1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "ConstantEmitter.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Intrinsics.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 struct MemberCallInfo { 30 RequiredArgs ReqArgs; 31 // Number of prefix arguments for the call. Ignores the `this` pointer. 32 unsigned PrefixSize; 33 }; 34 } 35 36 static MemberCallInfo 37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 38 llvm::Value *This, llvm::Value *ImplicitParam, 39 QualType ImplicitParamTy, const CallExpr *CE, 40 CallArgList &Args, CallArgList *RtlArgs) { 41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 42 isa<CXXOperatorCallExpr>(CE)); 43 assert(MD->isInstance() && 44 "Trying to emit a member or operator call expr on a static method!"); 45 ASTContext &C = CGF.getContext(); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 50 Args.add(RValue::get(This), 51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 52 53 // If there is an implicit parameter (e.g. VTT), emit it. 54 if (ImplicitParam) { 55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 56 } 57 58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 60 unsigned PrefixSize = Args.size() - 1; 61 62 // And the rest of the call args. 63 if (RtlArgs) { 64 // Special case: if the caller emitted the arguments right-to-left already 65 // (prior to emitting the *this argument), we're done. This happens for 66 // assignment operators. 67 Args.addFrom(*RtlArgs); 68 } else if (CE) { 69 // Special case: skip first argument of CXXOperatorCall (it is "this"). 70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 72 CE->getDirectCallee()); 73 } else { 74 assert( 75 FPT->getNumParams() == 0 && 76 "No CallExpr specified for function with non-zero number of arguments"); 77 } 78 return {required, PrefixSize}; 79 } 80 81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 82 const CXXMethodDecl *MD, const CGCallee &Callee, 83 ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 92 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 93 CE ? CE->getExprLoc() : SourceLocation()); 94 } 95 96 RValue CodeGenFunction::EmitCXXDestructorCall( 97 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 98 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 99 StructorType Type) { 100 CallArgList Args; 101 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 102 ImplicitParamTy, CE, Args, nullptr); 103 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 104 Callee, ReturnValueSlot(), Args); 105 } 106 107 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 108 const CXXPseudoDestructorExpr *E) { 109 QualType DestroyedType = E->getDestroyedType(); 110 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 111 // Automatic Reference Counting: 112 // If the pseudo-expression names a retainable object with weak or 113 // strong lifetime, the object shall be released. 114 Expr *BaseExpr = E->getBase(); 115 Address BaseValue = Address::invalid(); 116 Qualifiers BaseQuals; 117 118 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 119 if (E->isArrow()) { 120 BaseValue = EmitPointerWithAlignment(BaseExpr); 121 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 122 BaseQuals = PTy->getPointeeType().getQualifiers(); 123 } else { 124 LValue BaseLV = EmitLValue(BaseExpr); 125 BaseValue = BaseLV.getAddress(); 126 QualType BaseTy = BaseExpr->getType(); 127 BaseQuals = BaseTy.getQualifiers(); 128 } 129 130 switch (DestroyedType.getObjCLifetime()) { 131 case Qualifiers::OCL_None: 132 case Qualifiers::OCL_ExplicitNone: 133 case Qualifiers::OCL_Autoreleasing: 134 break; 135 136 case Qualifiers::OCL_Strong: 137 EmitARCRelease(Builder.CreateLoad(BaseValue, 138 DestroyedType.isVolatileQualified()), 139 ARCPreciseLifetime); 140 break; 141 142 case Qualifiers::OCL_Weak: 143 EmitARCDestroyWeak(BaseValue); 144 break; 145 } 146 } else { 147 // C++ [expr.pseudo]p1: 148 // The result shall only be used as the operand for the function call 149 // operator (), and the result of such a call has type void. The only 150 // effect is the evaluation of the postfix-expression before the dot or 151 // arrow. 152 EmitIgnoredExpr(E->getBase()); 153 } 154 155 return RValue::get(nullptr); 156 } 157 158 static CXXRecordDecl *getCXXRecord(const Expr *E) { 159 QualType T = E->getType(); 160 if (const PointerType *PTy = T->getAs<PointerType>()) 161 T = PTy->getPointeeType(); 162 const RecordType *Ty = T->castAs<RecordType>(); 163 return cast<CXXRecordDecl>(Ty->getDecl()); 164 } 165 166 // Note: This function also emit constructor calls to support a MSVC 167 // extensions allowing explicit constructor function call. 168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 169 ReturnValueSlot ReturnValue) { 170 const Expr *callee = CE->getCallee()->IgnoreParens(); 171 172 if (isa<BinaryOperator>(callee)) 173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 174 175 const MemberExpr *ME = cast<MemberExpr>(callee); 176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 177 178 if (MD->isStatic()) { 179 // The method is static, emit it as we would a regular call. 180 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 181 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 182 ReturnValue); 183 } 184 185 bool HasQualifier = ME->hasQualifier(); 186 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 187 bool IsArrow = ME->isArrow(); 188 const Expr *Base = ME->getBase(); 189 190 return EmitCXXMemberOrOperatorMemberCallExpr( 191 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 192 } 193 194 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 195 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 196 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 197 const Expr *Base) { 198 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 199 200 // Compute the object pointer. 201 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 202 203 const CXXMethodDecl *DevirtualizedMethod = nullptr; 204 if (CanUseVirtualCall && 205 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 206 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 207 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 208 assert(DevirtualizedMethod); 209 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 210 const Expr *Inner = Base->ignoreParenBaseCasts(); 211 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 212 MD->getReturnType().getCanonicalType()) 213 // If the return types are not the same, this might be a case where more 214 // code needs to run to compensate for it. For example, the derived 215 // method might return a type that inherits form from the return 216 // type of MD and has a prefix. 217 // For now we just avoid devirtualizing these covariant cases. 218 DevirtualizedMethod = nullptr; 219 else if (getCXXRecord(Inner) == DevirtualizedClass) 220 // If the class of the Inner expression is where the dynamic method 221 // is defined, build the this pointer from it. 222 Base = Inner; 223 else if (getCXXRecord(Base) != DevirtualizedClass) { 224 // If the method is defined in a class that is not the best dynamic 225 // one or the one of the full expression, we would have to build 226 // a derived-to-base cast to compute the correct this pointer, but 227 // we don't have support for that yet, so do a virtual call. 228 DevirtualizedMethod = nullptr; 229 } 230 } 231 232 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 233 // operator before the LHS. 234 CallArgList RtlArgStorage; 235 CallArgList *RtlArgs = nullptr; 236 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 237 if (OCE->isAssignmentOp()) { 238 RtlArgs = &RtlArgStorage; 239 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 240 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 241 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 242 } 243 } 244 245 LValue This; 246 if (IsArrow) { 247 LValueBaseInfo BaseInfo; 248 TBAAAccessInfo TBAAInfo; 249 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 250 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 251 } else { 252 This = EmitLValue(Base); 253 } 254 255 256 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 257 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 258 if (isa<CXXConstructorDecl>(MD) && 259 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 260 return RValue::get(nullptr); 261 262 if (!MD->getParent()->mayInsertExtraPadding()) { 263 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 264 // We don't like to generate the trivial copy/move assignment operator 265 // when it isn't necessary; just produce the proper effect here. 266 LValue RHS = isa<CXXOperatorCallExpr>(CE) 267 ? MakeNaturalAlignAddrLValue( 268 (*RtlArgs)[0].RV.getScalarVal(), 269 (*(CE->arg_begin() + 1))->getType()) 270 : EmitLValue(*CE->arg_begin()); 271 EmitAggregateAssign(This, RHS, CE->getType()); 272 return RValue::get(This.getPointer()); 273 } 274 275 if (isa<CXXConstructorDecl>(MD) && 276 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 277 // Trivial move and copy ctor are the same. 278 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 279 const Expr *Arg = *CE->arg_begin(); 280 LValue RHS = EmitLValue(Arg); 281 LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType()); 282 EmitAggregateCopy(Dest, RHS, Arg->getType()); 283 return RValue::get(This.getPointer()); 284 } 285 llvm_unreachable("unknown trivial member function"); 286 } 287 } 288 289 // Compute the function type we're calling. 290 const CXXMethodDecl *CalleeDecl = 291 DevirtualizedMethod ? DevirtualizedMethod : MD; 292 const CGFunctionInfo *FInfo = nullptr; 293 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 294 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 295 Dtor, StructorType::Complete); 296 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 297 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 298 Ctor, StructorType::Complete); 299 else 300 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 301 302 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 303 304 // C++11 [class.mfct.non-static]p2: 305 // If a non-static member function of a class X is called for an object that 306 // is not of type X, or of a type derived from X, the behavior is undefined. 