = E->getBase();
113     Address BaseValue = Address::invalid();
114     Qualifiers BaseQuals;
115 
116     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
117     if (E->isArrow()) {
118       BaseValue = EmitPointerWithAlignment(BaseExpr);
119       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
120       BaseQuals = PTy->getPointeeType().getQualifiers();
121     } else {
122       LValue BaseLV = EmitLValue(BaseExpr);
123       BaseValue = BaseLV.getAddress();
124       QualType BaseTy = BaseExpr->getType();
125       BaseQuals = BaseTy.getQualifiers();
126     }
127 
128     switch (DestroyedType.getObjCLifetime()) {
129     case Qualifiers::OCL_None:
130     case Qualifiers::OCL_ExplicitNone:
131     case Qualifiers::OCL_Autoreleasing:
132       break;
133 
134     case Qualifiers::OCL_Strong:
135       EmitARCRelease(Builder.CreateLoad(BaseValue,
136                         DestroyedType.isVolatileQualified()),
137                      ARCPreciseLifetime);
138       break;
139 
140     case Qualifiers::OCL_Weak:
141       EmitARCDestroyWeak(BaseValue);
142       break;
143     }
144   } else {
145     // C++ [expr.pseudo]p1:
146     //   The result shall only be used as the operand for the function call
147     //   operator (), and the result of such a call has type void. The only
148     //   effect is the evaluation of the postfix-expression before the dot or
149     //   arrow.
150     EmitIgnoredExpr(E->getBase());
151   }
152 
153   return RValue::get(nullptr);
154 }
155 
156 static CXXRecordDecl *getCXXRecord(const Expr *E) {
157   QualType T = E->getType();
158   if (const PointerType *PTy = T->getAs<PointerType>())
159     T = PTy->getPointeeType();
160   const RecordType *Ty = T->castAs<RecordType>();
161   return cast<CXXRecordDecl>(Ty->getDecl());
162 }
163 
164 // Note: This function also emit constructor calls to support a MSVC
165 // extensions allowing explicit constructor function call.
166 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
167                                               ReturnValueSlot ReturnValue) {
168   const Expr *callee = CE->getCallee()->IgnoreParens();
169 
170   if (isa<BinaryOperator>(callee))
171     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
172 
173   const MemberExpr *ME = cast<MemberExpr>(callee);
174   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
175 
176   if (MD->isStatic()) {
177     // The method is static, emit it as we would a regular call.
178     CGCallee callee =
179         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
180     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
181                     ReturnValue);
182   }
183 
184   bool HasQualifier = ME->hasQualifier();
185   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
186   bool IsArrow = ME->isArrow();
187   const Expr *Base = ME->getBase();
188 
189   return EmitCXXMemberOrOperatorMemberCallExpr(
190       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
191 }
192 
193 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
194     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
195     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
196     const Expr *Base) {
197   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
198 
199   // Compute the object pointer.
200   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
201 
202   const CXXMethodDecl *DevirtualizedMethod = nullptr;
203   if (CanUseVirtualCall &&
204       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
205     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
206     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
207     assert(DevirtualizedMethod);
208     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
209     const Expr *Inner = Base->ignoreParenBaseCasts();
210     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
211         MD->getReturnType().getCanonicalType())
212       // If the return types are not the same, this might be a case where more
213       // code needs to run to compensate for it. For example, the derived
214       // method might return a type that inherits form from the return
215       // type of MD and has a prefix.
216       // For now we just avoid devirtualizing these covariant cases.
217       DevirtualizedMethod = nullptr;
218     else if (getCXXRecord(Inner) == DevirtualizedClass)
219       // If the class of the Inner expression is where the dynamic method
220       // is defined, build the this pointer from it.
221       Base = Inner;
222     else if (getCXXRecord(Base) != DevirtualizedClass) {
223       // If the method is defined in a class that is not the best dynamic
224       // one or the one of the full expression, we would have to build
225       // a derived-to-base cast to compute the correct this pointer, but
226       // we don't have support for that yet, so do a virtual call.
227       DevirtualizedMethod = nullptr;
228     }
229   }
230 
231   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
232   // operator before the LHS.
233   CallArgList RtlArgStorage;
234   CallArgList *RtlArgs = nullptr;
235   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
236     if (OCE->isAssignmentOp()) {
237       RtlArgs = &RtlArgStorage;
238       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
239                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
240                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
241     }
242   }
243 
244   LValue This;
245   if (IsArrow) {
246     LValueBaseInfo BaseInfo;
247     TBAAAccessInfo TBAAInfo;
248     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
249     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
250   } else {
251     This = EmitLValue(Base);
252   }
253 
254 
255   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
256     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
257     if (isa<CXXConstructorDecl>(MD) &&
258         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
259       return RValue::get(nullptr);
260 
261     if (!MD->getParent()->mayInsertExtraPadding()) {
262       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
263         // We don't like to generate the trivial copy/move assignment operator
264         // when it isn't necessary; just produce the proper effect here.
265         LValue RHS = isa<CXXOperatorCallExpr>(CE)
266                          ? MakeNaturalAlignAddrLValue(
267                                (*RtlArgs)[0].getRValue(*this).getScalarVal(),
268                                (*(CE->arg_begin() + 1))->getType())
269                          : EmitLValue(*CE->arg_begin());
270         EmitAggregateAssign(This, RHS, CE->getType());
271         return RValue::get(This.getPointer());
272       }
273 
274       if (isa<CXXConstructorDecl>(MD) &&
275           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
276         // Trivial move and copy ctor are the same.
277         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
278         const Expr *Arg = *CE->arg_begin();
279         LValue RHS = EmitLValue(Arg);
280         LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
281         // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
282         // constructing a new complete object of type Ctor.
283         EmitAggregateCopy(Dest, RHS, Arg->getType(),
284                           AggValueSlot::DoesNotOverlap);
285         return RValue::get(This.getPointer());
286       }
287       llvm_unreachable("unknown trivial member function");
288     }
289   }
290 
291   // Compute the function type we're calling.
292   const CXXMethodDecl *CalleeDecl =
293       DevirtualizedMethod ? DevirtualizedMethod : MD;
294   const CGFunctionInfo *FInfo = nullptr;
295   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
296     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
297         Dtor, StructorType::Complete);
298   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
299     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
300         Ctor, StructorType::Complete);
301   else
302     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
303 
304   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
305 
306   // C++11 [class.mfct.non-static]p2:
307   //   If a non-static member function of a class X is called for an object that
308   //   is not of type X, or of a type derived from X, the behavior is undefined.
309   SourceLocation CallLoc;
310   ASTContext &C = getContext();
311   if (CE)
312     CallLoc = CE->getExprLoc();
313 
314   SanitizerSet SkippedChecks;
315   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
316     auto *IOA = CMCE->getImplicitObjectArgument();
317     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
318     if (IsImplicitObjectCXXThis)
319       SkippedChecks.set(SanitizerKind::Alignment, true);
320     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
321       SkippedChecks.set(SanitizerKind::Null, true);
322   }
323   EmitTypeCheck(
324       isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
325                                           : CodeGenFunction::TCK_MemberCall,
326       CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
327       /*Alignment=*/CharUnits::Zero(), SkippedChecks);
328 
329   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
330   // 'CalleeDecl' instead.
331 
332   // C++ [class.virtual]p12:
333   //   Explicit qualification with the scope operator (5.1) suppresses the
334   //   virtual call mechanism.
335   //
336   // We also don't emit a virtual call if the base expression has a record type
337   // because then we know what the type is.
