1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "ConstantEmitter.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "llvm/IR/Intrinsics.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 struct MemberCallInfo { 28 RequiredArgs ReqArgs; 29 // Number of prefix arguments for the call. Ignores the `this` pointer. 30 unsigned PrefixSize; 31 }; 32 } 33 34 static MemberCallInfo 35 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 36 llvm::Value *This, llvm::Value *ImplicitParam, 37 QualType ImplicitParamTy, const CallExpr *CE, 38 CallArgList &Args, CallArgList *RtlArgs) { 39 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 40 isa<CXXOperatorCallExpr>(CE)); 41 assert(MD->isInstance() && 42 "Trying to emit a member or operator call expr on a static method!"); 43 ASTContext &C = CGF.getContext(); 44 45 // Push the this ptr. 46 const CXXRecordDecl *RD = 47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 48 Args.add(RValue::get(This), 49 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 50 51 // If there is an implicit parameter (e.g. VTT), emit it. 52 if (ImplicitParam) { 53 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 54 } 55 56 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 57 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 58 unsigned PrefixSize = Args.size() - 1; 59 60 // And the rest of the call args. 61 if (RtlArgs) { 62 // Special case: if the caller emitted the arguments right-to-left already 63 // (prior to emitting the *this argument), we're done. This happens for 64 // assignment operators. 65 Args.addFrom(*RtlArgs); 66 } else if (CE) { 67 // Special case: skip first argument of CXXOperatorCall (it is "this"). 68 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 69 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 70 CE->getDirectCallee()); 71 } else { 72 assert( 73 FPT->getNumParams() == 0 && 74 "No CallExpr specified for function with non-zero number of arguments"); 75 } 76 return {required, PrefixSize}; 77 } 78 79 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 80 const CXXMethodDecl *MD, const CGCallee &Callee, 81 ReturnValueSlot ReturnValue, 82 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 83 const CallExpr *CE, CallArgList *RtlArgs) { 84 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 85 CallArgList Args; 86 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 87 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 88 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 89 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 90 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 91 CE ? CE->getExprLoc() : SourceLocation()); 92 } 93 94 RValue CodeGenFunction::EmitCXXDestructorCall( 95 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 97 StructorType Type) { 98 CallArgList Args; 99 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 100 ImplicitParamTy, CE, Args, nullptr); 101 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 102 Callee, ReturnValueSlot(), Args); 103 } 104 105 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 106 const CXXPseudoDestructorExpr *E) { 107 QualType DestroyedType = E->getDestroyedType(); 108 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 109 // Automatic Reference Counting: 110 // If the pseudo-expression names a retainable object with weak or 111 // strong lifetime, the object shall be released. 112 Expr *BaseExpr = E->getBase(); 113 Address BaseValue = Address::invalid(); 114 Qualifiers BaseQuals; 115 116 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 117 if (E->isArrow()) { 118 BaseValue = EmitPointerWithAlignment(BaseExpr); 119 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 120 BaseQuals = PTy->getPointeeType().getQualifiers(); 121 } else { 122 LValue BaseLV = EmitLValue(BaseExpr); 123 BaseValue = BaseLV.getAddress(); 124 QualType BaseTy = BaseExpr->getType(); 125 BaseQuals = BaseTy.getQualifiers(); 126 } 127 128 switch (DestroyedType.getObjCLifetime()) { 129 case Qualifiers::OCL_None: 130 case Qualifiers::OCL_ExplicitNone: 131 case Qualifiers::OCL_Autoreleasing: 132 break; 133 134 case Qualifiers::OCL_Strong: 135 EmitARCRelease(Builder.CreateLoad(BaseValue, 136 DestroyedType.isVolatileQualified()), 137 ARCPreciseLifetime); 138 break; 139 140 case Qualifiers::OCL_Weak: 141 EmitARCDestroyWeak(BaseValue); 142 break; 143 } 144 } else { 145 // C++ [expr.pseudo]p1: 146 // The result shall only be used as the operand for the function call 147 // operator (), and the result of such a call has type void. The only 148 // effect is the evaluation of the postfix-expression before the dot or 149 // arrow. 150 EmitIgnoredExpr(E->getBase()); 151 } 152 153 return RValue::get(nullptr); 154 } 155 156 static CXXRecordDecl *getCXXRecord(const Expr *E) { 157 QualType T = E->getType(); 158 if (const PointerType *PTy = T->getAs<PointerType>()) 159 T = PTy->getPointeeType(); 160 const RecordType *Ty = T->castAs<RecordType>(); 161 return cast<CXXRecordDecl>(Ty->getDecl()); 162 } 163 164 // Note: This function also emit constructor calls to support a MSVC 165 // extensions allowing explicit constructor function call. 166 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 167 ReturnValueSlot ReturnValue) { 168 const Expr *callee = CE->getCallee()->IgnoreParens(); 169 170 if (isa<BinaryOperator>(callee)) 171 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 172 173 const MemberExpr *ME = cast<MemberExpr>(callee); 174 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 175 176 if (MD->isStatic()) { 177 // The method is static, emit it as we would a regular call. 178 CGCallee callee = 179 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 180 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 181 ReturnValue); 182 } 183 184 bool HasQualifier = ME->hasQualifier(); 185 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 186 bool IsArrow = ME->isArrow(); 187 const Expr *Base = ME->getBase(); 188 189 return EmitCXXMemberOrOperatorMemberCallExpr( 190 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 191 } 192 193 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 194 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 195 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 196 const Expr *Base) { 197 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 198 199 // Compute the object pointer. 200 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 201 202 const CXXMethodDecl *DevirtualizedMethod = nullptr; 203 if (CanUseVirtualCall && 204 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 205 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 206 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 207 assert(DevirtualizedMethod); 208 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 209 const Expr *Inner = Base->ignoreParenBaseCasts(); 210 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 211 MD->getReturnType().getCanonicalType()) 212 // If the return types are not the same, this might be a case where more 213 // code needs to run to compensate for it. For example, the derived 214 // method might return a type that inherits form from the return 215 // type of MD and has a prefix. 216 // For now we just avoid devirtualizing these covariant cases. 217 DevirtualizedMethod = nullptr; 218 else if (getCXXRecord(Inner) == DevirtualizedClass) 219 // If the class of the Inner expression is where the dynamic method 220 // is defined, build the this pointer from it. 221 Base = Inner; 222 else if (getCXXRecord(Base) != DevirtualizedClass) { 223 // If the method is defined in a class that is not the best dynamic 224 // one or the one of the full expression, we would have to build 225 // a derived-to-base cast to compute the correct this pointer, but 226 // we don't have support for that yet, so do a virtual call. 227 DevirtualizedMethod = nullptr; 228 } 229 } 230 231 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 232 // operator before the LHS. 233 CallArgList RtlArgStorage; 234 CallArgList *RtlArgs = nullptr; 235 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 236 if (OCE->isAssignmentOp()) { 237 RtlArgs = &RtlArgStorage; 238 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 239 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 240 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 241 } 242 } 243 244 LValue This; 245 if (IsArrow) { 246 LValueBaseInfo BaseInfo; 247 TBAAAccessInfo TBAAInfo; 248 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 249 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 250 } else { 251 This = EmitLValue(Base); 252 } 253 254 255 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 256 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 257 if (isa<CXXConstructorDecl>(MD) && 258 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 259 return RValue::get(nullptr); 260 261 if (!MD->getParent()->mayInsertExtraPadding()) { 262 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 263 // We don't like to generate the trivial copy/move assignment operator 264 // when it isn't necessary; just produce the proper effect here. 265 LValue RHS = isa<CXXOperatorCallExpr>(CE) 266 ? MakeNaturalAlignAddrLValue( 267 (*RtlArgs)[0].getRValue(*this).getScalarVal(), 268 (*(CE->arg_begin() + 1))->getType()) 269 : EmitLValue(*CE->arg_begin()); 270 EmitAggregateAssign(This, RHS, CE->getType()); 271 return RValue::get(This.getPointer()); 272 } 273 274 if (isa<CXXConstructorDecl>(MD) && 275 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 276 // Trivial move and copy ctor are the same. 277 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 278 const Expr *Arg = *CE->arg_begin(); 279 LValue RHS = EmitLValue(Arg); 280 LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType()); 281 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 282 // constructing a new complete object of type Ctor. 283 EmitAggregateCopy(Dest, RHS, Arg->getType(), 284 AggValueSlot::DoesNotOverlap); 285 return RValue::get(This.getPointer()); 286 } 287 llvm_unreachable("unknown trivial member function"); 288 } 289 } 290 291 // Compute the function type we're calling. 