307 SourceLocation CallLoc; 308 ASTContext &C = getContext(); 309 if (CE) 310 CallLoc = CE->getExprLoc(); 311 312 SanitizerSet SkippedChecks; 313 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 314 auto *IOA = CMCE->getImplicitObjectArgument(); 315 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 316 if (IsImplicitObjectCXXThis) 317 SkippedChecks.set(SanitizerKind::Alignment, true); 318 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 319 SkippedChecks.set(SanitizerKind::Null, true); 320 } 321 EmitTypeCheck( 322 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 323 : CodeGenFunction::TCK_MemberCall, 324 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 325 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 326 327 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 328 // 'CalleeDecl' instead. 329 330 // C++ [class.virtual]p12: 331 // Explicit qualification with the scope operator (5.1) suppresses the 332 // virtual call mechanism. 333 // 334 // We also don't emit a virtual call if the base expression has a record type 335 // because then we know what the type is. 336 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 337 338 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 339 assert(CE->arg_begin() == CE->arg_end() && 340 "Destructor shouldn't have explicit parameters"); 341 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 342 if (UseVirtualCall) { 343 CGM.getCXXABI().EmitVirtualDestructorCall( 344 *this, Dtor, Dtor_Complete, This.getAddress(), 345 cast<CXXMemberCallExpr>(CE)); 346 } else { 347 CGCallee Callee; 348 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 349 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 350 else if (!DevirtualizedMethod) 351 Callee = CGCallee::forDirect( 352 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 353 Dtor); 354 else { 355 const CXXDestructorDecl *DDtor = 356 cast<CXXDestructorDecl>(DevirtualizedMethod); 357 Callee = CGCallee::forDirect( 358 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 359 DDtor); 360 } 361 EmitCXXMemberOrOperatorCall( 362 CalleeDecl, Callee, ReturnValue, This.getPointer(), 363 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 364 } 365 return RValue::get(nullptr); 366 } 367 368 CGCallee Callee; 369 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 370 Callee = CGCallee::forDirect( 371 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 372 Ctor); 373 } else if (UseVirtualCall) { 374 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 375 } else { 376 if (SanOpts.has(SanitizerKind::CFINVCall) && 377 MD->getParent()->isDynamicClass()) { 378 llvm::Value *VTable; 379 const CXXRecordDecl *RD; 380 std::tie(VTable, RD) = 381 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 382 MD->getParent()); 383 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getLocStart()); 384 } 385 386 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 387 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 388 else if (!DevirtualizedMethod) 389 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 390 else { 391 Callee = CGCallee::forDirect( 392 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 393 DevirtualizedMethod); 394 } 395 } 396 397 if (MD->isVirtual()) { 398 Address NewThisAddr = 399 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 400 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 401 This.setAddress(NewThisAddr); 402 } 403 404 return EmitCXXMemberOrOperatorCall( 405 CalleeDecl, Callee, ReturnValue, This.getPointer(), 406 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 407 } 408 409 RValue 410 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 411 ReturnValueSlot ReturnValue) { 412 const BinaryOperator *BO = 413 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 414 const Expr *BaseExpr = BO->getLHS(); 415 const Expr *MemFnExpr = BO->getRHS(); 416 417 const MemberPointerType *MPT = 418 MemFnExpr->getType()->castAs<MemberPointerType>(); 419 420 const FunctionProtoType *FPT = 421 MPT->getPointeeType()->castAs<FunctionProtoType>(); 422 const CXXRecordDecl *RD = 423 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 424 425 // Emit the 'this' pointer. 426 Address This = Address::invalid(); 427 if (BO->getOpcode() == BO_PtrMemI) 428 This = EmitPointerWithAlignment(BaseExpr); 429 else 430 This = EmitLValue(BaseExpr).getAddress(); 431 432 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 433 QualType(MPT->getClass(), 0)); 434 435 // Get the member function pointer. 436 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 437 438 // Ask the ABI to load the callee. Note that This is modified. 439 llvm::Value *ThisPtrForCall = nullptr; 440 CGCallee Callee = 441 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 442 ThisPtrForCall, MemFnPtr, MPT); 443 444 CallArgList Args; 445 446 QualType ThisType = 447 getContext().getPointerType(getContext().getTagDeclType(RD)); 448 449 // Push the this ptr. 450 Args.add(RValue::get(ThisPtrForCall), ThisType); 451 452 RequiredArgs required = 453 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 454 455 // And the rest of the call args 456 EmitCallArgs(Args, FPT, E->arguments()); 457 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 458 /*PrefixSize=*/0), 459 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 460 } 461 462 RValue 463 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 464 const CXXMethodDecl *MD, 465 ReturnValueSlot ReturnValue) { 466 assert(MD->isInstance() && 467 "Trying to emit a member call expr on a static method!"); 468 return EmitCXXMemberOrOperatorMemberCallExpr( 469 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 470 /*IsArrow=*/false, E->getArg(0)); 471 } 472 473 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 474 ReturnValueSlot ReturnValue) { 475 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 476 } 477 478 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 479 Address DestPtr, 480 const CXXRecordDecl *Base) { 481 if (Base->isEmpty()) 482 return; 483 484 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 485 486 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 487 CharUnits NVSize = Layout.getNonVirtualSize(); 488 489 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 490 // present, they are initialized by the most derived class before calling the 491 // constructor. 492 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 493 Stores.emplace_back(CharUnits::Zero(), NVSize); 494 495 // Each store is split by the existence of a vbptr. 496 CharUnits VBPtrWidth = CGF.getPointerSize(); 497 std::vector<CharUnits> VBPtrOffsets = 498 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 499 for (CharUnits VBPtrOffset : VBPtrOffsets) { 500 // Stop before we hit any virtual base pointers located in virtual bases. 501 if (VBPtrOffset >= NVSize) 502 break; 503 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 504 CharUnits LastStoreOffset = LastStore.first; 505 CharUnits LastStoreSize = LastStore.second; 506 507 CharUnits SplitBeforeOffset = LastStoreOffset; 508 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 509 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 510 if (!SplitBeforeSize.isZero()) 511 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 512 513 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 514 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 515 assert(!SplitAfterSize.isNegative() && "negative store size!"); 516 if (!SplitAfterSize.isZero()) 517 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 518 } 519 520 // If the type contains a pointer to data member we can't memset it to zero. 521 // Instead, create a null constant and copy it to the destination. 522 // TODO: there are other patterns besides zero that we can usefully memset, 523 // like -1, which happens to be the pattern used by member-pointers. 524 // TODO: isZeroInitializable can be over-conservative in the case where a 525 // virtual base contains a member pointer. 526 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 527 if (!NullConstantForBase->isNullValue()) { 528 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 529 CGF.CGM.getModule(), NullConstantForBase->getType(), 530 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 531 NullConstantForBase, Twine()); 532 533 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 534 DestPtr.getAlignment()); 535 NullVariable->setAlignment(Align.getQuantity()); 536 537 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 538 539 // Get and call the appropriate llvm.memcpy overload. 540 for (std::pair<CharUnits, CharUnits> Store : Stores) { 541 CharUnits StoreOffset = Store.first; 542 CharUnits StoreSize = Store.second; 543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 544 CGF.Builder.CreateMemCpy( 545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 546 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 547 StoreSizeVal); 548 } 549 550 // Otherwise, just memset the whole thing to zero. This is legal 551 // because in LLVM, all default initializers (other than the ones we just 552 // handled above) are guaranteed to have a bit pattern of all zeros. 553 } else { 554 for (std::pair<CharUnits, CharUnits> Store : Stores) { 555 CharUnits StoreOffset = Store.first; 556 CharUnits StoreSize = Store.second; 557 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 558 CGF.Builder.CreateMemSet( 559 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 560 CGF.Builder.getInt8(0), StoreSizeVal); 561 } 562 } 563 } 564 565 void 566 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 567 AggValueSlot Dest) { 568 assert(!Dest.isIgnored() && "Must have a destination!"); 569 const CXXConstructorDecl *CD = E->getConstructor(); 570 571 // If we require zero initialization before (or instead of) calling the 572 // constructor, as can be the case with a non-user-provided default 573 // constructor, emit the zero initialization now, unless destination is 574 // already zeroed. 