1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "ConstantEmitter.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Intrinsics.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 struct MemberCallInfo { 30 RequiredArgs ReqArgs; 31 // Number of prefix arguments for the call. Ignores the `this` pointer. 32 unsigned PrefixSize; 33 }; 34 } 35 36 static MemberCallInfo 37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 38 llvm::Value *This, llvm::Value *ImplicitParam, 39 QualType ImplicitParamTy, const CallExpr *CE, 40 CallArgList &Args, CallArgList *RtlArgs) { 41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 42 isa<CXXOperatorCallExpr>(CE)); 43 assert(MD->isInstance() && 44 "Trying to emit a member or operator call expr on a static method!"); 45 ASTContext &C = CGF.getContext(); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 50 Args.add(RValue::get(This), 51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 52 53 // If there is an implicit parameter (e.g. VTT), emit it. 54 if (ImplicitParam) { 55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 56 } 57 58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 60 unsigned PrefixSize = Args.size() - 1; 61 62 // And the rest of the call args. 63 if (RtlArgs) { 64 // Special case: if the caller emitted the arguments right-to-left already 65 // (prior to emitting the *this argument), we're done. This happens for 66 // assignment operators. 67 Args.addFrom(*RtlArgs); 68 } else if (CE) { 69 // Special case: skip first argument of CXXOperatorCall (it is "this"). 70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 72 CE->getDirectCallee()); 73 } else { 74 assert( 75 FPT->getNumParams() == 0 && 76 "No CallExpr specified for function with non-zero number of arguments"); 77 } 78 return {required, PrefixSize}; 79 } 80 81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 82 const CXXMethodDecl *MD, const CGCallee &Callee, 83 ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 92 return EmitCall(FnInfo, Callee, ReturnValue, Args); 93 } 94 95 RValue CodeGenFunction::EmitCXXDestructorCall( 96 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 97 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 98 StructorType Type) { 99 CallArgList Args; 100 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 101 ImplicitParamTy, CE, Args, nullptr); 102 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 103 Callee, ReturnValueSlot(), Args); 104 } 105 106 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 107 const CXXPseudoDestructorExpr *E) { 108 QualType DestroyedType = E->getDestroyedType(); 109 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 110 // Automatic Reference Counting: 111 // If the pseudo-expression names a retainable object with weak or 112 // strong lifetime, the object shall be released. 113 Expr *BaseExpr = E->getBase(); 114 Address BaseValue = Address::invalid(); 115 Qualifiers BaseQuals; 116 117 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 118 if (E->isArrow()) { 119 BaseValue = EmitPointerWithAlignment(BaseExpr); 120 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 121 BaseQuals = PTy->getPointeeType().getQualifiers(); 122 } else { 123 LValue BaseLV = EmitLValue(BaseExpr); 124 BaseValue = BaseLV.getAddress(); 125 QualType BaseTy = BaseExpr->getType(); 126 BaseQuals = BaseTy.getQualifiers(); 127 } 128 129 switch (DestroyedType.getObjCLifetime()) { 130 case Qualifiers::OCL_None: 131 case Qualifiers::OCL_ExplicitNone: 132 case Qualifiers::OCL_Autoreleasing: 133 break; 134 135 case Qualifiers::OCL_Strong: 136 EmitARCRelease(Builder.CreateLoad(BaseValue, 137 DestroyedType.isVolatileQualified()), 138 ARCPreciseLifetime); 139 break; 140 141 case Qualifiers::OCL_Weak: 142 EmitARCDestroyWeak(BaseValue); 143 break; 144 } 145 } else { 146 // C++ [expr.pseudo]p1: 147 // The result shall only be used as the operand for the function call 148 // operator (), and the result of such a call has type void. The only 149 // effect is the evaluation of the postfix-expression before the dot or 150 // arrow. 151 EmitIgnoredExpr(E->getBase()); 152 } 153 154 return RValue::get(nullptr); 155 } 156 157 static CXXRecordDecl *getCXXRecord(const Expr *E) { 158 QualType T = E->getType(); 159 if (const PointerType *PTy = T->getAs<PointerType>()) 160 T = PTy->getPointeeType(); 161 const RecordType *Ty = T->castAs<RecordType>(); 162 return cast<CXXRecordDecl>(Ty->getDecl()); 163 } 164 165 // Note: This function also emit constructor calls to support a MSVC 166 // extensions allowing explicit constructor function call. 167 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 168 ReturnValueSlot ReturnValue) { 169 const Expr *callee = CE->getCallee()->IgnoreParens(); 170 171 if (isa<BinaryOperator>(callee)) 172 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 173 174 const MemberExpr *ME = cast<MemberExpr>(callee); 175 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 176 177 if (MD->isStatic()) { 178 // The method is static, emit it as we would a regular call. 179 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 180 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 181 ReturnValue); 182 } 183 184 bool HasQualifier = ME->hasQualifier(); 185 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 186 bool IsArrow = ME->isArrow(); 187 const Expr *Base = ME->getBase(); 188 189 return EmitCXXMemberOrOperatorMemberCallExpr( 190 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 191 } 192 193 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 194 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 195 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 196 const Expr *Base) { 197 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 198 199 // Compute the object pointer. 200 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 201 202 const CXXMethodDecl *DevirtualizedMethod = nullptr; 203 if (CanUseVirtualCall && 204 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 205 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 206 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 207 assert(DevirtualizedMethod); 208 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 209 const Expr *Inner = Base->ignoreParenBaseCasts(); 210 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 211 MD->getReturnType().getCanonicalType()) 212 // If the return types are not the same, this might be a case where more 213 // code needs to run to compensate for it. For example, the derived 214 // method might return a type that inherits form from the return 215 // type of MD and has a prefix. 216 // For now we just avoid devirtualizing these covariant cases. 217 DevirtualizedMethod = nullptr; 218 else if (getCXXRecord(Inner) == DevirtualizedClass) 219 // If the class of the Inner expression is where the dynamic method 220 // is defined, build the this pointer from it. 221 Base = Inner; 222 else if (getCXXRecord(Base) != DevirtualizedClass) { 223 // If the method is defined in a class that is not the best dynamic 224 // one or the one of the full expression, we would have to build 225 // a derived-to-base cast to compute the correct this pointer, but 226 // we don't have support for that yet, so do a virtual call. 227 DevirtualizedMethod = nullptr; 228 } 229 } 230 231 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 232 // operator before the LHS. 233 CallArgList RtlArgStorage; 234 CallArgList *RtlArgs = nullptr; 235 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 236 if (OCE->isAssignmentOp()) { 237 RtlArgs = &RtlArgStorage; 238 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 239 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 240 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 241 } 242 } 243 244 Address This = Address::invalid(); 245 if (IsArrow) 246 This = EmitPointerWithAlignment(Base); 247 else 248 This = EmitLValue(Base).getAddress(); 249 250 251 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 252 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 253 if (isa<CXXConstructorDecl>(MD) && 254 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 255 return RValue::get(nullptr); 256 257 if (!MD->getParent()->mayInsertExtraPadding()) { 258 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 259 // We don't like to generate the trivial copy/move assignment operator 260 // when it isn't necessary; just produce the proper effect here. 261 LValue RHS = isa<CXXOperatorCallExpr>(CE) 262 ? MakeNaturalAlignAddrLValue( 263 (*RtlArgs)[0].RV.getScalarVal(), 264 (*(CE->arg_begin() + 1))->getType()) 265 : EmitLValue(*CE->arg_begin()); 266 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 267 return RValue::get(This.getPointer()); 268 } 269 270 if (isa<CXXConstructorDecl>(MD) && 271 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 272 // Trivial move and copy ctor are the same. 273 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 274 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 275 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 276 return RValue::get(This.getPointer()); 277 } 278 llvm_unreachable("unknown trivial member function"); 279 } 280 } 281 282 // Compute the function type we're calling. 283 const CXXMethodDecl *CalleeDecl = 284 DevirtualizedMethod ? DevirtualizedMethod : MD; 285 const CGFunctionInfo *FInfo = nullptr; 286 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 287 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 288 Dtor, StructorType::Complete); 289 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 290 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 291 Ctor, StructorType::Complete); 292 else 293 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 294 295 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 296 297 // C++11 [class.mfct.non-static]p2: 298 // If a non-static member function of a class X is called for an object that 299 // is not of type X, or of a type derived from X, the behavior is undefined. 