292 const CXXMethodDecl *CalleeDecl = 293 DevirtualizedMethod ? DevirtualizedMethod : MD; 294 const CGFunctionInfo *FInfo = nullptr; 295 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 296 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 297 Dtor, StructorType::Complete); 298 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 299 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 300 Ctor, StructorType::Complete); 301 else 302 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 303 304 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 305 306 // C++11 [class.mfct.non-static]p2: 307 // If a non-static member function of a class X is called for an object that 308 // is not of type X, or of a type derived from X, the behavior is undefined. 309 SourceLocation CallLoc; 310 ASTContext &C = getContext(); 311 if (CE) 312 CallLoc = CE->getExprLoc(); 313 314 SanitizerSet SkippedChecks; 315 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 316 auto *IOA = CMCE->getImplicitObjectArgument(); 317 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 318 if (IsImplicitObjectCXXThis) 319 SkippedChecks.set(SanitizerKind::Alignment, true); 320 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 321 SkippedChecks.set(SanitizerKind::Null, true); 322 } 323 EmitTypeCheck( 324 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 325 : CodeGenFunction::TCK_MemberCall, 326 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 327 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 328 329 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 330 // 'CalleeDecl' instead. 331 332 // C++ [class.virtual]p12: 333 // Explicit qualification with the scope operator (5.1) suppresses the 334 // virtual call mechanism. 335 // 336 // We also don't emit a virtual call if the base expression has a record type 337 // because then we know what the type is. 338 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 339 340 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 341 assert(CE->arg_begin() == CE->arg_end() && 342 "Destructor shouldn't have explicit parameters"); 343 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 344 if (UseVirtualCall) { 345 CGM.getCXXABI().EmitVirtualDestructorCall( 346 *this, Dtor, Dtor_Complete, This.getAddress(), 347 cast<CXXMemberCallExpr>(CE)); 348 } else { 349 CGCallee Callee; 350 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 351 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 352 else if (!DevirtualizedMethod) 353 Callee = CGCallee::forDirect( 354 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 355 GlobalDecl(Dtor, Dtor_Complete)); 356 else { 357 const CXXDestructorDecl *DDtor = 358 cast<CXXDestructorDecl>(DevirtualizedMethod); 359 Callee = CGCallee::forDirect( 360 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 361 GlobalDecl(DDtor, Dtor_Complete)); 362 } 363 EmitCXXMemberOrOperatorCall( 364 CalleeDecl, Callee, ReturnValue, This.getPointer(), 365 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 366 } 367 return RValue::get(nullptr); 368 } 369 370 CGCallee Callee; 371 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 372 Callee = CGCallee::forDirect( 373 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 374 GlobalDecl(Ctor, Ctor_Complete)); 375 } else if (UseVirtualCall) { 376 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 377 } else { 378 if (SanOpts.has(SanitizerKind::CFINVCall) && 379 MD->getParent()->isDynamicClass()) { 380 llvm::Value *VTable; 381 const CXXRecordDecl *RD; 382 std::tie(VTable, RD) = 383 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 384 MD->getParent()); 385 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 386 } 387 388 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 389 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 390 else if (!DevirtualizedMethod) 391 Callee = 392 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 393 else { 394 Callee = 395 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 396 GlobalDecl(DevirtualizedMethod)); 397 } 398 } 399 400 if (MD->isVirtual()) { 401 Address NewThisAddr = 402 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 403 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 404 This.setAddress(NewThisAddr); 405 } 406 407 return EmitCXXMemberOrOperatorCall( 408 CalleeDecl, Callee, ReturnValue, This.getPointer(), 409 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 410 } 411 412 RValue 413 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 414 ReturnValueSlot ReturnValue) { 415 const BinaryOperator *BO = 416 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 417 const Expr *BaseExpr = BO->getLHS(); 418 const Expr *MemFnExpr = BO->getRHS(); 419 420 const MemberPointerType *MPT = 421 MemFnExpr->getType()->castAs<MemberPointerType>(); 422 423 const FunctionProtoType *FPT = 424 MPT->getPointeeType()->castAs<FunctionProtoType>(); 425 const CXXRecordDecl *RD = 426 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 427 428 // Emit the 'this' pointer. 429 Address This = Address::invalid(); 430 if (BO->getOpcode() == BO_PtrMemI) 431 This = EmitPointerWithAlignment(BaseExpr); 432 else 433 This = EmitLValue(BaseExpr).getAddress(); 434 435 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 436 QualType(MPT->getClass(), 0)); 437 438 // Get the member function pointer. 439 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 440 441 // Ask the ABI to load the callee. Note that This is modified. 442 llvm::Value *ThisPtrForCall = nullptr; 443 CGCallee Callee = 444 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 445 ThisPtrForCall, MemFnPtr, MPT); 446 447 CallArgList Args; 448 449 QualType ThisType = 450 getContext().getPointerType(getContext().getTagDeclType(RD)); 451 452 // Push the this ptr. 453 Args.add(RValue::get(ThisPtrForCall), ThisType); 454 455 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 456 457 // And the rest of the call args 458 EmitCallArgs(Args, FPT, E->arguments()); 459 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 460 /*PrefixSize=*/0), 461 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 462 } 463 464 RValue 465 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 466 const CXXMethodDecl *MD, 467 ReturnValueSlot ReturnValue) { 468 assert(MD->isInstance() && 469 "Trying to emit a member call expr on a static method!"); 470 return EmitCXXMemberOrOperatorMemberCallExpr( 471 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 472 /*IsArrow=*/false, E->getArg(0)); 473 } 474 475 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 476 ReturnValueSlot ReturnValue) { 477 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 478 } 479 480 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 481 Address DestPtr, 482 const CXXRecordDecl *Base) { 483 if (Base->isEmpty()) 484 return; 485 486 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 487 488 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 489 CharUnits NVSize = Layout.getNonVirtualSize(); 490 491 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 492 // present, they are initialized by the most derived class before calling the 493 // constructor. 494 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 495 Stores.emplace_back(CharUnits::Zero(), NVSize); 496 497 // Each store is split by the existence of a vbptr. 498 CharUnits VBPtrWidth = CGF.getPointerSize(); 499 std::vector<CharUnits> VBPtrOffsets = 500 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 501 for (CharUnits VBPtrOffset : VBPtrOffsets) { 502 // Stop before we hit any virtual base pointers located in virtual bases. 503 if (VBPtrOffset >= NVSize) 504 break; 505 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 506 CharUnits LastStoreOffset = LastStore.first; 507 CharUnits LastStoreSize = LastStore.second; 508 509 CharUnits SplitBeforeOffset = LastStoreOffset; 510 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 511 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 512 if (!SplitBeforeSize.isZero()) 513 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 514 515 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 516 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 517 assert(!SplitAfterSize.isNegative() && "negative store size!"); 518 if (!SplitAfterSize.isZero()) 519 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 520 } 521 522 // If the type contains a pointer to data member we can't memset it to zero. 523 // Instead, create a null constant and copy it to the destination. 524 // TODO: there are other patterns besides zero that we can usefully memset, 525 // like -1, which happens to be the pattern used by member-pointers. 526 // TODO: isZeroInitializable can be over-conservative in the case where a 527 // virtual base contains a member pointer. 528 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 529 if (!NullConstantForBase->isNullValue()) { 530 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 531 CGF.CGM.getModule(), NullConstantForBase->getType(), 532 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 533 NullConstantForBase, Twine()); 534 535 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 536 DestPtr.getAlignment()); 537 NullVariable->setAlignment(Align.getQuantity()); 538 539 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 540 541 // Get and call the appropriate llvm.memcpy overload. 542 for (std::pair<CharUnits, CharUnits> Store : Stores) { 543 CharUnits StoreOffset = Store.first; 544 CharUnits StoreSize = Store.second; 545 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 546 CGF.Builder.CreateMemCpy( 547 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 548 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 549 StoreSizeVal); 550 } 551 552 // Otherwise, just memset the whole thing to zero. This is legal 553 // because in LLVM, all default initializers (other than the ones we just 554 // handled above) are guaranteed to have a bit pattern of all zeros. 