1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "ConstantEmitter.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Intrinsics.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 struct MemberCallInfo { 30 RequiredArgs ReqArgs; 31 // Number of prefix arguments for the call. Ignores the `this` pointer. 32 unsigned PrefixSize; 33 }; 34 } 35 36 static MemberCallInfo 37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 38 llvm::Value *This, llvm::Value *ImplicitParam, 39 QualType ImplicitParamTy, const CallExpr *CE, 40 CallArgList &Args, CallArgList *RtlArgs) { 41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 42 isa<CXXOperatorCallExpr>(CE)); 43 assert(MD->isInstance() && 44 "Trying to emit a member or operator call expr on a static method!"); 45 ASTContext &C = CGF.getContext(); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 50 Args.add(RValue::get(This), 51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 52 53 // If there is an implicit parameter (e.g. VTT), emit it. 54 if (ImplicitParam) { 55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 56 } 57 58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 60 unsigned PrefixSize = Args.size() - 1; 61 62 // And the rest of the call args. 63 if (RtlArgs) { 64 // Special case: if the caller emitted the arguments right-to-left already 65 // (prior to emitting the *this argument), we're done. This happens for 66 // assignment operators. 67 Args.addFrom(*RtlArgs); 68 } else if (CE) { 69 // Special case: skip first argument of CXXOperatorCall (it is "this"). 70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 72 CE->getDirectCallee()); 73 } else { 74 assert( 75 FPT->getNumParams() == 0 && 76 "No CallExpr specified for function with non-zero number of arguments"); 77 } 78 return {required, PrefixSize}; 79 } 80 81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 82 const CXXMethodDecl *MD, const CGCallee &Callee, 83 ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 92 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 93 CE ? CE->getExprLoc() : SourceLocation()); 94 } 95 96 RValue CodeGenFunction::EmitCXXDestructorCall( 97 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 98 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 99 StructorType Type) { 100 CallArgList Args; 101 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 102 ImplicitParamTy, CE, Args, nullptr); 103 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 104 Callee, ReturnValueSlot(), Args); 105 } 106 107 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 108 const CXXPseudoDestructorExpr *E) { 109 QualType DestroyedType = E->getDestroyedType(); 110 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 111 // Automatic Reference Counting: 112 // If the pseudo-expression names a retainable object with weak or 113 // strong lifetime, the object shall be released. 114 Expr *BaseExpr = E->getBase(); 115 Address BaseValue = Address::invalid(); 116 Qualifiers BaseQuals; 117 118 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 119 if (E->isArrow()) { 120 BaseValue = EmitPointerWithAlignment(BaseExpr); 121 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 122 BaseQuals = PTy->getPointeeType().getQualifiers(); 123 } else { 124 LValue BaseLV = EmitLValue(BaseExpr); 125 BaseValue = BaseLV.getAddress(); 126 QualType BaseTy = BaseExpr->getType(); 127 BaseQuals = BaseTy.getQualifiers(); 128 } 129 130 switch (DestroyedType.getObjCLifetime()) { 131 case Qualifiers::OCL_None: 132 case Qualifiers::OCL_ExplicitNone: 133 case Qualifiers::OCL_Autoreleasing: 134 break; 135 136 case Qualifiers::OCL_Strong: 137 EmitARCRelease(Builder.CreateLoad(BaseValue, 138 DestroyedType.isVolatileQualified()), 139 ARCPreciseLifetime); 140 break; 141 142 case Qualifiers::OCL_Weak: 143 EmitARCDestroyWeak(BaseValue); 144 break; 145 } 146 } else { 147 // C++ [expr.pseudo]p1: 148 // The result shall only be used as the operand for the function call 149 // operator (), and the result of such a call has type void. The only 150 // effect is the evaluation of the postfix-expression before the dot or 151 // arrow. 152 EmitIgnoredExpr(E->getBase()); 153 } 154 155 return RValue::get(nullptr); 156 } 157 158 static CXXRecordDecl *getCXXRecord(const Expr *E) { 159 QualType T = E->getType(); 160 if (const PointerType *PTy = T->getAs<PointerType>()) 161 T = PTy->getPointeeType(); 162 const RecordType *Ty = T->castAs<RecordType>(); 163 return cast<CXXRecordDecl>(Ty->getDecl()); 164 } 165 166 // Note: This function also emit constructor calls to support a MSVC 167 // extensions allowing explicit constructor function call. 168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 169 ReturnValueSlot ReturnValue) { 170 const Expr *callee = CE->getCallee()->IgnoreParens(); 171 172 if (isa<BinaryOperator>(callee)) 173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 174 175 const MemberExpr *ME = cast<MemberExpr>(callee); 176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 177 178 if (MD->isStatic()) { 179 // The method is static, emit it as we would a regular call. 180 CGCallee callee = 181 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 182 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 183 ReturnValue); 184 } 185 186 bool HasQualifier = ME->hasQualifier(); 187 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 188 bool IsArrow = ME->isArrow(); 189 const Expr *Base = ME->getBase(); 190 191 return EmitCXXMemberOrOperatorMemberCallExpr( 192 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 193 } 194 195 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 196 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 197 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 198 const Expr *Base) { 199 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 200 201 // Compute the object pointer. 202 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 203 204 const CXXMethodDecl *DevirtualizedMethod = nullptr; 205 if (CanUseVirtualCall && 206 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 207 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 208 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 209 assert(DevirtualizedMethod); 210 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 211 const Expr *Inner = Base->ignoreParenBaseCasts(); 212 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 213 MD->getReturnType().getCanonicalType()) 214 // If the return types are not the same, this might be a case where more 215 // code needs to run to compensate for it. For example, the derived 216 // method might return a type that inherits form from the return 217 // type of MD and has a prefix. 218 // For now we just avoid devirtualizing these covariant cases. 219 DevirtualizedMethod = nullptr; 220 else if (getCXXRecord(Inner) == DevirtualizedClass) 221 // If the class of the Inner expression is where the dynamic method 222 // is defined, build the this pointer from it. 223 Base = Inner; 224 else if (getCXXRecord(Base) != DevirtualizedClass) { 225 // If the method is defined in a class that is not the best dynamic 226 // one or the one of the full expression, we would have to build 227 // a derived-to-base cast to compute the correct this pointer, but 228 // we don't have support for that yet, so do a virtual call. 229 DevirtualizedMethod = nullptr; 230 } 231 } 232 233 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 234 // operator before the LHS. 235 CallArgList RtlArgStorage; 236 CallArgList *RtlArgs = nullptr; 237 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 238 if (OCE->isAssignmentOp()) { 239 RtlArgs = &RtlArgStorage; 240 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 241 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 242 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 243 } 244 } 245 246 LValue This; 247 if (IsArrow) { 248 LValueBaseInfo BaseInfo; 249 TBAAAccessInfo TBAAInfo; 250 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 251 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 252 } else { 253 This = EmitLValue(Base); 254 } 255 256 257 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 258 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 259 if (isa<CXXConstructorDecl>(MD) && 260 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 261 return RValue::get(nullptr); 262 263 if (!MD->getParent()->mayInsertExtraPadding()) { 264 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 265 // We don't like to generate the trivial copy/move assignment operator 266 // when it isn't necessary; just produce the proper effect here. 267 LValue RHS = isa<CXXOperatorCallExpr>(CE) 268 ? MakeNaturalAlignAddrLValue( 269 (*RtlArgs)[0].getRValue(*this).getScalarVal(), 270 (*(CE->arg_begin() + 1))->getType()) 271 : EmitLValue(*CE->arg_begin()); 272 EmitAggregateAssign(This, RHS, CE->getType()); 273 return RValue::get(This.getPointer()); 274 } 275 276 if (isa<CXXConstructorDecl>(MD) && 277 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 278 // Trivial move and copy ctor are the same. 279 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 280 const Expr *Arg = *CE->arg_begin(); 281 LValue RHS = EmitLValue(Arg); 282 LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType()); 283 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 284 // constructing a new complete object of type Ctor. 285 EmitAggregateCopy(Dest, RHS, Arg->getType(), 286 AggValueSlot::DoesNotOverlap); 287 return RValue::get(This.getPointer()); 288 } 289 llvm_unreachable("unknown trivial member function"); 290 } 291 } 292 293 // Compute the function type we're calling. 294 const CXXMethodDecl *CalleeDecl = 295 DevirtualizedMethod ? DevirtualizedMethod : MD; 296 const CGFunctionInfo *FInfo = nullptr; 297 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 298 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 299 Dtor, StructorType::Complete); 300 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 301 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 302 Ctor, StructorType::Complete); 303 else 304 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 305 306 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 307 308 // C++11 [class.mfct.non-static]p2: 309 // If a non-static member function of a class X is called for an object that 310 // is not of type X, or of a type derived from X, the behavior is undefined. 