300 SourceLocation CallLoc; 301 ASTContext &C = getContext(); 302 if (CE) 303 CallLoc = CE->getExprLoc(); 304 305 SanitizerSet SkippedChecks; 306 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 307 auto *IOA = CMCE->getImplicitObjectArgument(); 308 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 309 if (IsImplicitObjectCXXThis) 310 SkippedChecks.set(SanitizerKind::Alignment, true); 311 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 312 SkippedChecks.set(SanitizerKind::Null, true); 313 } 314 EmitTypeCheck( 315 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 316 : CodeGenFunction::TCK_MemberCall, 317 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 318 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 319 320 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 321 // 'CalleeDecl' instead. 322 323 // C++ [class.virtual]p12: 324 // Explicit qualification with the scope operator (5.1) suppresses the 325 // virtual call mechanism. 326 // 327 // We also don't emit a virtual call if the base expression has a record type 328 // because then we know what the type is. 329 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 330 331 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 332 assert(CE->arg_begin() == CE->arg_end() && 333 "Destructor shouldn't have explicit parameters"); 334 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 335 if (UseVirtualCall) { 336 CGM.getCXXABI().EmitVirtualDestructorCall( 337 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 338 } else { 339 CGCallee Callee; 340 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 341 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 342 else if (!DevirtualizedMethod) 343 Callee = CGCallee::forDirect( 344 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 345 Dtor); 346 else { 347 const CXXDestructorDecl *DDtor = 348 cast<CXXDestructorDecl>(DevirtualizedMethod); 349 Callee = CGCallee::forDirect( 350 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 351 DDtor); 352 } 353 EmitCXXMemberOrOperatorCall( 354 CalleeDecl, Callee, ReturnValue, This.getPointer(), 355 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 356 } 357 return RValue::get(nullptr); 358 } 359 360 CGCallee Callee; 361 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 362 Callee = CGCallee::forDirect( 363 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 364 Ctor); 365 } else if (UseVirtualCall) { 366 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 367 CE->getLocStart()); 368 } else { 369 if (SanOpts.has(SanitizerKind::CFINVCall) && 370 MD->getParent()->isDynamicClass()) { 371 llvm::Value *VTable; 372 const CXXRecordDecl *RD; 373 std::tie(VTable, RD) = 374 CGM.getCXXABI().LoadVTablePtr(*this, This, MD->getParent()); 375 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getLocStart()); 376 } 377 378 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 379 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 380 else if (!DevirtualizedMethod) 381 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 382 else { 383 Callee = CGCallee::forDirect( 384 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 385 DevirtualizedMethod); 386 } 387 } 388 389 if (MD->isVirtual()) { 390 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 391 *this, CalleeDecl, This, UseVirtualCall); 392 } 393 394 return EmitCXXMemberOrOperatorCall( 395 CalleeDecl, Callee, ReturnValue, This.getPointer(), 396 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 397 } 398 399 RValue 400 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 401 ReturnValueSlot ReturnValue) { 402 const BinaryOperator *BO = 403 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 404 const Expr *BaseExpr = BO->getLHS(); 405 const Expr *MemFnExpr = BO->getRHS(); 406 407 const MemberPointerType *MPT = 408 MemFnExpr->getType()->castAs<MemberPointerType>(); 409 410 const FunctionProtoType *FPT = 411 MPT->getPointeeType()->castAs<FunctionProtoType>(); 412 const CXXRecordDecl *RD = 413 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 414 415 // Emit the 'this' pointer. 416 Address This = Address::invalid(); 417 if (BO->getOpcode() == BO_PtrMemI) 418 This = EmitPointerWithAlignment(BaseExpr); 419 else 420 This = EmitLValue(BaseExpr).getAddress(); 421 422 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 423 QualType(MPT->getClass(), 0)); 424 425 // Get the member function pointer. 426 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 427 428 // Ask the ABI to load the callee. Note that This is modified. 429 llvm::Value *ThisPtrForCall = nullptr; 430 CGCallee Callee = 431 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 432 ThisPtrForCall, MemFnPtr, MPT); 433 434 CallArgList Args; 435 436 QualType ThisType = 437 getContext().getPointerType(getContext().getTagDeclType(RD)); 438 439 // Push the this ptr. 440 Args.add(RValue::get(ThisPtrForCall), ThisType); 441 442 RequiredArgs required = 443 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 444 445 // And the rest of the call args 446 EmitCallArgs(Args, FPT, E->arguments()); 447 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 448 /*PrefixSize=*/0), 449 Callee, ReturnValue, Args); 450 } 451 452 RValue 453 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 454 const CXXMethodDecl *MD, 455 ReturnValueSlot ReturnValue) { 456 assert(MD->isInstance() && 457 "Trying to emit a member call expr on a static method!"); 458 return EmitCXXMemberOrOperatorMemberCallExpr( 459 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 460 /*IsArrow=*/false, E->getArg(0)); 461 } 462 463 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 464 ReturnValueSlot ReturnValue) { 465 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 466 } 467 468 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 469 Address DestPtr, 470 const CXXRecordDecl *Base) { 471 if (Base->isEmpty()) 472 return; 473 474 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 475 476 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 477 CharUnits NVSize = Layout.getNonVirtualSize(); 478 479 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 480 // present, they are initialized by the most derived class before calling the 481 // constructor. 482 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 483 Stores.emplace_back(CharUnits::Zero(), NVSize); 484 485 // Each store is split by the existence of a vbptr. 486 CharUnits VBPtrWidth = CGF.getPointerSize(); 487 std::vector<CharUnits> VBPtrOffsets = 488 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 489 for (CharUnits VBPtrOffset : VBPtrOffsets) { 490 // Stop before we hit any virtual base pointers located in virtual bases. 491 if (VBPtrOffset >= NVSize) 492 break; 493 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 494 CharUnits LastStoreOffset = LastStore.first; 495 CharUnits LastStoreSize = LastStore.second; 496 497 CharUnits SplitBeforeOffset = LastStoreOffset; 498 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 499 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 500 if (!SplitBeforeSize.isZero()) 501 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 502 503 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 504 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 505 assert(!SplitAfterSize.isNegative() && "negative store size!"); 506 if (!SplitAfterSize.isZero()) 507 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 508 } 509 510 // If the type contains a pointer to data member we can't memset it to zero. 511 // Instead, create a null constant and copy it to the destination. 512 // TODO: there are other patterns besides zero that we can usefully memset, 513 // like -1, which happens to be the pattern used by member-pointers. 514 // TODO: isZeroInitializable can be over-conservative in the case where a 515 // virtual base contains a member pointer. 516 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 517 if (!NullConstantForBase->isNullValue()) { 518 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 519 CGF.CGM.getModule(), NullConstantForBase->getType(), 520 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 521 NullConstantForBase, Twine()); 522 523 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 524 DestPtr.getAlignment()); 525 NullVariable->setAlignment(Align.getQuantity()); 526 527 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 528 529 // Get and call the appropriate llvm.memcpy overload. 530 for (std::pair<CharUnits, CharUnits> Store : Stores) { 531 CharUnits StoreOffset = Store.first; 532 CharUnits StoreSize = Store.second; 533 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 534 CGF.Builder.CreateMemCpy( 535 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 536 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 537 StoreSizeVal); 538 } 539 540 // Otherwise, just memset the whole thing to zero. This is legal 541 // because in LLVM, all default initializers (other than the ones we just 542 // handled above) are guaranteed to have a bit pattern of all zeros. 543 } else { 544 for (std::pair<CharUnits, CharUnits> Store : Stores) { 545 CharUnits StoreOffset = Store.first; 546 CharUnits StoreSize = Store.second; 547 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 548 CGF.Builder.CreateMemSet( 549 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 550 CGF.Builder.getInt8(0), StoreSizeVal); 551 } 552 } 553 } 554 555 void 556 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 557 AggValueSlot Dest) { 558 assert(!Dest.isIgnored() && "Must have a destination!"); 559 const CXXConstructorDecl *CD = E->getConstructor(); 560 561 // If we require zero initialization before (or instead of) calling the 562 // constructor, as can be the case with a non-user-provided default 563 // constructor, emit the zero initialization now, unless destination is 564 // already zeroed. 