1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "ConstantEmitter.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Intrinsics.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 struct MemberCallInfo { 30 RequiredArgs ReqArgs; 31 // Number of prefix arguments for the call. Ignores the `this` pointer. 32 unsigned PrefixSize; 33 }; 34 } 35 36 static MemberCallInfo 37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 38 llvm::Value *This, llvm::Value *ImplicitParam, 39 QualType ImplicitParamTy, const CallExpr *CE, 40 CallArgList &Args, CallArgList *RtlArgs) { 41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 42 isa<CXXOperatorCallExpr>(CE)); 43 assert(MD->isInstance() && 44 "Trying to emit a member or operator call expr on a static method!"); 45 ASTContext &C = CGF.getContext(); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 50 Args.add(RValue::get(This), 51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 52 53 // If there is an implicit parameter (e.g. VTT), emit it. 54 if (ImplicitParam) { 55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 56 } 57 58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 60 unsigned PrefixSize = Args.size() - 1; 61 62 // And the rest of the call args. 63 if (RtlArgs) { 64 // Special case: if the caller emitted the arguments right-to-left already 65 // (prior to emitting the *this argument), we're done. This happens for 66 // assignment operators. 67 Args.addFrom(*RtlArgs); 68 } else if (CE) { 69 // Special case: skip first argument of CXXOperatorCall (it is "this"). 70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 72 CE->getDirectCallee()); 73 } else { 74 assert( 75 FPT->getNumParams() == 0 && 76 "No CallExpr specified for function with non-zero number of arguments"); 77 } 78 return {required, PrefixSize}; 79 } 80 81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 82 const CXXMethodDecl *MD, const CGCallee &Callee, 83 ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 92 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 93 CE ? CE->getExprLoc() : SourceLocation()); 94 } 95 96 RValue CodeGenFunction::EmitCXXDestructorCall( 97 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 98 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 99 StructorType Type) { 100 CallArgList Args; 101 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 102 ImplicitParamTy, CE, Args, nullptr); 103 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 104 Callee, ReturnValueSlot(), Args); 105 } 106 107 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 108 const CXXPseudoDestructorExpr *E) { 109 QualType DestroyedType = E->getDestroyedType(); 110 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 111 // Automatic Reference Counting: 112 // If the pseudo-expression names a retainable object with weak or 113 // strong lifetime, the object shall be released. 114 Expr *BaseExpr = E->getBase(); 115 Address BaseValue = Address::invalid(); 116 Qualifiers BaseQuals; 117 118 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 119 if (E->isArrow()) { 120 BaseValue = EmitPointerWithAlignment(BaseExpr); 121 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 122 BaseQuals = PTy->getPointeeType().getQualifiers(); 123 } else { 124 LValue BaseLV = EmitLValue(BaseExpr); 125 BaseValue = BaseLV.getAddress(); 126 QualType BaseTy = BaseExpr->getType(); 127 BaseQuals = BaseTy.getQualifiers(); 128 } 129 130 switch (DestroyedType.getObjCLifetime()) { 131 case Qualifiers::OCL_None: 132 case Qualifiers::OCL_ExplicitNone: 133 case Qualifiers::OCL_Autoreleasing: 134 break; 135 136 case Qualifiers::OCL_Strong: 137 EmitARCRelease(Builder.CreateLoad(BaseValue, 138 DestroyedType.isVolatileQualified()), 139 ARCPreciseLifetime); 140 break; 141 142 case Qualifiers::OCL_Weak: 143 EmitARCDestroyWeak(BaseValue); 144 break; 145 } 146 } else { 147 // C++ [expr.pseudo]p1: 148 // The result shall only be used as the operand for the function call 149 // operator (), and the result of such a call has type void. The only 150 // effect is the evaluation of the postfix-expression before the dot or 151 // arrow. 152 EmitIgnoredExpr(E->getBase()); 153 } 154 155 return RValue::get(nullptr); 156 } 157 158 static CXXRecordDecl *getCXXRecord(const Expr *E) { 159 QualType T = E->getType(); 160 if (const PointerType *PTy = T->getAs<PointerType>()) 161 T = PTy->getPointeeType(); 162 const RecordType *Ty = T->castAs<RecordType>(); 163 return cast<CXXRecordDecl>(Ty->getDecl()); 164 } 165 166 // Note: This function also emit constructor calls to support a MSVC 167 // extensions allowing explicit constructor function call. 168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 169 ReturnValueSlot ReturnValue) { 170 const Expr *callee = CE->getCallee()->IgnoreParens(); 171 172 if (isa<BinaryOperator>(callee)) 173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 174 175 const MemberExpr *ME = cast<MemberExpr>(callee); 176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 177 178 if (MD->isStatic()) { 179 // The method is static, emit it as we would a regular call. 180 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 181 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 182 ReturnValue); 183 } 184 185 bool HasQualifier = ME->hasQualifier(); 186 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 187 bool IsArrow = ME->isArrow(); 188 const Expr *Base = ME->getBase(); 189 190 return EmitCXXMemberOrOperatorMemberCallExpr( 191 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 192 } 193 194 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 195 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 196 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 197 const Expr *Base) { 198 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 199 200 // Compute the object pointer. 