311 SourceLocation CallLoc; 312 ASTContext &C = getContext(); 313 if (CE) 314 CallLoc = CE->getExprLoc(); 315 316 SanitizerSet SkippedChecks; 317 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 318 auto *IOA = CMCE->getImplicitObjectArgument(); 319 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 320 if (IsImplicitObjectCXXThis) 321 SkippedChecks.set(SanitizerKind::Alignment, true); 322 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 323 SkippedChecks.set(SanitizerKind::Null, true); 324 } 325 EmitTypeCheck( 326 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 327 : CodeGenFunction::TCK_MemberCall, 328 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 329 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 330 331 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 332 // 'CalleeDecl' instead. 333 334 // C++ [class.virtual]p12: 335 // Explicit qualification with the scope operator (5.1) suppresses the 336 // virtual call mechanism. 337 // 338 // We also don't emit a virtual call if the base expression has a record type 339 // because then we know what the type is. 340 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 341 342 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 343 assert(CE->arg_begin() == CE->arg_end() && 344 "Destructor shouldn't have explicit parameters"); 345 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 346 if (UseVirtualCall) { 347 CGM.getCXXABI().EmitVirtualDestructorCall( 348 *this, Dtor, Dtor_Complete, This.getAddress(), 349 cast<CXXMemberCallExpr>(CE)); 350 } else { 351 CGCallee Callee; 352 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 353 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 354 else if (!DevirtualizedMethod) 355 Callee = CGCallee::forDirect( 356 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 357 GlobalDecl(Dtor, Dtor_Complete)); 358 else { 359 const CXXDestructorDecl *DDtor = 360 cast<CXXDestructorDecl>(DevirtualizedMethod); 361 Callee = CGCallee::forDirect( 362 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 363 GlobalDecl(DDtor, Dtor_Complete)); 364 } 365 EmitCXXMemberOrOperatorCall( 366 CalleeDecl, Callee, ReturnValue, This.getPointer(), 367 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 368 } 369 return RValue::get(nullptr); 370 } 371 372 CGCallee Callee; 373 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 374 Callee = CGCallee::forDirect( 375 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 376 GlobalDecl(Ctor, Ctor_Complete)); 377 } else if (UseVirtualCall) { 378 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 379 } else { 380 if (SanOpts.has(SanitizerKind::CFINVCall) && 381 MD->getParent()->isDynamicClass()) { 382 llvm::Value *VTable; 383 const CXXRecordDecl *RD; 384 std::tie(VTable, RD) = 385 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 386 MD->getParent()); 387 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 388 } 389 390 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 391 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 392 else if (!DevirtualizedMethod) 393 Callee = 394 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 395 else { 396 Callee = 397 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 398 GlobalDecl(DevirtualizedMethod)); 399 } 400 } 401 402 if (MD->isVirtual()) { 403 Address NewThisAddr = 404 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 405 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 406 This.setAddress(NewThisAddr); 407 } 408 409 return EmitCXXMemberOrOperatorCall( 410 CalleeDecl, Callee, ReturnValue, This.getPointer(), 411 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 412 } 413 414 RValue 415 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 416 ReturnValueSlot ReturnValue) { 417 const BinaryOperator *BO = 418 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 419 const Expr *BaseExpr = BO->getLHS(); 420 const Expr *MemFnExpr = BO->getRHS(); 421 422 const MemberPointerType *MPT = 423 MemFnExpr->getType()->castAs<MemberPointerType>(); 424 425 const FunctionProtoType *FPT = 426 MPT->getPointeeType()->castAs<FunctionProtoType>(); 427 const CXXRecordDecl *RD = 428 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 429 430 // Emit the 'this' pointer. 431 Address This = Address::invalid(); 432 if (BO->getOpcode() == BO_PtrMemI) 433 This = EmitPointerWithAlignment(BaseExpr); 434 else 435 This = EmitLValue(BaseExpr).getAddress(); 436 437 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 438 QualType(MPT->getClass(), 0)); 439 440 // Get the member function pointer. 441 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 442 443 // Ask the ABI to load the callee. Note that This is modified. 444 llvm::Value *ThisPtrForCall = nullptr; 445 CGCallee Callee = 446 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 447 ThisPtrForCall, MemFnPtr, MPT); 448 449 CallArgList Args; 450 451 QualType ThisType = 452 getContext().getPointerType(getContext().getTagDeclType(RD)); 453 454 // Push the this ptr. 455 Args.add(RValue::get(ThisPtrForCall), ThisType); 456 457 RequiredArgs required = 458 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 459 460 // And the rest of the call args 461 EmitCallArgs(Args, FPT, E->arguments()); 462 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 463 /*PrefixSize=*/0), 464 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 465 } 466 467 RValue 468 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 469 const CXXMethodDecl *MD, 470 ReturnValueSlot ReturnValue) { 471 assert(MD->isInstance() && 472 "Trying to emit a member call expr on a static method!"); 473 return EmitCXXMemberOrOperatorMemberCallExpr( 474 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 475 /*IsArrow=*/false, E->getArg(0)); 476 } 477 478 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 479 ReturnValueSlot ReturnValue) { 480 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 481 } 482 483 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 484 Address DestPtr, 485 const CXXRecordDecl *Base) { 486 if (Base->isEmpty()) 487 return; 488 489 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 490 491 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 492 CharUnits NVSize = Layout.getNonVirtualSize(); 493 494 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 495 // present, they are initialized by the most derived class before calling the 496 // constructor. 497 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 498 Stores.emplace_back(CharUnits::Zero(), NVSize); 499 500 // Each store is split by the existence of a vbptr. 501 CharUnits VBPtrWidth = CGF.getPointerSize(); 502 std::vector<CharUnits> VBPtrOffsets = 503 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 504 for (CharUnits VBPtrOffset : VBPtrOffsets) { 505 // Stop before we hit any virtual base pointers located in virtual bases. 506 if (VBPtrOffset >= NVSize) 507 break; 508 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 509 CharUnits LastStoreOffset = LastStore.first; 510 CharUnits LastStoreSize = LastStore.second; 511 512 CharUnits SplitBeforeOffset = LastStoreOffset; 513 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 514 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 515 if (!SplitBeforeSize.isZero()) 516 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 517 518 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 519 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 520 assert(!SplitAfterSize.isNegative() && "negative store size!"); 521 if (!SplitAfterSize.isZero()) 522 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 523 } 524 525 // If the type contains a pointer to data member we can't memset it to zero. 526 // Instead, create a null constant and copy it to the destination. 527 // TODO: there are other patterns besides zero that we can usefully memset, 528 // like -1, which happens to be the pattern used by member-pointers. 529 // TODO: isZeroInitializable can be over-conservative in the case where a 530 // virtual base contains a member pointer. 531 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 532 if (!NullConstantForBase->isNullValue()) { 533 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 534 CGF.CGM.getModule(), NullConstantForBase->getType(), 535 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 536 NullConstantForBase, Twine()); 537 538 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 539 DestPtr.getAlignment()); 540 NullVariable->setAlignment(Align.getQuantity()); 541 542 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 543 544 // Get and call the appropriate llvm.memcpy overload. 545 for (std::pair<CharUnits, CharUnits> Store : Stores) { 546 CharUnits StoreOffset = Store.first; 547 CharUnits StoreSize = Store.second; 548 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 549 CGF.Builder.CreateMemCpy( 550 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 551 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 552 StoreSizeVal); 553 } 554 555 // Otherwise, just memset the whole thing to zero. This is legal 556 // because in LLVM, all default initializers (other than the ones we just 557 // handled above) are guaranteed to have a bit pattern of all zeros. 558 } else { 559 for (std::pair<CharUnits, CharUnits> Store : Stores) { 560 CharUnits StoreOffset = Store.first; 561 CharUnits StoreSize = Store.second; 562 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 563 CGF.Builder.CreateMemSet( 564 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 565 CGF.Builder.getInt8(0), StoreSizeVal); 566 } 567 } 568 } 569 570 void 571 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 572 AggValueSlot Dest) { 573 assert(!Dest.isIgnored() && "Must have a destination!"); 574 const CXXConstructorDecl *CD = E->getConstructor(); 575 576 // If we require zero initialization before (or instead of) calling the 577 // constructor, as can be the case with a non-user-provided default 578 // constructor, emit the zero initialization now, unless destination is 579 // already zeroed. 