1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "ConstantEmitter.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 41 isa<CXXOperatorCallExpr>(CE)); 42 assert(MD->isInstance() && 43 "Trying to emit a member or operator call expr on a static method!"); 44 ASTContext &C = CGF.getContext(); 45 46 // Push the this ptr. 47 const CXXRecordDecl *RD = 48 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 49 Args.add(RValue::get(This), 50 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 51 52 // If there is an implicit parameter (e.g. VTT), emit it. 53 if (ImplicitParam) { 54 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 55 } 56 57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 58 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 59 unsigned PrefixSize = Args.size() - 1; 60 61 // And the rest of the call args. 62 if (RtlArgs) { 63 // Special case: if the caller emitted the arguments right-to-left already 64 // (prior to emitting the *this argument), we're done. This happens for 65 // assignment operators. 66 Args.addFrom(*RtlArgs); 67 } else if (CE) { 68 // Special case: skip first argument of CXXOperatorCall (it is "this"). 69 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 70 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 71 CE->getDirectCallee()); 72 } else { 73 assert( 74 FPT->getNumParams() == 0 && 75 "No CallExpr specified for function with non-zero number of arguments"); 76 } 77 return {required, PrefixSize}; 78 } 79 80 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 81 const CXXMethodDecl *MD, const CGCallee &Callee, 82 ReturnValueSlot ReturnValue, 83 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 84 const CallExpr *CE, CallArgList *RtlArgs) { 85 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 86 CallArgList Args; 87 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 88 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 89 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 90 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 91 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 92 CE ? CE->getExprLoc() : SourceLocation()); 93 } 94 95 RValue CodeGenFunction::EmitCXXDestructorCall( 96 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 97 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 98 StructorType Type) { 99 CallArgList Args; 100 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 101 ImplicitParamTy, CE, Args, nullptr); 102 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 103 Callee, ReturnValueSlot(), Args); 104 } 105 106 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 107 const CXXPseudoDestructorExpr *E) { 108 QualType DestroyedType = E->getDestroyedType(); 109 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 110 // Automatic Reference Counting: 111 // If the pseudo-expression names a retainable object with weak or 112 // strong lifetime, the object shall be released. 113 Expr *BaseExpr = E->getBase(); 114 Address BaseValue = Address::invalid(); 115 Qualifiers BaseQuals; 116 117 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 118 if (E->isArrow()) { 119 BaseValue = EmitPointerWithAlignment(BaseExpr); 120 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 121 BaseQuals = PTy->getPointeeType().getQualifiers(); 122 } else { 123 LValue BaseLV = EmitLValue(BaseExpr); 124 BaseValue = BaseLV.getAddress(); 125 QualType BaseTy = BaseExpr->getType(); 126 BaseQuals = BaseTy.getQualifiers(); 127 } 128 129 switch (DestroyedType.getObjCLifetime()) { 130 case Qualifiers::OCL_None: 131 case Qualifiers::OCL_ExplicitNone: 132 case Qualifiers::OCL_Autoreleasing: 133 break; 134 135 case Qualifiers::OCL_Strong: 136 EmitARCRelease(Builder.CreateLoad(BaseValue, 137 DestroyedType.isVolatileQualified()), 138 ARCPreciseLifetime); 139 break; 140 141 case Qualifiers::OCL_Weak: 142 EmitARCDestroyWeak(BaseValue); 143 break; 144 } 145 } else { 146 // C++ [expr.pseudo]p1: 147 // The result shall only be used as the operand for the function call 148 // operator (), and the result of such a call has type void. The only 149 // effect is the evaluation of the postfix-expression before the dot or 150 // arrow. 151 EmitIgnoredExpr(E->getBase()); 152 } 153 154 return RValue::get(nullptr); 155 } 156 157 static CXXRecordDecl *getCXXRecord(const Expr *E) { 158 QualType T = E->getType(); 159 if (const PointerType *PTy = T->getAs<PointerType>()) 160 T = PTy->getPointeeType(); 161 const RecordType *Ty = T->castAs<RecordType>(); 162 return cast<CXXRecordDecl>(Ty->getDecl()); 163 } 164 165 // Note: This function also emit constructor calls to support a MSVC 166 // extensions allowing explicit constructor function call. 167 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 168 ReturnValueSlot ReturnValue) { 169 const Expr *callee = CE->getCallee()->IgnoreParens(); 170 171 if (isa<BinaryOperator>(callee)) 172 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 173 174 const MemberExpr *ME = cast<MemberExpr>(callee); 175 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 176 177 if (MD->isStatic()) { 178 // The method is static, emit it as we would a regular call. 179 CGCallee callee = 180 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 181 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 182 ReturnValue); 183 } 184 185 bool HasQualifier = ME->hasQualifier(); 186 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 187 bool IsArrow = ME->isArrow(); 188 const Expr *Base = ME->getBase(); 189 190 return EmitCXXMemberOrOperatorMemberCallExpr( 191 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 192 } 193 194 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 195 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 196 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 197 const Expr *Base) { 198 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 199 200 // Compute the object pointer. 201 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 202 203 const CXXMethodDecl *DevirtualizedMethod = nullptr; 204 if (CanUseVirtualCall && 205 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 206 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 207 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 208 assert(DevirtualizedMethod); 209 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 210 const Expr *Inner = Base->ignoreParenBaseCasts(); 211 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 212 MD->getReturnType().getCanonicalType()) 213 // If the return types are not the same, this might be a case where more 214 // code needs to run to compensate for it. For example, the derived 215 // method might return a type that inherits form from the return 216 // type of MD and has a prefix. 217 // For now we just avoid devirtualizing these covariant cases. 218 DevirtualizedMethod = nullptr; 219 else if (getCXXRecord(Inner) == DevirtualizedClass) 220 // If the class of the Inner expression is where the dynamic method 221 // is defined, build the this pointer from it. 222 Base = Inner; 223 else if (getCXXRecord(Base) != DevirtualizedClass) { 224 // If the method is defined in a class that is not the best dynamic 225 // one or the one of the full expression, we would have to build 226 // a derived-to-base cast to compute the correct this pointer, but 227 // we don't have support for that yet, so do a virtual call. 228 DevirtualizedMethod = nullptr; 229 } 230 } 231 232 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 233 // operator before the LHS. 234 CallArgList RtlArgStorage; 235 CallArgList *RtlArgs = nullptr; 236 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 237 if (OCE->isAssignmentOp()) { 238 RtlArgs = &RtlArgStorage; 239 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 240 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 241 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 242 } 243 } 244 245 LValue This; 246 if (IsArrow) { 247 LValueBaseInfo BaseInfo; 248 TBAAAccessInfo TBAAInfo; 249 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 250 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 251 } else { 252 This = EmitLValue(Base); 253 } 254 255 256 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 257 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 258 if (isa<CXXConstructorDecl>(MD) && 259 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 260 return RValue::get(nullptr); 261 262 if (!MD->getParent()->mayInsertExtraPadding()) { 263 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 264 // We don't like to generate the trivial copy/move assignment operator 265 // when it isn't necessary; just produce the proper effect here. 266 LValue RHS = isa<CXXOperatorCallExpr>(CE) 267 ? MakeNaturalAlignAddrLValue( 268 (*RtlArgs)[0].getRValue(*this).getScalarVal(), 269 (*(CE->arg_begin() + 1))->getType()) 270 : EmitLValue(*CE->arg_begin()); 271 EmitAggregateAssign(This, RHS, CE->getType()); 272 return RValue::get(This.getPointer()); 273 } 274 275 if (isa<CXXConstructorDecl>(MD) && 276 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 277 // Trivial move and copy ctor are the same. 278 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 279 const Expr *Arg = *CE->arg_begin(); 280 LValue RHS = EmitLValue(Arg); 281 LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType()); 282 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 283 // constructing a new complete object of type Ctor. 284 EmitAggregateCopy(Dest, RHS, Arg->getType(), 285 AggValueSlot::DoesNotOverlap); 286 return RValue::get(This.getPointer()); 287 } 288 llvm_unreachable("unknown trivial member function"); 289 } 290 } 291 292 // Compute the function type we're calling. 293 const CXXMethodDecl *CalleeDecl = 294 DevirtualizedMethod ? DevirtualizedMethod : MD; 295 const CGFunctionInfo *FInfo = nullptr; 296 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 297 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 298 Dtor, StructorType::Complete); 299 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 300 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 301 Ctor, StructorType::Complete); 302 else 303 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 304 305 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 306 307 // C++11 [class.mfct.non-static]p2: 308 // If a non-static member function of a class X is called for an object that 309 // is not of type X, or of a type derived from X, the behavior is undefined. 