338   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
339 
340   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
341     assert(CE->arg_begin() == CE->arg_end() &&
342            "Destructor shouldn't have explicit parameters");
343     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
344     if (UseVirtualCall) {
345       CGM.getCXXABI().EmitVirtualDestructorCall(
346           *this, Dtor, Dtor_Complete, This.getAddress(),
347           cast<CXXMemberCallExpr>(CE));
348     } else {
349       CGCallee Callee;
350       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
351         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
352       else if (!DevirtualizedMethod)
353         Callee = CGCallee::forDirect(
354             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
355             GlobalDecl(Dtor, Dtor_Complete));
356       else {
357         const CXXDestructorDecl *DDtor =
358           cast<CXXDestructorDecl>(DevirtualizedMethod);
359         Callee = CGCallee::forDirect(
360             CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
361             GlobalDecl(DDtor, Dtor_Complete));
362       }
363       EmitCXXMemberOrOperatorCall(
364           CalleeDecl, Callee, ReturnValue, This.getPointer(),
365           /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
366     }
367     return RValue::get(nullptr);
368   }
369 
370   CGCallee Callee;
371   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
372     Callee = CGCallee::forDirect(
373         CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
374         GlobalDecl(Ctor, Ctor_Complete));
375   } else if (UseVirtualCall) {
376     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
377   } else {
378     if (SanOpts.has(SanitizerKind::CFINVCall) &&
379         MD->getParent()->isDynamicClass()) {
380       llvm::Value *VTable;
381       const CXXRecordDecl *RD;
382       std::tie(VTable, RD) =
383           CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
384                                         MD->getParent());
385       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
386     }
387 
388     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
389       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
390     else if (!DevirtualizedMethod)
391       Callee =
392           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
393     else {
394       Callee =
395           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
396                               GlobalDecl(DevirtualizedMethod));
397     }
398   }
399 
400   if (MD->isVirtual()) {
401     Address NewThisAddr =
402         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
403             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
404     This.setAddress(NewThisAddr);
405   }
406 
407   return EmitCXXMemberOrOperatorCall(
408       CalleeDecl, Callee, ReturnValue, This.getPointer(),
409       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
410 }
411 
412 RValue
413 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
414                                               ReturnValueSlot ReturnValue) {
415   const BinaryOperator *BO =
416       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
417   const Expr *BaseExpr = BO->getLHS();
418   const Expr *MemFnExpr = BO->getRHS();
419 
420   const MemberPointerType *MPT =
421     MemFnExpr->getType()->castAs<MemberPointerType>();
422 
423   const FunctionProtoType *FPT =
424     MPT->getPointeeType()->castAs<FunctionProtoType>();
425   const CXXRecordDecl *RD =
426     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
427 
428   // Emit the 'this' pointer.
429   Address This = Address::invalid();
430   if (BO->getOpcode() == BO_PtrMemI)
431     This = EmitPointerWithAlignment(BaseExpr);
432   else
433     This = EmitLValue(BaseExpr).getAddress();
434 
435   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
436                 QualType(MPT->getClass(), 0));
437 
438   // Get the member function pointer.
439   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
440 
441   // Ask the ABI to load the callee.  Note that This is modified.
442   llvm::Value *ThisPtrForCall = nullptr;
443   CGCallee Callee =
444     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
445                                              ThisPtrForCall, MemFnPtr, MPT);
446 
447   CallArgList Args;
448 
449   QualType ThisType =
450     getContext().getPointerType(getContext().getTagDeclType(RD));
451 
452   // Push the this ptr.
453   Args.add(RValue::get(ThisPtrForCall), ThisType);
454 
455   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
456 
457   // And the rest of the call args
458   EmitCallArgs(Args, FPT, E->arguments());
459   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
460                                                       /*PrefixSize=*/0),
461                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
462 }
463 
464 RValue
465 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
466                                                const CXXMethodDecl *MD,
467                                                ReturnValueSlot ReturnValue) {
468   assert(MD->isInstance() &&
469          "Trying to emit a member call expr on a static method!");
470   return EmitCXXMemberOrOperatorMemberCallExpr(
471       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
472       /*IsArrow=*/false, E->getArg(0));
473 }
474 
475 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
476                                                ReturnValueSlot ReturnValue) {
477   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
478 }
479 
480 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
481                                             Address DestPtr,
482                                             const CXXRecordDecl *Base) {
483   if (Base->isEmpty())
484     return;
485 
486   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
487 
488   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
489   CharUnits NVSize = Layout.getNonVirtualSize();
490 
491   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
492   // present, they are initialized by the most derived class before calling the
493   // constructor.
494   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
495   Stores.emplace_back(CharUnits::Zero(), NVSize);
496 
497   // Each store is split by the existence of a vbptr.
498   CharUnits VBPtrWidth = CGF.getPointerSize();
499   std::vector<CharUnits> VBPtrOffsets =
500       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
501   for (CharUnits VBPtrOffset : VBPtrOffsets) {
502     // Stop before we hit any virtual base pointers located in virtual bases.
503     if (VBPtrOffset >= NVSize)
504       break;
505     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
506     CharUnits LastStoreOffset = LastStore.first;
507     CharUnits LastStoreSize = LastStore.second;
508 
509     CharUnits SplitBeforeOffset = LastStoreOffset;
510     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
511     assert(!SplitBeforeSize.isNegative() && "negative store size!");
512     if (!SplitBeforeSize.isZero())
513       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
514 
515     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
516     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
517     assert(!SplitAfterSize.isNegative() && "negative store size!");
518     if (!SplitAfterSize.isZero())
519       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
520   }
521 
522   // If the type contains a pointer to data member we can't memset it to zero.
523   // Instead, create a null constant and copy it to the destination.
524   // TODO: there are other patterns besides zero that we can usefully memset,
525   // like -1, which happens to be the pattern used by member-pointers.
526   // TODO: isZeroInitializable can be over-conservative in the case where a
527   // virtual base contains a member pointer.
528   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
529   if (!NullConstantForBase->isNullValue()) {
530     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
531         CGF.CGM.getModule(), NullConstantForBase->getType(),
532         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
533         NullConstantForBase, Twine());
534 
535     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
536                                DestPtr.getAlignment());
537     NullVariable->setAlignment(Align.getQuantity());
538 
539     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
540 
541     // Get and call the appropriate llvm.memcpy overload.
542     for (std::pair<CharUnits, CharUnits> Store : Stores) {
543       CharUnits StoreOffset = Store.first;
544       CharUnits StoreSize = Store.second;
545       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
546       CGF.Builder.CreateMemCpy(
547           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
548           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
549           StoreSizeVal);
550     }
551 
552   // Otherwise, just memset the whole thing to zero.  This is legal
553   // because in LLVM, all default initializers (other than the ones we just
554   // handled above) are guaranteed to have a bit pattern of all zeros.
555   } else {
556     for (std::pair<CharUnits, CharUnits> Store : Stores) {
557       CharUnits StoreOffset = Store.first;
558       CharUnits StoreSize = Store.second;
559       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
560       CGF.Builder.CreateMemSet(
561           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
562           CGF.Builder.getInt8(0), StoreSizeVal);
563     }
564   }
565 }
566 
567 void
568 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
569                                       AggValueSlot Dest) {
570   assert(!Dest.isIgnored() && "Must have a destination!");
571   const CXXConstructorDecl *CD = E->getConstructor();
572 
573   // If we require zero initialization before (or instead of) calling the
574   // constructor, as can be the case with a non-user-provided default
575   // constructor, emit the zero initialization now, unless destination is
576   // already zeroed.
577   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
578     switch (E->getConstructionKind()) {
579     case CXXConstructExpr::CK_Delegating:
580     case CXXConstructExpr::CK_Complete:
581       EmitNullInitialization(Dest.getAddress(), E->getType());
582       break;
583     case CXXConstructExpr::CK_VirtualBase:
584     case CXXConstructExpr::CK_NonVirtualBase:
585       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
586                                       CD->getParent());
587       break;
588     }
589   }
590 
591   // If this is a call to a trivial default constructor, do nothing.
592   if (CD->isTrivial() && CD->isDefaultConstructor())
593     return;
594 
595   // Elide the constructor if we're constructing from a temporary.
596   // The temporary check is required because Sema sets this on NRVO
597   // returns.
598   if (getLangOpts().ElideConstructors && E->isElidable()) {
599     assert(getContext().hasSameUnqualifiedType(E->getType(),
600                                                E->getArg(0)->getType()));
601     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
602       EmitAggExpr(E->getArg(0), Dest);
603       return;
604     }
605   }
606 
607   if (const ArrayType *arrayType
608         = getContext().getAsArrayType(E->getType())) {
609     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
610                                Dest.isSanitizerChecked());
611   } else {
612     CXXCtorType Type = Ctor_Complete;
613     bool ForVirtualBase = false;
614     bool Delegating = false;
615 
616     switch (E->getConstructionKind()) {
617      case CXXConstructExpr::CK_Delegating:
618       // We should be emitting a constructor; GlobalDecl will assert this
619       Type = CurGD.getCtorType();
620       Delegating = true;
621       break;
622 
623      case CXXConstructExpr::CK_Complete:
624       Type = Ctor_Complete;
625       break;
626 
627      case CXXConstructExpr::CK_VirtualBase:
628       ForVirtualBase = true;
629       LLVM_FALLTHROUGH;
630 
631      case CXXConstructExpr::CK_NonVirtualBase:
632       Type = Ctor_Base;
633     }
634 
635     // Call the constructor.