580 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 581 switch (E->getConstructionKind()) { 582 case CXXConstructExpr::CK_Delegating: 583 case CXXConstructExpr::CK_Complete: 584 EmitNullInitialization(Dest.getAddress(), E->getType()); 585 break; 586 case CXXConstructExpr::CK_VirtualBase: 587 case CXXConstructExpr::CK_NonVirtualBase: 588 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 589 CD->getParent()); 590 break; 591 } 592 } 593 594 // If this is a call to a trivial default constructor, do nothing. 595 if (CD->isTrivial() && CD->isDefaultConstructor()) 596 return; 597 598 // Elide the constructor if we're constructing from a temporary. 599 // The temporary check is required because Sema sets this on NRVO 600 // returns. 601 if (getLangOpts().ElideConstructors && E->isElidable()) { 602 assert(getContext().hasSameUnqualifiedType(E->getType(), 603 E->getArg(0)->getType())); 604 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 605 EmitAggExpr(E->getArg(0), Dest); 606 return; 607 } 608 } 609 610 if (const ArrayType *arrayType 611 = getContext().getAsArrayType(E->getType())) { 612 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 613 Dest.isSanitizerChecked()); 614 } else { 615 CXXCtorType Type = Ctor_Complete; 616 bool ForVirtualBase = false; 617 bool Delegating = false; 618 619 switch (E->getConstructionKind()) { 620 case CXXConstructExpr::CK_Delegating: 621 // We should be emitting a constructor; GlobalDecl will assert this 622 Type = CurGD.getCtorType(); 623 Delegating = true; 624 break; 625 626 case CXXConstructExpr::CK_Complete: 627 Type = Ctor_Complete; 628 break; 629 630 case CXXConstructExpr::CK_VirtualBase: 631 ForVirtualBase = true; 632 LLVM_FALLTHROUGH; 633 634 case CXXConstructExpr::CK_NonVirtualBase: 635 Type = Ctor_Base; 636 } 637 638 // Call the constructor. 639 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 640 Dest.getAddress(), E, Dest.mayOverlap(), 641 Dest.isSanitizerChecked()); 642 } 643 } 644 645 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 646 const Expr *Exp) { 647 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 648 Exp = E->getSubExpr(); 649 assert(isa<CXXConstructExpr>(Exp) && 650 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 651 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 652 const CXXConstructorDecl *CD = E->getConstructor(); 653 RunCleanupsScope Scope(*this); 654 655 // If we require zero initialization before (or instead of) calling the 656 // constructor, as can be the case with a non-user-provided default 657 // constructor, emit the zero initialization now. 658 // FIXME. Do I still need this for a copy ctor synthesis? 659 if (E->requiresZeroInitialization()) 660 EmitNullInitialization(Dest, E->getType()); 661 662 assert(!getContext().getAsConstantArrayType(E->getType()) 663 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 664 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 665 } 666 667 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 668 const CXXNewExpr *E) { 669 if (!E->isArray()) 670 return CharUnits::Zero(); 671 672 // No cookie is required if the operator new[] being used is the 673 // reserved placement operator new[]. 674 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 675 return CharUnits::Zero(); 676 677 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 678 } 679 680 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 681 const CXXNewExpr *e, 682 unsigned minElements, 683 llvm::Value *&numElements, 684 llvm::Value *&sizeWithoutCookie) { 685 QualType type = e->getAllocatedType(); 686 687 if (!e->isArray()) { 688 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 689 sizeWithoutCookie 690 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 691 return sizeWithoutCookie; 692 } 693 694 // The width of size_t. 695 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 696 697 // Figure out the cookie size. 698 llvm::APInt cookieSize(sizeWidth, 699 CalculateCookiePadding(CGF, e).getQuantity()); 700 701 // Emit the array size expression. 702 // We multiply the size of all dimensions for NumElements. 703 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 704 numElements = 705 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 706 if (!numElements) 707 numElements = CGF.EmitScalarExpr(e->getArraySize()); 708 assert(isa<llvm::IntegerType>(numElements->getType())); 709 710 // The number of elements can be have an arbitrary integer type; 711 // essentially, we need to multiply it by a constant factor, add a 712 // cookie size, and verify that the result is representable as a 713 // size_t. That's just a gloss, though, and it's wrong in one 714 // important way: if the count is negative, it's an error even if 715 // the cookie size would bring the total size >= 0. 716 bool isSigned 717 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 718 llvm::IntegerType *numElementsType 719 = cast<llvm::IntegerType>(numElements->getType()); 720 unsigned numElementsWidth = numElementsType->getBitWidth(); 721 722 // Compute the constant factor. 723 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 724 while (const ConstantArrayType *CAT 725 = CGF.getContext().getAsConstantArrayType(type)) { 726 type = CAT->getElementType(); 727 arraySizeMultiplier *= CAT->getSize(); 728 } 729 730 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 731 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 732 typeSizeMultiplier *= arraySizeMultiplier; 733 734 // This will be a size_t. 735 llvm::Value *size; 736 737 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 738 // Don't bloat the -O0 code. 739 if (llvm::ConstantInt *numElementsC = 740 dyn_cast<llvm::ConstantInt>(numElements)) { 741 const llvm::APInt &count = numElementsC->getValue(); 742 743 bool hasAnyOverflow = false; 744 745 // If 'count' was a negative number, it's an overflow. 746 if (isSigned && count.isNegative()) 747 hasAnyOverflow = true; 748 749 // We want to do all this arithmetic in size_t. If numElements is 750 // wider than that, check whether it's already too big, and if so, 751 // overflow. 752 else if (numElementsWidth > sizeWidth && 753 numElementsWidth - sizeWidth > count.countLeadingZeros()) 754 hasAnyOverflow = true; 755 756 // Okay, compute a count at the right width. 757 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 758 759 // If there is a brace-initializer, we cannot allocate fewer elements than 760 // there are initializers. If we do, that's treated like an overflow. 761 if (adjustedCount.ult(minElements)) 762 hasAnyOverflow = true; 763 764 // Scale numElements by that. This might overflow, but we don't 765 // care because it only overflows if allocationSize does, too, and 766 // if that overflows then we shouldn't use this. 767 numElements = llvm::ConstantInt::get(CGF.SizeTy, 768 adjustedCount * arraySizeMultiplier); 769 770 // Compute the size before cookie, and track whether it overflowed. 771 bool overflow; 772 llvm::APInt allocationSize 773 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 774 hasAnyOverflow |= overflow; 775 776 // Add in the cookie, and check whether it's overflowed. 777 if (cookieSize != 0) { 778 // Save the current size without a cookie. This shouldn't be 779 // used if there was overflow. 780 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 781 782 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 783 hasAnyOverflow |= overflow; 784 } 785 786 // On overflow, produce a -1 so operator new will fail. 787 if (hasAnyOverflow) { 788 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 789 } else { 790 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 791 } 792 793 // Otherwise, we might need to use the overflow intrinsics. 794 } else { 795 // There are up to five conditions we need to test for: 796 // 1) if isSigned, we need to check whether numElements is negative; 797 // 2) if numElementsWidth > sizeWidth, we need to check whether 798 // numElements is larger than something representable in size_t; 799 // 3) if minElements > 0, we need to check whether numElements is smaller 800 // than that. 801 // 4) we need to compute 802 // sizeWithoutCookie := numElements * typeSizeMultiplier 803 // and check whether it overflows; and 804 // 5) if we need a cookie, we need to compute 805 // size := sizeWithoutCookie + cookieSize 806 // and check whether it overflows. 807 808 llvm::Value *hasOverflow = nullptr; 809 810 // If numElementsWidth > sizeWidth, then one way or another, we're 811 // going to have to do a comparison for (2), and this happens to 812 // take care of (1), too. 813 if (numElementsWidth > sizeWidth) { 814 llvm::APInt threshold(numElementsWidth, 1); 815 threshold <<= sizeWidth; 816 817 llvm::Value *thresholdV 818 = llvm::ConstantInt::get(numElementsType, threshold); 819 820 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 821 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 822 823 // Otherwise, if we're signed, we want to sext up to size_t. 824 } else if (isSigned) { 825 if (numElementsWidth < sizeWidth) 826 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 827 828 // If there's a non-1 type size multiplier, then we can do the 829 // signedness check at the same time as we do the multiply 830 // because a negative number times anything will cause an 831 // unsigned overflow. Otherwise, we have to do it here. But at least 832 // in this case, we can subsume the >= minElements check. 833 if (typeSizeMultiplier == 1) 834 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 835 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 836 837 // Otherwise, zext up to size_t if necessary. 838 } else if (numElementsWidth < sizeWidth) { 839 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 840 } 841 842 assert(numElements->getType() == CGF.SizeTy); 843 844 if (minElements) { 845 // Don't allow allocation of fewer elements than we have initializers. 846 if (!hasOverflow) { 847 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 848 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 849 } else if (numElementsWidth > sizeWidth) { 850 // The other existing overflow subsumes this check. 851 // We do an unsigned comparison, since any signed value < -1 is 852 // taken care of either above or below. 