565 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 566 switch (E->getConstructionKind()) { 567 case CXXConstructExpr::CK_Delegating: 568 case CXXConstructExpr::CK_Complete: 569 EmitNullInitialization(Dest.getAddress(), E->getType()); 570 break; 571 case CXXConstructExpr::CK_VirtualBase: 572 case CXXConstructExpr::CK_NonVirtualBase: 573 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 574 CD->getParent()); 575 break; 576 } 577 } 578 579 // If this is a call to a trivial default constructor, do nothing. 580 if (CD->isTrivial() && CD->isDefaultConstructor()) 581 return; 582 583 // Elide the constructor if we're constructing from a temporary. 584 // The temporary check is required because Sema sets this on NRVO 585 // returns. 586 if (getLangOpts().ElideConstructors && E->isElidable()) { 587 assert(getContext().hasSameUnqualifiedType(E->getType(), 588 E->getArg(0)->getType())); 589 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 590 EmitAggExpr(E->getArg(0), Dest); 591 return; 592 } 593 } 594 595 if (const ArrayType *arrayType 596 = getContext().getAsArrayType(E->getType())) { 597 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 598 } else { 599 CXXCtorType Type = Ctor_Complete; 600 bool ForVirtualBase = false; 601 bool Delegating = false; 602 603 switch (E->getConstructionKind()) { 604 case CXXConstructExpr::CK_Delegating: 605 // We should be emitting a constructor; GlobalDecl will assert this 606 Type = CurGD.getCtorType(); 607 Delegating = true; 608 break; 609 610 case CXXConstructExpr::CK_Complete: 611 Type = Ctor_Complete; 612 break; 613 614 case CXXConstructExpr::CK_VirtualBase: 615 ForVirtualBase = true; 616 LLVM_FALLTHROUGH; 617 618 case CXXConstructExpr::CK_NonVirtualBase: 619 Type = Ctor_Base; 620 } 621 622 // Call the constructor. 623 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 624 Dest.getAddress(), E); 625 } 626 } 627 628 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 629 const Expr *Exp) { 630 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 631 Exp = E->getSubExpr(); 632 assert(isa<CXXConstructExpr>(Exp) && 633 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 634 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 635 const CXXConstructorDecl *CD = E->getConstructor(); 636 RunCleanupsScope Scope(*this); 637 638 // If we require zero initialization before (or instead of) calling the 639 // constructor, as can be the case with a non-user-provided default 640 // constructor, emit the zero initialization now. 641 // FIXME. Do I still need this for a copy ctor synthesis? 642 if (E->requiresZeroInitialization()) 643 EmitNullInitialization(Dest, E->getType()); 644 645 assert(!getContext().getAsConstantArrayType(E->getType()) 646 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 647 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 648 } 649 650 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 651 const CXXNewExpr *E) { 652 if (!E->isArray()) 653 return CharUnits::Zero(); 654 655 // No cookie is required if the operator new[] being used is the 656 // reserved placement operator new[]. 657 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 658 return CharUnits::Zero(); 659 660 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 661 } 662 663 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 664 const CXXNewExpr *e, 665 unsigned minElements, 666 llvm::Value *&numElements, 667 llvm::Value *&sizeWithoutCookie) { 668 QualType type = e->getAllocatedType(); 669 670 if (!e->isArray()) { 671 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 672 sizeWithoutCookie 673 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 674 return sizeWithoutCookie; 675 } 676 677 // The width of size_t. 678 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 679 680 // Figure out the cookie size. 681 llvm::APInt cookieSize(sizeWidth, 682 CalculateCookiePadding(CGF, e).getQuantity()); 683 684 // Emit the array size expression. 685 // We multiply the size of all dimensions for NumElements. 686 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 687 numElements = 688 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 689 if (!numElements) 690 numElements = CGF.EmitScalarExpr(e->getArraySize()); 691 assert(isa<llvm::IntegerType>(numElements->getType())); 692 693 // The number of elements can be have an arbitrary integer type; 694 // essentially, we need to multiply it by a constant factor, add a 695 // cookie size, and verify that the result is representable as a 696 // size_t. That's just a gloss, though, and it's wrong in one 697 // important way: if the count is negative, it's an error even if 698 // the cookie size would bring the total size >= 0. 699 bool isSigned 700 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 701 llvm::IntegerType *numElementsType 702 = cast<llvm::IntegerType>(numElements->getType()); 703 unsigned numElementsWidth = numElementsType->getBitWidth(); 704 705 // Compute the constant factor. 706 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 707 while (const ConstantArrayType *CAT 708 = CGF.getContext().getAsConstantArrayType(type)) { 709 type = CAT->getElementType(); 710 arraySizeMultiplier *= CAT->getSize(); 711 } 712 713 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 714 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 715 typeSizeMultiplier *= arraySizeMultiplier; 716 717 // This will be a size_t. 718 llvm::Value *size; 719 720 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 721 // Don't bloat the -O0 code. 722 if (llvm::ConstantInt *numElementsC = 723 dyn_cast<llvm::ConstantInt>(numElements)) { 724 const llvm::APInt &count = numElementsC->getValue(); 725 726 bool hasAnyOverflow = false; 727 728 // If 'count' was a negative number, it's an overflow. 729 if (isSigned && count.isNegative()) 730 hasAnyOverflow = true; 731 732 // We want to do all this arithmetic in size_t. If numElements is 733 // wider than that, check whether it's already too big, and if so, 734 // overflow. 735 else if (numElementsWidth > sizeWidth && 736 numElementsWidth - sizeWidth > count.countLeadingZeros()) 737 hasAnyOverflow = true; 738 739 // Okay, compute a count at the right width. 740 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 741 742 // If there is a brace-initializer, we cannot allocate fewer elements than 743 // there are initializers. If we do, that's treated like an overflow. 744 if (adjustedCount.ult(minElements)) 745 hasAnyOverflow = true; 746 747 // Scale numElements by that. This might overflow, but we don't 748 // care because it only overflows if allocationSize does, too, and 749 // if that overflows then we shouldn't use this. 750 numElements = llvm::ConstantInt::get(CGF.SizeTy, 751 adjustedCount * arraySizeMultiplier); 752 753 // Compute the size before cookie, and track whether it overflowed. 754 bool overflow; 755 llvm::APInt allocationSize 756 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 757 hasAnyOverflow |= overflow; 758 759 // Add in the cookie, and check whether it's overflowed. 760 if (cookieSize != 0) { 761 // Save the current size without a cookie. This shouldn't be 762 // used if there was overflow. 763 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 764 765 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 766 hasAnyOverflow |= overflow; 767 } 768 769 // On overflow, produce a -1 so operator new will fail. 770 if (hasAnyOverflow) { 771 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 772 } else { 773 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 774 } 775 776 // Otherwise, we might need to use the overflow intrinsics. 777 } else { 778 // There are up to five conditions we need to test for: 779 // 1) if isSigned, we need to check whether numElements is negative; 780 // 2) if numElementsWidth > sizeWidth, we need to check whether 781 // numElements is larger than something representable in size_t; 782 // 3) if minElements > 0, we need to check whether numElements is smaller 783 // than that. 784 // 4) we need to compute 785 // sizeWithoutCookie := numElements * typeSizeMultiplier 786 // and check whether it overflows; and 787 // 5) if we need a cookie, we need to compute 788 // size := sizeWithoutCookie + cookieSize 789 // and check whether it overflows. 790 791 llvm::Value *hasOverflow = nullptr; 792 793 // If numElementsWidth > sizeWidth, then one way or another, we're 794 // going to have to do a comparison for (2), and this happens to 795 // take care of (1), too. 796 if (numElementsWidth > sizeWidth) { 797 llvm::APInt threshold(numElementsWidth, 1); 798 threshold <<= sizeWidth; 799 800 llvm::Value *thresholdV 801 = llvm::ConstantInt::get(numElementsType, threshold); 802 803 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 804 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 805 806 // Otherwise, if we're signed, we want to sext up to size_t. 807 } else if (isSigned) { 808 if (numElementsWidth < sizeWidth) 809 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 810 811 // If there's a non-1 type size multiplier, then we can do the 812 // signedness check at the same time as we do the multiply 813 // because a negative number times anything will cause an 814 // unsigned overflow. Otherwise, we have to do it here. But at least 815 // in this case, we can subsume the >= minElements check. 816 if (typeSizeMultiplier == 1) 817 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 818 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 819 820 // Otherwise, zext up to size_t if necessary. 821 } else if (numElementsWidth < sizeWidth) { 822 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 823 } 824 825 assert(numElements->getType() == CGF.SizeTy); 826 827 if (minElements) { 828 // Don't allow allocation of fewer elements than we have initializers. 829 if (!hasOverflow) { 830 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 831 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 832 } else if (numElementsWidth > sizeWidth) { 833 // The other existing overflow subsumes this check. 