310 SourceLocation CallLoc; 311 ASTContext &C = getContext(); 312 if (CE) 313 CallLoc = CE->getExprLoc(); 314 315 SanitizerSet SkippedChecks; 316 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 317 auto *IOA = CMCE->getImplicitObjectArgument(); 318 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 319 if (IsImplicitObjectCXXThis) 320 SkippedChecks.set(SanitizerKind::Alignment, true); 321 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 322 SkippedChecks.set(SanitizerKind::Null, true); 323 } 324 EmitTypeCheck( 325 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 326 : CodeGenFunction::TCK_MemberCall, 327 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 328 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 329 330 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 331 // 'CalleeDecl' instead. 332 333 // C++ [class.virtual]p12: 334 // Explicit qualification with the scope operator (5.1) suppresses the 335 // virtual call mechanism. 336 // 337 // We also don't emit a virtual call if the base expression has a record type 338 // because then we know what the type is. 339 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 340 341 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 342 assert(CE->arg_begin() == CE->arg_end() && 343 "Destructor shouldn't have explicit parameters"); 344 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 345 if (UseVirtualCall) { 346 CGM.getCXXABI().EmitVirtualDestructorCall( 347 *this, Dtor, Dtor_Complete, This.getAddress(), 348 cast<CXXMemberCallExpr>(CE)); 349 } else { 350 CGCallee Callee; 351 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 352 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 353 else if (!DevirtualizedMethod) 354 Callee = CGCallee::forDirect( 355 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 356 GlobalDecl(Dtor, Dtor_Complete)); 357 else { 358 const CXXDestructorDecl *DDtor = 359 cast<CXXDestructorDecl>(DevirtualizedMethod); 360 Callee = CGCallee::forDirect( 361 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 362 GlobalDecl(DDtor, Dtor_Complete)); 363 } 364 EmitCXXMemberOrOperatorCall( 365 CalleeDecl, Callee, ReturnValue, This.getPointer(), 366 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 367 } 368 return RValue::get(nullptr); 369 } 370 371 CGCallee Callee; 372 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 373 Callee = CGCallee::forDirect( 374 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 375 GlobalDecl(Ctor, Ctor_Complete)); 376 } else if (UseVirtualCall) { 377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 378 } else { 379 if (SanOpts.has(SanitizerKind::CFINVCall) && 380 MD->getParent()->isDynamicClass()) { 381 llvm::Value *VTable; 382 const CXXRecordDecl *RD; 383 std::tie(VTable, RD) = 384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 385 MD->getParent()); 386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 387 } 388 389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 391 else if (!DevirtualizedMethod) 392 Callee = 393 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 394 else { 395 Callee = 396 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 397 GlobalDecl(DevirtualizedMethod)); 398 } 399 } 400 401 if (MD->isVirtual()) { 402 Address NewThisAddr = 403 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 404 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 405 This.setAddress(NewThisAddr); 406 } 407 408 return EmitCXXMemberOrOperatorCall( 409 CalleeDecl, Callee, ReturnValue, This.getPointer(), 410 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 411 } 412 413 RValue 414 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 415 ReturnValueSlot ReturnValue) { 416 const BinaryOperator *BO = 417 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 418 const Expr *BaseExpr = BO->getLHS(); 419 const Expr *MemFnExpr = BO->getRHS(); 420 421 const MemberPointerType *MPT = 422 MemFnExpr->getType()->castAs<MemberPointerType>(); 423 424 const FunctionProtoType *FPT = 425 MPT->getPointeeType()->castAs<FunctionProtoType>(); 426 const CXXRecordDecl *RD = 427 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 428 429 // Emit the 'this' pointer. 430 Address This = Address::invalid(); 431 if (BO->getOpcode() == BO_PtrMemI) 432 This = EmitPointerWithAlignment(BaseExpr); 433 else 434 This = EmitLValue(BaseExpr).getAddress(); 435 436 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 437 QualType(MPT->getClass(), 0)); 438 439 // Get the member function pointer. 440 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 441 442 // Ask the ABI to load the callee. Note that This is modified. 443 llvm::Value *ThisPtrForCall = nullptr; 444 CGCallee Callee = 445 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 446 ThisPtrForCall, MemFnPtr, MPT); 447 448 CallArgList Args; 449 450 QualType ThisType = 451 getContext().getPointerType(getContext().getTagDeclType(RD)); 452 453 // Push the this ptr. 454 Args.add(RValue::get(ThisPtrForCall), ThisType); 455 456 RequiredArgs required = 457 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 458 459 // And the rest of the call args 460 EmitCallArgs(Args, FPT, E->arguments()); 461 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 462 /*PrefixSize=*/0), 463 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 464 } 465 466 RValue 467 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 468 const CXXMethodDecl *MD, 469 ReturnValueSlot ReturnValue) { 470 assert(MD->isInstance() && 471 "Trying to emit a member call expr on a static method!"); 472 return EmitCXXMemberOrOperatorMemberCallExpr( 473 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 474 /*IsArrow=*/false, E->getArg(0)); 475 } 476 477 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 478 ReturnValueSlot ReturnValue) { 479 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 480 } 481 482 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 483 Address DestPtr, 484 const CXXRecordDecl *Base) { 485 if (Base->isEmpty()) 486 return; 487 488 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 489 490 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 491 CharUnits NVSize = Layout.getNonVirtualSize(); 492 493 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 494 // present, they are initialized by the most derived class before calling the 495 // constructor. 496 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 497 Stores.emplace_back(CharUnits::Zero(), NVSize); 498 499 // Each store is split by the existence of a vbptr. 500 CharUnits VBPtrWidth = CGF.getPointerSize(); 501 std::vector<CharUnits> VBPtrOffsets = 502 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 503 for (CharUnits VBPtrOffset : VBPtrOffsets) { 504 // Stop before we hit any virtual base pointers located in virtual bases. 505 if (VBPtrOffset >= NVSize) 506 break; 507 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 508 CharUnits LastStoreOffset = LastStore.first; 509 CharUnits LastStoreSize = LastStore.second; 510 511 CharUnits SplitBeforeOffset = LastStoreOffset; 512 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 513 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 514 if (!SplitBeforeSize.isZero()) 515 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 516 517 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 518 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 519 assert(!SplitAfterSize.isNegative() && "negative store size!"); 520 if (!SplitAfterSize.isZero()) 521 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 522 } 523 524 // If the type contains a pointer to data member we can't memset it to zero. 525 // Instead, create a null constant and copy it to the destination. 526 // TODO: there are other patterns besides zero that we can usefully memset, 527 // like -1, which happens to be the pattern used by member-pointers. 528 // TODO: isZeroInitializable can be over-conservative in the case where a 529 // virtual base contains a member pointer. 530 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 531 if (!NullConstantForBase->isNullValue()) { 532 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 533 CGF.CGM.getModule(), NullConstantForBase->getType(), 534 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 535 NullConstantForBase, Twine()); 536 537 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 538 DestPtr.getAlignment()); 539 NullVariable->setAlignment(Align.getQuantity()); 540 541 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 542 543 // Get and call the appropriate llvm.memcpy overload. 544 for (std::pair<CharUnits, CharUnits> Store : Stores) { 545 CharUnits StoreOffset = Store.first; 546 CharUnits StoreSize = Store.second; 547 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 548 CGF.Builder.CreateMemCpy( 549 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 550 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 551 StoreSizeVal); 552 } 553 554 // Otherwise, just memset the whole thing to zero. This is legal 555 // because in LLVM, all default initializers (other than the ones we just 556 // handled above) are guaranteed to have a bit pattern of all zeros. 557 } else { 558 for (std::pair<CharUnits, CharUnits> Store : Stores) { 559 CharUnits StoreOffset = Store.first; 560 CharUnits StoreSize = Store.second; 561 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 562 CGF.Builder.CreateMemSet( 563 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 564 CGF.Builder.getInt8(0), StoreSizeVal); 565 } 566 } 567 } 568 569 void 570 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 571 AggValueSlot Dest) { 572 assert(!Dest.isIgnored() && "Must have a destination!"); 573 const CXXConstructorDecl *CD = E->getConstructor(); 574 575 // If we require zero initialization before (or instead of) calling the 576 // constructor, as can be the case with a non-user-provided default 577 // constructor, emit the zero initialization now, unless destination is 578 // already zeroed. 