853 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 854 CGF.Builder.CreateICmpULT(numElements, 855 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 856 } 857 } 858 859 size = numElements; 860 861 // Multiply by the type size if necessary. This multiplier 862 // includes all the factors for nested arrays. 863 // 864 // This step also causes numElements to be scaled up by the 865 // nested-array factor if necessary. Overflow on this computation 866 // can be ignored because the result shouldn't be used if 867 // allocation fails. 868 if (typeSizeMultiplier != 1) { 869 llvm::Value *umul_with_overflow 870 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 871 872 llvm::Value *tsmV = 873 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 874 llvm::Value *result = 875 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 876 877 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 878 if (hasOverflow) 879 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 880 else 881 hasOverflow = overflowed; 882 883 size = CGF.Builder.CreateExtractValue(result, 0); 884 885 // Also scale up numElements by the array size multiplier. 886 if (arraySizeMultiplier != 1) { 887 // If the base element type size is 1, then we can re-use the 888 // multiply we just did. 889 if (typeSize.isOne()) { 890 assert(arraySizeMultiplier == typeSizeMultiplier); 891 numElements = size; 892 893 // Otherwise we need a separate multiply. 894 } else { 895 llvm::Value *asmV = 896 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 897 numElements = CGF.Builder.CreateMul(numElements, asmV); 898 } 899 } 900 } else { 901 // numElements doesn't need to be scaled. 902 assert(arraySizeMultiplier == 1); 903 } 904 905 // Add in the cookie size if necessary. 906 if (cookieSize != 0) { 907 sizeWithoutCookie = size; 908 909 llvm::Value *uadd_with_overflow 910 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 911 912 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 913 llvm::Value *result = 914 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 915 916 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 917 if (hasOverflow) 918 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 919 else 920 hasOverflow = overflowed; 921 922 size = CGF.Builder.CreateExtractValue(result, 0); 923 } 924 925 // If we had any possibility of dynamic overflow, make a select to 926 // overwrite 'size' with an all-ones value, which should cause 927 // operator new to throw. 928 if (hasOverflow) 929 size = CGF.Builder.CreateSelect(hasOverflow, 930 llvm::Constant::getAllOnesValue(CGF.SizeTy), 931 size); 932 } 933 934 if (cookieSize == 0) 935 sizeWithoutCookie = size; 936 else 937 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 938 939 return size; 940 } 941 942 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 943 QualType AllocType, Address NewPtr, 944 AggValueSlot::Overlap_t MayOverlap) { 945 // FIXME: Refactor with EmitExprAsInit. 946 switch (CGF.getEvaluationKind(AllocType)) { 947 case TEK_Scalar: 948 CGF.EmitScalarInit(Init, nullptr, 949 CGF.MakeAddrLValue(NewPtr, AllocType), false); 950 return; 951 case TEK_Complex: 952 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 953 /*isInit*/ true); 954 return; 955 case TEK_Aggregate: { 956 AggValueSlot Slot 957 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 958 AggValueSlot::IsDestructed, 959 AggValueSlot::DoesNotNeedGCBarriers, 960 AggValueSlot::IsNotAliased, 961 MayOverlap, AggValueSlot::IsNotZeroed, 962 AggValueSlot::IsSanitizerChecked); 963 CGF.EmitAggExpr(Init, Slot); 964 return; 965 } 966 } 967 llvm_unreachable("bad evaluation kind"); 968 } 969 970 void CodeGenFunction::EmitNewArrayInitializer( 971 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 972 Address BeginPtr, llvm::Value *NumElements, 973 llvm::Value *AllocSizeWithoutCookie) { 974 // If we have a type with trivial initialization and no initializer, 975 // there's nothing to do. 976 if (!E->hasInitializer()) 977 return; 978 979 Address CurPtr = BeginPtr; 980 981 unsigned InitListElements = 0; 982 983 const Expr *Init = E->getInitializer(); 984 Address EndOfInit = Address::invalid(); 985 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 986 EHScopeStack::stable_iterator Cleanup; 987 llvm::Instruction *CleanupDominator = nullptr; 988 989 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 990 CharUnits ElementAlign = 991 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 992 993 // Attempt to perform zero-initialization using memset. 994 auto TryMemsetInitialization = [&]() -> bool { 995 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 996 // we can initialize with a memset to -1. 997 if (!CGM.getTypes().isZeroInitializable(ElementType)) 998 return false; 999 1000 // Optimization: since zero initialization will just set the memory 1001 // to all zeroes, generate a single memset to do it in one shot. 1002 1003 // Subtract out the size of any elements we've already initialized. 1004 auto *RemainingSize = AllocSizeWithoutCookie; 1005 if (InitListElements) { 1006 // We know this can't overflow; we check this when doing the allocation. 1007 auto *InitializedSize = llvm::ConstantInt::get( 1008 RemainingSize->getType(), 1009 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1010 InitListElements); 1011 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1012 } 1013 1014 // Create the memset. 1015 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1016 return true; 1017 }; 1018 1019 // If the initializer is an initializer list, first do the explicit elements. 1020 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1021 // Initializing from a (braced) string literal is a special case; the init 1022 // list element does not initialize a (single) array element. 1023 if (ILE->isStringLiteralInit()) { 1024 // Initialize the initial portion of length equal to that of the string 1025 // literal. The allocation must be for at least this much; we emitted a 1026 // check for that earlier. 1027 AggValueSlot Slot = 1028 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1029 AggValueSlot::IsDestructed, 1030 AggValueSlot::DoesNotNeedGCBarriers, 1031 AggValueSlot::IsNotAliased, 1032 AggValueSlot::DoesNotOverlap, 1033 AggValueSlot::IsNotZeroed, 1034 AggValueSlot::IsSanitizerChecked); 1035 EmitAggExpr(ILE->getInit(0), Slot); 1036 1037 // Move past these elements. 1038 InitListElements = 1039 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1040 ->getSize().getZExtValue(); 1041 CurPtr = 1042 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1043 Builder.getSize(InitListElements), 1044 "string.init.end"), 1045 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1046 ElementSize)); 1047 1048 // Zero out the rest, if any remain. 1049 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1050 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1051 bool OK = TryMemsetInitialization(); 1052 (void)OK; 1053 assert(OK && "couldn't memset character type?"); 1054 } 1055 return; 1056 } 1057 1058 InitListElements = ILE->getNumInits(); 1059 1060 // If this is a multi-dimensional array new, we will initialize multiple 1061 // elements with each init list element. 1062 QualType AllocType = E->getAllocatedType(); 1063 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1064 AllocType->getAsArrayTypeUnsafe())) { 1065 ElementTy = ConvertTypeForMem(AllocType); 1066 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1067 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1068 } 1069 1070 // Enter a partial-destruction Cleanup if necessary. 1071 if (needsEHCleanup(DtorKind)) { 1072 // In principle we could tell the Cleanup where we are more 1073 // directly, but the control flow can get so varied here that it 1074 // would actually be quite complex. Therefore we go through an 1075 // alloca. 1076 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1077 "array.init.end"); 1078 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1079 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1080 ElementType, ElementAlign, 1081 getDestroyer(DtorKind)); 1082 Cleanup = EHStack.stable_begin(); 1083 } 1084 1085 CharUnits StartAlign = CurPtr.getAlignment(); 1086 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1087 // Tell the cleanup that it needs to destroy up to this 1088 // element. TODO: some of these stores can be trivially 1089 // observed to be unnecessary. 1090 if (EndOfInit.isValid()) { 1091 auto FinishedPtr = 1092 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1093 Builder.CreateStore(FinishedPtr, EndOfInit); 1094 } 1095 // FIXME: If the last initializer is an incomplete initializer list for 1096 // an array, and we have an array filler, we can fold together the two 1097 // initialization loops. 1098 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1099 ILE->getInit(i)->getType(), CurPtr, 1100 AggValueSlot::DoesNotOverlap); 1101 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1102 Builder.getSize(1), 1103 "array.exp.next"), 1104 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1105 } 1106 1107 // The remaining elements are filled with the array filler expression. 1108 Init = ILE->getArrayFiller(); 1109 1110 // Extract the initializer for the individual array elements by pulling 1111 // out the array filler from all the nested initializer lists. This avoids 1112 // generating a nested loop for the initialization. 1113 while (Init && Init->getType()->isConstantArrayType()) { 1114 auto *SubILE = dyn_cast<InitListExpr>(Init); 1115 if (!SubILE) 1116 break; 1117 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1118 Init = SubILE->getArrayFiller(); 1119 } 1120 1121 // Switch back to initializing one base element at a time. 1122 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1123 } 1124 1125 // If all elements have already been initialized, skip any further 1126 // initialization. 1127 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1128 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1129 // If there was a Cleanup, deactivate it. 1130 if (CleanupDominator) 1131 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1132 return; 1133 } 1134 1135 assert(Init && "have trailing elements to initialize but no initializer"); 1136 1137 // If this is a constructor call, try to optimize it out, and failing that 1138 // emit a single loop to initialize all remaining elements. 