555 } else { 556 for (std::pair<CharUnits, CharUnits> Store : Stores) { 557 CharUnits StoreOffset = Store.first; 558 CharUnits StoreSize = Store.second; 559 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 560 CGF.Builder.CreateMemSet( 561 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 562 CGF.Builder.getInt8(0), StoreSizeVal); 563 } 564 } 565 } 566 567 void 568 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 569 AggValueSlot Dest) { 570 assert(!Dest.isIgnored() && "Must have a destination!"); 571 const CXXConstructorDecl *CD = E->getConstructor(); 572 573 // If we require zero initialization before (or instead of) calling the 574 // constructor, as can be the case with a non-user-provided default 575 // constructor, emit the zero initialization now, unless destination is 576 // already zeroed. 577 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 578 switch (E->getConstructionKind()) { 579 case CXXConstructExpr::CK_Delegating: 580 case CXXConstructExpr::CK_Complete: 581 EmitNullInitialization(Dest.getAddress(), E->getType()); 582 break; 583 case CXXConstructExpr::CK_VirtualBase: 584 case CXXConstructExpr::CK_NonVirtualBase: 585 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 586 CD->getParent()); 587 break; 588 } 589 } 590 591 // If this is a call to a trivial default constructor, do nothing. 592 if (CD->isTrivial() && CD->isDefaultConstructor()) 593 return; 594 595 // Elide the constructor if we're constructing from a temporary. 596 // The temporary check is required because Sema sets this on NRVO 597 // returns. 598 if (getLangOpts().ElideConstructors && E->isElidable()) { 599 assert(getContext().hasSameUnqualifiedType(E->getType(), 600 E->getArg(0)->getType())); 601 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 602 EmitAggExpr(E->getArg(0), Dest); 603 return; 604 } 605 } 606 607 if (const ArrayType *arrayType 608 = getContext().getAsArrayType(E->getType())) { 609 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 610 Dest.isSanitizerChecked()); 611 } else { 612 CXXCtorType Type = Ctor_Complete; 613 bool ForVirtualBase = false; 614 bool Delegating = false; 615 616 switch (E->getConstructionKind()) { 617 case CXXConstructExpr::CK_Delegating: 618 // We should be emitting a constructor; GlobalDecl will assert this 619 Type = CurGD.getCtorType(); 620 Delegating = true; 621 break; 622 623 case CXXConstructExpr::CK_Complete: 624 Type = Ctor_Complete; 625 break; 626 627 case CXXConstructExpr::CK_VirtualBase: 628 ForVirtualBase = true; 629 LLVM_FALLTHROUGH; 630 631 case CXXConstructExpr::CK_NonVirtualBase: 632 Type = Ctor_Base; 633 } 634 635 // Call the constructor. 636 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 637 Dest.getAddress(), E, Dest.mayOverlap(), 638 Dest.isSanitizerChecked()); 639 } 640 } 641 642 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 643 const Expr *Exp) { 644 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 645 Exp = E->getSubExpr(); 646 assert(isa<CXXConstructExpr>(Exp) && 647 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 648 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 649 const CXXConstructorDecl *CD = E->getConstructor(); 650 RunCleanupsScope Scope(*this); 651 652 // If we require zero initialization before (or instead of) calling the 653 // constructor, as can be the case with a non-user-provided default 654 // constructor, emit the zero initialization now. 655 // FIXME. Do I still need this for a copy ctor synthesis? 656 if (E->requiresZeroInitialization()) 657 EmitNullInitialization(Dest, E->getType()); 658 659 assert(!getContext().getAsConstantArrayType(E->getType()) 660 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 661 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 662 } 663 664 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 665 const CXXNewExpr *E) { 666 if (!E->isArray()) 667 return CharUnits::Zero(); 668 669 // No cookie is required if the operator new[] being used is the 670 // reserved placement operator new[]. 671 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 672 return CharUnits::Zero(); 673 674 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 675 } 676 677 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 678 const CXXNewExpr *e, 679 unsigned minElements, 680 llvm::Value *&numElements, 681 llvm::Value *&sizeWithoutCookie) { 682 QualType type = e->getAllocatedType(); 683 684 if (!e->isArray()) { 685 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 686 sizeWithoutCookie 687 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 688 return sizeWithoutCookie; 689 } 690 691 // The width of size_t. 692 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 693 694 // Figure out the cookie size. 695 llvm::APInt cookieSize(sizeWidth, 696 CalculateCookiePadding(CGF, e).getQuantity()); 697 698 // Emit the array size expression. 699 // We multiply the size of all dimensions for NumElements. 700 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 701 numElements = 702 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 703 if (!numElements) 704 numElements = CGF.EmitScalarExpr(e->getArraySize()); 705 assert(isa<llvm::IntegerType>(numElements->getType())); 706 707 // The number of elements can be have an arbitrary integer type; 708 // essentially, we need to multiply it by a constant factor, add a 709 // cookie size, and verify that the result is representable as a 710 // size_t. That's just a gloss, though, and it's wrong in one 711 // important way: if the count is negative, it's an error even if 712 // the cookie size would bring the total size >= 0. 713 bool isSigned 714 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 715 llvm::IntegerType *numElementsType 716 = cast<llvm::IntegerType>(numElements->getType()); 717 unsigned numElementsWidth = numElementsType->getBitWidth(); 718 719 // Compute the constant factor. 720 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 721 while (const ConstantArrayType *CAT 722 = CGF.getContext().getAsConstantArrayType(type)) { 723 type = CAT->getElementType(); 724 arraySizeMultiplier *= CAT->getSize(); 725 } 726 727 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 728 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 729 typeSizeMultiplier *= arraySizeMultiplier; 730 731 // This will be a size_t. 732 llvm::Value *size; 733 734 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 735 // Don't bloat the -O0 code. 736 if (llvm::ConstantInt *numElementsC = 737 dyn_cast<llvm::ConstantInt>(numElements)) { 738 const llvm::APInt &count = numElementsC->getValue(); 739 740 bool hasAnyOverflow = false; 741 742 // If 'count' was a negative number, it's an overflow. 743 if (isSigned && count.isNegative()) 744 hasAnyOverflow = true; 745 746 // We want to do all this arithmetic in size_t. If numElements is 747 // wider than that, check whether it's already too big, and if so, 748 // overflow. 749 else if (numElementsWidth > sizeWidth && 750 numElementsWidth - sizeWidth > count.countLeadingZeros()) 751 hasAnyOverflow = true; 752 753 // Okay, compute a count at the right width. 754 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 755 756 // If there is a brace-initializer, we cannot allocate fewer elements than 757 // there are initializers. If we do, that's treated like an overflow. 758 if (adjustedCount.ult(minElements)) 759 hasAnyOverflow = true; 760 761 // Scale numElements by that. This might overflow, but we don't 762 // care because it only overflows if allocationSize does, too, and 763 // if that overflows then we shouldn't use this. 764 numElements = llvm::ConstantInt::get(CGF.SizeTy, 765 adjustedCount * arraySizeMultiplier); 766 767 // Compute the size before cookie, and track whether it overflowed. 768 bool overflow; 769 llvm::APInt allocationSize 770 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 771 hasAnyOverflow |= overflow; 772 773 // Add in the cookie, and check whether it's overflowed. 774 if (cookieSize != 0) { 775 // Save the current size without a cookie. This shouldn't be 776 // used if there was overflow. 777 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 778 779 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 780 hasAnyOverflow |= overflow; 781 } 782 783 // On overflow, produce a -1 so operator new will fail. 784 if (hasAnyOverflow) { 785 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 786 } else { 787 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 788 } 789 790 // Otherwise, we might need to use the overflow intrinsics. 791 } else { 792 // There are up to five conditions we need to test for: 793 // 1) if isSigned, we need to check whether numElements is negative; 794 // 2) if numElementsWidth > sizeWidth, we need to check whether 795 // numElements is larger than something representable in size_t; 796 // 3) if minElements > 0, we need to check whether numElements is smaller 797 // than that. 798 // 4) we need to compute 799 // sizeWithoutCookie := numElements * typeSizeMultiplier 800 // and check whether it overflows; and 801 // 5) if we need a cookie, we need to compute 802 // size := sizeWithoutCookie + cookieSize 803 // and check whether it overflows. 804 805 llvm::Value *hasOverflow = nullptr; 806 807 // If numElementsWidth > sizeWidth, then one way or another, we're 808 // going to have to do a comparison for (2), and this happens to 809 // take care of (1), too. 810 if (numElementsWidth > sizeWidth) { 811 llvm::APInt threshold(numElementsWidth, 1); 812 threshold <<= sizeWidth; 813 814 llvm::Value *thresholdV 815 = llvm::ConstantInt::get(numElementsType, threshold); 816 817 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 818 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 819 820 // Otherwise, if we're signed, we want to sext up to size_t. 821 } else if (isSigned) { 822 if (numElementsWidth < sizeWidth) 823 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 824 825 // If there's a non-1 type size multiplier, then we can do the 826 // signedness check at the same time as we do the multiply 827 // because a negative number times anything will cause an 828 // unsigned overflow. Otherwise, we have to do it here. But at least 829 // in this case, we can subsume the >= minElements check. 830 if (typeSizeMultiplier == 1) 831 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 832 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 833 834 // Otherwise, zext up to size_t if necessary. 835 } else if (numElementsWidth < sizeWidth) { 836 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 837 } 838 839 assert(numElements->getType() == CGF.SizeTy); 840 841 if (minElements) { 842 // Don't allow allocation of fewer elements than we have initializers. 