579 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 580 switch (E->getConstructionKind()) { 581 case CXXConstructExpr::CK_Delegating: 582 case CXXConstructExpr::CK_Complete: 583 EmitNullInitialization(Dest.getAddress(), E->getType()); 584 break; 585 case CXXConstructExpr::CK_VirtualBase: 586 case CXXConstructExpr::CK_NonVirtualBase: 587 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 588 CD->getParent()); 589 break; 590 } 591 } 592 593 // If this is a call to a trivial default constructor, do nothing. 594 if (CD->isTrivial() && CD->isDefaultConstructor()) 595 return; 596 597 // Elide the constructor if we're constructing from a temporary. 598 // The temporary check is required because Sema sets this on NRVO 599 // returns. 600 if (getLangOpts().ElideConstructors && E->isElidable()) { 601 assert(getContext().hasSameUnqualifiedType(E->getType(), 602 E->getArg(0)->getType())); 603 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 604 EmitAggExpr(E->getArg(0), Dest); 605 return; 606 } 607 } 608 609 if (const ArrayType *arrayType 610 = getContext().getAsArrayType(E->getType())) { 611 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 612 Dest.isSanitizerChecked()); 613 } else { 614 CXXCtorType Type = Ctor_Complete; 615 bool ForVirtualBase = false; 616 bool Delegating = false; 617 618 switch (E->getConstructionKind()) { 619 case CXXConstructExpr::CK_Delegating: 620 // We should be emitting a constructor; GlobalDecl will assert this 621 Type = CurGD.getCtorType(); 622 Delegating = true; 623 break; 624 625 case CXXConstructExpr::CK_Complete: 626 Type = Ctor_Complete; 627 break; 628 629 case CXXConstructExpr::CK_VirtualBase: 630 ForVirtualBase = true; 631 LLVM_FALLTHROUGH; 632 633 case CXXConstructExpr::CK_NonVirtualBase: 634 Type = Ctor_Base; 635 } 636 637 // Call the constructor. 638 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 639 Dest.getAddress(), E, Dest.mayOverlap(), 640 Dest.isSanitizerChecked()); 641 } 642 } 643 644 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 645 const Expr *Exp) { 646 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 647 Exp = E->getSubExpr(); 648 assert(isa<CXXConstructExpr>(Exp) && 649 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 650 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 651 const CXXConstructorDecl *CD = E->getConstructor(); 652 RunCleanupsScope Scope(*this); 653 654 // If we require zero initialization before (or instead of) calling the 655 // constructor, as can be the case with a non-user-provided default 656 // constructor, emit the zero initialization now. 657 // FIXME. Do I still need this for a copy ctor synthesis? 658 if (E->requiresZeroInitialization()) 659 EmitNullInitialization(Dest, E->getType()); 660 661 assert(!getContext().getAsConstantArrayType(E->getType()) 662 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 663 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 664 } 665 666 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 667 const CXXNewExpr *E) { 668 if (!E->isArray()) 669 return CharUnits::Zero(); 670 671 // No cookie is required if the operator new[] being used is the 672 // reserved placement operator new[]. 673 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 674 return CharUnits::Zero(); 675 676 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 677 } 678 679 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 680 const CXXNewExpr *e, 681 unsigned minElements, 682 llvm::Value *&numElements, 683 llvm::Value *&sizeWithoutCookie) { 684 QualType type = e->getAllocatedType(); 685 686 if (!e->isArray()) { 687 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 688 sizeWithoutCookie 689 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 690 return sizeWithoutCookie; 691 } 692 693 // The width of size_t. 694 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 695 696 // Figure out the cookie size. 697 llvm::APInt cookieSize(sizeWidth, 698 CalculateCookiePadding(CGF, e).getQuantity()); 699 700 // Emit the array size expression. 701 // We multiply the size of all dimensions for NumElements. 702 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 703 numElements = 704 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 705 if (!numElements) 706 numElements = CGF.EmitScalarExpr(e->getArraySize()); 707 assert(isa<llvm::IntegerType>(numElements->getType())); 708 709 // The number of elements can be have an arbitrary integer type; 710 // essentially, we need to multiply it by a constant factor, add a 711 // cookie size, and verify that the result is representable as a 712 // size_t. That's just a gloss, though, and it's wrong in one 713 // important way: if the count is negative, it's an error even if 714 // the cookie size would bring the total size >= 0. 715 bool isSigned 716 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 717 llvm::IntegerType *numElementsType 718 = cast<llvm::IntegerType>(numElements->getType()); 719 unsigned numElementsWidth = numElementsType->getBitWidth(); 720 721 // Compute the constant factor. 722 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 723 while (const ConstantArrayType *CAT 724 = CGF.getContext().getAsConstantArrayType(type)) { 725 type = CAT->getElementType(); 726 arraySizeMultiplier *= CAT->getSize(); 727 } 728 729 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 730 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 731 typeSizeMultiplier *= arraySizeMultiplier; 732 733 // This will be a size_t. 734 llvm::Value *size; 735 736 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 737 // Don't bloat the -O0 code. 738 if (llvm::ConstantInt *numElementsC = 739 dyn_cast<llvm::ConstantInt>(numElements)) { 740 const llvm::APInt &count = numElementsC->getValue(); 741 742 bool hasAnyOverflow = false; 743 744 // If 'count' was a negative number, it's an overflow. 745 if (isSigned && count.isNegative()) 746 hasAnyOverflow = true; 747 748 // We want to do all this arithmetic in size_t. If numElements is 749 // wider than that, check whether it's already too big, and if so, 750 // overflow. 751 else if (numElementsWidth > sizeWidth && 752 numElementsWidth - sizeWidth > count.countLeadingZeros()) 753 hasAnyOverflow = true; 754 755 // Okay, compute a count at the right width. 756 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 757 758 // If there is a brace-initializer, we cannot allocate fewer elements than 759 // there are initializers. If we do, that's treated like an overflow. 760 if (adjustedCount.ult(minElements)) 761 hasAnyOverflow = true; 762 763 // Scale numElements by that. This might overflow, but we don't 764 // care because it only overflows if allocationSize does, too, and 765 // if that overflows then we shouldn't use this. 766 numElements = llvm::ConstantInt::get(CGF.SizeTy, 767 adjustedCount * arraySizeMultiplier); 768 769 // Compute the size before cookie, and track whether it overflowed. 770 bool overflow; 771 llvm::APInt allocationSize 772 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 773 hasAnyOverflow |= overflow; 774 775 // Add in the cookie, and check whether it's overflowed. 776 if (cookieSize != 0) { 777 // Save the current size without a cookie. This shouldn't be 778 // used if there was overflow. 779 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 780 781 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 782 hasAnyOverflow |= overflow; 783 } 784 785 // On overflow, produce a -1 so operator new will fail. 786 if (hasAnyOverflow) { 787 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 788 } else { 789 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 790 } 791 792 // Otherwise, we might need to use the overflow intrinsics. 793 } else { 794 // There are up to five conditions we need to test for: 795 // 1) if isSigned, we need to check whether numElements is negative; 796 // 2) if numElementsWidth > sizeWidth, we need to check whether 797 // numElements is larger than something representable in size_t; 798 // 3) if minElements > 0, we need to check whether numElements is smaller 799 // than that. 800 // 4) we need to compute 801 // sizeWithoutCookie := numElements * typeSizeMultiplier 802 // and check whether it overflows; and 803 // 5) if we need a cookie, we need to compute 804 // size := sizeWithoutCookie + cookieSize 805 // and check whether it overflows. 806 807 llvm::Value *hasOverflow = nullptr; 808 809 // If numElementsWidth > sizeWidth, then one way or another, we're 810 // going to have to do a comparison for (2), and this happens to 811 // take care of (1), too. 812 if (numElementsWidth > sizeWidth) { 813 llvm::APInt threshold(numElementsWidth, 1); 814 threshold <<= sizeWidth; 815 816 llvm::Value *thresholdV 817 = llvm::ConstantInt::get(numElementsType, threshold); 818 819 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 820 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 821 822 // Otherwise, if we're signed, we want to sext up to size_t. 823 } else if (isSigned) { 824 if (numElementsWidth < sizeWidth) 825 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 826 827 // If there's a non-1 type size multiplier, then we can do the 828 // signedness check at the same time as we do the multiply 829 // because a negative number times anything will cause an 830 // unsigned overflow. Otherwise, we have to do it here. But at least 831 // in this case, we can subsume the >= minElements check. 832 if (typeSizeMultiplier == 1) 833 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 834 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 835 836 // Otherwise, zext up to size_t if necessary. 837 } else if (numElementsWidth < sizeWidth) { 838 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 839 } 840 841 assert(numElements->getType() == CGF.SizeTy); 842 843 if (minElements) { 844 // Don't allow allocation of fewer elements than we have initializers. 845 if (!hasOverflow) { 846 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 847 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 848 } else if (numElementsWidth > sizeWidth) { 849 // The other existing overflow subsumes this check. 