201 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 202 203 const CXXMethodDecl *DevirtualizedMethod = nullptr; 204 if (CanUseVirtualCall && 205 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 206 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 207 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 208 assert(DevirtualizedMethod); 209 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 210 const Expr *Inner = Base->ignoreParenBaseCasts(); 211 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 212 MD->getReturnType().getCanonicalType()) 213 // If the return types are not the same, this might be a case where more 214 // code needs to run to compensate for it. For example, the derived 215 // method might return a type that inherits form from the return 216 // type of MD and has a prefix. 217 // For now we just avoid devirtualizing these covariant cases. 218 DevirtualizedMethod = nullptr; 219 else if (getCXXRecord(Inner) == DevirtualizedClass) 220 // If the class of the Inner expression is where the dynamic method 221 // is defined, build the this pointer from it. 222 Base = Inner; 223 else if (getCXXRecord(Base) != DevirtualizedClass) { 224 // If the method is defined in a class that is not the best dynamic 225 // one or the one of the full expression, we would have to build 226 // a derived-to-base cast to compute the correct this pointer, but 227 // we don't have support for that yet, so do a virtual call. 228 DevirtualizedMethod = nullptr; 229 } 230 } 231 232 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 233 // operator before the LHS. 234 CallArgList RtlArgStorage; 235 CallArgList *RtlArgs = nullptr; 236 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 237 if (OCE->isAssignmentOp()) { 238 RtlArgs = &RtlArgStorage; 239 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 240 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 241 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 242 } 243 } 244 245 Address This = Address::invalid(); 246 if (IsArrow) 247 This = EmitPointerWithAlignment(Base); 248 else 249 This = EmitLValue(Base).getAddress(); 250 251 252 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 253 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 254 if (isa<CXXConstructorDecl>(MD) && 255 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 256 return RValue::get(nullptr); 257 258 if (!MD->getParent()->mayInsertExtraPadding()) { 259 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 260 // We don't like to generate the trivial copy/move assignment operator 261 // when it isn't necessary; just produce the proper effect here. 262 LValue RHS = isa<CXXOperatorCallExpr>(CE) 263 ? MakeNaturalAlignAddrLValue( 264 (*RtlArgs)[0].RV.getScalarVal(), 265 (*(CE->arg_begin() + 1))->getType()) 266 : EmitLValue(*CE->arg_begin()); 267 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 268 return RValue::get(This.getPointer()); 269 } 270 271 if (isa<CXXConstructorDecl>(MD) && 272 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 273 // Trivial move and copy ctor are the same. 274 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 275 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 276 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 277 return RValue::get(This.getPointer()); 278 } 279 llvm_unreachable("unknown trivial member function"); 280 } 281 } 282 283 // Compute the function type we're calling. 284 const CXXMethodDecl *CalleeDecl = 285 DevirtualizedMethod ? DevirtualizedMethod : MD; 286 const CGFunctionInfo *FInfo = nullptr; 287 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 288 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 289 Dtor, StructorType::Complete); 290 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 291 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 292 Ctor, StructorType::Complete); 293 else 294 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 295 296 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 297 298 // C++11 [class.mfct.non-static]p2: 299 // If a non-static member function of a class X is called for an object that 300 // is not of type X, or of a type derived from X, the behavior is undefined. 