575 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 576 switch (E->getConstructionKind()) { 577 case CXXConstructExpr::CK_Delegating: 578 case CXXConstructExpr::CK_Complete: 579 EmitNullInitialization(Dest.getAddress(), E->getType()); 580 break; 581 case CXXConstructExpr::CK_VirtualBase: 582 case CXXConstructExpr::CK_NonVirtualBase: 583 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 584 CD->getParent()); 585 break; 586 } 587 } 588 589 // If this is a call to a trivial default constructor, do nothing. 590 if (CD->isTrivial() && CD->isDefaultConstructor()) 591 return; 592 593 // Elide the constructor if we're constructing from a temporary. 594 // The temporary check is required because Sema sets this on NRVO 595 // returns. 596 if (getLangOpts().ElideConstructors && E->isElidable()) { 597 assert(getContext().hasSameUnqualifiedType(E->getType(), 598 E->getArg(0)->getType())); 599 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 600 EmitAggExpr(E->getArg(0), Dest); 601 return; 602 } 603 } 604 605 if (const ArrayType *arrayType 606 = getContext().getAsArrayType(E->getType())) { 607 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 608 } else { 609 CXXCtorType Type = Ctor_Complete; 610 bool ForVirtualBase = false; 611 bool Delegating = false; 612 613 switch (E->getConstructionKind()) { 614 case CXXConstructExpr::CK_Delegating: 615 // We should be emitting a constructor; GlobalDecl will assert this 616 Type = CurGD.getCtorType(); 617 Delegating = true; 618 break; 619 620 case CXXConstructExpr::CK_Complete: 621 Type = Ctor_Complete; 622 break; 623 624 case CXXConstructExpr::CK_VirtualBase: 625 ForVirtualBase = true; 626 LLVM_FALLTHROUGH; 627 628 case CXXConstructExpr::CK_NonVirtualBase: 629 Type = Ctor_Base; 630 } 631 632 // Call the constructor. 633 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 634 Dest.getAddress(), E); 635 } 636 } 637 638 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 639 const Expr *Exp) { 640 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 641 Exp = E->getSubExpr(); 642 assert(isa<CXXConstructExpr>(Exp) && 643 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 644 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 645 const CXXConstructorDecl *CD = E->getConstructor(); 646 RunCleanupsScope Scope(*this); 647 648 // If we require zero initialization before (or instead of) calling the 649 // constructor, as can be the case with a non-user-provided default 650 // constructor, emit the zero initialization now. 651 // FIXME. Do I still need this for a copy ctor synthesis? 652 if (E->requiresZeroInitialization()) 653 EmitNullInitialization(Dest, E->getType()); 654 655 assert(!getContext().getAsConstantArrayType(E->getType()) 656 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 657 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 658 } 659 660 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 661 const CXXNewExpr *E) { 662 if (!E->isArray()) 663 return CharUnits::Zero(); 664 665 // No cookie is required if the operator new[] being used is the 666 // reserved placement operator new[]. 667 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 668 return CharUnits::Zero(); 669 670 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 671 } 672 673 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 674 const CXXNewExpr *e, 675 unsigned minElements, 676 llvm::Value *&numElements, 677 llvm::Value *&sizeWithoutCookie) { 678 QualType type = e->getAllocatedType(); 679 680 if (!e->isArray()) { 681 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 682 sizeWithoutCookie 683 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 684 return sizeWithoutCookie; 685 } 686 687 // The width of size_t. 688 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 689 690 // Figure out the cookie size. 691 llvm::APInt cookieSize(sizeWidth, 692 CalculateCookiePadding(CGF, e).getQuantity()); 693 694 // Emit the array size expression. 695 // We multiply the size of all dimensions for NumElements. 696 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 697 numElements = 698 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 699 if (!numElements) 700 numElements = CGF.EmitScalarExpr(e->getArraySize()); 701 assert(isa<llvm::IntegerType>(numElements->getType())); 702 703 // The number of elements can be have an arbitrary integer type; 704 // essentially, we need to multiply it by a constant factor, add a 705 // cookie size, and verify that the result is representable as a 706 // size_t. That's just a gloss, though, and it's wrong in one 707 // important way: if the count is negative, it's an error even if 708 // the cookie size would bring the total size >= 0. 709 bool isSigned 710 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 711 llvm::IntegerType *numElementsType 712 = cast<llvm::IntegerType>(numElements->getType()); 713 unsigned numElementsWidth = numElementsType->getBitWidth(); 714 715 // Compute the constant factor. 716 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 717 while (const ConstantArrayType *CAT 718 = CGF.getContext().getAsConstantArrayType(type)) { 719 type = CAT->getElementType(); 720 arraySizeMultiplier *= CAT->getSize(); 721 } 722 723 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 724 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 725 typeSizeMultiplier *= arraySizeMultiplier; 726 727 // This will be a size_t. 728 llvm::Value *size; 729 730 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 731 // Don't bloat the -O0 code. 732 if (llvm::ConstantInt *numElementsC = 733 dyn_cast<llvm::ConstantInt>(numElements)) { 734 const llvm::APInt &count = numElementsC->getValue(); 735 736 bool hasAnyOverflow = false; 737 738 // If 'count' was a negative number, it's an overflow. 739 if (isSigned && count.isNegative()) 740 hasAnyOverflow = true; 741 742 // We want to do all this arithmetic in size_t. If numElements is 743 // wider than that, check whether it's already too big, and if so, 744 // overflow. 745 else if (numElementsWidth > sizeWidth && 746 numElementsWidth - sizeWidth > count.countLeadingZeros()) 747 hasAnyOverflow = true; 748 749 // Okay, compute a count at the right width. 750 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 751 752 // If there is a brace-initializer, we cannot allocate fewer elements than 753 // there are initializers. If we do, that's treated like an overflow. 754 if (adjustedCount.ult(minElements)) 755 hasAnyOverflow = true; 756 757 // Scale numElements by that. This might overflow, but we don't 758 // care because it only overflows if allocationSize does, too, and 759 // if that overflows then we shouldn't use this. 760 numElements = llvm::ConstantInt::get(CGF.SizeTy, 761 adjustedCount * arraySizeMultiplier); 762 763 // Compute the size before cookie, and track whether it overflowed. 764 bool overflow; 765 llvm::APInt allocationSize 766 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 767 hasAnyOverflow |= overflow; 768 769 // Add in the cookie, and check whether it's overflowed. 770 if (cookieSize != 0) { 771 // Save the current size without a cookie. This shouldn't be 772 // used if there was overflow. 773 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 774 775 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 776 hasAnyOverflow |= overflow; 777 } 778 779 // On overflow, produce a -1 so operator new will fail. 780 if (hasAnyOverflow) { 781 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 782 } else { 783 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 784 } 785 786 // Otherwise, we might need to use the overflow intrinsics. 787 } else { 788 // There are up to five conditions we need to test for: 789 // 1) if isSigned, we need to check whether numElements is negative; 790 // 2) if numElementsWidth > sizeWidth, we need to check whether 791 // numElements is larger than something representable in size_t; 792 // 3) if minElements > 0, we need to check whether numElements is smaller 793 // than that. 794 // 4) we need to compute 795 // sizeWithoutCookie := numElements * typeSizeMultiplier 796 // and check whether it overflows; and 797 // 5) if we need a cookie, we need to compute 798 // size := sizeWithoutCookie + cookieSize 799 // and check whether it overflows. 800 801 llvm::Value *hasOverflow = nullptr; 802 803 // If numElementsWidth > sizeWidth, then one way or another, we're 804 // going to have to do a comparison for (2), and this happens to 805 // take care of (1), too. 806 if (numElementsWidth > sizeWidth) { 807 llvm::APInt threshold(numElementsWidth, 1); 808 threshold <<= sizeWidth; 809 810 llvm::Value *thresholdV 811 = llvm::ConstantInt::get(numElementsType, threshold); 812 813 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 814 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 815 816 // Otherwise, if we're signed, we want to sext up to size_t. 817 } else if (isSigned) { 818 if (numElementsWidth < sizeWidth) 819 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 820 821 // If there's a non-1 type size multiplier, then we can do the 822 // signedness check at the same time as we do the multiply 823 // because a negative number times anything will cause an 824 // unsigned overflow. Otherwise, we have to do it here. But at least 825 // in this case, we can subsume the >= minElements check. 826 if (typeSizeMultiplier == 1) 827 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 828 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 829 830 // Otherwise, zext up to size_t if necessary. 831 } else if (numElementsWidth < sizeWidth) { 832 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 833 } 834 835 assert(numElements->getType() == CGF.SizeTy); 836 837 if (minElements) { 838 // Don't allow allocation of fewer elements than we have initializers. 839 if (!hasOverflow) { 840 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 841 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 842 } else if (numElementsWidth > sizeWidth) { 843 // The other existing overflow subsumes this check. 844 // We do an unsigned comparison, since any signed value < -1 is 845 // taken care of either above or below. 