850 // We do an unsigned comparison, since any signed value < -1 is 851 // taken care of either above or below. 852 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 853 CGF.Builder.CreateICmpULT(numElements, 854 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 855 } 856 } 857 858 size = numElements; 859 860 // Multiply by the type size if necessary. This multiplier 861 // includes all the factors for nested arrays. 862 // 863 // This step also causes numElements to be scaled up by the 864 // nested-array factor if necessary. Overflow on this computation 865 // can be ignored because the result shouldn't be used if 866 // allocation fails. 867 if (typeSizeMultiplier != 1) { 868 llvm::Value *umul_with_overflow 869 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 870 871 llvm::Value *tsmV = 872 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 873 llvm::Value *result = 874 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 875 876 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 877 if (hasOverflow) 878 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 879 else 880 hasOverflow = overflowed; 881 882 size = CGF.Builder.CreateExtractValue(result, 0); 883 884 // Also scale up numElements by the array size multiplier. 885 if (arraySizeMultiplier != 1) { 886 // If the base element type size is 1, then we can re-use the 887 // multiply we just did. 888 if (typeSize.isOne()) { 889 assert(arraySizeMultiplier == typeSizeMultiplier); 890 numElements = size; 891 892 // Otherwise we need a separate multiply. 893 } else { 894 llvm::Value *asmV = 895 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 896 numElements = CGF.Builder.CreateMul(numElements, asmV); 897 } 898 } 899 } else { 900 // numElements doesn't need to be scaled. 901 assert(arraySizeMultiplier == 1); 902 } 903 904 // Add in the cookie size if necessary. 905 if (cookieSize != 0) { 906 sizeWithoutCookie = size; 907 908 llvm::Value *uadd_with_overflow 909 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 910 911 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 912 llvm::Value *result = 913 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 914 915 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 916 if (hasOverflow) 917 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 918 else 919 hasOverflow = overflowed; 920 921 size = CGF.Builder.CreateExtractValue(result, 0); 922 } 923 924 // If we had any possibility of dynamic overflow, make a select to 925 // overwrite 'size' with an all-ones value, which should cause 926 // operator new to throw. 927 if (hasOverflow) 928 size = CGF.Builder.CreateSelect(hasOverflow, 929 llvm::Constant::getAllOnesValue(CGF.SizeTy), 930 size); 931 } 932 933 if (cookieSize == 0) 934 sizeWithoutCookie = size; 935 else 936 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 937 938 return size; 939 } 940 941 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 942 QualType AllocType, Address NewPtr, 943 AggValueSlot::Overlap_t MayOverlap) { 944 // FIXME: Refactor with EmitExprAsInit. 945 switch (CGF.getEvaluationKind(AllocType)) { 946 case TEK_Scalar: 947 CGF.EmitScalarInit(Init, nullptr, 948 CGF.MakeAddrLValue(NewPtr, AllocType), false); 949 return; 950 case TEK_Complex: 951 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 952 /*isInit*/ true); 953 return; 954 case TEK_Aggregate: { 955 AggValueSlot Slot 956 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 957 AggValueSlot::IsDestructed, 958 AggValueSlot::DoesNotNeedGCBarriers, 959 AggValueSlot::IsNotAliased, 960 MayOverlap, AggValueSlot::IsNotZeroed, 961 AggValueSlot::IsSanitizerChecked); 962 CGF.EmitAggExpr(Init, Slot); 963 return; 964 } 965 } 966 llvm_unreachable("bad evaluation kind"); 967 } 968 969 void CodeGenFunction::EmitNewArrayInitializer( 970 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 971 Address BeginPtr, llvm::Value *NumElements, 972 llvm::Value *AllocSizeWithoutCookie) { 973 // If we have a type with trivial initialization and no initializer, 974 // there's nothing to do. 975 if (!E->hasInitializer()) 976 return; 977 978 Address CurPtr = BeginPtr; 979 980 unsigned InitListElements = 0; 981 982 const Expr *Init = E->getInitializer(); 983 Address EndOfInit = Address::invalid(); 984 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 985 EHScopeStack::stable_iterator Cleanup; 986 llvm::Instruction *CleanupDominator = nullptr; 987 988 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 989 CharUnits ElementAlign = 990 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 991 992 // Attempt to perform zero-initialization using memset. 993 auto TryMemsetInitialization = [&]() -> bool { 994 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 995 // we can initialize with a memset to -1. 996 if (!CGM.getTypes().isZeroInitializable(ElementType)) 997 return false; 998 999 // Optimization: since zero initialization will just set the memory 1000 // to all zeroes, generate a single memset to do it in one shot. 1001 1002 // Subtract out the size of any elements we've already initialized. 1003 auto *RemainingSize = AllocSizeWithoutCookie; 1004 if (InitListElements) { 1005 // We know this can't overflow; we check this when doing the allocation. 1006 auto *InitializedSize = llvm::ConstantInt::get( 1007 RemainingSize->getType(), 1008 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1009 InitListElements); 1010 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1011 } 1012 1013 // Create the memset. 1014 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1015 return true; 1016 }; 1017 1018 // If the initializer is an initializer list, first do the explicit elements. 1019 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1020 // Initializing from a (braced) string literal is a special case; the init 1021 // list element does not initialize a (single) array element. 1022 if (ILE->isStringLiteralInit()) { 1023 // Initialize the initial portion of length equal to that of the string 1024 // literal. The allocation must be for at least this much; we emitted a 1025 // check for that earlier. 1026 AggValueSlot Slot = 1027 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1028 AggValueSlot::IsDestructed, 1029 AggValueSlot::DoesNotNeedGCBarriers, 1030 AggValueSlot::IsNotAliased, 1031 AggValueSlot::DoesNotOverlap, 1032 AggValueSlot::IsNotZeroed, 1033 AggValueSlot::IsSanitizerChecked); 1034 EmitAggExpr(ILE->getInit(0), Slot); 1035 1036 // Move past these elements. 1037 InitListElements = 1038 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1039 ->getSize().getZExtValue(); 1040 CurPtr = 1041 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1042 Builder.getSize(InitListElements), 1043 "string.init.end"), 1044 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1045 ElementSize)); 1046 1047 // Zero out the rest, if any remain. 1048 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1049 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1050 bool OK = TryMemsetInitialization(); 1051 (void)OK; 1052 assert(OK && "couldn't memset character type?"); 1053 } 1054 return; 1055 } 1056 1057 InitListElements = ILE->getNumInits(); 1058 1059 // If this is a multi-dimensional array new, we will initialize multiple 1060 // elements with each init list element. 1061 QualType AllocType = E->getAllocatedType(); 1062 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1063 AllocType->getAsArrayTypeUnsafe())) { 1064 ElementTy = ConvertTypeForMem(AllocType); 1065 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1066 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1067 } 1068 1069 // Enter a partial-destruction Cleanup if necessary. 1070 if (needsEHCleanup(DtorKind)) { 1071 // In principle we could tell the Cleanup where we are more 1072 // directly, but the control flow can get so varied here that it 1073 // would actually be quite complex. Therefore we go through an 1074 // alloca. 1075 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1076 "array.init.end"); 1077 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1078 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1079 ElementType, ElementAlign, 1080 getDestroyer(DtorKind)); 1081 Cleanup = EHStack.stable_begin(); 1082 } 1083 1084 CharUnits StartAlign = CurPtr.getAlignment(); 1085 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1086 // Tell the cleanup that it needs to destroy up to this 1087 // element. TODO: some of these stores can be trivially 1088 // observed to be unnecessary. 1089 if (EndOfInit.isValid()) { 1090 auto FinishedPtr = 1091 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1092 Builder.CreateStore(FinishedPtr, EndOfInit); 1093 } 1094 // FIXME: If the last initializer is an incomplete initializer list for 1095 // an array, and we have an array filler, we can fold together the two 1096 // initialization loops. 1097 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1098 ILE->getInit(i)->getType(), CurPtr, 1099 AggValueSlot::DoesNotOverlap); 1100 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1101 Builder.getSize(1), 1102 "array.exp.next"), 1103 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1104 } 1105 1106 // The remaining elements are filled with the array filler expression. 1107 Init = ILE->getArrayFiller(); 1108 1109 // Extract the initializer for the individual array elements by pulling 1110 // out the array filler from all the nested initializer lists. This avoids 1111 // generating a nested loop for the initialization. 1112 while (Init && Init->getType()->isConstantArrayType()) { 1113 auto *SubILE = dyn_cast<InitListExpr>(Init); 1114 if (!SubILE) 1115 break; 1116 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1117 Init = SubILE->getArrayFiller(); 1118 } 1119 1120 // Switch back to initializing one base element at a time. 1121 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1122 } 1123 1124 // If all elements have already been initialized, skip any further 1125 // initialization. 