1139 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1140 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1141 if (Ctor->isTrivial()) { 1142 // If new expression did not specify value-initialization, then there 1143 // is no initialization. 1144 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1145 return; 1146 1147 if (TryMemsetInitialization()) 1148 return; 1149 } 1150 1151 // Store the new Cleanup position for irregular Cleanups. 1152 // 1153 // FIXME: Share this cleanup with the constructor call emission rather than 1154 // having it create a cleanup of its own. 1155 if (EndOfInit.isValid()) 1156 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1157 1158 // Emit a constructor call loop to initialize the remaining elements. 1159 if (InitListElements) 1160 NumElements = Builder.CreateSub( 1161 NumElements, 1162 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1163 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1164 /*NewPointerIsChecked*/true, 1165 CCE->requiresZeroInitialization()); 1166 return; 1167 } 1168 1169 // If this is value-initialization, we can usually use memset. 1170 ImplicitValueInitExpr IVIE(ElementType); 1171 if (isa<ImplicitValueInitExpr>(Init)) { 1172 if (TryMemsetInitialization()) 1173 return; 1174 1175 // Switch to an ImplicitValueInitExpr for the element type. This handles 1176 // only one case: multidimensional array new of pointers to members. In 1177 // all other cases, we already have an initializer for the array element. 1178 Init = &IVIE; 1179 } 1180 1181 // At this point we should have found an initializer for the individual 1182 // elements of the array. 1183 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1184 "got wrong type of element to initialize"); 1185 1186 // If we have an empty initializer list, we can usually use memset. 1187 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1188 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1189 return; 1190 1191 // If we have a struct whose every field is value-initialized, we can 1192 // usually use memset. 1193 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1194 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1195 if (RType->getDecl()->isStruct()) { 1196 unsigned NumElements = 0; 1197 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1198 NumElements = CXXRD->getNumBases(); 1199 for (auto *Field : RType->getDecl()->fields()) 1200 if (!Field->isUnnamedBitfield()) 1201 ++NumElements; 1202 // FIXME: Recurse into nested InitListExprs. 1203 if (ILE->getNumInits() == NumElements) 1204 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1205 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1206 --NumElements; 1207 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1208 return; 1209 } 1210 } 1211 } 1212 1213 // Create the loop blocks. 1214 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1215 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1216 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1217 1218 // Find the end of the array, hoisted out of the loop. 1219 llvm::Value *EndPtr = 1220 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1221 1222 // If the number of elements isn't constant, we have to now check if there is 1223 // anything left to initialize. 1224 if (!ConstNum) { 1225 llvm::Value *IsEmpty = 1226 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1227 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1228 } 1229 1230 // Enter the loop. 1231 EmitBlock(LoopBB); 1232 1233 // Set up the current-element phi. 1234 llvm::PHINode *CurPtrPhi = 1235 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1236 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1237 1238 CurPtr = Address(CurPtrPhi, ElementAlign); 1239 1240 // Store the new Cleanup position for irregular Cleanups. 1241 if (EndOfInit.isValid()) 1242 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1243 1244 // Enter a partial-destruction Cleanup if necessary. 1245 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1246 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1247 ElementType, ElementAlign, 1248 getDestroyer(DtorKind)); 1249 Cleanup = EHStack.stable_begin(); 1250 CleanupDominator = Builder.CreateUnreachable(); 1251 } 1252 1253 // Emit the initializer into this element. 1254 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1255 AggValueSlot::DoesNotOverlap); 1256 1257 // Leave the Cleanup if we entered one. 1258 if (CleanupDominator) { 1259 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1260 CleanupDominator->eraseFromParent(); 1261 } 1262 1263 // Advance to the next element by adjusting the pointer type as necessary. 1264 llvm::Value *NextPtr = 1265 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1266 "array.next"); 1267 1268 // Check whether we've gotten to the end of the array and, if so, 1269 // exit the loop. 1270 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1271 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1272 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1273 1274 EmitBlock(ContBB); 1275 } 1276 1277 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1278 QualType ElementType, llvm::Type *ElementTy, 1279 Address NewPtr, llvm::Value *NumElements, 1280 llvm::Value *AllocSizeWithoutCookie) { 1281 ApplyDebugLocation DL(CGF, E); 1282 if (E->isArray()) 1283 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1284 AllocSizeWithoutCookie); 1285 else if (const Expr *Init = E->getInitializer()) 1286 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1287 AggValueSlot::DoesNotOverlap); 1288 } 1289 1290 /// Emit a call to an operator new or operator delete function, as implicitly 1291 /// created by new-expressions and delete-expressions. 1292 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1293 const FunctionDecl *CalleeDecl, 1294 const FunctionProtoType *CalleeType, 1295 const CallArgList &Args) { 1296 llvm::Instruction *CallOrInvoke; 1297 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1298 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1299 RValue RV = 1300 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1301 Args, CalleeType, /*chainCall=*/false), 1302 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1303 1304 /// C++1y [expr.new]p10: 1305 /// [In a new-expression,] an implementation is allowed to omit a call 1306 /// to a replaceable global allocation function. 1307 /// 1308 /// We model such elidable calls with the 'builtin' attribute. 1309 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1310 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1311 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1312 // FIXME: Add addAttribute to CallSite. 1313 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1314 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1315 llvm::Attribute::Builtin); 1316 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1317 II->addAttribute(llvm::AttributeList::FunctionIndex, 1318 llvm::Attribute::Builtin); 1319 else 1320 llvm_unreachable("unexpected kind of call instruction"); 1321 } 1322 1323 return RV; 1324 } 1325 1326 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1327 const CallExpr *TheCall, 1328 bool IsDelete) { 1329 CallArgList Args; 1330 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1331 // Find the allocation or deallocation function that we're calling. 1332 ASTContext &Ctx = getContext(); 1333 DeclarationName Name = Ctx.DeclarationNames 1334 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1335 1336 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1337 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1338 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1339 return EmitNewDeleteCall(*this, FD, Type, Args); 1340 llvm_unreachable("predeclared global operator new/delete is missing"); 1341 } 1342 1343 namespace { 1344 /// The parameters to pass to a usual operator delete. 1345 struct UsualDeleteParams { 1346 bool DestroyingDelete = false; 1347 bool Size = false; 1348 bool Alignment = false; 1349 }; 1350 } 1351 1352 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1353 UsualDeleteParams Params; 1354 1355 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1356 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1357 1358 // The first argument is always a void*. 1359 ++AI; 1360 1361 // The next parameter may be a std::destroying_delete_t. 1362 if (FD->isDestroyingOperatorDelete()) { 1363 Params.DestroyingDelete = true; 1364 assert(AI != AE); 1365 ++AI; 1366 } 1367 1368 // Figure out what other parameters we should be implicitly passing. 1369 if (AI != AE && (*AI)->isIntegerType()) { 1370 Params.Size = true; 1371 ++AI; 1372 } 1373 1374 if (AI != AE && (*AI)->isAlignValT()) { 1375 Params.Alignment = true; 1376 ++AI; 1377 } 1378 1379 assert(AI == AE && "unexpected usual deallocation function parameter"); 1380 return Params; 1381 } 1382 1383 namespace { 1384 /// A cleanup to call the given 'operator delete' function upon abnormal 1385 /// exit from a new expression. Templated on a traits type that deals with 1386 /// ensuring that the arguments dominate the cleanup if necessary. 1387 template<typename Traits> 1388 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1389 /// Type used to hold llvm::Value*s. 1390 typedef typename Traits::ValueTy ValueTy; 1391 /// Type used to hold RValues. 1392 typedef typename Traits::RValueTy RValueTy; 1393 struct PlacementArg { 1394 RValueTy ArgValue; 1395 QualType ArgType; 1396 }; 1397 1398 unsigned NumPlacementArgs : 31; 1399 unsigned PassAlignmentToPlacementDelete : 1; 1400 const FunctionDecl *OperatorDelete; 1401 ValueTy Ptr; 1402 ValueTy AllocSize; 1403 CharUnits AllocAlign; 1404 1405 PlacementArg *getPlacementArgs() { 1406 return reinterpret_cast<PlacementArg *>(this + 1); 1407 } 1408 1409 public: 1410 static size_t getExtraSize(size_t NumPlacementArgs) { 1411 return NumPlacementArgs * sizeof(PlacementArg); 1412 } 1413 1414 CallDeleteDuringNew(size_t NumPlacementArgs, 1415 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1416 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1417 CharUnits AllocAlign) 1418 : NumPlacementArgs(NumPlacementArgs), 1419 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1420 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1421 AllocAlign(AllocAlign) {} 1422 1423 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1424 assert(I < NumPlacementArgs && "index out of range"); 1425 getPlacementArgs()[I] = {Arg, Type}; 1426 } 1427 1428 void Emit(CodeGenFunction &CGF, Flags flags) override { 1429 const FunctionProtoType *FPT = 1430 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1431 CallArgList DeleteArgs; 1432 1433 // The first argument is always a void* (or C* for a destroying operator 1434 // delete for class type C). 