846 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 847 CGF.Builder.CreateICmpULT(numElements, 848 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 849 } 850 } 851 852 size = numElements; 853 854 // Multiply by the type size if necessary. This multiplier 855 // includes all the factors for nested arrays. 856 // 857 // This step also causes numElements to be scaled up by the 858 // nested-array factor if necessary. Overflow on this computation 859 // can be ignored because the result shouldn't be used if 860 // allocation fails. 861 if (typeSizeMultiplier != 1) { 862 llvm::Value *umul_with_overflow 863 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 864 865 llvm::Value *tsmV = 866 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 867 llvm::Value *result = 868 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 869 870 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 871 if (hasOverflow) 872 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 873 else 874 hasOverflow = overflowed; 875 876 size = CGF.Builder.CreateExtractValue(result, 0); 877 878 // Also scale up numElements by the array size multiplier. 879 if (arraySizeMultiplier != 1) { 880 // If the base element type size is 1, then we can re-use the 881 // multiply we just did. 882 if (typeSize.isOne()) { 883 assert(arraySizeMultiplier == typeSizeMultiplier); 884 numElements = size; 885 886 // Otherwise we need a separate multiply. 887 } else { 888 llvm::Value *asmV = 889 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 890 numElements = CGF.Builder.CreateMul(numElements, asmV); 891 } 892 } 893 } else { 894 // numElements doesn't need to be scaled. 895 assert(arraySizeMultiplier == 1); 896 } 897 898 // Add in the cookie size if necessary. 899 if (cookieSize != 0) { 900 sizeWithoutCookie = size; 901 902 llvm::Value *uadd_with_overflow 903 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 904 905 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 906 llvm::Value *result = 907 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 908 909 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 910 if (hasOverflow) 911 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 912 else 913 hasOverflow = overflowed; 914 915 size = CGF.Builder.CreateExtractValue(result, 0); 916 } 917 918 // If we had any possibility of dynamic overflow, make a select to 919 // overwrite 'size' with an all-ones value, which should cause 920 // operator new to throw. 921 if (hasOverflow) 922 size = CGF.Builder.CreateSelect(hasOverflow, 923 llvm::Constant::getAllOnesValue(CGF.SizeTy), 924 size); 925 } 926 927 if (cookieSize == 0) 928 sizeWithoutCookie = size; 929 else 930 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 931 932 return size; 933 } 934 935 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 936 QualType AllocType, Address NewPtr) { 937 // FIXME: Refactor with EmitExprAsInit. 938 switch (CGF.getEvaluationKind(AllocType)) { 939 case TEK_Scalar: 940 CGF.EmitScalarInit(Init, nullptr, 941 CGF.MakeAddrLValue(NewPtr, AllocType), false); 942 return; 943 case TEK_Complex: 944 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 945 /*isInit*/ true); 946 return; 947 case TEK_Aggregate: { 948 AggValueSlot Slot 949 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 950 AggValueSlot::IsDestructed, 951 AggValueSlot::DoesNotNeedGCBarriers, 952 AggValueSlot::IsNotAliased); 953 CGF.EmitAggExpr(Init, Slot); 954 return; 955 } 956 } 957 llvm_unreachable("bad evaluation kind"); 958 } 959 960 void CodeGenFunction::EmitNewArrayInitializer( 961 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 962 Address BeginPtr, llvm::Value *NumElements, 963 llvm::Value *AllocSizeWithoutCookie) { 964 // If we have a type with trivial initialization and no initializer, 965 // there's nothing to do. 966 if (!E->hasInitializer()) 967 return; 968 969 Address CurPtr = BeginPtr; 970 971 unsigned InitListElements = 0; 972 973 const Expr *Init = E->getInitializer(); 974 Address EndOfInit = Address::invalid(); 975 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 976 EHScopeStack::stable_iterator Cleanup; 977 llvm::Instruction *CleanupDominator = nullptr; 978 979 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 980 CharUnits ElementAlign = 981 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 982 983 // Attempt to perform zero-initialization using memset. 984 auto TryMemsetInitialization = [&]() -> bool { 985 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 986 // we can initialize with a memset to -1. 987 if (!CGM.getTypes().isZeroInitializable(ElementType)) 988 return false; 989 990 // Optimization: since zero initialization will just set the memory 991 // to all zeroes, generate a single memset to do it in one shot. 992 993 // Subtract out the size of any elements we've already initialized. 994 auto *RemainingSize = AllocSizeWithoutCookie; 995 if (InitListElements) { 996 // We know this can't overflow; we check this when doing the allocation. 997 auto *InitializedSize = llvm::ConstantInt::get( 998 RemainingSize->getType(), 999 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1000 InitListElements); 1001 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1002 } 1003 1004 // Create the memset. 1005 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1006 return true; 1007 }; 1008 1009 // If the initializer is an initializer list, first do the explicit elements. 1010 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1011 // Initializing from a (braced) string literal is a special case; the init 1012 // list element does not initialize a (single) array element. 1013 if (ILE->isStringLiteralInit()) { 1014 // Initialize the initial portion of length equal to that of the string 1015 // literal. The allocation must be for at least this much; we emitted a 1016 // check for that earlier. 1017 AggValueSlot Slot = 1018 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1019 AggValueSlot::IsDestructed, 1020 AggValueSlot::DoesNotNeedGCBarriers, 1021 AggValueSlot::IsNotAliased); 1022 EmitAggExpr(ILE->getInit(0), Slot); 1023 1024 // Move past these elements. 1025 InitListElements = 1026 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1027 ->getSize().getZExtValue(); 1028 CurPtr = 1029 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1030 Builder.getSize(InitListElements), 1031 "string.init.end"), 1032 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1033 ElementSize)); 1034 1035 // Zero out the rest, if any remain. 1036 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1037 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1038 bool OK = TryMemsetInitialization(); 1039 (void)OK; 1040 assert(OK && "couldn't memset character type?"); 1041 } 1042 return; 1043 } 1044 1045 InitListElements = ILE->getNumInits(); 1046 1047 // If this is a multi-dimensional array new, we will initialize multiple 1048 // elements with each init list element. 1049 QualType AllocType = E->getAllocatedType(); 1050 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1051 AllocType->getAsArrayTypeUnsafe())) { 1052 ElementTy = ConvertTypeForMem(AllocType); 1053 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1054 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1055 } 1056 1057 // Enter a partial-destruction Cleanup if necessary. 1058 if (needsEHCleanup(DtorKind)) { 1059 // In principle we could tell the Cleanup where we are more 1060 // directly, but the control flow can get so varied here that it 1061 // would actually be quite complex. Therefore we go through an 1062 // alloca. 1063 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1064 "array.init.end"); 1065 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1066 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1067 ElementType, ElementAlign, 1068 getDestroyer(DtorKind)); 1069 Cleanup = EHStack.stable_begin(); 1070 } 1071 1072 CharUnits StartAlign = CurPtr.getAlignment(); 1073 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1074 // Tell the cleanup that it needs to destroy up to this 1075 // element. TODO: some of these stores can be trivially 1076 // observed to be unnecessary. 1077 if (EndOfInit.isValid()) { 1078 auto FinishedPtr = 1079 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1080 Builder.CreateStore(FinishedPtr, EndOfInit); 1081 } 1082 // FIXME: If the last initializer is an incomplete initializer list for 1083 // an array, and we have an array filler, we can fold together the two 1084 // initialization loops. 1085 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1086 ILE->getInit(i)->getType(), CurPtr); 1087 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1088 Builder.getSize(1), 1089 "array.exp.next"), 1090 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1091 } 1092 1093 // The remaining elements are filled with the array filler expression. 1094 Init = ILE->getArrayFiller(); 1095 1096 // Extract the initializer for the individual array elements by pulling 1097 // out the array filler from all the nested initializer lists. This avoids 1098 // generating a nested loop for the initialization. 1099 while (Init && Init->getType()->isConstantArrayType()) { 1100 auto *SubILE = dyn_cast<InitListExpr>(Init); 1101 if (!SubILE) 1102 break; 1103 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1104 Init = SubILE->getArrayFiller(); 1105 } 1106 1107 // Switch back to initializing one base element at a time. 1108 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1109 } 1110 1111 // If all elements have already been initialized, skip any further 1112 // initialization. 1113 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1114 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1115 // If there was a Cleanup, deactivate it. 1116 if (CleanupDominator) 1117 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1118 return; 1119 } 1120 1121 assert(Init && "have trailing elements to initialize but no initializer"); 1122 1123 // If this is a constructor call, try to optimize it out, and failing that 1124 // emit a single loop to initialize all remaining elements. 