1126 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1127 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1128 // If there was a Cleanup, deactivate it. 1129 if (CleanupDominator) 1130 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1131 return; 1132 } 1133 1134 assert(Init && "have trailing elements to initialize but no initializer"); 1135 1136 // If this is a constructor call, try to optimize it out, and failing that 1137 // emit a single loop to initialize all remaining elements. 1138 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1139 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1140 if (Ctor->isTrivial()) { 1141 // If new expression did not specify value-initialization, then there 1142 // is no initialization. 1143 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1144 return; 1145 1146 if (TryMemsetInitialization()) 1147 return; 1148 } 1149 1150 // Store the new Cleanup position for irregular Cleanups. 1151 // 1152 // FIXME: Share this cleanup with the constructor call emission rather than 1153 // having it create a cleanup of its own. 1154 if (EndOfInit.isValid()) 1155 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1156 1157 // Emit a constructor call loop to initialize the remaining elements. 1158 if (InitListElements) 1159 NumElements = Builder.CreateSub( 1160 NumElements, 1161 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1162 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1163 /*NewPointerIsChecked*/true, 1164 CCE->requiresZeroInitialization()); 1165 return; 1166 } 1167 1168 // If this is value-initialization, we can usually use memset. 1169 ImplicitValueInitExpr IVIE(ElementType); 1170 if (isa<ImplicitValueInitExpr>(Init)) { 1171 if (TryMemsetInitialization()) 1172 return; 1173 1174 // Switch to an ImplicitValueInitExpr for the element type. This handles 1175 // only one case: multidimensional array new of pointers to members. In 1176 // all other cases, we already have an initializer for the array element. 1177 Init = &IVIE; 1178 } 1179 1180 // At this point we should have found an initializer for the individual 1181 // elements of the array. 1182 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1183 "got wrong type of element to initialize"); 1184 1185 // If we have an empty initializer list, we can usually use memset. 1186 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1187 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1188 return; 1189 1190 // If we have a struct whose every field is value-initialized, we can 1191 // usually use memset. 1192 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1193 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1194 if (RType->getDecl()->isStruct()) { 1195 unsigned NumElements = 0; 1196 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1197 NumElements = CXXRD->getNumBases(); 1198 for (auto *Field : RType->getDecl()->fields()) 1199 if (!Field->isUnnamedBitfield()) 1200 ++NumElements; 1201 // FIXME: Recurse into nested InitListExprs. 1202 if (ILE->getNumInits() == NumElements) 1203 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1204 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1205 --NumElements; 1206 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1207 return; 1208 } 1209 } 1210 } 1211 1212 // Create the loop blocks. 1213 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1214 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1215 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1216 1217 // Find the end of the array, hoisted out of the loop. 1218 llvm::Value *EndPtr = 1219 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1220 1221 // If the number of elements isn't constant, we have to now check if there is 1222 // anything left to initialize. 1223 if (!ConstNum) { 1224 llvm::Value *IsEmpty = 1225 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1226 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1227 } 1228 1229 // Enter the loop. 1230 EmitBlock(LoopBB); 1231 1232 // Set up the current-element phi. 1233 llvm::PHINode *CurPtrPhi = 1234 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1235 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1236 1237 CurPtr = Address(CurPtrPhi, ElementAlign); 1238 1239 // Store the new Cleanup position for irregular Cleanups. 1240 if (EndOfInit.isValid()) 1241 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1242 1243 // Enter a partial-destruction Cleanup if necessary. 1244 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1245 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1246 ElementType, ElementAlign, 1247 getDestroyer(DtorKind)); 1248 Cleanup = EHStack.stable_begin(); 1249 CleanupDominator = Builder.CreateUnreachable(); 1250 } 1251 1252 // Emit the initializer into this element. 1253 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1254 AggValueSlot::DoesNotOverlap); 1255 1256 // Leave the Cleanup if we entered one. 1257 if (CleanupDominator) { 1258 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1259 CleanupDominator->eraseFromParent(); 1260 } 1261 1262 // Advance to the next element by adjusting the pointer type as necessary. 1263 llvm::Value *NextPtr = 1264 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1265 "array.next"); 1266 1267 // Check whether we've gotten to the end of the array and, if so, 1268 // exit the loop. 1269 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1270 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1271 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1272 1273 EmitBlock(ContBB); 1274 } 1275 1276 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1277 QualType ElementType, llvm::Type *ElementTy, 1278 Address NewPtr, llvm::Value *NumElements, 1279 llvm::Value *AllocSizeWithoutCookie) { 1280 ApplyDebugLocation DL(CGF, E); 1281 if (E->isArray()) 1282 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1283 AllocSizeWithoutCookie); 1284 else if (const Expr *Init = E->getInitializer()) 1285 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1286 AggValueSlot::DoesNotOverlap); 1287 } 1288 1289 /// Emit a call to an operator new or operator delete function, as implicitly 1290 /// created by new-expressions and delete-expressions. 1291 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1292 const FunctionDecl *CalleeDecl, 1293 const FunctionProtoType *CalleeType, 1294 const CallArgList &Args) { 1295 llvm::Instruction *CallOrInvoke; 1296 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1297 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1298 RValue RV = 1299 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1300 Args, CalleeType, /*chainCall=*/false), 1301 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1302 1303 /// C++1y [expr.new]p10: 1304 /// [In a new-expression,] an implementation is allowed to omit a call 1305 /// to a replaceable global allocation function. 1306 /// 1307 /// We model such elidable calls with the 'builtin' attribute. 1308 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1309 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1310 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1311 // FIXME: Add addAttribute to CallSite. 1312 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1313 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1314 llvm::Attribute::Builtin); 1315 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1316 II->addAttribute(llvm::AttributeList::FunctionIndex, 1317 llvm::Attribute::Builtin); 1318 else 1319 llvm_unreachable("unexpected kind of call instruction"); 1320 } 1321 1322 return RV; 1323 } 1324 1325 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1326 const CallExpr *TheCall, 1327 bool IsDelete) { 1328 CallArgList Args; 1329 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1330 // Find the allocation or deallocation function that we're calling. 1331 ASTContext &Ctx = getContext(); 1332 DeclarationName Name = Ctx.DeclarationNames 1333 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1334 1335 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1336 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1337 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1338 return EmitNewDeleteCall(*this, FD, Type, Args); 1339 llvm_unreachable("predeclared global operator new/delete is missing"); 1340 } 1341 1342 namespace { 1343 /// The parameters to pass to a usual operator delete. 1344 struct UsualDeleteParams { 1345 bool DestroyingDelete = false; 1346 bool Size = false; 1347 bool Alignment = false; 1348 }; 1349 } 1350 1351 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1352 UsualDeleteParams Params; 1353 1354 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1355 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1356 1357 // The first argument is always a void*. 1358 ++AI; 1359 1360 // The next parameter may be a std::destroying_delete_t. 1361 if (FD->isDestroyingOperatorDelete()) { 1362 Params.DestroyingDelete = true; 1363 assert(AI != AE); 1364 ++AI; 1365 } 1366 1367 // Figure out what other parameters we should be implicitly passing. 1368 if (AI != AE && (*AI)->isIntegerType()) { 1369 Params.Size = true; 1370 ++AI; 1371 } 1372 1373 if (AI != AE && (*AI)->isAlignValT()) { 1374 Params.Alignment = true; 1375 ++AI; 1376 } 1377 1378 assert(AI == AE && "unexpected usual deallocation function parameter"); 1379 return Params; 1380 } 1381 1382 namespace { 1383 /// A cleanup to call the given 'operator delete' function upon abnormal 1384 /// exit from a new expression. Templated on a traits type that deals with 1385 /// ensuring that the arguments dominate the cleanup if necessary. 1386 template<typename Traits> 1387 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1388 /// Type used to hold llvm::Value*s. 1389 typedef typename Traits::ValueTy ValueTy; 1390 /// Type used to hold RValues. 