843 if (!hasOverflow) { 844 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 845 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 846 } else if (numElementsWidth > sizeWidth) { 847 // The other existing overflow subsumes this check. 848 // We do an unsigned comparison, since any signed value < -1 is 849 // taken care of either above or below. 850 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 851 CGF.Builder.CreateICmpULT(numElements, 852 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 853 } 854 } 855 856 size = numElements; 857 858 // Multiply by the type size if necessary. This multiplier 859 // includes all the factors for nested arrays. 860 // 861 // This step also causes numElements to be scaled up by the 862 // nested-array factor if necessary. Overflow on this computation 863 // can be ignored because the result shouldn't be used if 864 // allocation fails. 865 if (typeSizeMultiplier != 1) { 866 llvm::Function *umul_with_overflow 867 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 868 869 llvm::Value *tsmV = 870 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 871 llvm::Value *result = 872 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 873 874 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 875 if (hasOverflow) 876 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 877 else 878 hasOverflow = overflowed; 879 880 size = CGF.Builder.CreateExtractValue(result, 0); 881 882 // Also scale up numElements by the array size multiplier. 883 if (arraySizeMultiplier != 1) { 884 // If the base element type size is 1, then we can re-use the 885 // multiply we just did. 886 if (typeSize.isOne()) { 887 assert(arraySizeMultiplier == typeSizeMultiplier); 888 numElements = size; 889 890 // Otherwise we need a separate multiply. 891 } else { 892 llvm::Value *asmV = 893 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 894 numElements = CGF.Builder.CreateMul(numElements, asmV); 895 } 896 } 897 } else { 898 // numElements doesn't need to be scaled. 899 assert(arraySizeMultiplier == 1); 900 } 901 902 // Add in the cookie size if necessary. 903 if (cookieSize != 0) { 904 sizeWithoutCookie = size; 905 906 llvm::Function *uadd_with_overflow 907 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 908 909 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 910 llvm::Value *result = 911 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 912 913 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 914 if (hasOverflow) 915 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 916 else 917 hasOverflow = overflowed; 918 919 size = CGF.Builder.CreateExtractValue(result, 0); 920 } 921 922 // If we had any possibility of dynamic overflow, make a select to 923 // overwrite 'size' with an all-ones value, which should cause 924 // operator new to throw. 925 if (hasOverflow) 926 size = CGF.Builder.CreateSelect(hasOverflow, 927 llvm::Constant::getAllOnesValue(CGF.SizeTy), 928 size); 929 } 930 931 if (cookieSize == 0) 932 sizeWithoutCookie = size; 933 else 934 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 935 936 return size; 937 } 938 939 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 940 QualType AllocType, Address NewPtr, 941 AggValueSlot::Overlap_t MayOverlap) { 942 // FIXME: Refactor with EmitExprAsInit. 943 switch (CGF.getEvaluationKind(AllocType)) { 944 case TEK_Scalar: 945 CGF.EmitScalarInit(Init, nullptr, 946 CGF.MakeAddrLValue(NewPtr, AllocType), false); 947 return; 948 case TEK_Complex: 949 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 950 /*isInit*/ true); 951 return; 952 case TEK_Aggregate: { 953 AggValueSlot Slot 954 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 955 AggValueSlot::IsDestructed, 956 AggValueSlot::DoesNotNeedGCBarriers, 957 AggValueSlot::IsNotAliased, 958 MayOverlap, AggValueSlot::IsNotZeroed, 959 AggValueSlot::IsSanitizerChecked); 960 CGF.EmitAggExpr(Init, Slot); 961 return; 962 } 963 } 964 llvm_unreachable("bad evaluation kind"); 965 } 966 967 void CodeGenFunction::EmitNewArrayInitializer( 968 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 969 Address BeginPtr, llvm::Value *NumElements, 970 llvm::Value *AllocSizeWithoutCookie) { 971 // If we have a type with trivial initialization and no initializer, 972 // there's nothing to do. 973 if (!E->hasInitializer()) 974 return; 975 976 Address CurPtr = BeginPtr; 977 978 unsigned InitListElements = 0; 979 980 const Expr *Init = E->getInitializer(); 981 Address EndOfInit = Address::invalid(); 982 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 983 EHScopeStack::stable_iterator Cleanup; 984 llvm::Instruction *CleanupDominator = nullptr; 985 986 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 987 CharUnits ElementAlign = 988 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 989 990 // Attempt to perform zero-initialization using memset. 991 auto TryMemsetInitialization = [&]() -> bool { 992 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 993 // we can initialize with a memset to -1. 994 if (!CGM.getTypes().isZeroInitializable(ElementType)) 995 return false; 996 997 // Optimization: since zero initialization will just set the memory 998 // to all zeroes, generate a single memset to do it in one shot. 999 1000 // Subtract out the size of any elements we've already initialized. 1001 auto *RemainingSize = AllocSizeWithoutCookie; 1002 if (InitListElements) { 1003 // We know this can't overflow; we check this when doing the allocation. 1004 auto *InitializedSize = llvm::ConstantInt::get( 1005 RemainingSize->getType(), 1006 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1007 InitListElements); 1008 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1009 } 1010 1011 // Create the memset. 1012 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1013 return true; 1014 }; 1015 1016 // If the initializer is an initializer list, first do the explicit elements. 1017 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1018 // Initializing from a (braced) string literal is a special case; the init 1019 // list element does not initialize a (single) array element. 1020 if (ILE->isStringLiteralInit()) { 1021 // Initialize the initial portion of length equal to that of the string 1022 // literal. The allocation must be for at least this much; we emitted a 1023 // check for that earlier. 1024 AggValueSlot Slot = 1025 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1026 AggValueSlot::IsDestructed, 1027 AggValueSlot::DoesNotNeedGCBarriers, 1028 AggValueSlot::IsNotAliased, 1029 AggValueSlot::DoesNotOverlap, 1030 AggValueSlot::IsNotZeroed, 1031 AggValueSlot::IsSanitizerChecked); 1032 EmitAggExpr(ILE->getInit(0), Slot); 1033 1034 // Move past these elements. 1035 InitListElements = 1036 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1037 ->getSize().getZExtValue(); 1038 CurPtr = 1039 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1040 Builder.getSize(InitListElements), 1041 "string.init.end"), 1042 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1043 ElementSize)); 1044 1045 // Zero out the rest, if any remain. 1046 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1047 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1048 bool OK = TryMemsetInitialization(); 1049 (void)OK; 1050 assert(OK && "couldn't memset character type?"); 1051 } 1052 return; 1053 } 1054 1055 InitListElements = ILE->getNumInits(); 1056 1057 // If this is a multi-dimensional array new, we will initialize multiple 1058 // elements with each init list element. 1059 QualType AllocType = E->getAllocatedType(); 1060 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1061 AllocType->getAsArrayTypeUnsafe())) { 1062 ElementTy = ConvertTypeForMem(AllocType); 1063 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1064 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1065 } 1066 1067 // Enter a partial-destruction Cleanup if necessary. 1068 if (needsEHCleanup(DtorKind)) { 1069 // In principle we could tell the Cleanup where we are more 1070 // directly, but the control flow can get so varied here that it 1071 // would actually be quite complex. Therefore we go through an 1072 // alloca. 1073 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1074 "array.init.end"); 1075 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1076 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1077 ElementType, ElementAlign, 1078 getDestroyer(DtorKind)); 1079 Cleanup = EHStack.stable_begin(); 1080 } 1081 1082 CharUnits StartAlign = CurPtr.getAlignment(); 1083 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1084 // Tell the cleanup that it needs to destroy up to this 1085 // element. TODO: some of these stores can be trivially 1086 // observed to be unnecessary. 1087 if (EndOfInit.isValid()) { 1088 auto FinishedPtr = 1089 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1090 Builder.CreateStore(FinishedPtr, EndOfInit); 1091 } 1092 // FIXME: If the last initializer is an incomplete initializer list for 1093 // an array, and we have an array filler, we can fold together the two 1094 // initialization loops. 1095 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1096 ILE->getInit(i)->getType(), CurPtr, 1097 AggValueSlot::DoesNotOverlap); 1098 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1099 Builder.getSize(1), 1100 "array.exp.next"), 1101 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1102 } 1103 1104 // The remaining elements are filled with the array filler expression. 1105 Init = ILE->getArrayFiller(); 1106 1107 // Extract the initializer for the individual array elements by pulling 1108 // out the array filler from all the nested initializer lists. This avoids 1109 // generating a nested loop for the initialization. 1110 while (Init && Init->getType()->isConstantArrayType()) { 1111 auto *SubILE = dyn_cast<InitListExpr>(Init); 1112 if (!SubILE) 1113 break; 1114 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1115 Init = SubILE->getArrayFiller(); 1116 } 1117 1118 // Switch back to initializing one base element at a time. 1119 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1120 } 1121 1122 // If all elements have already been initialized, skip any further 1123 // initialization. 