1435 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1436 1437 // Figure out what other parameters we should be implicitly passing. 1438 UsualDeleteParams Params; 1439 if (NumPlacementArgs) { 1440 // A placement deallocation function is implicitly passed an alignment 1441 // if the placement allocation function was, but is never passed a size. 1442 Params.Alignment = PassAlignmentToPlacementDelete; 1443 } else { 1444 // For a non-placement new-expression, 'operator delete' can take a 1445 // size and/or an alignment if it has the right parameters. 1446 Params = getUsualDeleteParams(OperatorDelete); 1447 } 1448 1449 assert(!Params.DestroyingDelete && 1450 "should not call destroying delete in a new-expression"); 1451 1452 // The second argument can be a std::size_t (for non-placement delete). 1453 if (Params.Size) 1454 DeleteArgs.add(Traits::get(CGF, AllocSize), 1455 CGF.getContext().getSizeType()); 1456 1457 // The next (second or third) argument can be a std::align_val_t, which 1458 // is an enum whose underlying type is std::size_t. 1459 // FIXME: Use the right type as the parameter type. Note that in a call 1460 // to operator delete(size_t, ...), we may not have it available. 1461 if (Params.Alignment) 1462 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1463 CGF.SizeTy, AllocAlign.getQuantity())), 1464 CGF.getContext().getSizeType()); 1465 1466 // Pass the rest of the arguments, which must match exactly. 1467 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1468 auto Arg = getPlacementArgs()[I]; 1469 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1470 } 1471 1472 // Call 'operator delete'. 1473 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1474 } 1475 }; 1476 } 1477 1478 /// Enter a cleanup to call 'operator delete' if the initializer in a 1479 /// new-expression throws. 1480 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1481 const CXXNewExpr *E, 1482 Address NewPtr, 1483 llvm::Value *AllocSize, 1484 CharUnits AllocAlign, 1485 const CallArgList &NewArgs) { 1486 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1487 1488 // If we're not inside a conditional branch, then the cleanup will 1489 // dominate and we can do the easier (and more efficient) thing. 1490 if (!CGF.isInConditionalBranch()) { 1491 struct DirectCleanupTraits { 1492 typedef llvm::Value *ValueTy; 1493 typedef RValue RValueTy; 1494 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1495 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1496 }; 1497 1498 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1499 1500 DirectCleanup *Cleanup = CGF.EHStack 1501 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1502 E->getNumPlacementArgs(), 1503 E->getOperatorDelete(), 1504 NewPtr.getPointer(), 1505 AllocSize, 1506 E->passAlignment(), 1507 AllocAlign); 1508 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1509 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1510 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1511 } 1512 1513 return; 1514 } 1515 1516 // Otherwise, we need to save all this stuff. 1517 DominatingValue<RValue>::saved_type SavedNewPtr = 1518 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1519 DominatingValue<RValue>::saved_type SavedAllocSize = 1520 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1521 1522 struct ConditionalCleanupTraits { 1523 typedef DominatingValue<RValue>::saved_type ValueTy; 1524 typedef DominatingValue<RValue>::saved_type RValueTy; 1525 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1526 return V.restore(CGF); 1527 } 1528 }; 1529 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1530 1531 ConditionalCleanup *Cleanup = CGF.EHStack 1532 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1533 E->getNumPlacementArgs(), 1534 E->getOperatorDelete(), 1535 SavedNewPtr, 1536 SavedAllocSize, 1537 E->passAlignment(), 1538 AllocAlign); 1539 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1540 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1541 Cleanup->setPlacementArg( 1542 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1543 } 1544 1545 CGF.initFullExprCleanup(); 1546 } 1547 1548 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1549 // The element type being allocated. 1550 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1551 1552 // 1. Build a call to the allocation function. 1553 FunctionDecl *allocator = E->getOperatorNew(); 1554 1555 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1556 unsigned minElements = 0; 1557 if (E->isArray() && E->hasInitializer()) { 1558 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1559 if (ILE && ILE->isStringLiteralInit()) 1560 minElements = 1561 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1562 ->getSize().getZExtValue(); 1563 else if (ILE) 1564 minElements = ILE->getNumInits(); 1565 } 1566 1567 llvm::Value *numElements = nullptr; 1568 llvm::Value *allocSizeWithoutCookie = nullptr; 1569 llvm::Value *allocSize = 1570 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1571 allocSizeWithoutCookie); 1572 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1573 1574 // Emit the allocation call. If the allocator is a global placement 1575 // operator, just "inline" it directly. 1576 Address allocation = Address::invalid(); 1577 CallArgList allocatorArgs; 1578 if (allocator->isReservedGlobalPlacementOperator()) { 1579 assert(E->getNumPlacementArgs() == 1); 1580 const Expr *arg = *E->placement_arguments().begin(); 1581 1582 LValueBaseInfo BaseInfo; 1583 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1584 1585 // The pointer expression will, in many cases, be an opaque void*. 1586 // In these cases, discard the computed alignment and use the 1587 // formal alignment of the allocated type. 1588 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1589 allocation = Address(allocation.getPointer(), allocAlign); 1590 1591 // Set up allocatorArgs for the call to operator delete if it's not 1592 // the reserved global operator. 1593 if (E->getOperatorDelete() && 1594 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1595 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1596 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1597 } 1598 1599 } else { 1600 const FunctionProtoType *allocatorType = 1601 allocator->getType()->castAs<FunctionProtoType>(); 1602 unsigned ParamsToSkip = 0; 1603 1604 // The allocation size is the first argument. 1605 QualType sizeType = getContext().getSizeType(); 1606 allocatorArgs.add(RValue::get(allocSize), sizeType); 1607 ++ParamsToSkip; 1608 1609 if (allocSize != allocSizeWithoutCookie) { 1610 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1611 allocAlign = std::max(allocAlign, cookieAlign); 1612 } 1613 1614 // The allocation alignment may be passed as the second argument. 1615 if (E->passAlignment()) { 1616 QualType AlignValT = sizeType; 1617 if (allocatorType->getNumParams() > 1) { 1618 AlignValT = allocatorType->getParamType(1); 1619 assert(getContext().hasSameUnqualifiedType( 1620 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1621 sizeType) && 1622 "wrong type for alignment parameter"); 1623 ++ParamsToSkip; 1624 } else { 1625 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1626 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1627 } 1628 allocatorArgs.add( 1629 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1630 AlignValT); 1631 } 1632 1633 // FIXME: Why do we not pass a CalleeDecl here? 1634 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1635 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1636 1637 RValue RV = 1638 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1639 1640 // If this was a call to a global replaceable allocation function that does 1641 // not take an alignment argument, the allocator is known to produce 1642 // storage that's suitably aligned for any object that fits, up to a known 1643 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1644 CharUnits allocationAlign = allocAlign; 1645 if (!E->passAlignment() && 1646 allocator->isReplaceableGlobalAllocationFunction()) { 1647 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1648 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1649 allocationAlign = std::max( 1650 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1651 } 1652 1653 allocation = Address(RV.getScalarVal(), allocationAlign); 1654 } 1655 1656 // Emit a null check on the allocation result if the allocation 1657 // function is allowed to return null (because it has a non-throwing 1658 // exception spec or is the reserved placement new) and we have an 1659 // interesting initializer. 1660 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1661 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1662 1663 llvm::BasicBlock *nullCheckBB = nullptr; 1664 llvm::BasicBlock *contBB = nullptr; 1665 1666 // The null-check means that the initializer is conditionally 1667 // evaluated. 1668 ConditionalEvaluation conditional(*this); 1669 1670 if (nullCheck) { 1671 conditional.begin(*this); 1672 1673 nullCheckBB = Builder.GetInsertBlock(); 1674 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1675 contBB = createBasicBlock("new.cont"); 1676 1677 llvm::Value *isNull = 1678 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1679 Builder.CreateCondBr(isNull, contBB, notNullBB); 1680 EmitBlock(notNullBB); 1681 } 1682 1683 // If there's an operator delete, enter a cleanup to call it if an 1684 // exception is thrown. 