636     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
637                            Dest.getAddress(), E, Dest.mayOverlap(),
638                            Dest.isSanitizerChecked());
639   }
640 }
641 
642 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
643                                                  const Expr *Exp) {
644   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
645     Exp = E->getSubExpr();
646   assert(isa<CXXConstructExpr>(Exp) &&
647          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
648   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
649   const CXXConstructorDecl *CD = E->getConstructor();
650   RunCleanupsScope Scope(*this);
651 
652   // If we require zero initialization before (or instead of) calling the
653   // constructor, as can be the case with a non-user-provided default
654   // constructor, emit the zero initialization now.
655   // FIXME. Do I still need this for a copy ctor synthesis?
656   if (E->requiresZeroInitialization())
657     EmitNullInitialization(Dest, E->getType());
658 
659   assert(!getContext().getAsConstantArrayType(E->getType())
660          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
661   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
662 }
663 
664 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
665                                         const CXXNewExpr *E) {
666   if (!E->isArray())
667     return CharUnits::Zero();
668 
669   // No cookie is required if the operator new[] being used is the
670   // reserved placement operator new[].
671   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
672     return CharUnits::Zero();
673 
674   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
675 }
676 
677 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
678                                         const CXXNewExpr *e,
679                                         unsigned minElements,
680                                         llvm::Value *&numElements,
681                                         llvm::Value *&sizeWithoutCookie) {
682   QualType type = e->getAllocatedType();
683 
684   if (!e->isArray()) {
685     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
686     sizeWithoutCookie
687       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
688     return sizeWithoutCookie;
689   }
690 
691   // The width of size_t.
692   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
693 
694   // Figure out the cookie size.
695   llvm::APInt cookieSize(sizeWidth,
696                          CalculateCookiePadding(CGF, e).getQuantity());
697 
698   // Emit the array size expression.
699   // We multiply the size of all dimensions for NumElements.
700   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
701   numElements =
702     ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
703   if (!numElements)
704     numElements = CGF.EmitScalarExpr(e->getArraySize());
705   assert(isa<llvm::IntegerType>(numElements->getType()));
706 
707   // The number of elements can be have an arbitrary integer type;
708   // essentially, we need to multiply it by a constant factor, add a
709   // cookie size, and verify that the result is representable as a
710   // size_t.  That's just a gloss, though, and it's wrong in one
711   // important way: if the count is negative, it's an error even if
712   // the cookie size would bring the total size >= 0.
713   bool isSigned
714     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
715   llvm::IntegerType *numElementsType
716     = cast<llvm::IntegerType>(numElements->getType());
717   unsigned numElementsWidth = numElementsType->getBitWidth();
718 
719   // Compute the constant factor.
720   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
721   while (const ConstantArrayType *CAT
722              = CGF.getContext().getAsConstantArrayType(type)) {
723     type = CAT->getElementType();
724     arraySizeMultiplier *= CAT->getSize();
725   }
726 
727   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
728   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
729   typeSizeMultiplier *= arraySizeMultiplier;
730 
731   // This will be a size_t.
732   llvm::Value *size;
733 
734   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
735   // Don't bloat the -O0 code.
736   if (llvm::ConstantInt *numElementsC =
737         dyn_cast<llvm::ConstantInt>(numElements)) {
738     const llvm::APInt &count = numElementsC->getValue();
739 
740     bool hasAnyOverflow = false;
741 
742     // If 'count' was a negative number, it's an overflow.
743     if (isSigned && count.isNegative())
744       hasAnyOverflow = true;
745 
746     // We want to do all this arithmetic in size_t.  If numElements is
747     // wider than that, check whether it's already too big, and if so,
748     // overflow.
749     else if (numElementsWidth > sizeWidth &&
750              numElementsWidth - sizeWidth > count.countLeadingZeros())
751       hasAnyOverflow = true;
752 
753     // Okay, compute a count at the right width.
754     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
755 
756     // If there is a brace-initializer, we cannot allocate fewer elements than
757     // there are initializers. If we do, that's treated like an overflow.
758     if (adjustedCount.ult(minElements))
759       hasAnyOverflow = true;
760 
761     // Scale numElements by that.  This might overflow, but we don't
762     // care because it only overflows if allocationSize does, too, and
763     // if that overflows then we shouldn't use this.
764     numElements = llvm::ConstantInt::get(CGF.SizeTy,
765                                          adjustedCount * arraySizeMultiplier);
766 
767     // Compute the size before cookie, and track whether it overflowed.
768     bool overflow;
769     llvm::APInt allocationSize
770       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
771     hasAnyOverflow |= overflow;
772 
773     // Add in the cookie, and check whether it's overflowed.
774     if (cookieSize != 0) {
775       // Save the current size without a cookie.  This shouldn't be
776       // used if there was overflow.
777       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
778 
779       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
780       hasAnyOverflow |= overflow;
781     }
782 
783     // On overflow, produce a -1 so operator new will fail.
784     if (hasAnyOverflow) {
785       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
786     } else {
787       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
788     }
789 
790   // Otherwise, we might need to use the overflow intrinsics.
791   } else {
792     // There are up to five conditions we need to test for:
793     // 1) if isSigned, we need to check whether numElements is negative;
794     // 2) if numElementsWidth > sizeWidth, we need to check whether
795     //   numElements is larger than something representable in size_t;
796     // 3) if minElements > 0, we need to check whether numElements is smaller
797     //    than that.
798     // 4) we need to compute
799     //      sizeWithoutCookie := numElements * typeSizeMultiplier
800     //    and check whether it overflows; and
801     // 5) if we need a cookie, we need to compute
802     //      size := sizeWithoutCookie + cookieSize
803     //    and check whether it overflows.
804 
805     llvm::Value *hasOverflow = nullptr;
806 
807     // If numElementsWidth > sizeWidth, then one way or another, we're
808     // going to have to do a comparison for (2), and this happens to
809     // take care of (1), too.
810     if (numElementsWidth > sizeWidth) {
811       llvm::APInt threshold(numElementsWidth, 1);
812       threshold <<= sizeWidth;
813 
814       llvm::Value *thresholdV
815         = llvm::ConstantInt::get(numElementsType, threshold);
816 
817       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
818       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
819 
820     // Otherwise, if we're signed, we want to sext up to size_t.
821     } else if (isSigned) {
822       if (numElementsWidth < sizeWidth)
823         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
824 
825       // If there's a non-1 type size multiplier, then we can do the
826       // signedness check at the same time as we do the multiply
827       // because a negative number times anything will cause an
828       // unsigned overflow.  Otherwise, we have to do it here. But at least
829       // in this case, we can subsume the >= minElements check.
830       if (typeSizeMultiplier == 1)
831         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
832                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
833 
834     // Otherwise, zext up to size_t if necessary.
835     } else if (numElementsWidth < sizeWidth) {
836       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
837     }
838 
839     assert(numElements->getType() == CGF.SizeTy);
840 
841     if (minElements) {
842       // Don't allow allocation of fewer elements than we have initializers.
843       if (!hasOverflow) {
844         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
845                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
846       } else if (numElementsWidth > sizeWidth) {
847         // The other existing overflow subsumes this check.
848         // We do an unsigned comparison, since any signed value < -1 is
849         // taken care of either above or below.
850         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
851                           CGF.Builder.CreateICmpULT(numElements,
852                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
853       }
854     }
855 
856     size = numElements;
857 
858     // Multiply by the type size if necessary.  This multiplier
859     // includes all the factors for nested arrays.
860     //
861     // This step also causes numElements to be scaled up by the
862     // nested-array factor if necessary.  Overflow on this computation
863     // can be ignored because the result shouldn't be used if
864     // allocation fails.
865     if (typeSizeMultiplier != 1) {
866       llvm::Function *umul_with_overflow
867         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
868 
869       llvm::Value *tsmV =
870         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
871       llvm::Value *result =
872           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
873 
874       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
875       if (hasOverflow)
876         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
877       else
878         hasOverflow = overflowed;
879 
880       size = CGF.Builder.CreateExtractValue(result, 0);
881 
882       // Also scale up numElements by the array size multiplier.
883       if (arraySizeMultiplier != 1) {
884         // If the base element type size is 1, then we can re-use the
885         // multiply we just did.
886         if (typeSize.isOne()) {
887           assert(arraySizeMultiplier == typeSizeMultiplier);
888           numElements = size;
889 
890         // Otherwise we need a separate multiply.
891         } else {
892           llvm::Value *asmV =
893             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
894           numElements = CGF.Builder.CreateMul(numElements, asmV);
895         }
896       }
897     } else {
898       // numElements doesn't need to be scaled.
899       assert(arraySizeMultiplier == 1);
900     }
901 
902     // Add in the cookie size if necessary.