834 // We do an unsigned comparison, since any signed value < -1 is 835 // taken care of either above or below. 836 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 837 CGF.Builder.CreateICmpULT(numElements, 838 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 839 } 840 } 841 842 size = numElements; 843 844 // Multiply by the type size if necessary. This multiplier 845 // includes all the factors for nested arrays. 846 // 847 // This step also causes numElements to be scaled up by the 848 // nested-array factor if necessary. Overflow on this computation 849 // can be ignored because the result shouldn't be used if 850 // allocation fails. 851 if (typeSizeMultiplier != 1) { 852 llvm::Value *umul_with_overflow 853 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 854 855 llvm::Value *tsmV = 856 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 857 llvm::Value *result = 858 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 859 860 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 861 if (hasOverflow) 862 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 863 else 864 hasOverflow = overflowed; 865 866 size = CGF.Builder.CreateExtractValue(result, 0); 867 868 // Also scale up numElements by the array size multiplier. 869 if (arraySizeMultiplier != 1) { 870 // If the base element type size is 1, then we can re-use the 871 // multiply we just did. 872 if (typeSize.isOne()) { 873 assert(arraySizeMultiplier == typeSizeMultiplier); 874 numElements = size; 875 876 // Otherwise we need a separate multiply. 877 } else { 878 llvm::Value *asmV = 879 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 880 numElements = CGF.Builder.CreateMul(numElements, asmV); 881 } 882 } 883 } else { 884 // numElements doesn't need to be scaled. 885 assert(arraySizeMultiplier == 1); 886 } 887 888 // Add in the cookie size if necessary. 889 if (cookieSize != 0) { 890 sizeWithoutCookie = size; 891 892 llvm::Value *uadd_with_overflow 893 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 894 895 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 896 llvm::Value *result = 897 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 898 899 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 900 if (hasOverflow) 901 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 902 else 903 hasOverflow = overflowed; 904 905 size = CGF.Builder.CreateExtractValue(result, 0); 906 } 907 908 // If we had any possibility of dynamic overflow, make a select to 909 // overwrite 'size' with an all-ones value, which should cause 910 // operator new to throw. 911 if (hasOverflow) 912 size = CGF.Builder.CreateSelect(hasOverflow, 913 llvm::Constant::getAllOnesValue(CGF.SizeTy), 914 size); 915 } 916 917 if (cookieSize == 0) 918 sizeWithoutCookie = size; 919 else 920 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 921 922 return size; 923 } 924 925 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 926 QualType AllocType, Address NewPtr) { 927 // FIXME: Refactor with EmitExprAsInit. 928 switch (CGF.getEvaluationKind(AllocType)) { 929 case TEK_Scalar: 930 CGF.EmitScalarInit(Init, nullptr, 931 CGF.MakeAddrLValue(NewPtr, AllocType), false); 932 return; 933 case TEK_Complex: 934 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 935 /*isInit*/ true); 936 return; 937 case TEK_Aggregate: { 938 AggValueSlot Slot 939 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 940 AggValueSlot::IsDestructed, 941 AggValueSlot::DoesNotNeedGCBarriers, 942 AggValueSlot::IsNotAliased); 943 CGF.EmitAggExpr(Init, Slot); 944 return; 945 } 946 } 947 llvm_unreachable("bad evaluation kind"); 948 } 949 950 void CodeGenFunction::EmitNewArrayInitializer( 951 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 952 Address BeginPtr, llvm::Value *NumElements, 953 llvm::Value *AllocSizeWithoutCookie) { 954 // If we have a type with trivial initialization and no initializer, 955 // there's nothing to do. 956 if (!E->hasInitializer()) 957 return; 958 959 Address CurPtr = BeginPtr; 960 961 unsigned InitListElements = 0; 962 963 const Expr *Init = E->getInitializer(); 964 Address EndOfInit = Address::invalid(); 965 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 966 EHScopeStack::stable_iterator Cleanup; 967 llvm::Instruction *CleanupDominator = nullptr; 968 969 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 970 CharUnits ElementAlign = 971 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 972 973 // Attempt to perform zero-initialization using memset. 974 auto TryMemsetInitialization = [&]() -> bool { 975 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 976 // we can initialize with a memset to -1. 977 if (!CGM.getTypes().isZeroInitializable(ElementType)) 978 return false; 979 980 // Optimization: since zero initialization will just set the memory 981 // to all zeroes, generate a single memset to do it in one shot. 982 983 // Subtract out the size of any elements we've already initialized. 984 auto *RemainingSize = AllocSizeWithoutCookie; 985 if (InitListElements) { 986 // We know this can't overflow; we check this when doing the allocation. 987 auto *InitializedSize = llvm::ConstantInt::get( 988 RemainingSize->getType(), 989 getContext().getTypeSizeInChars(ElementType).getQuantity() * 990 InitListElements); 991 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 992 } 993 994 // Create the memset. 995 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 996 return true; 997 }; 998 999 // If the initializer is an initializer list, first do the explicit elements. 1000 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1001 // Initializing from a (braced) string literal is a special case; the init 1002 // list element does not initialize a (single) array element. 1003 if (ILE->isStringLiteralInit()) { 1004 // Initialize the initial portion of length equal to that of the string 1005 // literal. The allocation must be for at least this much; we emitted a 1006 // check for that earlier. 1007 AggValueSlot Slot = 1008 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1009 AggValueSlot::IsDestructed, 1010 AggValueSlot::DoesNotNeedGCBarriers, 1011 AggValueSlot::IsNotAliased); 1012 EmitAggExpr(ILE->getInit(0), Slot); 1013 1014 // Move past these elements. 1015 InitListElements = 1016 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1017 ->getSize().getZExtValue(); 1018 CurPtr = 1019 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1020 Builder.getSize(InitListElements), 1021 "string.init.end"), 1022 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1023 ElementSize)); 1024 1025 // Zero out the rest, if any remain. 1026 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1027 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1028 bool OK = TryMemsetInitialization(); 1029 (void)OK; 1030 assert(OK && "couldn't memset character type?"); 1031 } 1032 return; 1033 } 1034 1035 InitListElements = ILE->getNumInits(); 1036 1037 // If this is a multi-dimensional array new, we will initialize multiple 1038 // elements with each init list element. 1039 QualType AllocType = E->getAllocatedType(); 1040 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1041 AllocType->getAsArrayTypeUnsafe())) { 1042 ElementTy = ConvertTypeForMem(AllocType); 1043 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1044 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1045 } 1046 1047 // Enter a partial-destruction Cleanup if necessary. 1048 if (needsEHCleanup(DtorKind)) { 1049 // In principle we could tell the Cleanup where we are more 1050 // directly, but the control flow can get so varied here that it 1051 // would actually be quite complex. Therefore we go through an 1052 // alloca. 1053 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1054 "array.init.end"); 1055 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1056 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1057 ElementType, ElementAlign, 1058 getDestroyer(DtorKind)); 1059 Cleanup = EHStack.stable_begin(); 1060 } 1061 1062 CharUnits StartAlign = CurPtr.getAlignment(); 1063 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1064 // Tell the cleanup that it needs to destroy up to this 1065 // element. TODO: some of these stores can be trivially 1066 // observed to be unnecessary. 1067 if (EndOfInit.isValid()) { 1068 auto FinishedPtr = 1069 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1070 Builder.CreateStore(FinishedPtr, EndOfInit); 1071 } 1072 // FIXME: If the last initializer is an incomplete initializer list for 1073 // an array, and we have an array filler, we can fold together the two 1074 // initialization loops. 1075 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1076 ILE->getInit(i)->getType(), CurPtr); 1077 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1078 Builder.getSize(1), 1079 "array.exp.next"), 1080 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1081 } 1082 1083 // The remaining elements are filled with the array filler expression. 1084 Init = ILE->getArrayFiller(); 1085 1086 // Extract the initializer for the individual array elements by pulling 1087 // out the array filler from all the nested initializer lists. This avoids 1088 // generating a nested loop for the initialization. 1089 while (Init && Init->getType()->isConstantArrayType()) { 1090 auto *SubILE = dyn_cast<InitListExpr>(Init); 1091 if (!SubILE) 1092 break; 1093 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1094 Init = SubILE->getArrayFiller(); 1095 } 1096 1097 // Switch back to initializing one base element at a time. 1098 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1099 } 1100 1101 // If all elements have already been initialized, skip any further 1102 // initialization. 1103 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1104 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1105 // If there was a Cleanup, deactivate it. 1106 if (CleanupDominator) 1107 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1108 return; 1109 } 1110 1111 assert(Init && "have trailing elements to initialize but no initializer"); 1112 1113 // If this is a constructor call, try to optimize it out, and failing that 1114 // emit a single loop to initialize all remaining elements. 