301 SourceLocation CallLoc; 302 ASTContext &C = getContext(); 303 if (CE) 304 CallLoc = CE->getExprLoc(); 305 306 SanitizerSet SkippedChecks; 307 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 308 auto *IOA = CMCE->getImplicitObjectArgument(); 309 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 310 if (IsImplicitObjectCXXThis) 311 SkippedChecks.set(SanitizerKind::Alignment, true); 312 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 313 SkippedChecks.set(SanitizerKind::Null, true); 314 } 315 EmitTypeCheck( 316 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 317 : CodeGenFunction::TCK_MemberCall, 318 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 319 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 320 321 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 322 // 'CalleeDecl' instead. 323 324 // C++ [class.virtual]p12: 325 // Explicit qualification with the scope operator (5.1) suppresses the 326 // virtual call mechanism. 327 // 328 // We also don't emit a virtual call if the base expression has a record type 329 // because then we know what the type is. 330 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 331 332 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 333 assert(CE->arg_begin() == CE->arg_end() && 334 "Destructor shouldn't have explicit parameters"); 335 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 336 if (UseVirtualCall) { 337 CGM.getCXXABI().EmitVirtualDestructorCall( 338 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 339 } else { 340 CGCallee Callee; 341 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 342 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 343 else if (!DevirtualizedMethod) 344 Callee = CGCallee::forDirect( 345 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 346 Dtor); 347 else { 348 const CXXDestructorDecl *DDtor = 349 cast<CXXDestructorDecl>(DevirtualizedMethod); 350 Callee = CGCallee::forDirect( 351 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 352 DDtor); 353 } 354 EmitCXXMemberOrOperatorCall( 355 CalleeDecl, Callee, ReturnValue, This.getPointer(), 356 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 357 } 358 return RValue::get(nullptr); 359 } 360 361 CGCallee Callee; 362 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 363 Callee = CGCallee::forDirect( 364 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 365 Ctor); 366 } else if (UseVirtualCall) { 367 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 368 CE->getLocStart()); 369 } else { 370 if (SanOpts.has(SanitizerKind::CFINVCall) && 371 MD->getParent()->isDynamicClass()) { 372 llvm::Value *VTable; 373 const CXXRecordDecl *RD; 374 std::tie(VTable, RD) = 375 CGM.getCXXABI().LoadVTablePtr(*this, This, MD->getParent()); 376 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getLocStart()); 377 } 378 379 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 380 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 381 else if (!DevirtualizedMethod) 382 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 383 else { 384 Callee = CGCallee::forDirect( 385 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 386 DevirtualizedMethod); 387 } 388 } 389 390 if (MD->isVirtual()) { 391 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 392 *this, CalleeDecl, This, UseVirtualCall); 393 } 394 395 return EmitCXXMemberOrOperatorCall( 396 CalleeDecl, Callee, ReturnValue, This.getPointer(), 397 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 398 } 399 400 RValue 401 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 402 ReturnValueSlot ReturnValue) { 403 const BinaryOperator *BO = 404 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 405 const Expr *BaseExpr = BO->getLHS(); 406 const Expr *MemFnExpr = BO->getRHS(); 407 408 const MemberPointerType *MPT = 409 MemFnExpr->getType()->castAs<MemberPointerType>(); 410 411 const FunctionProtoType *FPT = 412 MPT->getPointeeType()->castAs<FunctionProtoType>(); 413 const CXXRecordDecl *RD = 414 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 415 416 // Emit the 'this' pointer. 417 Address This = Address::invalid(); 418 if (BO->getOpcode() == BO_PtrMemI) 419 This = EmitPointerWithAlignment(BaseExpr); 420 else 421 This = EmitLValue(BaseExpr).getAddress(); 422 423 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 424 QualType(MPT->getClass(), 0)); 425 426 // Get the member function pointer. 427 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 428 429 // Ask the ABI to load the callee. Note that This is modified. 430 llvm::Value *ThisPtrForCall = nullptr; 431 CGCallee Callee = 432 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 433 ThisPtrForCall, MemFnPtr, MPT); 434 435 CallArgList Args; 436 437 QualType ThisType = 438 getContext().getPointerType(getContext().getTagDeclType(RD)); 439 440 // Push the this ptr. 441 Args.add(RValue::get(ThisPtrForCall), ThisType); 442 443 RequiredArgs required = 444 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 445 446 // And the rest of the call args 447 EmitCallArgs(Args, FPT, E->arguments()); 448 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 449 /*PrefixSize=*/0), 450 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 451 } 452 453 RValue 454 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 455 const