1685 EHScopeStack::stable_iterator operatorDeleteCleanup; 1686 llvm::Instruction *cleanupDominator = nullptr; 1687 if (E->getOperatorDelete() && 1688 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1689 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1690 allocatorArgs); 1691 operatorDeleteCleanup = EHStack.stable_begin(); 1692 cleanupDominator = Builder.CreateUnreachable(); 1693 } 1694 1695 assert((allocSize == allocSizeWithoutCookie) == 1696 CalculateCookiePadding(*this, E).isZero()); 1697 if (allocSize != allocSizeWithoutCookie) { 1698 assert(E->isArray()); 1699 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1700 numElements, 1701 E, allocType); 1702 } 1703 1704 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1705 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1706 1707 // Passing pointer through launder.invariant.group to avoid propagation of 1708 // vptrs information which may be included in previous type. 1709 // To not break LTO with different optimizations levels, we do it regardless 1710 // of optimization level. 1711 if (CGM.getCodeGenOpts().StrictVTablePointers && 1712 allocator->isReservedGlobalPlacementOperator()) 1713 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1714 result.getAlignment()); 1715 1716 // Emit sanitizer checks for pointer value now, so that in the case of an 1717 // array it was checked only once and not at each constructor call. 1718 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1719 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1720 result.getPointer(), allocType); 1721 1722 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1723 allocSizeWithoutCookie); 1724 if (E->isArray()) { 1725 // NewPtr is a pointer to the base element type. If we're 1726 // allocating an array of arrays, we'll need to cast back to the 1727 // array pointer type. 1728 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1729 if (result.getType() != resultType) 1730 result = Builder.CreateBitCast(result, resultType); 1731 } 1732 1733 // Deactivate the 'operator delete' cleanup if we finished 1734 // initialization. 1735 if (operatorDeleteCleanup.isValid()) { 1736 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1737 cleanupDominator->eraseFromParent(); 1738 } 1739 1740 llvm::Value *resultPtr = result.getPointer(); 1741 if (nullCheck) { 1742 conditional.end(*this); 1743 1744 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1745 EmitBlock(contBB); 1746 1747 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1748 PHI->addIncoming(resultPtr, notNullBB); 1749 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1750 nullCheckBB); 1751 1752 resultPtr = PHI; 1753 } 1754 1755 return resultPtr; 1756 } 1757 1758 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1759 llvm::Value *Ptr, QualType DeleteTy, 1760 llvm::Value *NumElements, 1761 CharUnits CookieSize) { 1762 assert((!NumElements && CookieSize.isZero()) || 1763 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1764 1765 const FunctionProtoType *DeleteFTy = 1766 DeleteFD->getType()->getAs<FunctionProtoType>(); 1767 1768 CallArgList DeleteArgs; 1769 1770 auto Params = getUsualDeleteParams(DeleteFD); 1771 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1772 1773 // Pass the pointer itself. 1774 QualType ArgTy = *ParamTypeIt++; 1775 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1776 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1777 1778 // Pass the std::destroying_delete tag if present. 1779 if (Params.DestroyingDelete) { 1780 QualType DDTag = *ParamTypeIt++; 1781 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1782 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1783 DeleteArgs.add(RValue::get(V), DDTag); 1784 } 1785 1786 // Pass the size if the delete function has a size_t parameter. 1787 if (Params.Size) { 1788 QualType SizeType = *ParamTypeIt++; 1789 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1790 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1791 DeleteTypeSize.getQuantity()); 1792 1793 // For array new, multiply by the number of elements. 1794 if (NumElements) 1795 Size = Builder.CreateMul(Size, NumElements); 1796 1797 // If there is a cookie, add the cookie size. 1798 if (!CookieSize.isZero()) 1799 Size = Builder.CreateAdd( 1800 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1801 1802 DeleteArgs.add(RValue::get(Size), SizeType); 1803 } 1804 1805 // Pass the alignment if the delete function has an align_val_t parameter. 1806 if (Params.Alignment) { 1807 QualType AlignValType = *ParamTypeIt++; 1808 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1809 getContext().getTypeAlignIfKnown(DeleteTy)); 1810 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1811 DeleteTypeAlign.getQuantity()); 1812 DeleteArgs.add(RValue::get(Align), AlignValType); 1813 } 1814 1815 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1816 "unknown parameter to usual delete function"); 1817 1818 // Emit the call to delete. 1819 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1820 } 1821 1822 namespace { 1823 /// Calls the given 'operator delete' on a single object. 1824 struct CallObjectDelete final : EHScopeStack::Cleanup { 1825 llvm::Value *Ptr; 1826 const FunctionDecl *OperatorDelete; 1827 QualType ElementType; 1828 1829 CallObjectDelete(llvm::Value *Ptr, 1830 const FunctionDecl *OperatorDelete, 1831 QualType ElementType) 1832 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1833 1834 void Emit(CodeGenFunction &CGF, Flags flags) override { 1835 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1836 } 1837 }; 1838 } 1839 1840 void 1841 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1842 llvm::Value *CompletePtr, 1843 QualType ElementType) { 1844 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1845 OperatorDelete, ElementType); 1846 } 1847 1848 /// Emit the code for deleting a single object with a destroying operator 1849 /// delete. If the element type has a non-virtual destructor, Ptr has already 1850 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1851 /// Ptr points to an object of the static type. 1852 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1853 const CXXDeleteExpr *DE, Address Ptr, 1854 QualType ElementType) { 1855 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1856 if (Dtor && Dtor->isVirtual()) 1857 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1858 Dtor); 1859 else 1860 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1861 } 1862 1863 /// Emit the code for deleting a single object. 1864 static void EmitObjectDelete(CodeGenFunction &CGF, 1865 const CXXDeleteExpr *DE, 1866 Address Ptr, 1867 QualType ElementType) { 1868 // C++11 [expr.delete]p3: 1869 // If the static type of the object to be deleted is different from its 1870 // dynamic type, the static type shall be a base class of the dynamic type 1871 // of the object to be deleted and the static type shall have a virtual 1872 // destructor or the behavior is undefined. 1873 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1874 DE->getExprLoc(), Ptr.getPointer(), 1875 ElementType); 1876 1877 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1878 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1879 1880 // Find the destructor for the type, if applicable. If the 1881 // destructor is virtual, we'll just emit the vcall and return. 1882 const CXXDestructorDecl *Dtor = nullptr; 1883 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1884 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1885 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1886 Dtor = RD->getDestructor(); 1887 1888 if (Dtor->isVirtual()) { 1889 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1890 Dtor); 1891 return; 1892 } 1893 } 1894 } 1895 1896 // Make sure that we call delete even if the dtor throws. 1897 // This doesn't have to a conditional cleanup because we're going 1898 // to pop it off in a second. 1899 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1900 Ptr.getPointer(), 1901 OperatorDelete, ElementType); 1902 1903 if (Dtor) 1904 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1905 /*ForVirtualBase=*/false, 1906 /*Delegating=*/false, 1907 Ptr); 1908 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1909 switch (Lifetime) { 1910 case Qualifiers::OCL_None: 1911 case Qualifiers::OCL_ExplicitNone: 1912 case Qualifiers::OCL_Autoreleasing: 1913 break; 1914 1915 case Qualifiers::OCL_Strong: 1916 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1917 break; 1918 1919 case Qualifiers::OCL_Weak: 1920 CGF.EmitARCDestroyWeak(Ptr); 1921 break; 1922 } 1923 } 1924 1925 CGF.PopCleanupBlock(); 1926 } 1927 1928 namespace { 1929 /// Calls the given 'operator delete' on an array of objects. 1930 struct CallArrayDelete final : EHScopeStack::Cleanup { 1931 llvm::Value *Ptr; 1932 const FunctionDecl *OperatorDelete; 1933 llvm::Value *NumElements; 1934 QualType ElementType; 1935 CharUnits CookieSize; 1936 1937 CallArrayDelete(llvm::Value *Ptr, 1938 const FunctionDecl *OperatorDelete, 1939 llvm::Value *NumElements, 1940 QualType ElementType, 1941 CharUnits CookieSize) 1942 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1943 ElementType(ElementType), CookieSize(CookieSize) {} 1944 1945 void Emit(CodeGenFunction &CGF, Flags flags) override { 1946 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1947 CookieSize); 1948 } 1949 }; 1950 } 1951 1952 /// Emit the code for deleting an array of objects. 1953 static void EmitArrayDelete(CodeGenFunction &CGF, 1954 const CXXDeleteExpr *E, 1955 Address deletedPtr, 1956 QualType elementType) { 1957 llvm::Value *numElements = nullptr; 1958 llvm::Value *allocatedPtr = nullptr; 1959 CharUnits cookieSize; 1960 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1961 numElements, allocatedPtr, cookieSize); 1962 1963 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1964 1965 // Make sure that we call delete even if one of the dtors throws. 1966 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1967 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1968 allocatedPtr, operatorDelete, 1969 numElements, elementType, 1970 cookieSize); 1971 1972 // Destroy the elements. 