1125 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1126 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1127 if (Ctor->isTrivial()) { 1128 // If new expression did not specify value-initialization, then there 1129 // is no initialization. 1130 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1131 return; 1132 1133 if (TryMemsetInitialization()) 1134 return; 1135 } 1136 1137 // Store the new Cleanup position for irregular Cleanups. 1138 // 1139 // FIXME: Share this cleanup with the constructor call emission rather than 1140 // having it create a cleanup of its own. 1141 if (EndOfInit.isValid()) 1142 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1143 1144 // Emit a constructor call loop to initialize the remaining elements. 1145 if (InitListElements) 1146 NumElements = Builder.CreateSub( 1147 NumElements, 1148 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1149 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1150 CCE->requiresZeroInitialization()); 1151 return; 1152 } 1153 1154 // If this is value-initialization, we can usually use memset. 1155 ImplicitValueInitExpr IVIE(ElementType); 1156 if (isa<ImplicitValueInitExpr>(Init)) { 1157 if (TryMemsetInitialization()) 1158 return; 1159 1160 // Switch to an ImplicitValueInitExpr for the element type. This handles 1161 // only one case: multidimensional array new of pointers to members. In 1162 // all other cases, we already have an initializer for the array element. 1163 Init = &IVIE; 1164 } 1165 1166 // At this point we should have found an initializer for the individual 1167 // elements of the array. 1168 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1169 "got wrong type of element to initialize"); 1170 1171 // If we have an empty initializer list, we can usually use memset. 1172 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1173 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1174 return; 1175 1176 // If we have a struct whose every field is value-initialized, we can 1177 // usually use memset. 1178 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1179 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1180 if (RType->getDecl()->isStruct()) { 1181 unsigned NumElements = 0; 1182 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1183 NumElements = CXXRD->getNumBases(); 1184 for (auto *Field : RType->getDecl()->fields()) 1185 if (!Field->isUnnamedBitfield()) 1186 ++NumElements; 1187 // FIXME: Recurse into nested InitListExprs. 1188 if (ILE->getNumInits() == NumElements) 1189 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1190 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1191 --NumElements; 1192 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1193 return; 1194 } 1195 } 1196 } 1197 1198 // Create the loop blocks. 1199 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1200 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1201 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1202 1203 // Find the end of the array, hoisted out of the loop. 1204 llvm::Value *EndPtr = 1205 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1206 1207 // If the number of elements isn't constant, we have to now check if there is 1208 // anything left to initialize. 1209 if (!ConstNum) { 1210 llvm::Value *IsEmpty = 1211 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1212 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1213 } 1214 1215 // Enter the loop. 1216 EmitBlock(LoopBB); 1217 1218 // Set up the current-element phi. 1219 llvm::PHINode *CurPtrPhi = 1220 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1221 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1222 1223 CurPtr = Address(CurPtrPhi, ElementAlign); 1224 1225 // Store the new Cleanup position for irregular Cleanups. 1226 if (EndOfInit.isValid()) 1227 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1228 1229 // Enter a partial-destruction Cleanup if necessary. 1230 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1231 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1232 ElementType, ElementAlign, 1233 getDestroyer(DtorKind)); 1234 Cleanup = EHStack.stable_begin(); 1235 CleanupDominator = Builder.CreateUnreachable(); 1236 } 1237 1238 // Emit the initializer into this element. 1239 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1240 1241 // Leave the Cleanup if we entered one. 1242 if (CleanupDominator) { 1243 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1244 CleanupDominator->eraseFromParent(); 1245 } 1246 1247 // Advance to the next element by adjusting the pointer type as necessary. 1248 llvm::Value *NextPtr = 1249 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1250 "array.next"); 1251 1252 // Check whether we've gotten to the end of the array and, if so, 1253 // exit the loop. 1254 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1255 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1256 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1257 1258 EmitBlock(ContBB); 1259 } 1260 1261 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1262 QualType ElementType, llvm::Type *ElementTy, 1263 Address NewPtr, llvm::Value *NumElements, 1264 llvm::Value *AllocSizeWithoutCookie) { 1265 ApplyDebugLocation DL(CGF, E); 1266 if (E->isArray()) 1267 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1268 AllocSizeWithoutCookie); 1269 else if (const Expr *Init = E->getInitializer()) 1270 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1271 } 1272 1273 /// Emit a call to an operator new or operator delete function, as implicitly 1274 /// created by new-expressions and delete-expressions. 1275 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1276 const FunctionDecl *CalleeDecl, 1277 const FunctionProtoType *CalleeType, 1278 const CallArgList &Args) { 1279 llvm::Instruction *CallOrInvoke; 1280 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1281 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1282 RValue RV = 1283 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1284 Args, CalleeType, /*chainCall=*/false), 1285 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1286 1287 /// C++1y [expr.new]p10: 1288 /// [In a new-expression,] an implementation is allowed to omit a call 1289 /// to a replaceable global allocation function. 1290 /// 1291 /// We model such elidable calls with the 'builtin' attribute. 1292 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1293 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1294 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1295 // FIXME: Add addAttribute to CallSite. 1296 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1297 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1298 llvm::Attribute::Builtin); 1299 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1300 II->addAttribute(llvm::AttributeList::FunctionIndex, 1301 llvm::Attribute::Builtin); 1302 else 1303 llvm_unreachable("unexpected kind of call instruction"); 1304 } 1305 1306 return RV; 1307 } 1308 1309 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1310 const Expr *Arg, 1311 bool IsDelete) { 1312 CallArgList Args; 1313 const Stmt *ArgS = Arg; 1314 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1315 // Find the allocation or deallocation function that we're calling. 1316 ASTContext &Ctx = getContext(); 1317 DeclarationName Name = Ctx.DeclarationNames 1318 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1319 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1320 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1321 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1322 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1323 llvm_unreachable("predeclared global operator new/delete is missing"); 1324 } 1325 1326 namespace { 1327 /// The parameters to pass to a usual operator delete. 1328 struct UsualDeleteParams { 1329 bool DestroyingDelete = false; 1330 bool Size = false; 1331 bool Alignment = false; 1332 }; 1333 } 1334 1335 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1336 UsualDeleteParams Params; 1337 1338 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1339 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1340 1341 // The first argument is always a void*. 1342 ++AI; 1343 1344 // The next parameter may be a std::destroying_delete_t. 1345 if (FD->isDestroyingOperatorDelete()) { 1346 Params.DestroyingDelete = true; 1347 assert(AI != AE); 1348 ++AI; 1349 } 1350 1351 // Figure out what other parameters we should be implicitly passing. 1352 if (AI != AE && (*AI)->isIntegerType()) { 1353 Params.Size = true; 1354 ++AI; 1355 } 1356 1357 if (AI != AE && (*AI)->isAlignValT()) { 1358 Params.Alignment = true; 1359 ++AI; 1360 } 1361 1362 assert(AI == AE && "unexpected usual deallocation function parameter"); 1363 return Params; 1364 } 1365 1366 namespace { 1367 /// A cleanup to call the given 'operator delete' function upon abnormal 1368 /// exit from a new expression. Templated on a traits type that deals with 1369 /// ensuring that the arguments dominate the cleanup if necessary. 1370 template<typename Traits> 1371 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1372 /// Type used to hold llvm::Value*s. 1373 typedef typename Traits::ValueTy ValueTy; 1374 /// Type used to hold RValues. 1375 typedef typename Traits::RValueTy RValueTy; 1376 struct PlacementArg { 1377 RValueTy ArgValue; 1378 QualType ArgType; 1379 }; 1380 1381 unsigned NumPlacementArgs : 31; 1382 unsigned PassAlignmentToPlacementDelete : 1; 1383 const FunctionDecl *OperatorDelete; 1384 ValueTy Ptr; 1385 ValueTy AllocSize; 1386 CharUnits AllocAlign; 1387 1388 PlacementArg *getPlacementArgs() { 1389 return reinterpret_cast<PlacementArg *>(this + 1); 1390 } 1391 1392 public: 1393 static size_t getExtraSize(size_t NumPlacementArgs) { 1394 return NumPlacementArgs * sizeof(PlacementArg); 1395 } 1396 1397 CallDeleteDuringNew(size_t NumPlacementArgs, 1398 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1399 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1400 CharUnits AllocAlign) 1401 : NumPlacementArgs(NumPlacementArgs), 1402 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1403 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1404 AllocAlign(AllocAlign) {} 1405 1406 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1407 assert(I < NumPlacementArgs && "index out of range"); 1408 getPlacementArgs()[I] = {Arg, Type}; 1409 } 1410 1411 void Emit(CodeGenFunction &CGF, Flags flags) override { 1412 const FunctionProtoType *FPT = 1413 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1414 CallArgList DeleteArgs; 1415 1416 // The first argument is always a void* (or C* for a destroying operator 1417 // delete for class type C). 