1391 typedef typename Traits::RValueTy RValueTy; 1392 struct PlacementArg { 1393 RValueTy ArgValue; 1394 QualType ArgType; 1395 }; 1396 1397 unsigned NumPlacementArgs : 31; 1398 unsigned PassAlignmentToPlacementDelete : 1; 1399 const FunctionDecl *OperatorDelete; 1400 ValueTy Ptr; 1401 ValueTy AllocSize; 1402 CharUnits AllocAlign; 1403 1404 PlacementArg *getPlacementArgs() { 1405 return reinterpret_cast<PlacementArg *>(this + 1); 1406 } 1407 1408 public: 1409 static size_t getExtraSize(size_t NumPlacementArgs) { 1410 return NumPlacementArgs * sizeof(PlacementArg); 1411 } 1412 1413 CallDeleteDuringNew(size_t NumPlacementArgs, 1414 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1415 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1416 CharUnits AllocAlign) 1417 : NumPlacementArgs(NumPlacementArgs), 1418 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1419 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1420 AllocAlign(AllocAlign) {} 1421 1422 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1423 assert(I < NumPlacementArgs && "index out of range"); 1424 getPlacementArgs()[I] = {Arg, Type}; 1425 } 1426 1427 void Emit(CodeGenFunction &CGF, Flags flags) override { 1428 const FunctionProtoType *FPT = 1429 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1430 CallArgList DeleteArgs; 1431 1432 // The first argument is always a void* (or C* for a destroying operator 1433 // delete for class type C). 1434 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1435 1436 // Figure out what other parameters we should be implicitly passing. 1437 UsualDeleteParams Params; 1438 if (NumPlacementArgs) { 1439 // A placement deallocation function is implicitly passed an alignment 1440 // if the placement allocation function was, but is never passed a size. 1441 Params.Alignment = PassAlignmentToPlacementDelete; 1442 } else { 1443 // For a non-placement new-expression, 'operator delete' can take a 1444 // size and/or an alignment if it has the right parameters. 1445 Params = getUsualDeleteParams(OperatorDelete); 1446 } 1447 1448 assert(!Params.DestroyingDelete && 1449 "should not call destroying delete in a new-expression"); 1450 1451 // The second argument can be a std::size_t (for non-placement delete). 1452 if (Params.Size) 1453 DeleteArgs.add(Traits::get(CGF, AllocSize), 1454 CGF.getContext().getSizeType()); 1455 1456 // The next (second or third) argument can be a std::align_val_t, which 1457 // is an enum whose underlying type is std::size_t. 1458 // FIXME: Use the right type as the parameter type. Note that in a call 1459 // to operator delete(size_t, ...), we may not have it available. 1460 if (Params.Alignment) 1461 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1462 CGF.SizeTy, AllocAlign.getQuantity())), 1463 CGF.getContext().getSizeType()); 1464 1465 // Pass the rest of the arguments, which must match exactly. 1466 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1467 auto Arg = getPlacementArgs()[I]; 1468 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1469 } 1470 1471 // Call 'operator delete'. 1472 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1473 } 1474 }; 1475 } 1476 1477 /// Enter a cleanup to call 'operator delete' if the initializer in a 1478 /// new-expression throws. 1479 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1480 const CXXNewExpr *E, 1481 Address NewPtr, 1482 llvm::Value *AllocSize, 1483 CharUnits AllocAlign, 1484 const CallArgList &NewArgs) { 1485 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1486 1487 // If we're not inside a conditional branch, then the cleanup will 1488 // dominate and we can do the easier (and more efficient) thing. 1489 if (!CGF.isInConditionalBranch()) { 1490 struct DirectCleanupTraits { 1491 typedef llvm::Value *ValueTy; 1492 typedef RValue RValueTy; 1493 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1494 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1495 }; 1496 1497 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1498 1499 DirectCleanup *Cleanup = CGF.EHStack 1500 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1501 E->getNumPlacementArgs(), 1502 E->getOperatorDelete(), 1503 NewPtr.getPointer(), 1504 AllocSize, 1505 E->passAlignment(), 1506 AllocAlign); 1507 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1508 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1509 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1510 } 1511 1512 return; 1513 } 1514 1515 // Otherwise, we need to save all this stuff. 1516 DominatingValue<RValue>::saved_type SavedNewPtr = 1517 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1518 DominatingValue<RValue>::saved_type SavedAllocSize = 1519 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1520 1521 struct ConditionalCleanupTraits { 1522 typedef DominatingValue<RValue>::saved_type ValueTy; 1523 typedef DominatingValue<RValue>::saved_type RValueTy; 1524 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1525 return V.restore(CGF); 1526 } 1527 }; 1528 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1529 1530 ConditionalCleanup *Cleanup = CGF.EHStack 1531 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1532 E->getNumPlacementArgs(), 1533 E->getOperatorDelete(), 1534 SavedNewPtr, 1535 SavedAllocSize, 1536 E->passAlignment(), 1537 AllocAlign); 1538 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1539 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1540 Cleanup->setPlacementArg( 1541 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1542 } 1543 1544 CGF.initFullExprCleanup(); 1545 } 1546 1547 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1548 // The element type being allocated. 1549 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1550 1551 // 1. Build a call to the allocation function. 1552 FunctionDecl *allocator = E->getOperatorNew(); 1553 1554 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1555 unsigned minElements = 0; 1556 if (E->isArray() && E->hasInitializer()) { 1557 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1558 if (ILE && ILE->isStringLiteralInit()) 1559 minElements = 1560 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1561 ->getSize().getZExtValue(); 1562 else if (ILE) 1563 minElements = ILE->getNumInits(); 1564 } 1565 1566 llvm::Value *numElements = nullptr; 1567 llvm::Value *allocSizeWithoutCookie = nullptr; 1568 llvm::Value *allocSize = 1569 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1570 allocSizeWithoutCookie); 1571 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1572 1573 // Emit the allocation call. If the allocator is a global placement 1574 // operator, just "inline" it directly. 1575 Address allocation = Address::invalid(); 1576 CallArgList allocatorArgs; 1577 if (allocator->isReservedGlobalPlacementOperator()) { 1578 assert(E->getNumPlacementArgs() == 1); 1579 const Expr *arg = *E->placement_arguments().begin(); 1580 1581 LValueBaseInfo BaseInfo; 1582 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1583 1584 // The pointer expression will, in many cases, be an opaque void*. 1585 // In these cases, discard the computed alignment and use the 1586 // formal alignment of the allocated type. 1587 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1588 allocation = Address(allocation.getPointer(), allocAlign); 1589 1590 // Set up allocatorArgs for the call to operator delete if it's not 1591 // the reserved global operator. 1592 if (E->getOperatorDelete() && 1593 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1594 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1595 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1596 } 1597 1598 } else { 1599 const FunctionProtoType *allocatorType = 1600 allocator->getType()->castAs<FunctionProtoType>(); 1601 unsigned ParamsToSkip = 0; 1602 1603 // The allocation size is the first argument. 1604 QualType sizeType = getContext().getSizeType(); 1605 allocatorArgs.add(RValue::get(allocSize), sizeType); 1606 ++ParamsToSkip; 1607 1608 if (allocSize != allocSizeWithoutCookie) { 1609 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1610 allocAlign = std::max(allocAlign, cookieAlign); 1611 } 1612 1613 // The allocation alignment may be passed as the second argument. 1614 if (E->passAlignment()) { 1615 QualType AlignValT = sizeType; 1616 if (allocatorType->getNumParams() > 1) { 1617 AlignValT = allocatorType->getParamType(1); 1618 assert(getContext().hasSameUnqualifiedType( 1619 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1620 sizeType) && 1621 "wrong type for alignment parameter"); 1622 ++ParamsToSkip; 1623 } else { 1624 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1625 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1626 } 1627 allocatorArgs.add( 1628 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1629 AlignValT); 1630 } 1631 1632 // FIXME: Why do we not pass a CalleeDecl here? 1633 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1634 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1635 1636 RValue RV = 1637 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1638 1639 // If this was a call to a global replaceable allocation function that does 1640 // not take an alignment argument, the allocator is known to produce 1641 // storage that's suitably aligned for any object that fits, up to a known 1642 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1643 CharUnits allocationAlign = allocAlign; 1644 if (!E->passAlignment() && 1645 allocator->isReplaceableGlobalAllocationFunction()) { 1646 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1647 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1648 allocationAlign = std::max( 1649 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1650 } 1651 1652 allocation = Address(RV.getScalarVal(), allocationAlign); 1653 } 1654 1655 // Emit a null check on the allocation result if the allocation 1656 // function is allowed to return null (because it has a non-throwing 1657 // exception spec or is the reserved placement new) and we have an 1658 // interesting initializer will be running sanitizers on the initialization. 1659 bool nullCheck = E->shouldNullCheckAllocation() && 1660 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1661 sanitizePerformTypeCheck()); 1662 1663 llvm::BasicBlock *nullCheckBB = nullptr; 1664 llvm::BasicBlock *contBB = nullptr; 1665 1666 // The null-check means that the initializer is conditionally 1667 // evaluated. 