1124 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1125 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1126 // If there was a Cleanup, deactivate it. 1127 if (CleanupDominator) 1128 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1129 return; 1130 } 1131 1132 assert(Init && "have trailing elements to initialize but no initializer"); 1133 1134 // If this is a constructor call, try to optimize it out, and failing that 1135 // emit a single loop to initialize all remaining elements. 1136 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1137 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1138 if (Ctor->isTrivial()) { 1139 // If new expression did not specify value-initialization, then there 1140 // is no initialization. 1141 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1142 return; 1143 1144 if (TryMemsetInitialization()) 1145 return; 1146 } 1147 1148 // Store the new Cleanup position for irregular Cleanups. 1149 // 1150 // FIXME: Share this cleanup with the constructor call emission rather than 1151 // having it create a cleanup of its own. 1152 if (EndOfInit.isValid()) 1153 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1154 1155 // Emit a constructor call loop to initialize the remaining elements. 1156 if (InitListElements) 1157 NumElements = Builder.CreateSub( 1158 NumElements, 1159 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1160 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1161 /*NewPointerIsChecked*/true, 1162 CCE->requiresZeroInitialization()); 1163 return; 1164 } 1165 1166 // If this is value-initialization, we can usually use memset. 1167 ImplicitValueInitExpr IVIE(ElementType); 1168 if (isa<ImplicitValueInitExpr>(Init)) { 1169 if (TryMemsetInitialization()) 1170 return; 1171 1172 // Switch to an ImplicitValueInitExpr for the element type. This handles 1173 // only one case: multidimensional array new of pointers to members. In 1174 // all other cases, we already have an initializer for the array element. 1175 Init = &IVIE; 1176 } 1177 1178 // At this point we should have found an initializer for the individual 1179 // elements of the array. 1180 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1181 "got wrong type of element to initialize"); 1182 1183 // If we have an empty initializer list, we can usually use memset. 1184 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1185 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1186 return; 1187 1188 // If we have a struct whose every field is value-initialized, we can 1189 // usually use memset. 1190 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1191 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1192 if (RType->getDecl()->isStruct()) { 1193 unsigned NumElements = 0; 1194 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1195 NumElements = CXXRD->getNumBases(); 1196 for (auto *Field : RType->getDecl()->fields()) 1197 if (!Field->isUnnamedBitfield()) 1198 ++NumElements; 1199 // FIXME: Recurse into nested InitListExprs. 1200 if (ILE->getNumInits() == NumElements) 1201 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1202 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1203 --NumElements; 1204 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1205 return; 1206 } 1207 } 1208 } 1209 1210 // Create the loop blocks. 1211 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1212 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1213 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1214 1215 // Find the end of the array, hoisted out of the loop. 1216 llvm::Value *EndPtr = 1217 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1218 1219 // If the number of elements isn't constant, we have to now check if there is 1220 // anything left to initialize. 1221 if (!ConstNum) { 1222 llvm::Value *IsEmpty = 1223 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1224 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1225 } 1226 1227 // Enter the loop. 1228 EmitBlock(LoopBB); 1229 1230 // Set up the current-element phi. 1231 llvm::PHINode *CurPtrPhi = 1232 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1233 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1234 1235 CurPtr = Address(CurPtrPhi, ElementAlign); 1236 1237 // Store the new Cleanup position for irregular Cleanups. 1238 if (EndOfInit.isValid()) 1239 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1240 1241 // Enter a partial-destruction Cleanup if necessary. 1242 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1243 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1244 ElementType, ElementAlign, 1245 getDestroyer(DtorKind)); 1246 Cleanup = EHStack.stable_begin(); 1247 CleanupDominator = Builder.CreateUnreachable(); 1248 } 1249 1250 // Emit the initializer into this element. 1251 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1252 AggValueSlot::DoesNotOverlap); 1253 1254 // Leave the Cleanup if we entered one. 1255 if (CleanupDominator) { 1256 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1257 CleanupDominator->eraseFromParent(); 1258 } 1259 1260 // Advance to the next element by adjusting the pointer type as necessary. 1261 llvm::Value *NextPtr = 1262 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1263 "array.next"); 1264 1265 // Check whether we've gotten to the end of the array and, if so, 1266 // exit the loop. 1267 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1268 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1269 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1270 1271 EmitBlock(ContBB); 1272 } 1273 1274 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1275 QualType ElementType, llvm::Type *ElementTy, 1276 Address NewPtr, llvm::Value *NumElements, 1277 llvm::Value *AllocSizeWithoutCookie) { 1278 ApplyDebugLocation DL(CGF, E); 1279 if (E->isArray()) 1280 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1281 AllocSizeWithoutCookie); 1282 else if (const Expr *Init = E->getInitializer()) 1283 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1284 AggValueSlot::DoesNotOverlap); 1285 } 1286 1287 /// Emit a call to an operator new or operator delete function, as implicitly 1288 /// created by new-expressions and delete-expressions. 1289 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1290 const FunctionDecl *CalleeDecl, 1291 const FunctionProtoType *CalleeType, 1292 const CallArgList &Args) { 1293 llvm::CallBase *CallOrInvoke; 1294 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1295 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1296 RValue RV = 1297 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1298 Args, CalleeType, /*chainCall=*/false), 1299 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1300 1301 /// C++1y [expr.new]p10: 1302 /// [In a new-expression,] an implementation is allowed to omit a call 1303 /// to a replaceable global allocation function. 1304 /// 1305 /// We model such elidable calls with the 'builtin' attribute. 1306 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1307 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1308 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1309 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex, 1310 llvm::Attribute::Builtin); 1311 } 1312 1313 return RV; 1314 } 1315 1316 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1317 const CallExpr *TheCall, 1318 bool IsDelete) { 1319 CallArgList Args; 1320 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1321 // Find the allocation or deallocation function that we're calling. 1322 ASTContext &Ctx = getContext(); 1323 DeclarationName Name = Ctx.DeclarationNames 1324 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1325 1326 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1327 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1328 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1329 return EmitNewDeleteCall(*this, FD, Type, Args); 1330 llvm_unreachable("predeclared global operator new/delete is missing"); 1331 } 1332 1333 namespace { 1334 /// The parameters to pass to a usual operator delete. 1335 struct UsualDeleteParams { 1336 bool DestroyingDelete = false; 1337 bool Size = false; 1338 bool Alignment = false; 1339 }; 1340 } 1341 1342 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1343 UsualDeleteParams Params; 1344 1345 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1346 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1347 1348 // The first argument is always a void*. 1349 ++AI; 1350 1351 // The next parameter may be a std::destroying_delete_t. 1352 if (FD->isDestroyingOperatorDelete()) { 1353 Params.DestroyingDelete = true; 1354 assert(AI != AE); 1355 ++AI; 1356 } 1357 1358 // Figure out what other parameters we should be implicitly passing. 1359 if (AI != AE && (*AI)->isIntegerType()) { 1360 Params.Size = true; 1361 ++AI; 1362 } 1363 1364 if (AI != AE && (*AI)->isAlignValT()) { 1365 Params.Alignment = true; 1366 ++AI; 1367 } 1368 1369 assert(AI == AE && "unexpected usual deallocation function parameter"); 1370 return Params; 1371 } 1372 1373 namespace { 1374 /// A cleanup to call the given 'operator delete' function upon abnormal 1375 /// exit from a new expression. Templated on a traits type that deals with 1376 /// ensuring that the arguments dominate the cleanup if necessary. 1377 template<typename Traits> 1378 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1379 /// Type used to hold llvm::Value*s. 1380 typedef typename Traits::ValueTy ValueTy; 1381 /// Type used to hold RValues. 