903     if (cookieSize != 0) {
904       sizeWithoutCookie = size;
905 
906       llvm::Function *uadd_with_overflow
907         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
908 
909       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
910       llvm::Value *result =
911           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
912 
913       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
914       if (hasOverflow)
915         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
916       else
917         hasOverflow = overflowed;
918 
919       size = CGF.Builder.CreateExtractValue(result, 0);
920     }
921 
922     // If we had any possibility of dynamic overflow, make a select to
923     // overwrite 'size' with an all-ones value, which should cause
924     // operator new to throw.
925     if (hasOverflow)
926       size = CGF.Builder.CreateSelect(hasOverflow,
927                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
928                                       size);
929   }
930 
931   if (cookieSize == 0)
932     sizeWithoutCookie = size;
933   else
934     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
935 
936   return size;
937 }
938 
939 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
940                                     QualType AllocType, Address NewPtr,
941                                     AggValueSlot::Overlap_t MayOverlap) {
942   // FIXME: Refactor with EmitExprAsInit.
943   switch (CGF.getEvaluationKind(AllocType)) {
944   case TEK_Scalar:
945     CGF.EmitScalarInit(Init, nullptr,
946                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
947     return;
948   case TEK_Complex:
949     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
950                                   /*isInit*/ true);
951     return;
952   case TEK_Aggregate: {
953     AggValueSlot Slot
954       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
955                               AggValueSlot::IsDestructed,
956                               AggValueSlot::DoesNotNeedGCBarriers,
957                               AggValueSlot::IsNotAliased,
958                               MayOverlap, AggValueSlot::IsNotZeroed,
959                               AggValueSlot::IsSanitizerChecked);
960     CGF.EmitAggExpr(Init, Slot);
961     return;
962   }
963   }
964   llvm_unreachable("bad evaluation kind");
965 }
966 
967 void CodeGenFunction::EmitNewArrayInitializer(
968     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
969     Address BeginPtr, llvm::Value *NumElements,
970     llvm::Value *AllocSizeWithoutCookie) {
971   // If we have a type with trivial initialization and no initializer,
972   // there's nothing to do.
973   if (!E->hasInitializer())
974     return;
975 
976   Address CurPtr = BeginPtr;
977 
978   unsigned InitListElements = 0;
979 
980   const Expr *Init = E->getInitializer();
981   Address EndOfInit = Address::invalid();
982   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
983   EHScopeStack::stable_iterator Cleanup;
984   llvm::Instruction *CleanupDominator = nullptr;
985 
986   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
987   CharUnits ElementAlign =
988     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
989 
990   // Attempt to perform zero-initialization using memset.
991   auto TryMemsetInitialization = [&]() -> bool {
992     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
993     // we can initialize with a memset to -1.
994     if (!CGM.getTypes().isZeroInitializable(ElementType))
995       return false;
996 
997     // Optimization: since zero initialization will just set the memory
998     // to all zeroes, generate a single memset to do it in one shot.
999 
1000     // Subtract out the size of any elements we've already initialized.
1001     auto *RemainingSize = AllocSizeWithoutCookie;
1002     if (InitListElements) {
1003       // We know this can't overflow; we check this when doing the allocation.
1004       auto *InitializedSize = llvm::ConstantInt::get(
1005           RemainingSize->getType(),
1006           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1007               InitListElements);
1008       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1009     }
1010 
1011     // Create the memset.
1012     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1013     return true;
1014   };
1015 
1016   // If the initializer is an initializer list, first do the explicit elements.
1017   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1018     // Initializing from a (braced) string literal is a special case; the init
1019     // list element does not initialize a (single) array element.
1020     if (ILE->isStringLiteralInit()) {
1021       // Initialize the initial portion of length equal to that of the string
1022       // literal. The allocation must be for at least this much; we emitted a
1023       // check for that earlier.
1024       AggValueSlot Slot =
1025           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1026                                 AggValueSlot::IsDestructed,
1027                                 AggValueSlot::DoesNotNeedGCBarriers,
1028                                 AggValueSlot::IsNotAliased,
1029                                 AggValueSlot::DoesNotOverlap,
1030                                 AggValueSlot::IsNotZeroed,
1031                                 AggValueSlot::IsSanitizerChecked);
1032       EmitAggExpr(ILE->getInit(0), Slot);
1033 
1034       // Move past these elements.
1035       InitListElements =
1036           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1037               ->getSize().getZExtValue();
1038       CurPtr =
1039           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1040                                             Builder.getSize(InitListElements),
1041                                             "string.init.end"),
1042                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1043                                                           ElementSize));
1044 
1045       // Zero out the rest, if any remain.
1046       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1047       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1048         bool OK = TryMemsetInitialization();
1049         (void)OK;
1050         assert(OK && "couldn't memset character type?");
1051       }
1052       return;
1053     }
1054 
1055     InitListElements = ILE->getNumInits();
1056 
1057     // If this is a multi-dimensional array new, we will initialize multiple
1058     // elements with each init list element.
1059     QualType AllocType = E->getAllocatedType();
1060     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1061             AllocType->getAsArrayTypeUnsafe())) {
1062       ElementTy = ConvertTypeForMem(AllocType);
1063       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1064       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1065     }
1066 
1067     // Enter a partial-destruction Cleanup if necessary.
1068     if (needsEHCleanup(DtorKind)) {
1069       // In principle we could tell the Cleanup where we are more
1070       // directly, but the control flow can get so varied here that it
1071       // would actually be quite complex.  Therefore we go through an
1072       // alloca.
1073       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1074                                    "array.init.end");
1075       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1076       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1077                                        ElementType, ElementAlign,
1078                                        getDestroyer(DtorKind));
1079       Cleanup = EHStack.stable_begin();
1080     }
1081 
1082     CharUnits StartAlign = CurPtr.getAlignment();
1083     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1084       // Tell the cleanup that it needs to destroy up to this
1085       // element.  TODO: some of these stores can be trivially
1086       // observed to be unnecessary.
1087       if (EndOfInit.isValid()) {
1088         auto FinishedPtr =
1089           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1090         Builder.CreateStore(FinishedPtr, EndOfInit);
1091       }
1092       // FIXME: If the last initializer is an incomplete initializer list for
1093       // an array, and we have an array filler, we can fold together the two
1094       // initialization loops.
1095       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1096                               ILE->getInit(i)->getType(), CurPtr,
1097                               AggValueSlot::DoesNotOverlap);
1098       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1099                                                  Builder.getSize(1),
1100                                                  "array.exp.next"),
1101                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1102     }
1103 
1104     // The remaining elements are filled with the array filler expression.
1105     Init = ILE->getArrayFiller();
1106 
1107     // Extract the initializer for the individual array elements by pulling
1108     // out the array filler from all the nested initializer lists. This avoids
1109     // generating a nested loop for the initialization.
1110     while (Init && Init->getType()->isConstantArrayType()) {
1111       auto *SubILE = dyn_cast<InitListExpr>(Init);
1112       if (!SubILE)
1113         break;
1114       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1115       Init = SubILE->getArrayFiller();
1116     }
1117 
1118     // Switch back to initializing one base element at a time.
1119     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1120   }
1121 
1122   // If all elements have already been initialized, skip any further
1123   // initialization.
1124   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1125   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1126     // If there was a Cleanup, deactivate it.
1127     if (CleanupDominator)
1128       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1129     return;
1130   }
1131 
1132   assert(Init && "have trailing elements to initialize but no initializer");
1133 
1134   // If this is a constructor call, try to optimize it out, and failing that
1135   // emit a single loop to initialize all remaining elements.
1136   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1137     CXXConstructorDecl *Ctor = CCE->getConstructor();
1138     if (Ctor->isTrivial()) {
1139       // If new expression did not specify value-initialization, then there
1140       // is no initialization.
1141       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1142         return;
1143 
1144       if (TryMemsetInitialization())
1145         return;
1146     }
1147 
1148     // Store the new Cleanup position for irregular Cleanups.
1149     //
1150     // FIXME: Share this cleanup with the constructor call emission rather than
1151     // having it create a cleanup of its own.
1152     if (EndOfInit.isValid())
1153       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1154 
1155     // Emit a constructor call loop to initialize the remaining elements.
1156     if (InitListElements)
1157       NumElements = Builder.CreateSub(
1158           NumElements,
1159           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1160     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1161                                /*NewPointerIsChecked*/true,
1162                                CCE->requiresZeroInitialization());
1163     return;
1164   }
1165 
1166   // If this is value-initialization, we can usually use memset.