CXXMethodDecl *MD, 456 ReturnValueSlot ReturnValue) { 457 assert(MD->isInstance() && 458 "Trying to emit a member call expr on a static method!"); 459 return EmitCXXMemberOrOperatorMemberCallExpr( 460 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 461 /*IsArrow=*/false, E->getArg(0)); 462 } 463 464 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 465 ReturnValueSlot ReturnValue) { 466 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 467 } 468 469 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 470 Address DestPtr, 471 const CXXRecordDecl *Base) { 472 if (Base->isEmpty()) 473 return; 474 475 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 476 477 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 478 CharUnits NVSize = Layout.getNonVirtualSize(); 479 480 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 481 // present, they are initialized by the most derived class before calling the 482 // constructor. 483 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 484 Stores.emplace_back(CharUnits::Zero(), NVSize); 485 486 // Each store is split by the existence of a vbptr. 487 CharUnits VBPtrWidth = CGF.getPointerSize(); 488 std::vector<CharUnits> VBPtrOffsets = 489 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 490 for (CharUnits VBPtrOffset : VBPtrOffsets) { 491 // Stop before we hit any virtual base pointers located in virtual bases. 492 if (VBPtrOffset >= NVSize) 493 break; 494 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 495 CharUnits LastStoreOffset = LastStore.first; 496 CharUnits LastStoreSize = LastStore.second; 497 498 CharUnits SplitBeforeOffset = LastStoreOffset; 499 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 500 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 501 if (!SplitBeforeSize.isZero()) 502 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 503 504 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 505 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 506 assert(!SplitAfterSize.isNegative() && "negative store size!"); 507 if (!SplitAfterSize.isZero()) 508 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 509 } 510 511 // If the type contains a pointer to data member we can't memset it to zero. 512 // Instead, create a null constant and copy it to the destination. 513 // TODO: there are other patterns besides zero that we can usefully memset, 514 // like -1, which happens to be the pattern used by member-pointers. 515 // TODO: isZeroInitializable can be over-conservative in the case where a 516 // virtual base contains a member pointer. 517 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 518 if (!NullConstantForBase->isNullValue()) { 519 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 520 CGF.CGM.getModule(), NullConstantForBase->getType(), 521 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 522 NullConstantForBase, Twine()); 523 524 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 525 DestPtr.getAlignment()); 526 NullVariable->setAlignment(Align.getQuantity()); 527 528 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 529 530 // Get and call the appropriate llvm.memcpy overload. 531 for (std::pair<CharUnits, CharUnits> Store : Stores) { 532 CharUnits StoreOffset = Store.first; 533 CharUnits StoreSize = Store.second; 534 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 535 CGF.Builder.CreateMemCpy( 536 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 537 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 538 StoreSizeVal); 539 } 540 541 // Otherwise, just memset the whole thing to zero. This is legal 542 // because in LLVM, all default initializers (other than the ones we just 543 // handled above) are guaranteed to have a bit pattern of all zeros. 544 } else { 545 for (std::pair<CharUnits, CharUnits> Store : Stores) { 546 CharUnits StoreOffset = Store.first; 547 CharUnits StoreSize = Store.second; 548 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 549 CGF.Builder.CreateMemSet( 550 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 551 CGF.Builder.getInt8(0), StoreSizeVal); 552 } 553 } 554 } 555 556 void 557 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 558 AggValueSlot Dest) { 559 assert(!Dest.isIgnored() && "Must have a destination!"); 560 const CXXConstructorDecl *CD = E->getConstructor(); 561 562 // If we require zero initialization before (or instead of) calling the 563 // constructor, as can be the case with a non-user-provided default 564 // constructor, emit the zero initialization now, unless destination is 565 // already zeroed. 566 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 567 switch (E->getConstructionKind()) { 568 case CXXConstructExpr::CK_Delegating: 569 case CXXConstructExpr::CK_Complete: 570 EmitNullInitialization(Dest.getAddress(), E->getType()); 571 break; 572 case CXXConstructExpr::CK_VirtualBase: 573 case CXXConstructExpr::CK_NonVirtualBase: 574 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 575 CD->getParent()); 576 break; 577 } 578 } 579 580 // If this is a call to a trivial default constructor, do nothing. 