1418 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1419 1420 // Figure out what other parameters we should be implicitly passing. 1421 UsualDeleteParams Params; 1422 if (NumPlacementArgs) { 1423 // A placement deallocation function is implicitly passed an alignment 1424 // if the placement allocation function was, but is never passed a size. 1425 Params.Alignment = PassAlignmentToPlacementDelete; 1426 } else { 1427 // For a non-placement new-expression, 'operator delete' can take a 1428 // size and/or an alignment if it has the right parameters. 1429 Params = getUsualDeleteParams(OperatorDelete); 1430 } 1431 1432 assert(!Params.DestroyingDelete && 1433 "should not call destroying delete in a new-expression"); 1434 1435 // The second argument can be a std::size_t (for non-placement delete). 1436 if (Params.Size) 1437 DeleteArgs.add(Traits::get(CGF, AllocSize), 1438 CGF.getContext().getSizeType()); 1439 1440 // The next (second or third) argument can be a std::align_val_t, which 1441 // is an enum whose underlying type is std::size_t. 1442 // FIXME: Use the right type as the parameter type. Note that in a call 1443 // to operator delete(size_t, ...), we may not have it available. 1444 if (Params.Alignment) 1445 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1446 CGF.SizeTy, AllocAlign.getQuantity())), 1447 CGF.getContext().getSizeType()); 1448 1449 // Pass the rest of the arguments, which must match exactly. 1450 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1451 auto Arg = getPlacementArgs()[I]; 1452 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1453 } 1454 1455 // Call 'operator delete'. 1456 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1457 } 1458 }; 1459 } 1460 1461 /// Enter a cleanup to call 'operator delete' if the initializer in a 1462 /// new-expression throws. 1463 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1464 const CXXNewExpr *E, 1465 Address NewPtr, 1466 llvm::Value *AllocSize, 1467 CharUnits AllocAlign, 1468 const CallArgList &NewArgs) { 1469 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1470 1471 // If we're not inside a conditional branch, then the cleanup will 1472 // dominate and we can do the easier (and more efficient) thing. 1473 if (!CGF.isInConditionalBranch()) { 1474 struct DirectCleanupTraits { 1475 typedef llvm::Value *ValueTy; 1476 typedef RValue RValueTy; 1477 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1478 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1479 }; 1480 1481 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1482 1483 DirectCleanup *Cleanup = CGF.EHStack 1484 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1485 E->getNumPlacementArgs(), 1486 E->getOperatorDelete(), 1487 NewPtr.getPointer(), 1488 AllocSize, 1489 E->passAlignment(), 1490 AllocAlign); 1491 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1492 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1493 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1494 } 1495 1496 return; 1497 } 1498 1499 // Otherwise, we need to save all this stuff. 1500 DominatingValue<RValue>::saved_type SavedNewPtr = 1501 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1502 DominatingValue<RValue>::saved_type SavedAllocSize = 1503 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1504 1505 struct ConditionalCleanupTraits { 1506 typedef DominatingValue<RValue>::saved_type ValueTy; 1507 typedef DominatingValue<RValue>::saved_type RValueTy; 1508 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1509 return V.restore(CGF); 1510 } 1511 }; 1512 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1513 1514 ConditionalCleanup *Cleanup = CGF.EHStack 1515 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1516 E->getNumPlacementArgs(), 1517 E->getOperatorDelete(), 1518 SavedNewPtr, 1519 SavedAllocSize, 1520 E->passAlignment(), 1521 AllocAlign); 1522 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1523 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1524 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1525 Arg.Ty); 1526 } 1527 1528 CGF.initFullExprCleanup(); 1529 } 1530 1531 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1532 // The element type being allocated. 1533 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1534 1535 // 1. Build a call to the allocation function. 1536 FunctionDecl *allocator = E->getOperatorNew(); 1537 1538 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1539 unsigned minElements = 0; 1540 if (E->isArray() && E->hasInitializer()) { 1541 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1542 if (ILE && ILE->isStringLiteralInit()) 1543 minElements = 1544 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1545 ->getSize().getZExtValue(); 1546 else if (ILE) 1547 minElements = ILE->getNumInits(); 1548 } 1549 1550 llvm::Value *numElements = nullptr; 1551 llvm::Value *allocSizeWithoutCookie = nullptr; 1552 llvm::Value *allocSize = 1553 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1554 allocSizeWithoutCookie); 1555 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1556 1557 // Emit the allocation call. If the allocator is a global placement 1558 // operator, just "inline" it directly. 1559 Address allocation = Address::invalid(); 1560 CallArgList allocatorArgs; 1561 if (allocator->isReservedGlobalPlacementOperator()) { 1562 assert(E->getNumPlacementArgs() == 1); 1563 const Expr *arg = *E->placement_arguments().begin(); 1564 1565 LValueBaseInfo BaseInfo; 1566 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1567 1568 // The pointer expression will, in many cases, be an opaque void*. 1569 // In these cases, discard the computed alignment and use the 1570 // formal alignment of the allocated type. 1571 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1572 allocation = Address(allocation.getPointer(), allocAlign); 1573 1574 // Set up allocatorArgs for the call to operator delete if it's not 1575 // the reserved global operator. 1576 if (E->getOperatorDelete() && 1577 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1578 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1579 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1580 } 1581 1582 } else { 1583 const FunctionProtoType *allocatorType = 1584 allocator->getType()->castAs<FunctionProtoType>(); 1585 unsigned ParamsToSkip = 0; 1586 1587 // The allocation size is the first argument. 1588 QualType sizeType = getContext().getSizeType(); 1589 allocatorArgs.add(RValue::get(allocSize), sizeType); 1590 ++ParamsToSkip; 1591 1592 if (allocSize != allocSizeWithoutCookie) { 1593 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1594 allocAlign = std::max(allocAlign, cookieAlign); 1595 } 1596 1597 // The allocation alignment may be passed as the second argument. 1598 if (E->passAlignment()) { 1599 QualType AlignValT = sizeType; 1600 if (allocatorType->getNumParams() > 1) { 1601 AlignValT = allocatorType->getParamType(1); 1602 assert(getContext().hasSameUnqualifiedType( 1603 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1604 sizeType) && 1605 "wrong type for alignment parameter"); 1606 ++ParamsToSkip; 1607 } else { 1608 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1609 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1610 } 1611 allocatorArgs.add( 1612 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1613 AlignValT); 1614 } 1615 1616 // FIXME: Why do we not pass a CalleeDecl here? 1617 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1618 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1619 1620 RValue RV = 1621 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1622 1623 // If this was a call to a global replaceable allocation function that does 1624 // not take an alignment argument, the allocator is known to produce 1625 // storage that's suitably aligned for any object that fits, up to a known 1626 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1627 CharUnits allocationAlign = allocAlign; 1628 if (!E->passAlignment() && 1629 allocator->isReplaceableGlobalAllocationFunction()) { 1630 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1631 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1632 allocationAlign = std::max( 1633 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1634 } 1635 1636 allocation = Address(RV.getScalarVal(), allocationAlign); 1637 } 1638 1639 // Emit a null check on the allocation result if the allocation 1640 // function is allowed to return null (because it has a non-throwing 1641 // exception spec or is the reserved placement new) and we have an 1642 // interesting initializer. 1643 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1644 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1645 1646 llvm::BasicBlock *nullCheckBB = nullptr; 1647 llvm::BasicBlock *contBB = nullptr; 1648 1649 // The null-check means that the initializer is conditionally 1650 // evaluated. 1651 ConditionalEvaluation conditional(*this); 1652 1653 if (nullCheck) { 1654 conditional.begin(*this); 1655 1656 nullCheckBB = Builder.GetInsertBlock(); 1657 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1658 contBB = createBasicBlock("new.cont"); 1659 1660 llvm::Value *isNull = 1661 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1662 Builder.CreateCondBr(isNull, contBB, notNullBB); 1663 EmitBlock(notNullBB); 1664 } 1665 1666 // If there's an operator delete, enter a cleanup to call it if an 1667 // exception is thrown. 