1973 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1974 assert(numElements && "no element count for a type with a destructor!"); 1975 1976 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1977 CharUnits elementAlign = 1978 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1979 1980 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1981 llvm::Value *arrayEnd = 1982 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1983 1984 // Note that it is legal to allocate a zero-length array, and we 1985 // can never fold the check away because the length should always 1986 // come from a cookie. 1987 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1988 CGF.getDestroyer(dtorKind), 1989 /*checkZeroLength*/ true, 1990 CGF.needsEHCleanup(dtorKind)); 1991 } 1992 1993 // Pop the cleanup block. 1994 CGF.PopCleanupBlock(); 1995 } 1996 1997 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1998 const Expr *Arg = E->getArgument(); 1999 Address Ptr = EmitPointerWithAlignment(Arg); 2000 2001 // Null check the pointer. 2002 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2003 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2004 2005 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2006 2007 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2008 EmitBlock(DeleteNotNull); 2009 2010 QualType DeleteTy = E->getDestroyedType(); 2011 2012 // A destroying operator delete overrides the entire operation of the 2013 // delete expression. 2014 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2015 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2016 EmitBlock(DeleteEnd); 2017 return; 2018 } 2019 2020 // We might be deleting a pointer to array. If so, GEP down to the 2021 // first non-array element. 2022 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2023 if (DeleteTy->isConstantArrayType()) { 2024 llvm::Value *Zero = Builder.getInt32(0); 2025 SmallVector<llvm::Value*,8> GEP; 2026 2027 GEP.push_back(Zero); // point at the outermost array 2028 2029 // For each layer of array type we're pointing at: 2030 while (const ConstantArrayType *Arr 2031 = getContext().getAsConstantArrayType(DeleteTy)) { 2032 // 1. Unpeel the array type. 2033 DeleteTy = Arr->getElementType(); 2034 2035 // 2. GEP to the first element of the array. 2036 GEP.push_back(Zero); 2037 } 2038 2039 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2040 Ptr.getAlignment()); 2041 } 2042 2043 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2044 2045 if (E->isArrayForm()) { 2046 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2047 } else { 2048 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2049 } 2050 2051 EmitBlock(DeleteEnd); 2052 } 2053 2054 static bool isGLValueFromPointerDeref(const Expr *E) { 2055 E = E->IgnoreParens(); 2056 2057 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2058 if (!CE->getSubExpr()->isGLValue()) 2059 return false; 2060 return isGLValueFromPointerDeref(CE->getSubExpr()); 2061 } 2062 2063 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2064 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2065 2066 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2067 if (BO->getOpcode() == BO_Comma) 2068 return isGLValueFromPointerDeref(BO->getRHS()); 2069 2070 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2071 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2072 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2073 2074 // C++11 [expr.sub]p1: 2075 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2076 if (isa<ArraySubscriptExpr>(E)) 2077 return true; 2078 2079 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2080 if (UO->getOpcode() == UO_Deref) 2081 return true; 2082 2083 return false; 2084 } 2085 2086 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2087 llvm::Type *StdTypeInfoPtrTy) { 2088 // Get the vtable pointer. 2089 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2090 2091 QualType SrcRecordTy = E->getType(); 2092 2093 // C++ [class.cdtor]p4: 2094 // If the operand of typeid refers to the object under construction or 2095 // destruction and the static type of the operand is neither the constructor 2096 // or destructor’s class nor one of its bases, the behavior is undefined. 2097 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2098 ThisPtr.getPointer(), SrcRecordTy); 2099 2100 // C++ [expr.typeid]p2: 2101 // If the glvalue expression is obtained by applying the unary * operator to 2102 // a pointer and the pointer is a null pointer value, the typeid expression 2103 // throws the std::bad_typeid exception. 2104 // 2105 // However, this paragraph's intent is not clear. We choose a very generous 2106 // interpretation which implores us to consider comma operators, conditional 2107 // operators, parentheses and other such constructs. 2108 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2109 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2110 llvm::BasicBlock *BadTypeidBlock = 2111 CGF.createBasicBlock("typeid.bad_typeid"); 2112 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2113 2114 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2115 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2116 2117 CGF.EmitBlock(BadTypeidBlock); 2118 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2119 CGF.EmitBlock(EndBlock); 2120 } 2121 2122 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2123 StdTypeInfoPtrTy); 2124 } 2125 2126 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2127 llvm::Type *StdTypeInfoPtrTy = 2128 ConvertType(E->getType())->getPointerTo(); 2129 2130 if (E->isTypeOperand()) { 2131 llvm::Constant *TypeInfo = 2132 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2133 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2134 } 2135 2136 // C++ [expr.typeid]p2: 2137 // When typeid is applied to a glvalue expression whose type is a 2138 // polymorphic class type, the result refers to a std::type_info object 2139 // representing the type of the most derived object (that is, the dynamic 2140 // type) to which the glvalue refers. 2141 if (E->isPotentiallyEvaluated()) 2142 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2143 StdTypeInfoPtrTy); 2144 2145 QualType OperandTy = E->getExprOperand()->getType(); 2146 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2147 StdTypeInfoPtrTy); 2148 } 2149 2150 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2151 QualType DestTy) { 2152 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2153 if (DestTy->isPointerType()) 2154 return llvm::Constant::getNullValue(DestLTy); 2155 2156 /// C++ [expr.dynamic.cast]p9: 2157 /// A failed cast to reference type throws std::bad_cast 2158 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2159 return nullptr; 2160 2161 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2162 return llvm::UndefValue::get(DestLTy); 2163 } 2164 2165 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2166 const CXXDynamicCastExpr *DCE) { 2167 CGM.EmitExplicitCastExprType(DCE, this); 2168 QualType DestTy = DCE->getTypeAsWritten(); 2169 2170 QualType SrcTy = DCE->getSubExpr()->getType(); 2171 2172 // C++ [expr.dynamic.cast]p7: 2173 // If T is "pointer to cv void," then the result is a pointer to the most 2174 // derived object pointed to by v. 2175 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2176 2177 bool isDynamicCastToVoid; 2178 QualType SrcRecordTy; 2179 QualType DestRecordTy; 2180 if (DestPTy) { 2181 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2182 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2183 DestRecordTy = DestPTy->getPointeeType(); 2184 } else { 2185 isDynamicCastToVoid = false; 2186 SrcRecordTy = SrcTy; 2187 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2188 } 2189 2190 // C++ [class.cdtor]p5: 2191 // If the operand of the dynamic_cast refers to the object under 2192 // construction or destruction and the static type of the operand is not a 2193 // pointer to or object of the constructor or destructor’s own class or one 2194 // of its bases, the dynamic_cast results in undefined behavior. 2195 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2196 SrcRecordTy); 2197 2198 if (DCE->isAlwaysNull()) 2199 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2200 return T; 2201 2202 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2203 2204 // C++ [expr.dynamic.cast]p4: 2205 // If the value of v is a null pointer value in the pointer case, the result 2206 // is the null pointer value of type T. 2207 bool ShouldNullCheckSrcValue = 2208 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2209 SrcRecordTy); 2210 2211 llvm::BasicBlock *CastNull = nullptr; 2212 llvm::BasicBlock *CastNotNull = nullptr; 2213 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2214 2215 if (ShouldNullCheckSrcValue) { 2216 CastNull = createBasicBlock("dynamic_cast.null"); 2217 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2218 2219 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2220 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2221 EmitBlock(CastNotNull); 2222 } 2223 2224 llvm::Value *Value; 2225 if (isDynamicCastToVoid) { 2226 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2227 DestTy); 2228 } else { 2229 assert(DestRecordTy->isRecordType() && 2230 "destination type must be a record type!"); 2231 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2232 DestTy, DestRecordTy, CastEnd); 2233 CastNotNull = Builder.GetInsertBlock(); 2234 } 2235 2236 if (ShouldNullCheckSrcValue) { 2237 EmitBranch(CastEnd); 2238 2239 EmitBlock(CastNull); 2240 EmitBranch(CastEnd); 2241 } 2242 2243 EmitBlock(CastEnd); 2244 2245 if (ShouldNullCheckSrcValue) { 2246 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2247 PHI->addIncoming(Value, CastNotNull); 2248 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2249 2250 Value = PHI; 2251 } 2252 2253 return Value; 2254 } 2255 2256 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2257 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2258 2259 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2260 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2261 e = E->capture_init_end(); 2262 i != e; ++i, ++CurField) { 2263 // Emit initialization 2264 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2265 if (CurField->hasCapturedVLAType()) { 2266 auto VAT = CurField->getCapturedVLAType(); 2267 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2268 } else { 2269 EmitInitializerForField(*CurField, LV, *i); 2270 } 2271 } 2272 } 2273