581 if (CD->isTrivial() && CD->isDefaultConstructor()) 582 return; 583 584 // Elide the constructor if we're constructing from a temporary. 585 // The temporary check is required because Sema sets this on NRVO 586 // returns. 587 if (getLangOpts().ElideConstructors && E->isElidable()) { 588 assert(getContext().hasSameUnqualifiedType(E->getType(), 589 E->getArg(0)->getType())); 590 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 591 EmitAggExpr(E->getArg(0), Dest); 592 return; 593 } 594 } 595 596 if (const ArrayType *arrayType 597 = getContext().getAsArrayType(E->getType())) { 598 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 599 } else { 600 CXXCtorType Type = Ctor_Complete; 601 bool ForVirtualBase = false; 602 bool Delegating = false; 603 604 switch (E->getConstructionKind()) { 605 case CXXConstructExpr::CK_Delegating: 606 // We should be emitting a constructor; GlobalDecl will assert this 607 Type = CurGD.getCtorType(); 608 Delegating = true; 609 break; 610 611 case CXXConstructExpr::CK_Complete: 612 Type = Ctor_Complete; 613 break; 614 615 case CXXConstructExpr::CK_VirtualBase: 616 ForVirtualBase = true; 617 LLVM_FALLTHROUGH; 618 619 case CXXConstructExpr::CK_NonVirtualBase: 620 Type = Ctor_Base; 621 } 622 623 // Call the constructor. 624 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 625 Dest.getAddress(), E); 626 } 627 } 628 629 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 630 const Expr *Exp) { 631 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 632 Exp = E->getSubExpr(); 633 assert(isa<CXXConstructExpr>(Exp) && 634 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 635 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 636 const CXXConstructorDecl *CD = E->getConstructor(); 637 RunCleanupsScope Scope(*this); 638 639 // If we require zero initialization before (or instead of) calling the 640 // constructor, as can be the case with a non-user-provided default 641 // constructor, emit the zero initialization now. 642 // FIXME. Do I still need this for a copy ctor synthesis? 643 if (E->requiresZeroInitialization()) 644 EmitNullInitialization(Dest, E->getType()); 645 646 assert(!getContext().getAsConstantArrayType(E->getType()) 647 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 648 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 649 } 650 651 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 652 const CXXNewExpr *E) { 653 if (!E->isArray()) 654 return CharUnits::Zero(); 655 656 // No cookie is required if the operator new[] being used is the 657 // reserved placement operator new[]. 658 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 659 return CharUnits::Zero(); 660 661 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 662 } 663 664 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 665 const CXXNewExpr *e, 666 unsigned minElements, 667 llvm::Value *&numElements, 668 llvm::Value *&sizeWithoutCookie) { 669 QualType type = e->getAllocatedType(); 670 671 if (!e->isArray()) { 672 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 673 sizeWithoutCookie 674 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 675 return sizeWithoutCookie; 676 } 677 678 // The width of size_t. 679 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 680 681 // Figure out the cookie size. 682 llvm::APInt cookieSize(sizeWidth, 683 CalculateCookiePadding(CGF, e).getQuantity()); 684 685 // Emit the array size expression. 686 // We multiply the size of all dimensions for NumElements. 687 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 688 numElements = 689 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 690 if (!numElements) 691 numElements = CGF.EmitScalarExpr(e->getArraySize()); 692 assert(isa<llvm::IntegerType>(numElements->getType())); 693 694 // The number of elements can be have an arbitrary integer type; 695 // essentially, we need to multiply it by a constant factor, add a 696 // cookie size, and verify that the result is representable as a 697 // size_t. That's just a gloss, though, and it's wrong in one 698 // important way: if the count is negative, it's an error even if 699 // the cookie size would bring the total size >= 0. 700 bool isSigned 701 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 702 llvm::IntegerType *numElementsType 703 = cast<llvm::IntegerType>(numElements->getType()); 704 unsigned numElementsWidth = numElementsType->getBitWidth(); 705 706 // Compute the constant factor. 707 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 708 while (const ConstantArrayType *CAT 709 = CGF.getContext().getAsConstantArrayType(type)) { 710 type = CAT->getElementType(); 711 arraySizeMultiplier *= CAT->getSize(); 712 } 713 714 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 715 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 716 typeSizeMultiplier *= arraySizeMultiplier; 717 718 // This will be a size_t. 719 llvm::Value *size; 720 721 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 722 // Don't bloat the -O0 code. 723 if (llvm::ConstantInt *numElementsC = 724 dyn_cast<llvm::ConstantInt>(numElements)) { 725 const llvm::APInt &count = numElementsC->getValue(); 726 727 bool hasAnyOverflow = false; 728 729 // If 'count' was a negative number, it's an overflow. 