1115 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1116 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1117 if (Ctor->isTrivial()) { 1118 // If new expression did not specify value-initialization, then there 1119 // is no initialization. 1120 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1121 return; 1122 1123 if (TryMemsetInitialization()) 1124 return; 1125 } 1126 1127 // Store the new Cleanup position for irregular Cleanups. 1128 // 1129 // FIXME: Share this cleanup with the constructor call emission rather than 1130 // having it create a cleanup of its own. 1131 if (EndOfInit.isValid()) 1132 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1133 1134 // Emit a constructor call loop to initialize the remaining elements. 1135 if (InitListElements) 1136 NumElements = Builder.CreateSub( 1137 NumElements, 1138 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1139 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1140 CCE->requiresZeroInitialization()); 1141 return; 1142 } 1143 1144 // If this is value-initialization, we can usually use memset. 1145 ImplicitValueInitExpr IVIE(ElementType); 1146 if (isa<ImplicitValueInitExpr>(Init)) { 1147 if (TryMemsetInitialization()) 1148 return; 1149 1150 // Switch to an ImplicitValueInitExpr for the element type. This handles 1151 // only one case: multidimensional array new of pointers to members. In 1152 // all other cases, we already have an initializer for the array element. 1153 Init = &IVIE; 1154 } 1155 1156 // At this point we should have found an initializer for the individual 1157 // elements of the array. 1158 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1159 "got wrong type of element to initialize"); 1160 1161 // If we have an empty initializer list, we can usually use memset. 1162 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1163 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1164 return; 1165 1166 // If we have a struct whose every field is value-initialized, we can 1167 // usually use memset. 1168 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1169 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1170 if (RType->getDecl()->isStruct()) { 1171 unsigned NumElements = 0; 1172 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1173 NumElements = CXXRD->getNumBases(); 1174 for (auto *Field : RType->getDecl()->fields()) 1175 if (!Field->isUnnamedBitfield()) 1176 ++NumElements; 1177 // FIXME: Recurse into nested InitListExprs. 1178 if (ILE->getNumInits() == NumElements) 1179 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1180 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1181 --NumElements; 1182 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1183 return; 1184 } 1185 } 1186 } 1187 1188 // Create the loop blocks. 1189 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1190 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1191 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1192 1193 // Find the end of the array, hoisted out of the loop. 1194 llvm::Value *EndPtr = 1195 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1196 1197 // If the number of elements isn't constant, we have to now check if there is 1198 // anything left to initialize. 1199 if (!ConstNum) { 1200 llvm::Value *IsEmpty = 1201 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1202 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1203 } 1204 1205 // Enter the loop. 1206 EmitBlock(LoopBB); 1207 1208 // Set up the current-element phi. 1209 llvm::PHINode *CurPtrPhi = 1210 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1211 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1212 1213 CurPtr = Address(CurPtrPhi, ElementAlign); 1214 1215 // Store the new Cleanup position for irregular Cleanups. 1216 if (EndOfInit.isValid()) 1217 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1218 1219 // Enter a partial-destruction Cleanup if necessary. 1220 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1221 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1222 ElementType, ElementAlign, 1223 getDestroyer(DtorKind)); 1224 Cleanup = EHStack.stable_begin(); 1225 CleanupDominator = Builder.CreateUnreachable(); 1226 } 1227 1228 // Emit the initializer into this element. 1229 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1230 1231 // Leave the Cleanup if we entered one. 1232 if (CleanupDominator) { 1233 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1234 CleanupDominator->eraseFromParent(); 1235 } 1236 1237 // Advance to the next element by adjusting the pointer type as necessary. 1238 llvm::Value *NextPtr = 1239 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1240 "array.next"); 1241 1242 // Check whether we've gotten to the end of the array and, if so, 1243 // exit the loop. 1244 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1245 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1246 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1247 1248 EmitBlock(ContBB); 1249 } 1250 1251 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1252 QualType ElementType, llvm::Type *ElementTy, 1253 Address NewPtr, llvm::Value *NumElements, 1254 llvm::Value *AllocSizeWithoutCookie) { 1255 ApplyDebugLocation DL(CGF, E); 1256 if (E->isArray()) 1257 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1258 AllocSizeWithoutCookie); 1259 else if (const Expr *Init = E->getInitializer()) 1260 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1261 } 1262 1263 /// Emit a call to an operator new or operator delete function, as implicitly 1264 /// created by new-expressions and delete-expressions. 1265 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1266 const FunctionDecl *CalleeDecl, 1267 const FunctionProtoType *CalleeType, 1268 const CallArgList &Args) { 1269 llvm::Instruction *CallOrInvoke; 1270 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1271 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1272 RValue RV = 1273 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1274 Args, CalleeType, /*chainCall=*/false), 1275 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1276 1277 /// C++1y [expr.new]p10: 1278 /// [In a new-expression,] an implementation is allowed to omit a call 1279 /// to a replaceable global allocation function. 1280 /// 1281 /// We model such elidable calls with the 'builtin' attribute. 1282 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1283 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1284 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1285 // FIXME: Add addAttribute to CallSite. 1286 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1287 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1288 llvm::Attribute::Builtin); 1289 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1290 II->addAttribute(llvm::AttributeList::FunctionIndex, 1291 llvm::Attribute::Builtin); 1292 else 1293 llvm_unreachable("unexpected kind of call instruction"); 1294 } 1295 1296 return RV; 1297 } 1298 1299 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1300 const Expr *Arg, 1301 bool IsDelete) { 1302 CallArgList Args; 1303 const Stmt *ArgS = Arg; 1304 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1305 // Find the allocation or deallocation function that we're calling. 1306 ASTContext &Ctx = getContext(); 1307 DeclarationName Name = Ctx.DeclarationNames 1308 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1309 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1310 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1311 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1312 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1313 llvm_unreachable("predeclared global operator new/delete is missing"); 1314 } 1315 1316 namespace { 1317 /// The parameters to pass to a usual operator delete. 1318 struct UsualDeleteParams { 1319 bool DestroyingDelete = false; 1320 bool Size = false; 1321 bool Alignment = false; 1322 }; 1323 } 1324 1325 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1326 UsualDeleteParams Params; 1327 1328 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1329 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1330 1331 // The first argument is always a void*. 1332 ++AI; 1333 1334 // The next parameter may be a std::destroying_delete_t. 1335 if (FD->isDestroyingOperatorDelete()) { 1336 Params.DestroyingDelete = true; 1337 assert(AI != AE); 1338 ++AI; 1339 } 1340 1341 // Figure out what other parameters we should be implicitly passing. 1342 if (AI != AE && (*AI)->isIntegerType()) { 1343 Params.Size = true; 1344 ++AI; 1345 } 1346 1347 if (AI != AE && (*AI)->isAlignValT()) { 1348 Params.Alignment = true; 1349 ++AI; 1350 } 1351 1352 assert(AI == AE && "unexpected usual deallocation function parameter"); 1353 return Params; 1354 } 1355 1356 namespace { 1357 /// A cleanup to call the given 'operator delete' function upon abnormal 1358 /// exit from a new expression. Templated on a traits type that deals with 1359 /// ensuring that the arguments dominate the cleanup if necessary. 1360 template<typename Traits> 1361 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1362 /// Type used to hold llvm::Value*s. 1363 typedef typename Traits::ValueTy ValueTy; 1364 /// Type used to hold RValues. 