1167   ImplicitValueInitExpr IVIE(ElementType);
1168   if (isa<ImplicitValueInitExpr>(Init)) {
1169     if (TryMemsetInitialization())
1170       return;
1171 
1172     // Switch to an ImplicitValueInitExpr for the element type. This handles
1173     // only one case: multidimensional array new of pointers to members. In
1174     // all other cases, we already have an initializer for the array element.
1175     Init = &IVIE;
1176   }
1177 
1178   // At this point we should have found an initializer for the individual
1179   // elements of the array.
1180   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1181          "got wrong type of element to initialize");
1182 
1183   // If we have an empty initializer list, we can usually use memset.
1184   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1185     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1186       return;
1187 
1188   // If we have a struct whose every field is value-initialized, we can
1189   // usually use memset.
1190   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1191     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1192       if (RType->getDecl()->isStruct()) {
1193         unsigned NumElements = 0;
1194         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1195           NumElements = CXXRD->getNumBases();
1196         for (auto *Field : RType->getDecl()->fields())
1197           if (!Field->isUnnamedBitfield())
1198             ++NumElements;
1199         // FIXME: Recurse into nested InitListExprs.
1200         if (ILE->getNumInits() == NumElements)
1201           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1202             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1203               --NumElements;
1204         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1205           return;
1206       }
1207     }
1208   }
1209 
1210   // Create the loop blocks.
1211   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1212   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1213   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1214 
1215   // Find the end of the array, hoisted out of the loop.
1216   llvm::Value *EndPtr =
1217     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1218 
1219   // If the number of elements isn't constant, we have to now check if there is
1220   // anything left to initialize.
1221   if (!ConstNum) {
1222     llvm::Value *IsEmpty =
1223       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1224     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1225   }
1226 
1227   // Enter the loop.
1228   EmitBlock(LoopBB);
1229 
1230   // Set up the current-element phi.
1231   llvm::PHINode *CurPtrPhi =
1232     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1233   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1234 
1235   CurPtr = Address(CurPtrPhi, ElementAlign);
1236 
1237   // Store the new Cleanup position for irregular Cleanups.
1238   if (EndOfInit.isValid())
1239     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1240 
1241   // Enter a partial-destruction Cleanup if necessary.
1242   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1243     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1244                                    ElementType, ElementAlign,
1245                                    getDestroyer(DtorKind));
1246     Cleanup = EHStack.stable_begin();
1247     CleanupDominator = Builder.CreateUnreachable();
1248   }
1249 
1250   // Emit the initializer into this element.
1251   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1252                           AggValueSlot::DoesNotOverlap);
1253 
1254   // Leave the Cleanup if we entered one.
1255   if (CleanupDominator) {
1256     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1257     CleanupDominator->eraseFromParent();
1258   }
1259 
1260   // Advance to the next element by adjusting the pointer type as necessary.
1261   llvm::Value *NextPtr =
1262     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1263                                        "array.next");
1264 
1265   // Check whether we've gotten to the end of the array and, if so,
1266   // exit the loop.
1267   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1268   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1269   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1270 
1271   EmitBlock(ContBB);
1272 }
1273 
1274 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1275                                QualType ElementType, llvm::Type *ElementTy,
1276                                Address NewPtr, llvm::Value *NumElements,
1277                                llvm::Value *AllocSizeWithoutCookie) {
1278   ApplyDebugLocation DL(CGF, E);
1279   if (E->isArray())
1280     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1281                                 AllocSizeWithoutCookie);
1282   else if (const Expr *Init = E->getInitializer())
1283     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1284                             AggValueSlot::DoesNotOverlap);
1285 }
1286 
1287 /// Emit a call to an operator new or operator delete function, as implicitly
1288 /// created by new-expressions and delete-expressions.
1289 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1290                                 const FunctionDecl *CalleeDecl,
1291                                 const FunctionProtoType *CalleeType,
1292                                 const CallArgList &Args) {
1293   llvm::CallBase *CallOrInvoke;
1294   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1295   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1296   RValue RV =
1297       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1298                        Args, CalleeType, /*chainCall=*/false),
1299                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1300 
1301   /// C++1y [expr.new]p10:
1302   ///   [In a new-expression,] an implementation is allowed to omit a call
1303   ///   to a replaceable global allocation function.
1304   ///
1305   /// We model such elidable calls with the 'builtin' attribute.
1306   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1307   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1308       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1309     CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1310                                llvm::Attribute::Builtin);
1311   }
1312 
1313   return RV;
1314 }
1315 
1316 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1317                                                  const CallExpr *TheCall,
1318                                                  bool IsDelete) {
1319   CallArgList Args;
1320   EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1321   // Find the allocation or deallocation function that we're calling.
1322   ASTContext &Ctx = getContext();
1323   DeclarationName Name = Ctx.DeclarationNames
1324       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1325 
1326   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1327     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1328       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1329         return EmitNewDeleteCall(*this, FD, Type, Args);
1330   llvm_unreachable("predeclared global operator new/delete is missing");
1331 }
1332 
1333 namespace {
1334 /// The parameters to pass to a usual operator delete.
1335 struct UsualDeleteParams {
1336   bool DestroyingDelete = false;
1337   bool Size = false;
1338   bool Alignment = false;
1339 };
1340 }
1341 
1342 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1343   UsualDeleteParams Params;
1344 
1345   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1346   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1347 
1348   // The first argument is always a void*.
1349   ++AI;
1350 
1351   // The next parameter may be a std::destroying_delete_t.
1352   if (FD->isDestroyingOperatorDelete()) {
1353     Params.DestroyingDelete = true;
1354     assert(AI != AE);
1355     ++AI;
1356   }
1357 
1358   // Figure out what other parameters we should be implicitly passing.
1359   if (AI != AE && (*AI)->isIntegerType()) {
1360     Params.Size = true;
1361     ++AI;
1362   }
1363 
1364   if (AI != AE && (*AI)->isAlignValT()) {
1365     Params.Alignment = true;
1366     ++AI;
1367   }
1368 
1369   assert(AI == AE && "unexpected usual deallocation function parameter");
1370   return Params;
1371 }
1372 
1373 namespace {
1374   /// A cleanup to call the given 'operator delete' function upon abnormal
1375   /// exit from a new expression. Templated on a traits type that deals with
1376   /// ensuring that the arguments dominate the cleanup if necessary.
1377   template<typename Traits>
1378   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1379     /// Type used to hold llvm::Value*s.
1380     typedef typename Traits::ValueTy ValueTy;
1381     /// Type used to hold RValues.
1382     typedef typename Traits::RValueTy RValueTy;
1383     struct PlacementArg {
1384       RValueTy ArgValue;
1385       QualType ArgType;
1386     };
1387 
1388     unsigned NumPlacementArgs : 31;
1389     unsigned PassAlignmentToPlacementDelete : 1;
1390     const FunctionDecl *OperatorDelete;
1391     ValueTy Ptr;
1392     ValueTy AllocSize;
1393     CharUnits AllocAlign;
1394 
1395     PlacementArg *getPlacementArgs() {
1396       return reinterpret_cast<PlacementArg *>(this + 1);
1397     }
1398 
1399   public:
1400     static size_t getExtraSize(size_t NumPlacementArgs) {
1401       return NumPlacementArgs * sizeof(PlacementArg);
1402     }
1403 
1404     CallDeleteDuringNew(size_t NumPlacementArgs,
1405                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1406                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1407                         CharUnits AllocAlign)
1408       : NumPlacementArgs(NumPlacementArgs),
1409         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1410         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1411         AllocAlign(AllocAlign) {}
1412 
1413     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1414       assert(I < NumPlacementArgs && "index out of range");
1415       getPlacementArgs()[I] = {Arg, Type};
1416     }
1417 
1418     void Emit(CodeGenFunction &CGF, Flags flags) override {
1419       const FunctionProtoType *FPT =
1420           OperatorDelete->getType()->getAs<FunctionProtoType>();
1421       CallArgList DeleteArgs;
1422 
1423       // The first argument is always a void* (or C* for a destroying operator
1424       // delete for class type C).
1425       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1426 
1427       // Figure out what other parameters we should be implicitly passing.
1428       UsualDeleteParams Params;
1429       if (NumPlacementArgs) {
1430         // A placement deallocation function is implicitly passed an alignment
1431         // if the placement allocation function was, but is never passed a size.
1432         Params.Alignment = PassAlignmentToPlacementDelete;
1433       } else {
1434         // For a non-placement new-expression, 'operator delete' can take a
1435         // size and/or an alignment if it has the right parameters.
1436         Params = getUsualDeleteParams(OperatorDelete);
1437       }
1438 
1439       assert(!Params.DestroyingDelete &&
1440              "should not call destroying delete in a new-expression");
1441 
1442       // The second argument can be a std::size_t (for non-placement delete).