1382 typedef typename Traits::RValueTy RValueTy; 1383 struct PlacementArg { 1384 RValueTy ArgValue; 1385 QualType ArgType; 1386 }; 1387 1388 unsigned NumPlacementArgs : 31; 1389 unsigned PassAlignmentToPlacementDelete : 1; 1390 const FunctionDecl *OperatorDelete; 1391 ValueTy Ptr; 1392 ValueTy AllocSize; 1393 CharUnits AllocAlign; 1394 1395 PlacementArg *getPlacementArgs() { 1396 return reinterpret_cast<PlacementArg *>(this + 1); 1397 } 1398 1399 public: 1400 static size_t getExtraSize(size_t NumPlacementArgs) { 1401 return NumPlacementArgs * sizeof(PlacementArg); 1402 } 1403 1404 CallDeleteDuringNew(size_t NumPlacementArgs, 1405 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1406 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1407 CharUnits AllocAlign) 1408 : NumPlacementArgs(NumPlacementArgs), 1409 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1410 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1411 AllocAlign(AllocAlign) {} 1412 1413 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1414 assert(I < NumPlacementArgs && "index out of range"); 1415 getPlacementArgs()[I] = {Arg, Type}; 1416 } 1417 1418 void Emit(CodeGenFunction &CGF, Flags flags) override { 1419 const FunctionProtoType *FPT = 1420 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1421 CallArgList DeleteArgs; 1422 1423 // The first argument is always a void* (or C* for a destroying operator 1424 // delete for class type C). 1425 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1426 1427 // Figure out what other parameters we should be implicitly passing. 1428 UsualDeleteParams Params; 1429 if (NumPlacementArgs) { 1430 // A placement deallocation function is implicitly passed an alignment 1431 // if the placement allocation function was, but is never passed a size. 1432 Params.Alignment = PassAlignmentToPlacementDelete; 1433 } else { 1434 // For a non-placement new-expression, 'operator delete' can take a 1435 // size and/or an alignment if it has the right parameters. 1436 Params = getUsualDeleteParams(OperatorDelete); 1437 } 1438 1439 assert(!Params.DestroyingDelete && 1440 "should not call destroying delete in a new-expression"); 1441 1442 // The second argument can be a std::size_t (for non-placement delete). 1443 if (Params.Size) 1444 DeleteArgs.add(Traits::get(CGF, AllocSize), 1445 CGF.getContext().getSizeType()); 1446 1447 // The next (second or third) argument can be a std::align_val_t, which 1448 // is an enum whose underlying type is std::size_t. 1449 // FIXME: Use the right type as the parameter type. Note that in a call 1450 // to operator delete(size_t, ...), we may not have it available. 1451 if (Params.Alignment) 1452 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1453 CGF.SizeTy, AllocAlign.getQuantity())), 1454 CGF.getContext().getSizeType()); 1455 1456 // Pass the rest of the arguments, which must match exactly. 1457 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1458 auto Arg = getPlacementArgs()[I]; 1459 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1460 } 1461 1462 // Call 'operator delete'. 1463 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1464 } 1465 }; 1466 } 1467 1468 /// Enter a cleanup to call 'operator delete' if the initializer in a 1469 /// new-expression throws. 1470 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1471 const CXXNewExpr *E, 1472 Address NewPtr, 1473 llvm::Value *AllocSize, 1474 CharUnits AllocAlign, 1475 const CallArgList &NewArgs) { 1476 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1477 1478 // If we're not inside a conditional branch, then the cleanup will 1479 // dominate and we can do the easier (and more efficient) thing. 1480 if (!CGF.isInConditionalBranch()) { 1481 struct DirectCleanupTraits { 1482 typedef llvm::Value *ValueTy; 1483 typedef RValue RValueTy; 1484 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1485 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1486 }; 1487 1488 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1489 1490 DirectCleanup *Cleanup = CGF.EHStack 1491 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1492 E->getNumPlacementArgs(), 1493 E->getOperatorDelete(), 1494 NewPtr.getPointer(), 1495 AllocSize, 1496 E->passAlignment(), 1497 AllocAlign); 1498 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1499 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1500 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1501 } 1502 1503 return; 1504 } 1505 1506 // Otherwise, we need to save all this stuff. 1507 DominatingValue<RValue>::saved_type SavedNewPtr = 1508 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1509 DominatingValue<RValue>::saved_type SavedAllocSize = 1510 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1511 1512 struct ConditionalCleanupTraits { 1513 typedef DominatingValue<RValue>::saved_type ValueTy; 1514 typedef DominatingValue<RValue>::saved_type RValueTy; 1515 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1516 return V.restore(CGF); 1517 } 1518 }; 1519 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1520 1521 ConditionalCleanup *Cleanup = CGF.EHStack 1522 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1523 E->getNumPlacementArgs(), 1524 E->getOperatorDelete(), 1525 SavedNewPtr, 1526 SavedAllocSize, 1527 E->passAlignment(), 1528 AllocAlign); 1529 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1530 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1531 Cleanup->setPlacementArg( 1532 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1533 } 1534 1535 CGF.initFullExprCleanup(); 1536 } 1537 1538 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1539 // The element type being allocated. 1540 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1541 1542 // 1. Build a call to the allocation function. 1543 FunctionDecl *allocator = E->getOperatorNew(); 1544 1545 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1546 unsigned minElements = 0; 1547 if (E->isArray() && E->hasInitializer()) { 1548 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1549 if (ILE && ILE->isStringLiteralInit()) 1550 minElements = 1551 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1552 ->getSize().getZExtValue(); 1553 else if (ILE) 1554 minElements = ILE->getNumInits(); 1555 } 1556 1557 llvm::Value *numElements = nullptr; 1558 llvm::Value *allocSizeWithoutCookie = nullptr; 1559 llvm::Value *allocSize = 1560 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1561 allocSizeWithoutCookie); 1562 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1563 1564 // Emit the allocation call. If the allocator is a global placement 1565 // operator, just "inline" it directly. 1566 Address allocation = Address::invalid(); 1567 CallArgList allocatorArgs; 1568 if (allocator->isReservedGlobalPlacementOperator()) { 1569 assert(E->getNumPlacementArgs() == 1); 1570 const Expr *arg = *E->placement_arguments().begin(); 1571 1572 LValueBaseInfo BaseInfo; 1573 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1574 1575 // The pointer expression will, in many cases, be an opaque void*. 1576 // In these cases, discard the computed alignment and use the 1577 // formal alignment of the allocated type. 1578 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1579 allocation = Address(allocation.getPointer(), allocAlign); 1580 1581 // Set up allocatorArgs for the call to operator delete if it's not 1582 // the reserved global operator. 1583 if (E->getOperatorDelete() && 1584 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1585 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1586 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1587 } 1588 1589 } else { 1590 const FunctionProtoType *allocatorType = 1591 allocator->getType()->castAs<FunctionProtoType>(); 1592 unsigned ParamsToSkip = 0; 1593 1594 // The allocation size is the first argument. 1595 QualType sizeType = getContext().getSizeType(); 1596 allocatorArgs.add(RValue::get(allocSize), sizeType); 1597 ++ParamsToSkip; 1598 1599 if (allocSize != allocSizeWithoutCookie) { 1600 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1601 allocAlign = std::max(allocAlign, cookieAlign); 1602 } 1603 1604 // The allocation alignment may be passed as the second argument. 1605 if (E->passAlignment()) { 1606 QualType AlignValT = sizeType; 1607 if (allocatorType->getNumParams() > 1) { 1608 AlignValT = allocatorType->getParamType(1); 1609 assert(getContext().hasSameUnqualifiedType( 1610 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1611 sizeType) && 1612 "wrong type for alignment parameter"); 1613 ++ParamsToSkip; 1614 } else { 1615 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1616 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1617 } 1618 allocatorArgs.add( 1619 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1620 AlignValT); 1621 } 1622 1623 // FIXME: Why do we not pass a CalleeDecl here? 1624 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1625 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1626 1627 RValue RV = 1628 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1629 1630 // If this was a call to a global replaceable allocation function that does 1631 // not take an alignment argument, the allocator is known to produce 1632 // storage that's suitably aligned for any object that fits, up to a known 1633 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1634 CharUnits allocationAlign = allocAlign; 1635 if (!E->passAlignment() && 1636 allocator->isReplaceableGlobalAllocationFunction()) { 1637 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1638 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1639 allocationAlign = std::max( 1640 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1641 } 1642 1643 allocation = Address(RV.getScalarVal(), allocationAlign); 1644 } 1645 1646 // Emit a null check on the allocation result if the allocation 1647 // function is allowed to return null (because it has a non-throwing 1648 // exception spec or is the reserved placement new) and we have an 1649 // interesting initializer will be running sanitizers on the initialization. 1650 bool nullCheck = E->shouldNullCheckAllocation() && 1651 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1652 sanitizePerformTypeCheck()); 1653 1654 llvm::BasicBlock *nullCheckBB = nullptr; 1655 llvm::BasicBlock *contBB = nullptr; 1656 1657 // The null-check means that the initializer is conditionally 1658 // evaluated. 1659 ConditionalEvaluation conditional(*this); 1660 1661 if (nullCheck) { 1662 conditional.begin(*this); 1663 1664 nullCheckBB = Builder.GetInsertBlock(); 1665 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1666 contBB = createBasicBlock("new.cont"); 1667 1668 llvm::Value *isNull = 1669 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1670 Builder.CreateCondBr(isNull, contBB, notNullBB); 1671 EmitBlock(notNullBB); 1672 } 1673 1674 // If there's an operator delete, enter a cleanup to call it if an 1675 // exception is thrown. 