1668 ConditionalEvaluation conditional(*this); 1669 1670 if (nullCheck) { 1671 conditional.begin(*this); 1672 1673 nullCheckBB = Builder.GetInsertBlock(); 1674 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1675 contBB = createBasicBlock("new.cont"); 1676 1677 llvm::Value *isNull = 1678 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1679 Builder.CreateCondBr(isNull, contBB, notNullBB); 1680 EmitBlock(notNullBB); 1681 } 1682 1683 // If there's an operator delete, enter a cleanup to call it if an 1684 // exception is thrown. 1685 EHScopeStack::stable_iterator operatorDeleteCleanup; 1686 llvm::Instruction *cleanupDominator = nullptr; 1687 if (E->getOperatorDelete() && 1688 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1689 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1690 allocatorArgs); 1691 operatorDeleteCleanup = EHStack.stable_begin(); 1692 cleanupDominator = Builder.CreateUnreachable(); 1693 } 1694 1695 assert((allocSize == allocSizeWithoutCookie) == 1696 CalculateCookiePadding(*this, E).isZero()); 1697 if (allocSize != allocSizeWithoutCookie) { 1698 assert(E->isArray()); 1699 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1700 numElements, 1701 E, allocType); 1702 } 1703 1704 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1705 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1706 1707 // Passing pointer through launder.invariant.group to avoid propagation of 1708 // vptrs information which may be included in previous type. 1709 // To not break LTO with different optimizations levels, we do it regardless 1710 // of optimization level. 1711 if (CGM.getCodeGenOpts().StrictVTablePointers && 1712 allocator->isReservedGlobalPlacementOperator()) 1713 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1714 result.getAlignment()); 1715 1716 // Emit sanitizer checks for pointer value now, so that in the case of an 1717 // array it was checked only once and not at each constructor call. 1718 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1719 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1720 result.getPointer(), allocType); 1721 1722 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1723 allocSizeWithoutCookie); 1724 if (E->isArray()) { 1725 // NewPtr is a pointer to the base element type. If we're 1726 // allocating an array of arrays, we'll need to cast back to the 1727 // array pointer type. 1728 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1729 if (result.getType() != resultType) 1730 result = Builder.CreateBitCast(result, resultType); 1731 } 1732 1733 // Deactivate the 'operator delete' cleanup if we finished 1734 // initialization. 1735 if (operatorDeleteCleanup.isValid()) { 1736 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1737 cleanupDominator->eraseFromParent(); 1738 } 1739 1740 llvm::Value *resultPtr = result.getPointer(); 1741 if (nullCheck) { 1742 conditional.end(*this); 1743 1744 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1745 EmitBlock(contBB); 1746 1747 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1748 PHI->addIncoming(resultPtr, notNullBB); 1749 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1750 nullCheckBB); 1751 1752 resultPtr = PHI; 1753 } 1754 1755 return resultPtr; 1756 } 1757 1758 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1759 llvm::Value *Ptr, QualType DeleteTy, 1760 llvm::Value *NumElements, 1761 CharUnits CookieSize) { 1762 assert((!NumElements && CookieSize.isZero()) || 1763 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1764 1765 const FunctionProtoType *DeleteFTy = 1766 DeleteFD->getType()->getAs<FunctionProtoType>(); 1767 1768 CallArgList DeleteArgs; 1769 1770 auto Params = getUsualDeleteParams(DeleteFD); 1771 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1772 1773 // Pass the pointer itself. 1774 QualType ArgTy = *ParamTypeIt++; 1775 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1776 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1777 1778 // Pass the std::destroying_delete tag if present. 1779 if (Params.DestroyingDelete) { 1780 QualType DDTag = *ParamTypeIt++; 1781 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1782 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1783 DeleteArgs.add(RValue::get(V), DDTag); 1784 } 1785 1786 // Pass the size if the delete function has a size_t parameter. 1787 if (Params.Size) { 1788 QualType SizeType = *ParamTypeIt++; 1789 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1790 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1791 DeleteTypeSize.getQuantity()); 1792 1793 // For array new, multiply by the number of elements. 1794 if (NumElements) 1795 Size = Builder.CreateMul(Size, NumElements); 1796 1797 // If there is a cookie, add the cookie size. 1798 if (!CookieSize.isZero()) 1799 Size = Builder.CreateAdd( 1800 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1801 1802 DeleteArgs.add(RValue::get(Size), SizeType); 1803 } 1804 1805 // Pass the alignment if the delete function has an align_val_t parameter. 1806 if (Params.Alignment) { 1807 QualType AlignValType = *ParamTypeIt++; 1808 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1809 getContext().getTypeAlignIfKnown(DeleteTy)); 1810 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1811 DeleteTypeAlign.getQuantity()); 1812 DeleteArgs.add(RValue::get(Align), AlignValType); 1813 } 1814 1815 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1816 "unknown parameter to usual delete function"); 1817 1818 // Emit the call to delete. 1819 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1820 } 1821 1822 namespace { 1823 /// Calls the given 'operator delete' on a single object. 1824 struct CallObjectDelete final : EHScopeStack::Cleanup { 1825 llvm::Value *Ptr; 1826 const FunctionDecl *OperatorDelete; 1827 QualType ElementType; 1828 1829 CallObjectDelete(llvm::Value *Ptr, 1830 const FunctionDecl *OperatorDelete, 1831 QualType ElementType) 1832 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1833 1834 void Emit(CodeGenFunction &CGF, Flags flags) override { 1835 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1836 } 1837 }; 1838 } 1839 1840 void 1841 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1842 llvm::Value *CompletePtr, 1843 QualType ElementType) { 1844 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1845 OperatorDelete, ElementType); 1846 } 1847 1848 /// Emit the code for deleting a single object with a destroying operator 1849 /// delete. If the element type has a non-virtual destructor, Ptr has already 1850 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1851 /// Ptr points to an object of the static type. 1852 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1853 const CXXDeleteExpr *DE, Address Ptr, 1854 QualType ElementType) { 1855 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1856 if (Dtor && Dtor->isVirtual()) 1857 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1858 Dtor); 1859 else 1860 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1861 } 1862 1863 /// Emit the code for deleting a single object. 1864 static void EmitObjectDelete(CodeGenFunction &CGF, 1865 const CXXDeleteExpr *DE, 1866 Address Ptr, 1867 QualType ElementType) { 1868 // C++11 [expr.delete]p3: 1869 // If the static type of the object to be deleted is different from its 1870 // dynamic type, the static type shall be a base class of the dynamic type 1871 // of the object to be deleted and the static type shall have a virtual 1872 // destructor or the behavior is undefined. 1873 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1874 DE->getExprLoc(), Ptr.getPointer(), 1875 ElementType); 1876 1877 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1878 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1879 1880 // Find the destructor for the type, if applicable. If the 1881 // destructor is virtual, we'll just emit the vcall and return. 1882 const CXXDestructorDecl *Dtor = nullptr; 1883 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1884 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1885 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1886 Dtor = RD->getDestructor(); 1887 1888 if (Dtor->isVirtual()) { 1889 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1890 Dtor); 1891 return; 1892 } 1893 } 1894 } 1895 1896 // Make sure that we call delete even if the dtor throws. 1897 // This doesn't have to a conditional cleanup because we're going 1898 // to pop it off in a second. 1899 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1900 Ptr.getPointer(), 1901 OperatorDelete, ElementType); 1902 1903 if (Dtor) 1904 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1905 /*ForVirtualBase=*/false, 1906 /*Delegating=*/false, 1907 Ptr); 1908 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1909 switch (Lifetime) { 1910 case Qualifiers::OCL_None: 1911 case Qualifiers::OCL_ExplicitNone: 1912 case Qualifiers::OCL_Autoreleasing: 1913 break; 1914 1915 case Qualifiers::OCL_Strong: 1916 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1917 break; 1918 1919 case Qualifiers::OCL_Weak: 1920 CGF.EmitARCDestroyWeak(Ptr); 1921 break; 1922 } 1923 } 1924 1925 CGF.PopCleanupBlock(); 1926 } 1927 1928 namespace { 1929 /// Calls the given 'operator delete' on an array of objects. 1930 struct CallArrayDelete final : EHScopeStack::Cleanup { 1931 llvm::Value *Ptr; 1932 const FunctionDecl *OperatorDelete; 1933 llvm::Value *NumElements; 1934 QualType ElementType; 1935 CharUnits CookieSize; 1936 1937 CallArrayDelete(llvm::Value *Ptr, 1938 const FunctionDecl *OperatorDelete, 1939 llvm::Value *NumElements, 1940 QualType ElementType, 1941 CharUnits CookieSize) 1942 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1943 ElementType(ElementType), CookieSize(CookieSize) {} 1944 1945 void Emit(CodeGenFunction &CGF, Flags flags) override { 1946 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1947 CookieSize); 1948 } 1949 }; 1950 } 1951 1952 /// Emit the code for deleting an array of objects. 1953 static void EmitArrayDelete(CodeGenFunction &CGF, 1954 const CXXDeleteExpr *E, 1955 Address deletedPtr, 1956 QualType elementType) { 1957 llvm::Value *numElements = nullptr; 1958 llvm::Value *allocatedPtr = nullptr; 1959 CharUnits cookieSize; 1960 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1961 numElements, allocatedPtr, cookieSize); 1962 1963 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1964 1965 // Make sure that we call delete even if one of the dtors throws. 