1443       if (Params.Size)
1444         DeleteArgs.add(Traits::get(CGF, AllocSize),
1445                        CGF.getContext().getSizeType());
1446 
1447       // The next (second or third) argument can be a std::align_val_t, which
1448       // is an enum whose underlying type is std::size_t.
1449       // FIXME: Use the right type as the parameter type. Note that in a call
1450       // to operator delete(size_t, ...), we may not have it available.
1451       if (Params.Alignment)
1452         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1453                            CGF.SizeTy, AllocAlign.getQuantity())),
1454                        CGF.getContext().getSizeType());
1455 
1456       // Pass the rest of the arguments, which must match exactly.
1457       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1458         auto Arg = getPlacementArgs()[I];
1459         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1460       }
1461 
1462       // Call 'operator delete'.
1463       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1464     }
1465   };
1466 }
1467 
1468 /// Enter a cleanup to call 'operator delete' if the initializer in a
1469 /// new-expression throws.
1470 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1471                                   const CXXNewExpr *E,
1472                                   Address NewPtr,
1473                                   llvm::Value *AllocSize,
1474                                   CharUnits AllocAlign,
1475                                   const CallArgList &NewArgs) {
1476   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1477 
1478   // If we're not inside a conditional branch, then the cleanup will
1479   // dominate and we can do the easier (and more efficient) thing.
1480   if (!CGF.isInConditionalBranch()) {
1481     struct DirectCleanupTraits {
1482       typedef llvm::Value *ValueTy;
1483       typedef RValue RValueTy;
1484       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1485       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1486     };
1487 
1488     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1489 
1490     DirectCleanup *Cleanup = CGF.EHStack
1491       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1492                                            E->getNumPlacementArgs(),
1493                                            E->getOperatorDelete(),
1494                                            NewPtr.getPointer(),
1495                                            AllocSize,
1496                                            E->passAlignment(),
1497                                            AllocAlign);
1498     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1499       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1500       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1501     }
1502 
1503     return;
1504   }
1505 
1506   // Otherwise, we need to save all this stuff.
1507   DominatingValue<RValue>::saved_type SavedNewPtr =
1508     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1509   DominatingValue<RValue>::saved_type SavedAllocSize =
1510     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1511 
1512   struct ConditionalCleanupTraits {
1513     typedef DominatingValue<RValue>::saved_type ValueTy;
1514     typedef DominatingValue<RValue>::saved_type RValueTy;
1515     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1516       return V.restore(CGF);
1517     }
1518   };
1519   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1520 
1521   ConditionalCleanup *Cleanup = CGF.EHStack
1522     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1523                                               E->getNumPlacementArgs(),
1524                                               E->getOperatorDelete(),
1525                                               SavedNewPtr,
1526                                               SavedAllocSize,
1527                                               E->passAlignment(),
1528                                               AllocAlign);
1529   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1530     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1531     Cleanup->setPlacementArg(
1532         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1533   }
1534 
1535   CGF.initFullExprCleanup();
1536 }
1537 
1538 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1539   // The element type being allocated.
1540   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1541 
1542   // 1. Build a call to the allocation function.
1543   FunctionDecl *allocator = E->getOperatorNew();
1544 
1545   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1546   unsigned minElements = 0;
1547   if (E->isArray() && E->hasInitializer()) {
1548     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1549     if (ILE && ILE->isStringLiteralInit())
1550       minElements =
1551           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1552               ->getSize().getZExtValue();
1553     else if (ILE)
1554       minElements = ILE->getNumInits();
1555   }
1556 
1557   llvm::Value *numElements = nullptr;
1558   llvm::Value *allocSizeWithoutCookie = nullptr;
1559   llvm::Value *allocSize =
1560     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1561                         allocSizeWithoutCookie);
1562   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1563 
1564   // Emit the allocation call.  If the allocator is a global placement
1565   // operator, just "inline" it directly.
1566   Address allocation = Address::invalid();
1567   CallArgList allocatorArgs;
1568   if (allocator->isReservedGlobalPlacementOperator()) {
1569     assert(E->getNumPlacementArgs() == 1);
1570     const Expr *arg = *E->placement_arguments().begin();
1571 
1572     LValueBaseInfo BaseInfo;
1573     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1574 
1575     // The pointer expression will, in many cases, be an opaque void*.
1576     // In these cases, discard the computed alignment and use the
1577     // formal alignment of the allocated type.
1578     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1579       allocation = Address(allocation.getPointer(), allocAlign);
1580 
1581     // Set up allocatorArgs for the call to operator delete if it's not
1582     // the reserved global operator.
1583     if (E->getOperatorDelete() &&
1584         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1585       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1586       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1587     }
1588 
1589   } else {
1590     const FunctionProtoType *allocatorType =
1591       allocator->getType()->castAs<FunctionProtoType>();
1592     unsigned ParamsToSkip = 0;
1593 
1594     // The allocation size is the first argument.
1595     QualType sizeType = getContext().getSizeType();
1596     allocatorArgs.add(RValue::get(allocSize), sizeType);
1597     ++ParamsToSkip;
1598 
1599     if (allocSize != allocSizeWithoutCookie) {
1600       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1601       allocAlign = std::max(allocAlign, cookieAlign);
1602     }
1603 
1604     // The allocation alignment may be passed as the second argument.
1605     if (E->passAlignment()) {
1606       QualType AlignValT = sizeType;
1607       if (allocatorType->getNumParams() > 1) {
1608         AlignValT = allocatorType->getParamType(1);
1609         assert(getContext().hasSameUnqualifiedType(
1610                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1611                    sizeType) &&
1612                "wrong type for alignment parameter");
1613         ++ParamsToSkip;
1614       } else {
1615         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1616         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1617       }
1618       allocatorArgs.add(
1619           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1620           AlignValT);
1621     }
1622 
1623     // FIXME: Why do we not pass a CalleeDecl here?
1624     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1625                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1626 
1627     RValue RV =
1628       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1629 
1630     // If this was a call to a global replaceable allocation function that does
1631     // not take an alignment argument, the allocator is known to produce
1632     // storage that's suitably aligned for any object that fits, up to a known
1633     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1634     CharUnits allocationAlign = allocAlign;
1635     if (!E->passAlignment() &&
1636         allocator->isReplaceableGlobalAllocationFunction()) {
1637       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1638           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1639       allocationAlign = std::max(
1640           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1641     }
1642 
1643     allocation = Address(RV.getScalarVal(), allocationAlign);
1644   }
1645 
1646   // Emit a null check on the allocation result if the allocation
1647   // function is allowed to return null (because it has a non-throwing
1648   // exception spec or is the reserved placement new) and we have an
1649   // interesting initializer will be running sanitizers on the initialization.
1650   bool nullCheck = E->shouldNullCheckAllocation() &&
1651                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1652                     sanitizePerformTypeCheck());
1653 
1654   llvm::BasicBlock *nullCheckBB = nullptr;
1655   llvm::BasicBlock *contBB = nullptr;
1656 
1657   // The null-check means that the initializer is conditionally
1658   // evaluated.
1659   ConditionalEvaluation conditional(*this);
1660 
1661   if (nullCheck) {
1662     conditional.begin(*this);
1663 
1664     nullCheckBB = Builder.GetInsertBlock();
1665     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1666     contBB = createBasicBlock("new.cont");
1667 
1668     llvm::Value *isNull =
1669       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1670     Builder.CreateCondBr(isNull, contBB, notNullBB);
1671     EmitBlock(notNullBB);
1672   }
1673 
1674   // If there's an operator delete, enter a cleanup to call it if an
1675   // exception is thrown.
1676   EHScopeStack::stable_iterator operatorDeleteCleanup;
1677   llvm::Instruction *cleanupDominator = nullptr;
1678   if (E->getOperatorDelete() &&
1679       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1680     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1681                           allocatorArgs);
1682     operatorDeleteCleanup = EHStack.stable_begin();
1683     cleanupDominator = Builder.CreateUnreachable();
1684   }
1685 
1686   assert((allocSize == allocSizeWithoutCookie) ==
1687          CalculateCookiePadding(*this, E).isZero());
1688   if (allocSize != allocSizeWithoutCookie) {
1689     assert(E->isArray());
1690     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1691                                                        numElements,
1692                                                        E, allocType);
1693   }
1694 
1695   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1696   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1697 
1698   // Passing pointer through launder.invariant.group to avoid propagation of
1699   // vptrs information which may be included in previous type.
1700   // To not break LTO with different optimizations levels, we do it regardless
1701   // of optimization level.