1676 EHScopeStack::stable_iterator operatorDeleteCleanup; 1677 llvm::Instruction *cleanupDominator = nullptr; 1678 if (E->getOperatorDelete() && 1679 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1680 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1681 allocatorArgs); 1682 operatorDeleteCleanup = EHStack.stable_begin(); 1683 cleanupDominator = Builder.CreateUnreachable(); 1684 } 1685 1686 assert((allocSize == allocSizeWithoutCookie) == 1687 CalculateCookiePadding(*this, E).isZero()); 1688 if (allocSize != allocSizeWithoutCookie) { 1689 assert(E->isArray()); 1690 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1691 numElements, 1692 E, allocType); 1693 } 1694 1695 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1696 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1697 1698 // Passing pointer through launder.invariant.group to avoid propagation of 1699 // vptrs information which may be included in previous type. 1700 // To not break LTO with different optimizations levels, we do it regardless 1701 // of optimization level. 1702 if (CGM.getCodeGenOpts().StrictVTablePointers && 1703 allocator->isReservedGlobalPlacementOperator()) 1704 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1705 result.getAlignment()); 1706 1707 // Emit sanitizer checks for pointer value now, so that in the case of an 1708 // array it was checked only once and not at each constructor call. We may 1709 // have already checked that the pointer is non-null. 1710 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1711 // we'll null check the wrong pointer here. 1712 SanitizerSet SkippedChecks; 1713 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1714 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1715 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1716 result.getPointer(), allocType, result.getAlignment(), 1717 SkippedChecks, numElements); 1718 1719 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1720 allocSizeWithoutCookie); 1721 if (E->isArray()) { 1722 // NewPtr is a pointer to the base element type. If we're 1723 // allocating an array of arrays, we'll need to cast back to the 1724 // array pointer type. 1725 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1726 if (result.getType() != resultType) 1727 result = Builder.CreateBitCast(result, resultType); 1728 } 1729 1730 // Deactivate the 'operator delete' cleanup if we finished 1731 // initialization. 1732 if (operatorDeleteCleanup.isValid()) { 1733 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1734 cleanupDominator->eraseFromParent(); 1735 } 1736 1737 llvm::Value *resultPtr = result.getPointer(); 1738 if (nullCheck) { 1739 conditional.end(*this); 1740 1741 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1742 EmitBlock(contBB); 1743 1744 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1745 PHI->addIncoming(resultPtr, notNullBB); 1746 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1747 nullCheckBB); 1748 1749 resultPtr = PHI; 1750 } 1751 1752 return resultPtr; 1753 } 1754 1755 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1756 llvm::Value *Ptr, QualType DeleteTy, 1757 llvm::Value *NumElements, 1758 CharUnits CookieSize) { 1759 assert((!NumElements && CookieSize.isZero()) || 1760 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1761 1762 const FunctionProtoType *DeleteFTy = 1763 DeleteFD->getType()->getAs<FunctionProtoType>(); 1764 1765 CallArgList DeleteArgs; 1766 1767 auto Params = getUsualDeleteParams(DeleteFD); 1768 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1769 1770 // Pass the pointer itself. 1771 QualType ArgTy = *ParamTypeIt++; 1772 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1773 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1774 1775 // Pass the std::destroying_delete tag if present. 1776 if (Params.DestroyingDelete) { 1777 QualType DDTag = *ParamTypeIt++; 1778 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1779 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1780 DeleteArgs.add(RValue::get(V), DDTag); 1781 } 1782 1783 // Pass the size if the delete function has a size_t parameter. 1784 if (Params.Size) { 1785 QualType SizeType = *ParamTypeIt++; 1786 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1787 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1788 DeleteTypeSize.getQuantity()); 1789 1790 // For array new, multiply by the number of elements. 1791 if (NumElements) 1792 Size = Builder.CreateMul(Size, NumElements); 1793 1794 // If there is a cookie, add the cookie size. 1795 if (!CookieSize.isZero()) 1796 Size = Builder.CreateAdd( 1797 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1798 1799 DeleteArgs.add(RValue::get(Size), SizeType); 1800 } 1801 1802 // Pass the alignment if the delete function has an align_val_t parameter. 1803 if (Params.Alignment) { 1804 QualType AlignValType = *ParamTypeIt++; 1805 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1806 getContext().getTypeAlignIfKnown(DeleteTy)); 1807 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1808 DeleteTypeAlign.getQuantity()); 1809 DeleteArgs.add(RValue::get(Align), AlignValType); 1810 } 1811 1812 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1813 "unknown parameter to usual delete function"); 1814 1815 // Emit the call to delete. 1816 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1817 } 1818 1819 namespace { 1820 /// Calls the given 'operator delete' on a single object. 1821 struct CallObjectDelete final : EHScopeStack::Cleanup { 1822 llvm::Value *Ptr; 1823 const FunctionDecl *OperatorDelete; 1824 QualType ElementType; 1825 1826 CallObjectDelete(llvm::Value *Ptr, 1827 const FunctionDecl *OperatorDelete, 1828 QualType ElementType) 1829 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1830 1831 void Emit(CodeGenFunction &CGF, Flags flags) override { 1832 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1833 } 1834 }; 1835 } 1836 1837 void 1838 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1839 llvm::Value *CompletePtr, 1840 QualType ElementType) { 1841 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1842 OperatorDelete, ElementType); 1843 } 1844 1845 /// Emit the code for deleting a single object with a destroying operator 1846 /// delete. If the element type has a non-virtual destructor, Ptr has already 1847 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1848 /// Ptr points to an object of the static type. 1849 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1850 const CXXDeleteExpr *DE, Address Ptr, 1851 QualType ElementType) { 1852 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1853 if (Dtor && Dtor->isVirtual()) 1854 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1855 Dtor); 1856 else 1857 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1858 } 1859 1860 /// Emit the code for deleting a single object. 1861 static void EmitObjectDelete(CodeGenFunction &CGF, 1862 const CXXDeleteExpr *DE, 1863 Address Ptr, 1864 QualType ElementType) { 1865 // C++11 [expr.delete]p3: 1866 // If the static type of the object to be deleted is different from its 1867 // dynamic type, the static type shall be a base class of the dynamic type 1868 // of the object to be deleted and the static type shall have a virtual 1869 // destructor or the behavior is undefined. 1870 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1871 DE->getExprLoc(), Ptr.getPointer(), 1872 ElementType); 1873 1874 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1875 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1876 1877 // Find the destructor for the type, if applicable. If the 1878 // destructor is virtual, we'll just emit the vcall and return. 1879 const CXXDestructorDecl *Dtor = nullptr; 1880 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1881 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1882 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1883 Dtor = RD->getDestructor(); 1884 1885 if (Dtor->isVirtual()) { 1886 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1887 Dtor); 1888 return; 1889 } 1890 } 1891 } 1892 1893 // Make sure that we call delete even if the dtor throws. 1894 // This doesn't have to a conditional cleanup because we're going 1895 // to pop it off in a second. 1896 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1897 Ptr.getPointer(), 1898 OperatorDelete, ElementType); 1899 1900 if (Dtor) 1901 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1902 /*ForVirtualBase=*/false, 1903 /*Delegating=*/false, 1904 Ptr); 1905 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1906 switch (Lifetime) { 1907 case Qualifiers::OCL_None: 1908 case Qualifiers::OCL_ExplicitNone: 1909 case Qualifiers::OCL_Autoreleasing: 1910 break; 1911 1912 case Qualifiers::OCL_Strong: 1913 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1914 break; 1915 1916 case Qualifiers::OCL_Weak: 1917 CGF.EmitARCDestroyWeak(Ptr); 1918 break; 1919 } 1920 } 1921 1922 CGF.PopCleanupBlock(); 1923 } 1924 1925 namespace { 1926 /// Calls the given 'operator delete' on an array of objects. 1927 struct CallArrayDelete final : EHScopeStack::Cleanup { 1928 llvm::Value *Ptr; 1929 const FunctionDecl *OperatorDelete; 1930 llvm::Value *NumElements; 1931 QualType ElementType; 1932 CharUnits CookieSize; 1933 1934 CallArrayDelete(llvm::Value *Ptr, 1935 const FunctionDecl *OperatorDelete, 1936 llvm::Value *NumElements, 1937 QualType ElementType, 1938 CharUnits CookieSize) 1939 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1940 ElementType(ElementType), CookieSize(CookieSize) {} 1941 1942 void Emit(CodeGenFunction &CGF, Flags flags) override { 1943 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1944 CookieSize); 1945 } 1946 }; 1947 } 1948 1949 /// Emit the code for deleting an array of objects. 1950 static void EmitArrayDelete(CodeGenFunction &CGF, 1951 const CXXDeleteExpr *E, 1952 Address deletedPtr, 1953 QualType elementType) { 1954 llvm::Value *numElements = nullptr; 1955 llvm::Value *allocatedPtr = nullptr; 1956 CharUnits cookieSize; 1957 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1958 numElements, allocatedPtr, cookieSize); 1959 1960 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1961 1962 // Make sure that we call delete even if one of the dtors throws. 