1365 typedef typename Traits::RValueTy RValueTy; 1366 struct PlacementArg { 1367 RValueTy ArgValue; 1368 QualType ArgType; 1369 }; 1370 1371 unsigned NumPlacementArgs : 31; 1372 unsigned PassAlignmentToPlacementDelete : 1; 1373 const FunctionDecl *OperatorDelete; 1374 ValueTy Ptr; 1375 ValueTy AllocSize; 1376 CharUnits AllocAlign; 1377 1378 PlacementArg *getPlacementArgs() { 1379 return reinterpret_cast<PlacementArg *>(this + 1); 1380 } 1381 1382 public: 1383 static size_t getExtraSize(size_t NumPlacementArgs) { 1384 return NumPlacementArgs * sizeof(PlacementArg); 1385 } 1386 1387 CallDeleteDuringNew(size_t NumPlacementArgs, 1388 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1389 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1390 CharUnits AllocAlign) 1391 : NumPlacementArgs(NumPlacementArgs), 1392 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1393 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1394 AllocAlign(AllocAlign) {} 1395 1396 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1397 assert(I < NumPlacementArgs && "index out of range"); 1398 getPlacementArgs()[I] = {Arg, Type}; 1399 } 1400 1401 void Emit(CodeGenFunction &CGF, Flags flags) override { 1402 const FunctionProtoType *FPT = 1403 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1404 CallArgList DeleteArgs; 1405 1406 // The first argument is always a void* (or C* for a destroying operator 1407 // delete for class type C). 1408 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1409 1410 // Figure out what other parameters we should be implicitly passing. 1411 UsualDeleteParams Params; 1412 if (NumPlacementArgs) { 1413 // A placement deallocation function is implicitly passed an alignment 1414 // if the placement allocation function was, but is never passed a size. 1415 Params.Alignment = PassAlignmentToPlacementDelete; 1416 } else { 1417 // For a non-placement new-expression, 'operator delete' can take a 1418 // size and/or an alignment if it has the right parameters. 1419 Params = getUsualDeleteParams(OperatorDelete); 1420 } 1421 1422 assert(!Params.DestroyingDelete && 1423 "should not call destroying delete in a new-expression"); 1424 1425 // The second argument can be a std::size_t (for non-placement delete). 1426 if (Params.Size) 1427 DeleteArgs.add(Traits::get(CGF, AllocSize), 1428 CGF.getContext().getSizeType()); 1429 1430 // The next (second or third) argument can be a std::align_val_t, which 1431 // is an enum whose underlying type is std::size_t. 1432 // FIXME: Use the right type as the parameter type. Note that in a call 1433 // to operator delete(size_t, ...), we may not have it available. 1434 if (Params.Alignment) 1435 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1436 CGF.SizeTy, AllocAlign.getQuantity())), 1437 CGF.getContext().getSizeType()); 1438 1439 // Pass the rest of the arguments, which must match exactly. 1440 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1441 auto Arg = getPlacementArgs()[I]; 1442 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1443 } 1444 1445 // Call 'operator delete'. 1446 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1447 } 1448 }; 1449 } 1450 1451 /// Enter a cleanup to call 'operator delete' if the initializer in a 1452 /// new-expression throws. 1453 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1454 const CXXNewExpr *E, 1455 Address NewPtr, 1456 llvm::Value *AllocSize, 1457 CharUnits AllocAlign, 1458 const CallArgList &NewArgs) { 1459 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1460 1461 // If we're not inside a conditional branch, then the cleanup will 1462 // dominate and we can do the easier (and more efficient) thing. 1463 if (!CGF.isInConditionalBranch()) { 1464 struct DirectCleanupTraits { 1465 typedef llvm::Value *ValueTy; 1466 typedef RValue RValueTy; 1467 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1468 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1469 }; 1470 1471 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1472 1473 DirectCleanup *Cleanup = CGF.EHStack 1474 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1475 E->getNumPlacementArgs(), 1476 E->getOperatorDelete(), 1477 NewPtr.getPointer(), 1478 AllocSize, 1479 E->passAlignment(), 1480 AllocAlign); 1481 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1482 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1483 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1484 } 1485 1486 return; 1487 } 1488 1489 // Otherwise, we need to save all this stuff. 1490 DominatingValue<RValue>::saved_type SavedNewPtr = 1491 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1492 DominatingValue<RValue>::saved_type SavedAllocSize = 1493 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1494 1495 struct ConditionalCleanupTraits { 1496 typedef DominatingValue<RValue>::saved_type ValueTy; 1497 typedef DominatingValue<RValue>::saved_type RValueTy; 1498 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1499 return V.restore(CGF); 1500 } 1501 }; 1502 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1503 1504 ConditionalCleanup *Cleanup = CGF.EHStack 1505 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1506 E->getNumPlacementArgs(), 1507 E->getOperatorDelete(), 1508 SavedNewPtr, 1509 SavedAllocSize, 1510 E->passAlignment(), 1511 AllocAlign); 1512 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1513 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1514 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1515 Arg.Ty); 1516 } 1517 1518 CGF.initFullExprCleanup(); 1519 } 1520 1521 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1522 // The element type being allocated. 1523 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1524 1525 // 1. Build a call to the allocation function. 1526 FunctionDecl *allocator = E->getOperatorNew(); 1527 1528 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1529 unsigned minElements = 0; 1530 if (E->isArray() && E->hasInitializer()) { 1531 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1532 if (ILE && ILE->isStringLiteralInit()) 1533 minElements = 1534 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1535 ->getSize().getZExtValue(); 1536 else if (ILE) 1537 minElements = ILE->getNumInits(); 1538 } 1539 1540 llvm::Value *numElements = nullptr; 1541 llvm::Value *allocSizeWithoutCookie = nullptr; 1542 llvm::Value *allocSize = 1543 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1544 allocSizeWithoutCookie); 1545 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1546 1547 // Emit the allocation call. If the allocator is a global placement 1548 // operator, just "inline" it directly. 1549 Address allocation = Address::invalid(); 1550 CallArgList allocatorArgs; 1551 if (allocator->isReservedGlobalPlacementOperator()) { 1552 assert(E->getNumPlacementArgs() == 1); 1553 const Expr *arg = *E->placement_arguments().begin(); 1554 1555 LValueBaseInfo BaseInfo; 1556 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1557 1558 // The pointer expression will, in many cases, be an opaque void*. 1559 // In these cases, discard the computed alignment and use the 1560 // formal alignment of the allocated type. 1561 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1562 allocation = Address(allocation.getPointer(), allocAlign); 1563 1564 // Set up allocatorArgs for the call to operator delete if it's not 1565 // the reserved global operator. 1566 if (E->getOperatorDelete() && 1567 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1568 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1569 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1570 } 1571 1572 } else { 1573 const FunctionProtoType *allocatorType = 1574 allocator->getType()->castAs<FunctionProtoType>(); 1575 unsigned ParamsToSkip = 0; 1576 1577 // The allocation size is the first argument. 1578 QualType sizeType = getContext().getSizeType(); 1579 allocatorArgs.add(RValue::get(allocSize), sizeType); 1580 ++ParamsToSkip; 1581 1582 if (allocSize != allocSizeWithoutCookie) { 1583 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1584 allocAlign = std::max(allocAlign, cookieAlign); 1585 } 1586 1587 // The allocation alignment may be passed as the second argument. 1588 if (E->passAlignment()) { 1589 QualType AlignValT = sizeType; 1590 if (allocatorType->getNumParams() > 1) { 1591 AlignValT = allocatorType->getParamType(1); 1592 assert(getContext().hasSameUnqualifiedType( 1593 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1594 sizeType) && 1595 "wrong type for alignment parameter"); 1596 ++ParamsToSkip; 1597 } else { 1598 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1599 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1600 } 1601 allocatorArgs.add( 1602 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1603 AlignValT); 1604 } 1605 1606 // FIXME: Why do we not pass a CalleeDecl here? 1607 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1608 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1609 1610 RValue RV = 1611 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1612 1613 // If this was a call to a global replaceable allocation function that does 1614 // not take an alignment argument, the allocator is known to produce 1615 // storage that's suitably aligned for any object that fits, up to a known 1616 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1617 CharUnits allocationAlign = allocAlign; 1618 if (!E->passAlignment() && 1619 allocator->isReplaceableGlobalAllocationFunction()) { 1620 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1621 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1622 allocationAlign = std::max( 1623 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1624 } 1625 1626 allocation = Address(RV.getScalarVal(), allocationAlign); 1627 } 1628 1629 // Emit a null check on the allocation result if the allocation 1630 // function is allowed to return null (because it has a non-throwing 1631 // exception spec or is the reserved placement new) and we have an 1632 // interesting initializer. 1633 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1634 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1635 1636 llvm::BasicBlock *nullCheckBB = nullptr; 1637 llvm::BasicBlock *contBB = nullptr; 1638 1639 // The null-check means that the initializer is conditionally 1640 // evaluated. 