1702   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1703       allocator->isReservedGlobalPlacementOperator())
1704     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1705                      result.getAlignment());
1706 
1707   // Emit sanitizer checks for pointer value now, so that in the case of an
1708   // array it was checked only once and not at each constructor call. We may
1709   // have already checked that the pointer is non-null.
1710   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1711   // we'll null check the wrong pointer here.
1712   SanitizerSet SkippedChecks;
1713   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1714   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1715                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1716                 result.getPointer(), allocType, result.getAlignment(),
1717                 SkippedChecks, numElements);
1718 
1719   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1720                      allocSizeWithoutCookie);
1721   if (E->isArray()) {
1722     // NewPtr is a pointer to the base element type.  If we're
1723     // allocating an array of arrays, we'll need to cast back to the
1724     // array pointer type.
1725     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1726     if (result.getType() != resultType)
1727       result = Builder.CreateBitCast(result, resultType);
1728   }
1729 
1730   // Deactivate the 'operator delete' cleanup if we finished
1731   // initialization.
1732   if (operatorDeleteCleanup.isValid()) {
1733     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1734     cleanupDominator->eraseFromParent();
1735   }
1736 
1737   llvm::Value *resultPtr = result.getPointer();
1738   if (nullCheck) {
1739     conditional.end(*this);
1740 
1741     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1742     EmitBlock(contBB);
1743 
1744     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1745     PHI->addIncoming(resultPtr, notNullBB);
1746     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1747                      nullCheckBB);
1748 
1749     resultPtr = PHI;
1750   }
1751 
1752   return resultPtr;
1753 }
1754 
1755 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1756                                      llvm::Value *Ptr, QualType DeleteTy,
1757                                      llvm::Value *NumElements,
1758                                      CharUnits CookieSize) {
1759   assert((!NumElements && CookieSize.isZero()) ||
1760          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1761 
1762   const FunctionProtoType *DeleteFTy =
1763     DeleteFD->getType()->getAs<FunctionProtoType>();
1764 
1765   CallArgList DeleteArgs;
1766 
1767   auto Params = getUsualDeleteParams(DeleteFD);
1768   auto ParamTypeIt = DeleteFTy->param_type_begin();
1769 
1770   // Pass the pointer itself.
1771   QualType ArgTy = *ParamTypeIt++;
1772   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1773   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1774 
1775   // Pass the std::destroying_delete tag if present.
1776   if (Params.DestroyingDelete) {
1777     QualType DDTag = *ParamTypeIt++;
1778     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1779     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1780     DeleteArgs.add(RValue::get(V), DDTag);
1781   }
1782 
1783   // Pass the size if the delete function has a size_t parameter.
1784   if (Params.Size) {
1785     QualType SizeType = *ParamTypeIt++;
1786     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1787     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1788                                                DeleteTypeSize.getQuantity());
1789 
1790     // For array new, multiply by the number of elements.
1791     if (NumElements)
1792       Size = Builder.CreateMul(Size, NumElements);
1793 
1794     // If there is a cookie, add the cookie size.
1795     if (!CookieSize.isZero())
1796       Size = Builder.CreateAdd(
1797           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1798 
1799     DeleteArgs.add(RValue::get(Size), SizeType);
1800   }
1801 
1802   // Pass the alignment if the delete function has an align_val_t parameter.
1803   if (Params.Alignment) {
1804     QualType AlignValType = *ParamTypeIt++;
1805     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1806         getContext().getTypeAlignIfKnown(DeleteTy));
1807     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1808                                                 DeleteTypeAlign.getQuantity());
1809     DeleteArgs.add(RValue::get(Align), AlignValType);
1810   }
1811 
1812   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1813          "unknown parameter to usual delete function");
1814 
1815   // Emit the call to delete.
1816   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1817 }
1818 
1819 namespace {
1820   /// Calls the given 'operator delete' on a single object.
1821   struct CallObjectDelete final : EHScopeStack::Cleanup {
1822     llvm::Value *Ptr;
1823     const FunctionDecl *OperatorDelete;
1824     QualType ElementType;
1825 
1826     CallObjectDelete(llvm::Value *Ptr,
1827                      const FunctionDecl *OperatorDelete,
1828                      QualType ElementType)
1829       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1830 
1831     void Emit(CodeGenFunction &CGF, Flags flags) override {
1832       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1833     }
1834   };
1835 }
1836 
1837 void
1838 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1839                                              llvm::Value *CompletePtr,
1840                                              QualType ElementType) {
1841   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1842                                         OperatorDelete, ElementType);
1843 }
1844 
1845 /// Emit the code for deleting a single object with a destroying operator
1846 /// delete. If the element type has a non-virtual destructor, Ptr has already
1847 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1848 /// Ptr points to an object of the static type.
1849 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1850                                        const CXXDeleteExpr *DE, Address Ptr,
1851                                        QualType ElementType) {
1852   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1853   if (Dtor && Dtor->isVirtual())
1854     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1855                                                 Dtor);
1856   else
1857     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1858 }
1859 
1860 /// Emit the code for deleting a single object.
1861 static void EmitObjectDelete(CodeGenFunction &CGF,
1862                              const CXXDeleteExpr *DE,
1863                              Address Ptr,
1864                              QualType ElementType) {
1865   // C++11 [expr.delete]p3:
1866   //   If the static type of the object to be deleted is different from its
1867   //   dynamic type, the static type shall be a base class of the dynamic type
1868   //   of the object to be deleted and the static type shall have a virtual
1869   //   destructor or the behavior is undefined.
1870   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1871                     DE->getExprLoc(), Ptr.getPointer(),
1872                     ElementType);
1873 
1874   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1875   assert(!OperatorDelete->isDestroyingOperatorDelete());
1876 
1877   // Find the destructor for the type, if applicable.  If the
1878   // destructor is virtual, we'll just emit the vcall and return.
1879   const CXXDestructorDecl *Dtor = nullptr;
1880   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1881     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1882     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1883       Dtor = RD->getDestructor();
1884 
1885       if (Dtor->isVirtual()) {
1886         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1887                                                     Dtor);
1888         return;
1889       }
1890     }
1891   }
1892 
1893   // Make sure that we call delete even if the dtor throws.
1894   // This doesn't have to a conditional cleanup because we're going
1895   // to pop it off in a second.
1896   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1897                                             Ptr.getPointer(),
1898                                             OperatorDelete, ElementType);
1899 
1900   if (Dtor)
1901     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1902                               /*ForVirtualBase=*/false,
1903                               /*Delegating=*/false,
1904                               Ptr);
1905   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1906     switch (Lifetime) {
1907     case Qualifiers::OCL_None:
1908     case Qualifiers::OCL_ExplicitNone:
1909     case Qualifiers::OCL_Autoreleasing:
1910       break;
1911 
1912     case Qualifiers::OCL_Strong:
1913       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1914       break;
1915 
1916     case Qualifiers::OCL_Weak:
1917       CGF.EmitARCDestroyWeak(Ptr);
1918       break;
1919     }
1920   }
1921 
1922   CGF.PopCleanupBlock();
1923 }
1924 
1925 namespace {
1926   /// Calls the given 'operator delete' on an array of objects.
1927   struct CallArrayDelete final : EHScopeStack::Cleanup {
1928     llvm::Value *Ptr;
1929     const FunctionDecl *OperatorDelete;
1930     llvm::Value *NumElements;
1931     QualType ElementType;
1932     CharUnits CookieSize;
1933 
1934     CallArrayDelete(llvm::Value *Ptr,
1935                     const FunctionDecl *OperatorDelete,
1936                     llvm::Value *NumElements,
1937                     QualType ElementType,
1938                     CharUnits CookieSize)
1939       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1940         ElementType(ElementType), CookieSize(CookieSize) {}
1941 
1942     void Emit(CodeGenFunction &CGF, Flags flags) override {
1943       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1944                          CookieSize);
1945     }
1946   };
1947 }
1948 
1949 /// Emit the code for deleting an array of objects.
1950 static void EmitArrayDelete(CodeGenFunction &CGF,
1951                             const CXXDeleteExpr *E,
1952                             Address deletedPtr,
1953                             QualType elementType) {
1954   llvm::Value *numElements = nullptr;
1955   llvm::Value *allocatedPtr = nullptr;
1956   CharUnits cookieSize;
1957   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1958                                       numElements, allocatedPtr, cookieSize);
1959 
1960   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1961 
1962   // Make sure that we call delete even if one of the dtors throws.
1963   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1964   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1965                                            allocatedPtr, operatorDelete,
1966                                            numElements, elementType,
1967                                            cookieSize);
1968 
1969   // Destroy the elements.