1963 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1964 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1965 allocatedPtr, operatorDelete, 1966 numElements, elementType, 1967 cookieSize); 1968 1969 // Destroy the elements. 1970 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1971 assert(numElements && "no element count for a type with a destructor!"); 1972 1973 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1974 CharUnits elementAlign = 1975 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1976 1977 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1978 llvm::Value *arrayEnd = 1979 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1980 1981 // Note that it is legal to allocate a zero-length array, and we 1982 // can never fold the check away because the length should always 1983 // come from a cookie. 1984 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1985 CGF.getDestroyer(dtorKind), 1986 /*checkZeroLength*/ true, 1987 CGF.needsEHCleanup(dtorKind)); 1988 } 1989 1990 // Pop the cleanup block. 1991 CGF.PopCleanupBlock(); 1992 } 1993 1994 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1995 const Expr *Arg = E->getArgument(); 1996 Address Ptr = EmitPointerWithAlignment(Arg); 1997 1998 // Null check the pointer. 1999 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2000 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2001 2002 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2003 2004 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2005 EmitBlock(DeleteNotNull); 2006 2007 QualType DeleteTy = E->getDestroyedType(); 2008 2009 // A destroying operator delete overrides the entire operation of the 2010 // delete expression. 2011 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2012 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2013 EmitBlock(DeleteEnd); 2014 return; 2015 } 2016 2017 // We might be deleting a pointer to array. If so, GEP down to the 2018 // first non-array element. 2019 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2020 if (DeleteTy->isConstantArrayType()) { 2021 llvm::Value *Zero = Builder.getInt32(0); 2022 SmallVector<llvm::Value*,8> GEP; 2023 2024 GEP.push_back(Zero); // point at the outermost array 2025 2026 // For each layer of array type we're pointing at: 2027 while (const ConstantArrayType *Arr 2028 = getContext().getAsConstantArrayType(DeleteTy)) { 2029 // 1. Unpeel the array type. 2030 DeleteTy = Arr->getElementType(); 2031 2032 // 2. GEP to the first element of the array. 2033 GEP.push_back(Zero); 2034 } 2035 2036 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2037 Ptr.getAlignment()); 2038 } 2039 2040 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2041 2042 if (E->isArrayForm()) { 2043 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2044 } else { 2045 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2046 } 2047 2048 EmitBlock(DeleteEnd); 2049 } 2050 2051 static bool isGLValueFromPointerDeref(const Expr *E) { 2052 E = E->IgnoreParens(); 2053 2054 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2055 if (!CE->getSubExpr()->isGLValue()) 2056 return false; 2057 return isGLValueFromPointerDeref(CE->getSubExpr()); 2058 } 2059 2060 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2061 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2062 2063 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2064 if (BO->getOpcode() == BO_Comma) 2065 return isGLValueFromPointerDeref(BO->getRHS()); 2066 2067 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2068 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2069 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2070 2071 // C++11 [expr.sub]p1: 2072 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2073 if (isa<ArraySubscriptExpr>(E)) 2074 return true; 2075 2076 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2077 if (UO->getOpcode() == UO_Deref) 2078 return true; 2079 2080 return false; 2081 } 2082 2083 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2084 llvm::Type *StdTypeInfoPtrTy) { 2085 // Get the vtable pointer. 2086 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2087 2088 QualType SrcRecordTy = E->getType(); 2089 2090 // C++ [class.cdtor]p4: 2091 // If the operand of typeid refers to the object under construction or 2092 // destruction and the static type of the operand is neither the constructor 2093 // or destructor’s class nor one of its bases, the behavior is undefined. 2094 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2095 ThisPtr.getPointer(), SrcRecordTy); 2096 2097 // C++ [expr.typeid]p2: 2098 // If the glvalue expression is obtained by applying the unary * operator to 2099 // a pointer and the pointer is a null pointer value, the typeid expression 2100 // throws the std::bad_typeid exception. 2101 // 2102 // However, this paragraph's intent is not clear. We choose a very generous 2103 // interpretation which implores us to consider comma operators, conditional 2104 // operators, parentheses and other such constructs. 2105 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2106 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2107 llvm::BasicBlock *BadTypeidBlock = 2108 CGF.createBasicBlock("typeid.bad_typeid"); 2109 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2110 2111 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2112 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2113 2114 CGF.EmitBlock(BadTypeidBlock); 2115 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2116 CGF.EmitBlock(EndBlock); 2117 } 2118 2119 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2120 StdTypeInfoPtrTy); 2121 } 2122 2123 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2124 llvm::Type *StdTypeInfoPtrTy = 2125 ConvertType(E->getType())->getPointerTo(); 2126 2127 if (E->isTypeOperand()) { 2128 llvm::Constant *TypeInfo = 2129 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2130 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2131 } 2132 2133 // C++ [expr.typeid]p2: 2134 // When typeid is applied to a glvalue expression whose type is a 2135 // polymorphic class type, the result refers to a std::type_info object 2136 // representing the type of the most derived object (that is, the dynamic 2137 // type) to which the glvalue refers. 2138 if (E->isPotentiallyEvaluated()) 2139 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2140 StdTypeInfoPtrTy); 2141 2142 QualType OperandTy = E->getExprOperand()->getType(); 2143 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2144 StdTypeInfoPtrTy); 2145 } 2146 2147 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2148 QualType DestTy) { 2149 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2150 if (DestTy->isPointerType()) 2151 return llvm::Constant::getNullValue(DestLTy); 2152 2153 /// C++ [expr.dynamic.cast]p9: 2154 /// A failed cast to reference type throws std::bad_cast 2155 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2156 return nullptr; 2157 2158 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2159 return llvm::UndefValue::get(DestLTy); 2160 } 2161 2162 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2163 const CXXDynamicCastExpr *DCE) { 2164 CGM.EmitExplicitCastExprType(DCE, this); 2165 QualType DestTy = DCE->getTypeAsWritten(); 2166 2167 QualType SrcTy = DCE->getSubExpr()->getType(); 2168 2169 // C++ [expr.dynamic.cast]p7: 2170 // If T is "pointer to cv void," then the result is a pointer to the most 2171 // derived object pointed to by v. 2172 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2173 2174 bool isDynamicCastToVoid; 2175 QualType SrcRecordTy; 2176 QualType DestRecordTy; 2177 if (DestPTy) { 2178 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2179 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2180 DestRecordTy = DestPTy->getPointeeType(); 2181 } else { 2182 isDynamicCastToVoid = false; 2183 SrcRecordTy = SrcTy; 2184 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2185 } 2186 2187 // C++ [class.cdtor]p5: 2188 // If the operand of the dynamic_cast refers to the object under 2189 // construction or destruction and the static type of the operand is not a 2190 // pointer to or object of the constructor or destructor’s own class or one 2191 // of its bases, the dynamic_cast results in undefined behavior. 2192 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2193 SrcRecordTy); 2194 2195 if (DCE->isAlwaysNull()) 2196 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2197 return T; 2198 2199 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2200 2201 // C++ [expr.dynamic.cast]p4: 2202 // If the value of v is a null pointer value in the pointer case, the result 2203 // is the null pointer value of type T. 2204 bool ShouldNullCheckSrcValue = 2205 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2206 SrcRecordTy); 2207 2208 llvm::BasicBlock *CastNull = nullptr; 2209 llvm::BasicBlock *CastNotNull = nullptr; 2210 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2211 2212 if (ShouldNullCheckSrcValue) { 2213 CastNull = createBasicBlock("dynamic_cast.null"); 2214 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2215 2216 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2217 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2218 EmitBlock(CastNotNull); 2219 } 2220 2221 llvm::Value *Value; 2222 if (isDynamicCastToVoid) { 2223 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2224 DestTy); 2225 } else { 2226 assert(DestRecordTy->isRecordType() && 2227 "destination type must be a record type!"); 2228 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2229 DestTy, DestRecordTy, CastEnd); 2230 CastNotNull = Builder.GetInsertBlock(); 2231 } 2232 2233 if (ShouldNullCheckSrcValue) { 2234 EmitBranch(CastEnd); 2235 2236 EmitBlock(CastNull); 2237 EmitBranch(CastEnd); 2238 } 2239 2240 EmitBlock(CastEnd); 2241 2242 if (ShouldNullCheckSrcValue) { 2243 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2244 PHI->addIncoming(Value, CastNotNull); 2245 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2246 2247 Value = PHI; 2248 } 2249 2250 return Value; 2251 } 2252