1641 ConditionalEvaluation conditional(*this); 1642 1643 if (nullCheck) { 1644 conditional.begin(*this); 1645 1646 nullCheckBB = Builder.GetInsertBlock(); 1647 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1648 contBB = createBasicBlock("new.cont"); 1649 1650 llvm::Value *isNull = 1651 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1652 Builder.CreateCondBr(isNull, contBB, notNullBB); 1653 EmitBlock(notNullBB); 1654 } 1655 1656 // If there's an operator delete, enter a cleanup to call it if an 1657 // exception is thrown. 1658 EHScopeStack::stable_iterator operatorDeleteCleanup; 1659 llvm::Instruction *cleanupDominator = nullptr; 1660 if (E->getOperatorDelete() && 1661 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1662 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1663 allocatorArgs); 1664 operatorDeleteCleanup = EHStack.stable_begin(); 1665 cleanupDominator = Builder.CreateUnreachable(); 1666 } 1667 1668 assert((allocSize == allocSizeWithoutCookie) == 1669 CalculateCookiePadding(*this, E).isZero()); 1670 if (allocSize != allocSizeWithoutCookie) { 1671 assert(E->isArray()); 1672 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1673 numElements, 1674 E, allocType); 1675 } 1676 1677 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1678 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1679 1680 // Passing pointer through invariant.group.barrier to avoid propagation of 1681 // vptrs information which may be included in previous type. 1682 // To not break LTO with different optimizations levels, we do it regardless 1683 // of optimization level. 1684 if (CGM.getCodeGenOpts().StrictVTablePointers && 1685 allocator->isReservedGlobalPlacementOperator()) 1686 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1687 result.getAlignment()); 1688 1689 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1690 allocSizeWithoutCookie); 1691 if (E->isArray()) { 1692 // NewPtr is a pointer to the base element type. If we're 1693 // allocating an array of arrays, we'll need to cast back to the 1694 // array pointer type. 1695 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1696 if (result.getType() != resultType) 1697 result = Builder.CreateBitCast(result, resultType); 1698 } 1699 1700 // Deactivate the 'operator delete' cleanup if we finished 1701 // initialization. 1702 if (operatorDeleteCleanup.isValid()) { 1703 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1704 cleanupDominator->eraseFromParent(); 1705 } 1706 1707 llvm::Value *resultPtr = result.getPointer(); 1708 if (nullCheck) { 1709 conditional.end(*this); 1710 1711 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1712 EmitBlock(contBB); 1713 1714 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1715 PHI->addIncoming(resultPtr, notNullBB); 1716 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1717 nullCheckBB); 1718 1719 resultPtr = PHI; 1720 } 1721 1722 return resultPtr; 1723 } 1724 1725 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1726 llvm::Value *Ptr, QualType DeleteTy, 1727 llvm::Value *NumElements, 1728 CharUnits CookieSize) { 1729 assert((!NumElements && CookieSize.isZero()) || 1730 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1731 1732 const FunctionProtoType *DeleteFTy = 1733 DeleteFD->getType()->getAs<FunctionProtoType>(); 1734 1735 CallArgList DeleteArgs; 1736 1737 auto Params = getUsualDeleteParams(DeleteFD); 1738 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1739 1740 // Pass the pointer itself. 1741 QualType ArgTy = *ParamTypeIt++; 1742 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1743 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1744 1745 // Pass the std::destroying_delete tag if present. 1746 if (Params.DestroyingDelete) { 1747 QualType DDTag = *ParamTypeIt++; 1748 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1749 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1750 DeleteArgs.add(RValue::get(V), DDTag); 1751 } 1752 1753 // Pass the size if the delete function has a size_t parameter. 1754 if (Params.Size) { 1755 QualType SizeType = *ParamTypeIt++; 1756 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1757 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1758 DeleteTypeSize.getQuantity()); 1759 1760 // For array new, multiply by the number of elements. 1761 if (NumElements) 1762 Size = Builder.CreateMul(Size, NumElements); 1763 1764 // If there is a cookie, add the cookie size. 1765 if (!CookieSize.isZero()) 1766 Size = Builder.CreateAdd( 1767 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1768 1769 DeleteArgs.add(RValue::get(Size), SizeType); 1770 } 1771 1772 // Pass the alignment if the delete function has an align_val_t parameter. 1773 if (Params.Alignment) { 1774 QualType AlignValType = *ParamTypeIt++; 1775 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1776 getContext().getTypeAlignIfKnown(DeleteTy)); 1777 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1778 DeleteTypeAlign.getQuantity()); 1779 DeleteArgs.add(RValue::get(Align), AlignValType); 1780 } 1781 1782 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1783 "unknown parameter to usual delete function"); 1784 1785 // Emit the call to delete. 1786 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1787 } 1788 1789 namespace { 1790 /// Calls the given 'operator delete' on a single object. 1791 struct CallObjectDelete final : EHScopeStack::Cleanup { 1792 llvm::Value *Ptr; 1793 const FunctionDecl *OperatorDelete; 1794 QualType ElementType; 1795 1796 CallObjectDelete(llvm::Value *Ptr, 1797 const FunctionDecl *OperatorDelete, 1798 QualType ElementType) 1799 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1800 1801 void Emit(CodeGenFunction &CGF, Flags flags) override { 1802 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1803 } 1804 }; 1805 } 1806 1807 void 1808 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1809 llvm::Value *CompletePtr, 1810 QualType ElementType) { 1811 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1812 OperatorDelete, ElementType); 1813 } 1814 1815 /// Emit the code for deleting a single object with a destroying operator 1816 /// delete. If the element type has a non-virtual destructor, Ptr has already 1817 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1818 /// Ptr points to an object of the static type. 1819 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1820 const CXXDeleteExpr *DE, Address Ptr, 1821 QualType ElementType) { 1822 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1823 if (Dtor && Dtor->isVirtual()) 1824 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1825 Dtor); 1826 else 1827 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1828 } 1829 1830 /// Emit the code for deleting a single object. 1831 static void EmitObjectDelete(CodeGenFunction &CGF, 1832 const CXXDeleteExpr *DE, 1833 Address Ptr, 1834 QualType ElementType) { 1835 // C++11 [expr.delete]p3: 1836 // If the static type of the object to be deleted is different from its 1837 // dynamic type, the static type shall be a base class of the dynamic type 1838 // of the object to be deleted and the static type shall have a virtual 1839 // destructor or the behavior is undefined. 1840 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1841 DE->getExprLoc(), Ptr.getPointer(), 1842 ElementType); 1843 1844 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1845 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1846 1847 // Find the destructor for the type, if applicable. If the 1848 // destructor is virtual, we'll just emit the vcall and return. 1849 const CXXDestructorDecl *Dtor = nullptr; 1850 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1851 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1852 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1853 Dtor = RD->getDestructor(); 1854 1855 if (Dtor->isVirtual()) { 1856 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1857 Dtor); 1858 return; 1859 } 1860 } 1861 } 1862 1863 // Make sure that we call delete even if the dtor throws. 1864 // This doesn't have to a conditional cleanup because we're going 1865 // to pop it off in a second. 1866 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1867 Ptr.getPointer(), 1868 OperatorDelete, ElementType); 1869 1870 if (Dtor) 1871 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1872 /*ForVirtualBase=*/false, 1873 /*Delegating=*/false, 1874 Ptr); 1875 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1876 switch (Lifetime) { 1877 case Qualifiers::OCL_None: 1878 case Qualifiers::OCL_ExplicitNone: 1879 case Qualifiers::OCL_Autoreleasing: 1880 break; 1881 1882 case Qualifiers::OCL_Strong: 1883 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1884 break; 1885 1886 case Qualifiers::OCL_Weak: 1887 CGF.EmitARCDestroyWeak(Ptr); 1888 break; 1889 } 1890 } 1891 1892 CGF.PopCleanupBlock(); 1893 } 1894 1895 namespace { 1896 /// Calls the given 'operator delete' on an array of objects. 1897 struct CallArrayDelete final : EHScopeStack::Cleanup { 1898 llvm::Value *Ptr; 1899 const FunctionDecl *OperatorDelete; 1900 llvm::Value *NumElements; 1901 QualType ElementType; 1902 CharUnits CookieSize; 1903 1904 CallArrayDelete(llvm::Value *Ptr, 1905 const FunctionDecl *OperatorDelete, 1906 llvm::Value *NumElements, 1907 QualType ElementType, 1908 CharUnits CookieSize) 1909 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1910 ElementType(ElementType), CookieSize(CookieSize) {} 1911 1912 void Emit(CodeGenFunction &CGF, Flags flags) override { 1913 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1914 CookieSize); 1915 } 1916 }; 1917 } 1918 1919 /// Emit the code for deleting an array of objects. 1920 static void EmitArrayDelete(CodeGenFunction &CGF, 1921 const CXXDeleteExpr *E, 1922 Address deletedPtr, 1923 QualType elementType) { 1924 llvm::Value *numElements = nullptr; 1925 llvm::Value *allocatedPtr = nullptr; 1926 CharUnits cookieSize; 1927 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1928 numElements, allocatedPtr, cookieSize); 1929 1930 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1931 1932 // Make sure that we call delete even if one of the dtors throws. 