1668 EHScopeStack::stable_iterator operatorDeleteCleanup; 1669 llvm::Instruction *cleanupDominator = nullptr; 1670 if (E->getOperatorDelete() && 1671 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1672 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1673 allocatorArgs); 1674 operatorDeleteCleanup = EHStack.stable_begin(); 1675 cleanupDominator = Builder.CreateUnreachable(); 1676 } 1677 1678 assert((allocSize == allocSizeWithoutCookie) == 1679 CalculateCookiePadding(*this, E).isZero()); 1680 if (allocSize != allocSizeWithoutCookie) { 1681 assert(E->isArray()); 1682 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1683 numElements, 1684 E, allocType); 1685 } 1686 1687 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1688 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1689 1690 // Passing pointer through invariant.group.barrier to avoid propagation of 1691 // vptrs information which may be included in previous type. 1692 // To not break LTO with different optimizations levels, we do it regardless 1693 // of optimization level. 1694 if (CGM.getCodeGenOpts().StrictVTablePointers && 1695 allocator->isReservedGlobalPlacementOperator()) 1696 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1697 result.getAlignment()); 1698 1699 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1700 allocSizeWithoutCookie); 1701 if (E->isArray()) { 1702 // NewPtr is a pointer to the base element type. If we're 1703 // allocating an array of arrays, we'll need to cast back to the 1704 // array pointer type. 1705 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1706 if (result.getType() != resultType) 1707 result = Builder.CreateBitCast(result, resultType); 1708 } 1709 1710 // Deactivate the 'operator delete' cleanup if we finished 1711 // initialization. 1712 if (operatorDeleteCleanup.isValid()) { 1713 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1714 cleanupDominator->eraseFromParent(); 1715 } 1716 1717 llvm::Value *resultPtr = result.getPointer(); 1718 if (nullCheck) { 1719 conditional.end(*this); 1720 1721 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1722 EmitBlock(contBB); 1723 1724 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1725 PHI->addIncoming(resultPtr, notNullBB); 1726 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1727 nullCheckBB); 1728 1729 resultPtr = PHI; 1730 } 1731 1732 return resultPtr; 1733 } 1734 1735 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1736 llvm::Value *Ptr, QualType DeleteTy, 1737 llvm::Value *NumElements, 1738 CharUnits CookieSize) { 1739 assert((!NumElements && CookieSize.isZero()) || 1740 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1741 1742 const FunctionProtoType *DeleteFTy = 1743 DeleteFD->getType()->getAs<FunctionProtoType>(); 1744 1745 CallArgList DeleteArgs; 1746 1747 auto Params = getUsualDeleteParams(DeleteFD); 1748 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1749 1750 // Pass the pointer itself. 1751 QualType ArgTy = *ParamTypeIt++; 1752 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1753 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1754 1755 // Pass the std::destroying_delete tag if present. 1756 if (Params.DestroyingDelete) { 1757 QualType DDTag = *ParamTypeIt++; 1758 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1759 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1760 DeleteArgs.add(RValue::get(V), DDTag); 1761 } 1762 1763 // Pass the size if the delete function has a size_t parameter. 1764 if (Params.Size) { 1765 QualType SizeType = *ParamTypeIt++; 1766 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1767 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1768 DeleteTypeSize.getQuantity()); 1769 1770 // For array new, multiply by the number of elements. 1771 if (NumElements) 1772 Size = Builder.CreateMul(Size, NumElements); 1773 1774 // If there is a cookie, add the cookie size. 1775 if (!CookieSize.isZero()) 1776 Size = Builder.CreateAdd( 1777 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1778 1779 DeleteArgs.add(RValue::get(Size), SizeType); 1780 } 1781 1782 // Pass the alignment if the delete function has an align_val_t parameter. 1783 if (Params.Alignment) { 1784 QualType AlignValType = *ParamTypeIt++; 1785 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1786 getContext().getTypeAlignIfKnown(DeleteTy)); 1787 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1788 DeleteTypeAlign.getQuantity()); 1789 DeleteArgs.add(RValue::get(Align), AlignValType); 1790 } 1791 1792 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1793 "unknown parameter to usual delete function"); 1794 1795 // Emit the call to delete. 1796 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1797 } 1798 1799 namespace { 1800 /// Calls the given 'operator delete' on a single object. 1801 struct CallObjectDelete final : EHScopeStack::Cleanup { 1802 llvm::Value *Ptr; 1803 const FunctionDecl *OperatorDelete; 1804 QualType ElementType; 1805 1806 CallObjectDelete(llvm::Value *Ptr, 1807 const FunctionDecl *OperatorDelete, 1808 QualType ElementType) 1809 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1810 1811 void Emit(CodeGenFunction &CGF, Flags flags) override { 1812 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1813 } 1814 }; 1815 } 1816 1817 void 1818 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1819 llvm::Value *CompletePtr, 1820 QualType ElementType) { 1821 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1822 OperatorDelete, ElementType); 1823 } 1824 1825 /// Emit the code for deleting a single object with a destroying operator 1826 /// delete. If the element type has a non-virtual destructor, Ptr has already 1827 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1828 /// Ptr points to an object of the static type. 1829 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1830 const CXXDeleteExpr *DE, Address Ptr, 1831 QualType ElementType) { 1832 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1833 if (Dtor && Dtor->isVirtual()) 1834 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1835 Dtor); 1836 else 1837 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1838 } 1839 1840 /// Emit the code for deleting a single object. 1841 static void EmitObjectDelete(CodeGenFunction &CGF, 1842 const CXXDeleteExpr *DE, 1843 Address Ptr, 1844 QualType ElementType) { 1845 // C++11 [expr.delete]p3: 1846 // If the static type of the object to be deleted is different from its 1847 // dynamic type, the static type shall be a base class of the dynamic type 1848 // of the object to be deleted and the static type shall have a virtual 1849 // destructor or the behavior is undefined. 1850 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1851 DE->getExprLoc(), Ptr.getPointer(), 1852 ElementType); 1853 1854 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1855 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1856 1857 // Find the destructor for the type, if applicable. If the 1858 // destructor is virtual, we'll just emit the vcall and return. 1859 const CXXDestructorDecl *Dtor = nullptr; 1860 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1861 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1862 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1863 Dtor = RD->getDestructor(); 1864 1865 if (Dtor->isVirtual()) { 1866 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1867 Dtor); 1868 return; 1869 } 1870 } 1871 } 1872 1873 // Make sure that we call delete even if the dtor throws. 1874 // This doesn't have to a conditional cleanup because we're going 1875 // to pop it off in a second. 1876 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1877 Ptr.getPointer(), 1878 OperatorDelete, ElementType); 1879 1880 if (Dtor) 1881 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1882 /*ForVirtualBase=*/false, 1883 /*Delegating=*/false, 1884 Ptr); 1885 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1886 switch (Lifetime) { 1887 case Qualifiers::OCL_None: 1888 case Qualifiers::OCL_ExplicitNone: 1889 case Qualifiers::OCL_Autoreleasing: 1890 break; 1891 1892 case Qualifiers::OCL_Strong: 1893 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1894 break; 1895 1896 case Qualifiers::OCL_Weak: 1897 CGF.EmitARCDestroyWeak(Ptr); 1898 break; 1899 } 1900 } 1901 1902 CGF.PopCleanupBlock(); 1903 } 1904 1905 namespace { 1906 /// Calls the given 'operator delete' on an array of objects. 1907 struct CallArrayDelete final : EHScopeStack::Cleanup { 1908 llvm::Value *Ptr; 1909 const FunctionDecl *OperatorDelete; 1910 llvm::Value *NumElements; 1911 QualType ElementType; 1912 CharUnits CookieSize; 1913 1914 CallArrayDelete(llvm::Value *Ptr, 1915 const FunctionDecl *OperatorDelete, 1916 llvm::Value *NumElements, 1917 QualType ElementType, 1918 CharUnits CookieSize) 1919 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1920 ElementType(ElementType), CookieSize(CookieSize) {} 1921 1922 void Emit(CodeGenFunction &CGF, Flags flags) override { 1923 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1924 CookieSize); 1925 } 1926 }; 1927 } 1928 1929 /// Emit the code for deleting an array of objects. 1930 static void EmitArrayDelete(CodeGenFunction &CGF, 1931 const CXXDeleteExpr *E, 1932 Address deletedPtr, 1933 QualType elementType) { 1934 llvm::Value *numElements = nullptr; 1935 llvm::Value *allocatedPtr = nullptr; 1936 CharUnits cookieSize; 1937 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1938 numElements, allocatedPtr, cookieSize); 1939 1940 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1941 1942 // Make sure that we call delete even if one of the dtors throws. 1943 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1944 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1945 allocatedPtr, operatorDelete, 1946 numElements, elementType, 1947 cookieSize); 1948 1949 // Destroy the elements. 1950 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1951 assert(numElements && "no element count for a type with a destructor!"); 1952 1953 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1954 CharUnits elementAlign = 1955 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1956 1957 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1958 llvm::Value *arrayEnd = 1959 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1960 1961 // Note that it is legal to allocate a zero-length array, and we 1962 // can never fold the check away because the length should always 1963 // come from a cookie. 