1970   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1971     assert(numElements && "no element count for a type with a destructor!");
1972 
1973     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1974     CharUnits elementAlign =
1975       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1976 
1977     llvm::Value *arrayBegin = deletedPtr.getPointer();
1978     llvm::Value *arrayEnd =
1979       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1980 
1981     // Note that it is legal to allocate a zero-length array, and we
1982     // can never fold the check away because the length should always
1983     // come from a cookie.
1984     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1985                          CGF.getDestroyer(dtorKind),
1986                          /*checkZeroLength*/ true,
1987                          CGF.needsEHCleanup(dtorKind));
1988   }
1989 
1990   // Pop the cleanup block.
1991   CGF.PopCleanupBlock();
1992 }
1993 
1994 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1995   const Expr *Arg = E->getArgument();
1996   Address Ptr = EmitPointerWithAlignment(Arg);
1997 
1998   // Null check the pointer.
1999   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2000   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2001 
2002   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2003 
2004   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2005   EmitBlock(DeleteNotNull);
2006 
2007   QualType DeleteTy = E->getDestroyedType();
2008 
2009   // A destroying operator delete overrides the entire operation of the
2010   // delete expression.
2011   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2012     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2013     EmitBlock(DeleteEnd);
2014     return;
2015   }
2016 
2017   // We might be deleting a pointer to array.  If so, GEP down to the
2018   // first non-array element.
2019   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2020   if (DeleteTy->isConstantArrayType()) {
2021     llvm::Value *Zero = Builder.getInt32(0);
2022     SmallVector<llvm::Value*,8> GEP;
2023 
2024     GEP.push_back(Zero); // point at the outermost array
2025 
2026     // For each layer of array type we're pointing at:
2027     while (const ConstantArrayType *Arr
2028              = getContext().getAsConstantArrayType(DeleteTy)) {
2029       // 1. Unpeel the array type.
2030       DeleteTy = Arr->getElementType();
2031 
2032       // 2. GEP to the first element of the array.
2033       GEP.push_back(Zero);
2034     }
2035 
2036     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2037                   Ptr.getAlignment());
2038   }
2039 
2040   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2041 
2042   if (E->isArrayForm()) {
2043     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2044   } else {
2045     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2046   }
2047 
2048   EmitBlock(DeleteEnd);
2049 }
2050 
2051 static bool isGLValueFromPointerDeref(const Expr *E) {
2052   E = E->IgnoreParens();
2053 
2054   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2055     if (!CE->getSubExpr()->isGLValue())
2056       return false;
2057     return isGLValueFromPointerDeref(CE->getSubExpr());
2058   }
2059 
2060   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2061     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2062 
2063   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2064     if (BO->getOpcode() == BO_Comma)
2065       return isGLValueFromPointerDeref(BO->getRHS());
2066 
2067   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2068     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2069            isGLValueFromPointerDeref(ACO->getFalseExpr());
2070 
2071   // C++11 [expr.sub]p1:
2072   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2073   if (isa<ArraySubscriptExpr>(E))
2074     return true;
2075 
2076   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2077     if (UO->getOpcode() == UO_Deref)
2078       return true;
2079 
2080   return false;
2081 }
2082 
2083 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2084                                          llvm::Type *StdTypeInfoPtrTy) {
2085   // Get the vtable pointer.
2086   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2087 
2088   QualType SrcRecordTy = E->getType();
2089 
2090   // C++ [class.cdtor]p4:
2091   //   If the operand of typeid refers to the object under construction or
2092   //   destruction and the static type of the operand is neither the constructor
2093   //   or destructor’s class nor one of its bases, the behavior is undefined.
2094   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2095                     ThisPtr.getPointer(), SrcRecordTy);
2096 
2097   // C++ [expr.typeid]p2:
2098   //   If the glvalue expression is obtained by applying the unary * operator to
2099   //   a pointer and the pointer is a null pointer value, the typeid expression
2100   //   throws the std::bad_typeid exception.
2101   //
2102   // However, this paragraph's intent is not clear.  We choose a very generous
2103   // interpretation which implores us to consider comma operators, conditional
2104   // operators, parentheses and other such constructs.
2105   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2106           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2107     llvm::BasicBlock *BadTypeidBlock =
2108         CGF.createBasicBlock("typeid.bad_typeid");
2109     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2110 
2111     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2112     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2113 
2114     CGF.EmitBlock(BadTypeidBlock);
2115     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2116     CGF.EmitBlock(EndBlock);
2117   }
2118 
2119   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2120                                         StdTypeInfoPtrTy);
2121 }
2122 
2123 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2124   llvm::Type *StdTypeInfoPtrTy =
2125     ConvertType(E->getType())->getPointerTo();
2126 
2127   if (E->isTypeOperand()) {
2128     llvm::Constant *TypeInfo =
2129         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2130     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2131   }
2132 
2133   // C++ [expr.typeid]p2:
2134   //   When typeid is applied to a glvalue expression whose type is a
2135   //   polymorphic class type, the result refers to a std::type_info object
2136   //   representing the type of the most derived object (that is, the dynamic
2137   //   type) to which the glvalue refers.
2138   if (E->isPotentiallyEvaluated())
2139     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2140                                 StdTypeInfoPtrTy);
2141 
2142   QualType OperandTy = E->getExprOperand()->getType();
2143   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2144                                StdTypeInfoPtrTy);
2145 }
2146 
2147 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2148                                           QualType DestTy) {
2149   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2150   if (DestTy->isPointerType())
2151     return llvm::Constant::getNullValue(DestLTy);
2152 
2153   /// C++ [expr.dynamic.cast]p9:
2154   ///   A failed cast to reference type throws std::bad_cast
2155   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2156     return nullptr;
2157 
2158   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2159   return llvm::UndefValue::get(DestLTy);
2160 }
2161 
2162 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2163                                               const CXXDynamicCastExpr *DCE) {
2164   CGM.EmitExplicitCastExprType(DCE, this);
2165   QualType DestTy = DCE->getTypeAsWritten();
2166 
2167   QualType SrcTy = DCE->getSubExpr()->getType();
2168 
2169   // C++ [expr.dynamic.cast]p7:
2170   //   If T is "pointer to cv void," then the result is a pointer to the most
2171   //   derived object pointed to by v.
2172   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2173 
2174   bool isDynamicCastToVoid;
2175   QualType SrcRecordTy;
2176   QualType DestRecordTy;
2177   if (DestPTy) {
2178     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2179     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2180     DestRecordTy = DestPTy->getPointeeType();
2181   } else {
2182     isDynamicCastToVoid = false;
2183     SrcRecordTy = SrcTy;
2184     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2185   }
2186 
2187   // C++ [class.cdtor]p5:
2188   //   If the operand of the dynamic_cast refers to the object under
2189   //   construction or destruction and the static type of the operand is not a
2190   //   pointer to or object of the constructor or destructor’s own class or one
2191   //   of its bases, the dynamic_cast results in undefined behavior.
2192   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2193                 SrcRecordTy);
2194 
2195   if (DCE->isAlwaysNull())
2196     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2197       return T;
2198 
2199   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2200 
2201   // C++ [expr.dynamic.cast]p4:
2202   //   If the value of v is a null pointer value in the pointer case, the result
2203   //   is the null pointer value of type T.
2204   bool ShouldNullCheckSrcValue =
2205       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2206                                                          SrcRecordTy);
2207 
2208   llvm::BasicBlock *CastNull = nullptr;
2209   llvm::BasicBlock *CastNotNull = nullptr;
2210   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2211 
2212   if (ShouldNullCheckSrcValue) {
2213     CastNull = createBasicBlock("dynamic_cast.null");
2214     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2215 
2216     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2217     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2218     EmitBlock(CastNotNull);
2219   }
2220 
2221   llvm::Value *Value;
2222   if (isDynamicCastToVoid) {
2223     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2224                                                   DestTy);
2225   } else {
2226     assert(DestRecordTy->isRecordType() &&
2227            "destination type must be a record type!");
2228     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2229                                                 DestTy, DestRecordTy, CastEnd);
2230     CastNotNull = Builder.GetInsertBlock();
2231   }
2232 
2233   if (ShouldNullCheckSrcValue) {
2234     EmitBranch(CastEnd);
2235 
2236     EmitBlock(CastNull);
2237     EmitBranch(CastEnd);
2238   }
2239 
2240   EmitBlock(CastEnd);
2241 
2242   if (ShouldNullCheckSrcValue) {
2243     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2244     PHI->addIncoming(Value, CastNotNull);
2245     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2246 
2247     Value = PHI;
2248   }
2249 
2250   return Value;
2251 }
2252