1933 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1934 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1935 allocatedPtr, operatorDelete, 1936 numElements, elementType, 1937 cookieSize); 1938 1939 // Destroy the elements. 1940 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1941 assert(numElements && "no element count for a type with a destructor!"); 1942 1943 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1944 CharUnits elementAlign = 1945 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1946 1947 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1948 llvm::Value *arrayEnd = 1949 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1950 1951 // Note that it is legal to allocate a zero-length array, and we 1952 // can never fold the check away because the length should always 1953 // come from a cookie. 1954 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1955 CGF.getDestroyer(dtorKind), 1956 /*checkZeroLength*/ true, 1957 CGF.needsEHCleanup(dtorKind)); 1958 } 1959 1960 // Pop the cleanup block. 1961 CGF.PopCleanupBlock(); 1962 } 1963 1964 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1965 const Expr *Arg = E->getArgument(); 1966 Address Ptr = EmitPointerWithAlignment(Arg); 1967 1968 // Null check the pointer. 1969 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1970 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1971 1972 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1973 1974 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1975 EmitBlock(DeleteNotNull); 1976 1977 QualType DeleteTy = E->getDestroyedType(); 1978 1979 // A destroying operator delete overrides the entire operation of the 1980 // delete expression. 1981 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 1982 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 1983 EmitBlock(DeleteEnd); 1984 return; 1985 } 1986 1987 // We might be deleting a pointer to array. If so, GEP down to the 1988 // first non-array element. 1989 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1990 if (DeleteTy->isConstantArrayType()) { 1991 llvm::Value *Zero = Builder.getInt32(0); 1992 SmallVector<llvm::Value*,8> GEP; 1993 1994 GEP.push_back(Zero); // point at the outermost array 1995 1996 // For each layer of array type we're pointing at: 1997 while (const ConstantArrayType *Arr 1998 = getContext().getAsConstantArrayType(DeleteTy)) { 1999 // 1. Unpeel the array type. 2000 DeleteTy = Arr->getElementType(); 2001 2002 // 2. GEP to the first element of the array. 2003 GEP.push_back(Zero); 2004 } 2005 2006 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2007 Ptr.getAlignment()); 2008 } 2009 2010 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2011 2012 if (E->isArrayForm()) { 2013 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2014 } else { 2015 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2016 } 2017 2018 EmitBlock(DeleteEnd); 2019 } 2020 2021 static bool isGLValueFromPointerDeref(const Expr *E) { 2022 E = E->IgnoreParens(); 2023 2024 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2025 if (!CE->getSubExpr()->isGLValue()) 2026 return false; 2027 return isGLValueFromPointerDeref(CE->getSubExpr()); 2028 } 2029 2030 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2031 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2032 2033 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2034 if (BO->getOpcode() == BO_Comma) 2035 return isGLValueFromPointerDeref(BO->getRHS()); 2036 2037 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2038 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2039 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2040 2041 // C++11 [expr.sub]p1: 2042 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2043 if (isa<ArraySubscriptExpr>(E)) 2044 return true; 2045 2046 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2047 if (UO->getOpcode() == UO_Deref) 2048 return true; 2049 2050 return false; 2051 } 2052 2053 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2054 llvm::Type *StdTypeInfoPtrTy) { 2055 // Get the vtable pointer. 2056 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2057 2058 // C++ [expr.typeid]p2: 2059 // If the glvalue expression is obtained by applying the unary * operator to 2060 // a pointer and the pointer is a null pointer value, the typeid expression 2061 // throws the std::bad_typeid exception. 2062 // 2063 // However, this paragraph's intent is not clear. We choose a very generous 2064 // interpretation which implores us to consider comma operators, conditional 2065 // operators, parentheses and other such constructs. 2066 QualType SrcRecordTy = E->getType(); 2067 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2068 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2069 llvm::BasicBlock *BadTypeidBlock = 2070 CGF.createBasicBlock("typeid.bad_typeid"); 2071 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2072 2073 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2074 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2075 2076 CGF.EmitBlock(BadTypeidBlock); 2077 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2078 CGF.EmitBlock(EndBlock); 2079 } 2080 2081 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2082 StdTypeInfoPtrTy); 2083 } 2084 2085 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2086 llvm::Type *StdTypeInfoPtrTy = 2087 ConvertType(E->getType())->getPointerTo(); 2088 2089 if (E->isTypeOperand()) { 2090 llvm::Constant *TypeInfo = 2091 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2092 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2093 } 2094 2095 // C++ [expr.typeid]p2: 2096 // When typeid is applied to a glvalue expression whose type is a 2097 // polymorphic class type, the result refers to a std::type_info object 2098 // representing the type of the most derived object (that is, the dynamic 2099 // type) to which the glvalue refers. 2100 if (E->isPotentiallyEvaluated()) 2101 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2102 StdTypeInfoPtrTy); 2103 2104 QualType OperandTy = E->getExprOperand()->getType(); 2105 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2106 StdTypeInfoPtrTy); 2107 } 2108 2109 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2110 QualType DestTy) { 2111 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2112 if (DestTy->isPointerType()) 2113 return llvm::Constant::getNullValue(DestLTy); 2114 2115 /// C++ [expr.dynamic.cast]p9: 2116 /// A failed cast to reference type throws std::bad_cast 2117 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2118 return nullptr; 2119 2120 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2121 return llvm::UndefValue::get(DestLTy); 2122 } 2123 2124 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2125 const CXXDynamicCastExpr *DCE) { 2126 CGM.EmitExplicitCastExprType(DCE, this); 2127 QualType DestTy = DCE->getTypeAsWritten(); 2128 2129 if (DCE->isAlwaysNull()) 2130 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2131 return T; 2132 2133 QualType SrcTy = DCE->getSubExpr()->getType(); 2134 2135 // C++ [expr.dynamic.cast]p7: 2136 // If T is "pointer to cv void," then the result is a pointer to the most 2137 // derived object pointed to by v. 2138 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2139 2140 bool isDynamicCastToVoid; 2141 QualType SrcRecordTy; 2142 QualType DestRecordTy; 2143 if (DestPTy) { 2144 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2145 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2146 DestRecordTy = DestPTy->getPointeeType(); 2147 } else { 2148 isDynamicCastToVoid = false; 2149 SrcRecordTy = SrcTy; 2150 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2151 } 2152 2153 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2154 2155 // C++ [expr.dynamic.cast]p4: 2156 // If the value of v is a null pointer value in the pointer case, the result 2157 // is the null pointer value of type T. 2158 bool ShouldNullCheckSrcValue = 2159 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2160 SrcRecordTy); 2161 2162 llvm::BasicBlock *CastNull = nullptr; 2163 llvm::BasicBlock *CastNotNull = nullptr; 2164 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2165 2166 if (ShouldNullCheckSrcValue) { 2167 CastNull = createBasicBlock("dynamic_cast.null"); 2168 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2169 2170 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2171 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2172 EmitBlock(CastNotNull); 2173 } 2174 2175 llvm::Value *Value; 2176 if (isDynamicCastToVoid) { 2177 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2178 DestTy); 2179 } else { 2180 assert(DestRecordTy->isRecordType() && 2181 "destination type must be a record type!"); 2182 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2183 DestTy, DestRecordTy, CastEnd); 2184 CastNotNull = Builder.GetInsertBlock(); 2185 } 2186 2187 if (ShouldNullCheckSrcValue) { 2188 EmitBranch(CastEnd); 2189 2190 EmitBlock(CastNull); 2191 EmitBranch(CastEnd); 2192 } 2193 2194 EmitBlock(CastEnd); 2195 2196 if (ShouldNullCheckSrcValue) { 2197 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2198 PHI->addIncoming(Value, CastNotNull); 2199 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2200 2201 Value = PHI; 2202 } 2203 2204 return Value; 2205 } 2206 2207 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2208 RunCleanupsScope Scope(*this); 2209 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2210 2211 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2212 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2213 e = E->capture_init_end(); 2214 i != e; ++i, ++CurField) { 2215 // Emit initialization 2216 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2217 if (CurField->hasCapturedVLAType()) { 2218 auto VAT = CurField->getCapturedVLAType(); 2219 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2220 } else { 2221 EmitInitializerForField(*CurField, LV, *i); 2222 } 2223 } 2224 } 2225