1964 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1965 CGF.getDestroyer(dtorKind), 1966 /*checkZeroLength*/ true, 1967 CGF.needsEHCleanup(dtorKind)); 1968 } 1969 1970 // Pop the cleanup block. 1971 CGF.PopCleanupBlock(); 1972 } 1973 1974 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1975 const Expr *Arg = E->getArgument(); 1976 Address Ptr = EmitPointerWithAlignment(Arg); 1977 1978 // Null check the pointer. 1979 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1980 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1981 1982 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1983 1984 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1985 EmitBlock(DeleteNotNull); 1986 1987 QualType DeleteTy = E->getDestroyedType(); 1988 1989 // A destroying operator delete overrides the entire operation of the 1990 // delete expression. 1991 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 1992 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 1993 EmitBlock(DeleteEnd); 1994 return; 1995 } 1996 1997 // We might be deleting a pointer to array. If so, GEP down to the 1998 // first non-array element. 1999 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2000 if (DeleteTy->isConstantArrayType()) { 2001 llvm::Value *Zero = Builder.getInt32(0); 2002 SmallVector<llvm::Value*,8> GEP; 2003 2004 GEP.push_back(Zero); // point at the outermost array 2005 2006 // For each layer of array type we're pointing at: 2007 while (const ConstantArrayType *Arr 2008 = getContext().getAsConstantArrayType(DeleteTy)) { 2009 // 1. Unpeel the array type. 2010 DeleteTy = Arr->getElementType(); 2011 2012 // 2. GEP to the first element of the array. 2013 GEP.push_back(Zero); 2014 } 2015 2016 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2017 Ptr.getAlignment()); 2018 } 2019 2020 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2021 2022 if (E->isArrayForm()) { 2023 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2024 } else { 2025 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2026 } 2027 2028 EmitBlock(DeleteEnd); 2029 } 2030 2031 static bool isGLValueFromPointerDeref(const Expr *E) { 2032 E = E->IgnoreParens(); 2033 2034 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2035 if (!CE->getSubExpr()->isGLValue()) 2036 return false; 2037 return isGLValueFromPointerDeref(CE->getSubExpr()); 2038 } 2039 2040 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2041 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2042 2043 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2044 if (BO->getOpcode() == BO_Comma) 2045 return isGLValueFromPointerDeref(BO->getRHS()); 2046 2047 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2048 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2049 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2050 2051 // C++11 [expr.sub]p1: 2052 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2053 if (isa<ArraySubscriptExpr>(E)) 2054 return true; 2055 2056 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2057 if (UO->getOpcode() == UO_Deref) 2058 return true; 2059 2060 return false; 2061 } 2062 2063 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2064 llvm::Type *StdTypeInfoPtrTy) { 2065 // Get the vtable pointer. 2066 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2067 2068 QualType SrcRecordTy = E->getType(); 2069 2070 // C++ [class.cdtor]p4: 2071 // If the operand of typeid refers to the object under construction or 2072 // destruction and the static type of the operand is neither the constructor 2073 // or destructor’s class nor one of its bases, the behavior is undefined. 2074 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2075 ThisPtr.getPointer(), SrcRecordTy); 2076 2077 // C++ [expr.typeid]p2: 2078 // If the glvalue expression is obtained by applying the unary * operator to 2079 // a pointer and the pointer is a null pointer value, the typeid expression 2080 // throws the std::bad_typeid exception. 2081 // 2082 // However, this paragraph's intent is not clear. We choose a very generous 2083 // interpretation which implores us to consider comma operators, conditional 2084 // operators, parentheses and other such constructs. 2085 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2086 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2087 llvm::BasicBlock *BadTypeidBlock = 2088 CGF.createBasicBlock("typeid.bad_typeid"); 2089 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2090 2091 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2092 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2093 2094 CGF.EmitBlock(BadTypeidBlock); 2095 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2096 CGF.EmitBlock(EndBlock); 2097 } 2098 2099 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2100 StdTypeInfoPtrTy); 2101 } 2102 2103 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2104 llvm::Type *StdTypeInfoPtrTy = 2105 ConvertType(E->getType())->getPointerTo(); 2106 2107 if (E->isTypeOperand()) { 2108 llvm::Constant *TypeInfo = 2109 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2110 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2111 } 2112 2113 // C++ [expr.typeid]p2: 2114 // When typeid is applied to a glvalue expression whose type is a 2115 // polymorphic class type, the result refers to a std::type_info object 2116 // representing the type of the most derived object (that is, the dynamic 2117 // type) to which the glvalue refers. 2118 if (E->isPotentiallyEvaluated()) 2119 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2120 StdTypeInfoPtrTy); 2121 2122 QualType OperandTy = E->getExprOperand()->getType(); 2123 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2124 StdTypeInfoPtrTy); 2125 } 2126 2127 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2128 QualType DestTy) { 2129 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2130 if (DestTy->isPointerType()) 2131 return llvm::Constant::getNullValue(DestLTy); 2132 2133 /// C++ [expr.dynamic.cast]p9: 2134 /// A failed cast to reference type throws std::bad_cast 2135 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2136 return nullptr; 2137 2138 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2139 return llvm::UndefValue::get(DestLTy); 2140 } 2141 2142 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2143 const CXXDynamicCastExpr *DCE) { 2144 CGM.EmitExplicitCastExprType(DCE, this); 2145 QualType DestTy = DCE->getTypeAsWritten(); 2146 2147 QualType SrcTy = DCE->getSubExpr()->getType(); 2148 2149 // C++ [expr.dynamic.cast]p7: 2150 // If T is "pointer to cv void," then the result is a pointer to the most 2151 // derived object pointed to by v. 2152 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2153 2154 bool isDynamicCastToVoid; 2155 QualType SrcRecordTy; 2156 QualType DestRecordTy; 2157 if (DestPTy) { 2158 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2159 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2160 DestRecordTy = DestPTy->getPointeeType(); 2161 } else { 2162 isDynamicCastToVoid = false; 2163 SrcRecordTy = SrcTy; 2164 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2165 } 2166 2167 // C++ [class.cdtor]p5: 2168 // If the operand of the dynamic_cast refers to the object under 2169 // construction or destruction and the static type of the operand is not a 2170 // pointer to or object of the constructor or destructor’s own class or one 2171 // of its bases, the dynamic_cast results in undefined behavior. 2172 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2173 SrcRecordTy); 2174 2175 if (DCE->isAlwaysNull()) 2176 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2177 return T; 2178 2179 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2180 2181 // C++ [expr.dynamic.cast]p4: 2182 // If the value of v is a null pointer value in the pointer case, the result 2183 // is the null pointer value of type T. 2184 bool ShouldNullCheckSrcValue = 2185 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2186 SrcRecordTy); 2187 2188 llvm::BasicBlock *CastNull = nullptr; 2189 llvm::BasicBlock *CastNotNull = nullptr; 2190 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2191 2192 if (ShouldNullCheckSrcValue) { 2193 CastNull = createBasicBlock("dynamic_cast.null"); 2194 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2195 2196 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2197 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2198 EmitBlock(CastNotNull); 2199 } 2200 2201 llvm::Value *Value; 2202 if (isDynamicCastToVoid) { 2203 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2204 DestTy); 2205 } else { 2206 assert(DestRecordTy->isRecordType() && 2207 "destination type must be a record type!"); 2208 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2209 DestTy, DestRecordTy, CastEnd); 2210 CastNotNull = Builder.GetInsertBlock(); 2211 } 2212 2213 if (ShouldNullCheckSrcValue) { 2214 EmitBranch(CastEnd); 2215 2216 EmitBlock(CastNull); 2217 EmitBranch(CastEnd); 2218 } 2219 2220 EmitBlock(CastEnd); 2221 2222 if (ShouldNullCheckSrcValue) { 2223 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2224 PHI->addIncoming(Value, CastNotNull); 2225 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2226 2227 Value = PHI; 2228 } 2229 2230 return Value; 2231 } 2232 2233 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2234 RunCleanupsScope Scope(*this); 2235 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2236 2237 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2238 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2239 e = E->capture_init_end(); 2240 i != e; ++i, ++CurField) { 2241 // Emit initialization 2242 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2243 if (CurField->hasCapturedVLAType()) { 2244 auto VAT = CurField->getCapturedVLAType(); 2245 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2246 } else { 2247 EmitInitializerForField(*CurField, LV, *i); 2248 } 2249 } 2250 } 2251