1966 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1967 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1968 allocatedPtr, operatorDelete, 1969 numElements, elementType, 1970 cookieSize); 1971 1972 // Destroy the elements. 1973 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1974 assert(numElements && "no element count for a type with a destructor!"); 1975 1976 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1977 CharUnits elementAlign = 1978 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1979 1980 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1981 llvm::Value *arrayEnd = 1982 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1983 1984 // Note that it is legal to allocate a zero-length array, and we 1985 // can never fold the check away because the length should always 1986 // come from a cookie. 1987 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1988 CGF.getDestroyer(dtorKind), 1989 /*checkZeroLength*/ true, 1990 CGF.needsEHCleanup(dtorKind)); 1991 } 1992 1993 // Pop the cleanup block. 1994 CGF.PopCleanupBlock(); 1995 } 1996 1997 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1998 const Expr *Arg = E->getArgument(); 1999 Address Ptr = EmitPointerWithAlignment(Arg); 2000 2001 // Null check the pointer. 2002 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2003 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2004 2005 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2006 2007 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2008 EmitBlock(DeleteNotNull); 2009 2010 QualType DeleteTy = E->getDestroyedType(); 2011 2012 // A destroying operator delete overrides the entire operation of the 2013 // delete expression. 2014 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2015 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2016 EmitBlock(DeleteEnd); 2017 return; 2018 } 2019 2020 // We might be deleting a pointer to array. If so, GEP down to the 2021 // first non-array element. 2022 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2023 if (DeleteTy->isConstantArrayType()) { 2024 llvm::Value *Zero = Builder.getInt32(0); 2025 SmallVector<llvm::Value*,8> GEP; 2026 2027 GEP.push_back(Zero); // point at the outermost array 2028 2029 // For each layer of array type we're pointing at: 2030 while (const ConstantArrayType *Arr 2031 = getContext().getAsConstantArrayType(DeleteTy)) { 2032 // 1. Unpeel the array type. 2033 DeleteTy = Arr->getElementType(); 2034 2035 // 2. GEP to the first element of the array. 2036 GEP.push_back(Zero); 2037 } 2038 2039 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2040 Ptr.getAlignment()); 2041 } 2042 2043 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2044 2045 if (E->isArrayForm()) { 2046 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2047 } else { 2048 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2049 } 2050 2051 EmitBlock(DeleteEnd); 2052 } 2053 2054 static bool isGLValueFromPointerDeref(const Expr *E) { 2055 E = E->IgnoreParens(); 2056 2057 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2058 if (!CE->getSubExpr()->isGLValue()) 2059 return false; 2060 return isGLValueFromPointerDeref(CE->getSubExpr()); 2061 } 2062 2063 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2064 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2065 2066 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2067 if (BO->getOpcode() == BO_Comma) 2068 return isGLValueFromPointerDeref(BO->getRHS()); 2069 2070 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2071 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2072 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2073 2074 // C++11 [expr.sub]p1: 2075 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2076 if (isa<ArraySubscriptExpr>(E)) 2077 return true; 2078 2079 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2080 if (UO->getOpcode() == UO_Deref) 2081 return true; 2082 2083 return false; 2084 } 2085 2086 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2087 llvm::Type *StdTypeInfoPtrTy) { 2088 // Get the vtable pointer. 2089 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2090 2091 QualType SrcRecordTy = E->getType(); 2092 2093 // C++ [class.cdtor]p4: 2094 // If the operand of typeid refers to the object under construction or 2095 // destruction and the static type of the operand is neither the constructor 2096 // or destructor’s class nor one of its bases, the behavior is undefined. 2097 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2098 ThisPtr.getPointer(), SrcRecordTy); 2099 2100 // C++ [expr.typeid]p2: 2101 // If the glvalue expression is obtained by applying the unary * operator to 2102 // a pointer and the pointer is a null pointer value, the typeid expression 2103 // throws the std::bad_typeid exception. 2104 // 2105 // However, this paragraph's intent is not clear. We choose a very generous 2106 // interpretation which implores us to consider comma operators, conditional 2107 // operators, parentheses and other such constructs. 2108 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2109 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2110 llvm::BasicBlock *BadTypeidBlock = 2111 CGF.createBasicBlock("typeid.bad_typeid"); 2112 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2113 2114 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2115 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2116 2117 CGF.EmitBlock(BadTypeidBlock); 2118 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2119 CGF.EmitBlock(EndBlock); 2120 } 2121 2122 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2123 StdTypeInfoPtrTy); 2124 } 2125 2126 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2127 llvm::Type *StdTypeInfoPtrTy = 2128 ConvertType(E->getType())->getPointerTo(); 2129 2130 if (E->isTypeOperand()) { 2131 llvm::Constant *TypeInfo = 2132 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2133 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2134 } 2135 2136 // C++ [expr.typeid]p2: 2137 // When typeid is applied to a glvalue expression whose type is a 2138 // polymorphic class type, the result refers to a std::type_info object 2139 // representing the type of the most derived object (that is, the dynamic 2140 // type) to which the glvalue refers. 2141 if (E->isPotentiallyEvaluated()) 2142 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2143 StdTypeInfoPtrTy); 2144 2145 QualType OperandTy = E->getExprOperand()->getType(); 2146 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2147 StdTypeInfoPtrTy); 2148 } 2149 2150 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2151 QualType DestTy) { 2152 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2153 if (DestTy->isPointerType()) 2154 return llvm::Constant::getNullValue(DestLTy); 2155 2156 /// C++ [expr.dynamic.cast]p9: 2157 /// A failed cast to reference type throws std::bad_cast 2158 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2159 return nullptr; 2160 2161 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2162 return llvm::UndefValue::get(DestLTy); 2163 } 2164 2165 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2166 const CXXDynamicCastExpr *DCE) { 2167 CGM.EmitExplicitCastExprType(DCE, this); 2168 QualType DestTy = DCE->getTypeAsWritten(); 2169 2170 QualType SrcTy = DCE->getSubExpr()->getType(); 2171 2172 // C++ [expr.dynamic.cast]p7: 2173 // If T is "pointer to cv void," then the result is a pointer to the most 2174 // derived object pointed to by v. 2175 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2176 2177 bool isDynamicCastToVoid; 2178 QualType SrcRecordTy; 2179 QualType DestRecordTy; 2180 if (DestPTy) { 2181 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2182 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2183 DestRecordTy = DestPTy->getPointeeType(); 2184 } else { 2185 isDynamicCastToVoid = false; 2186 SrcRecordTy = SrcTy; 2187 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2188 } 2189 2190 // C++ [class.cdtor]p5: 2191 // If the operand of the dynamic_cast refers to the object under 2192 // construction or destruction and the static type of the operand is not a 2193 // pointer to or object of the constructor or destructor’s own class or one 2194 // of its bases, the dynamic_cast results in undefined behavior. 2195 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2196 SrcRecordTy); 2197 2198 if (DCE->isAlwaysNull()) 2199 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2200 return T; 2201 2202 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2203 2204 // C++ [expr.dynamic.cast]p4: 2205 // If the value of v is a null pointer value in the pointer case, the result 2206 // is the null pointer value of type T. 2207 bool ShouldNullCheckSrcValue = 2208 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2209 SrcRecordTy); 2210 2211 llvm::BasicBlock *CastNull = nullptr; 2212 llvm::BasicBlock *CastNotNull = nullptr; 2213 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2214 2215 if (ShouldNullCheckSrcValue) { 2216 CastNull = createBasicBlock("dynamic_cast.null"); 2217 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2218 2219 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2220 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2221 EmitBlock(CastNotNull); 2222 } 2223 2224 llvm::Value *Value; 2225 if (isDynamicCastToVoid) { 2226 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2227 DestTy); 2228 } else { 2229 assert(DestRecordTy->isRecordType() && 2230 "destination type must be a record type!"); 2231 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2232 DestTy, DestRecordTy, CastEnd); 2233 CastNotNull = Builder.GetInsertBlock(); 2234 } 2235 2236 if (ShouldNullCheckSrcValue) { 2237 EmitBranch(CastEnd); 2238 2239 EmitBlock(CastNull); 2240 EmitBranch(CastEnd); 2241 } 2242 2243 EmitBlock(CastEnd); 2244 2245 if (ShouldNullCheckSrcValue) { 2246 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2247 PHI->addIncoming(Value, CastNotNull); 2248 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2249 2250 Value = PHI; 2251 } 2252 2253 return Value; 2254 } 2255