730 if (isSigned && count.isNegative()) 731 hasAnyOverflow = true; 732 733 // We want to do all this arithmetic in size_t. If numElements is 734 // wider than that, check whether it's already too big, and if so, 735 // overflow. 736 else if (numElementsWidth > sizeWidth && 737 numElementsWidth - sizeWidth > count.countLeadingZeros()) 738 hasAnyOverflow = true; 739 740 // Okay, compute a count at the right width. 741 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 742 743 // If there is a brace-initializer, we cannot allocate fewer elements than 744 // there are initializers. If we do, that's treated like an overflow. 745 if (adjustedCount.ult(minElements)) 746 hasAnyOverflow = true; 747 748 // Scale numElements by that. This might overflow, but we don't 749 // care because it only overflows if allocationSize does, too, and 750 // if that overflows then we shouldn't use this. 751 numElements = llvm::ConstantInt::get(CGF.SizeTy, 752 adjustedCount * arraySizeMultiplier); 753 754 // Compute the size before cookie, and track whether it overflowed. 755 bool overflow; 756 llvm::APInt allocationSize 757 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 758 hasAnyOverflow |= overflow; 759 760 // Add in the cookie, and check whether it's overflowed. 761 if (cookieSize != 0) { 762 // Save the current size without a cookie. This shouldn't be 763 // used if there was overflow. 764 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 765 766 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 767 hasAnyOverflow |= overflow; 768 } 769 770 // On overflow, produce a -1 so operator new will fail. 771 if (hasAnyOverflow) { 772 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 773 } else { 774 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 775 } 776 777 // Otherwise, we might need to use the overflow intrinsics. 778 } else { 779 // There are up to five conditions we need to test for: 780 // 1) if isSigned, we need to check whether numElements is negative; 781 // 2) if numElementsWidth > sizeWidth, we need to check whether 782 // numElements is larger than something representable in size_t; 783 // 3) if minElements > 0, we need to check whether numElements is smaller 784 // than that. 785 // 4) we need to compute 786 // sizeWithoutCookie := numElements * typeSizeMultiplier 787 // and check whether it overflows; and 788 // 5) if we need a cookie, we need to compute 789 // size := sizeWithoutCookie + cookieSize 790 // and check whether it overflows. 791 792 llvm::Value *hasOverflow = nullptr; 793 794 // If numElementsWidth > sizeWidth, then one way or another, we're 795 // going to have to do a comparison for (2), and this happens to 796 // take care of (1), too. 797 if (numElementsWidth > sizeWidth) { 798 llvm::APInt threshold(numElementsWidth, 1); 799 threshold <<= sizeWidth; 800 801 llvm::Value *thresholdV 802 = llvm::ConstantInt::get(numElementsType, threshold); 803 804 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 805 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 806 807 // Otherwise, if we're signed, we want to sext up to size_t. 808 } else if (isSigned) { 809 if (numElementsWidth < sizeWidth) 810 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 811 812 // If there's a non-1 type size multiplier, then we can do the 813 // signedness check at the same time as we do the multiply 814 // because a negative number times anything will cause an 815 // unsigned overflow. Otherwise, we have to do it here. But at least 816 // in this case, we can subsume the >= minElements check. 817 if (typeSizeMultiplier == 1) 818 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 819 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 820 821 // Otherwise, zext up to size_t if necessary. 822 } else if (numElementsWidth < sizeWidth) { 823 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 824 } 825 826 assert(numElements->getType() == CGF.SizeTy); 827 828 if (minElements) { 829 // Don't allow allocation of fewer elements than we have initializers. 830 if (!hasOverflow) { 831 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 832 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 833 } else if (numElementsWidth > sizeWidth) { 834 // The other existing overflow subsumes this check. 835 // We do an unsigned comparison, since any signed value < -1 is 836 // taken care of either above or below. 837 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 838 CGF.Builder.CreateICmpULT(numElements, 839 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 840 } 841 } 842 843 size = numElements; 844 845 // Multiply by the type size if necessary. This multiplier 846 // includes all the factors for nested arrays. 847 // 848 // This step also causes numElements to be scaled up by the 849 // nested-array factor if necessary. Overflow on this computation 850 // can be ignored because the result shouldn't be used if 851 // allocation fails. 852 if (typeSizeMultiplier != 1) { 853 llvm::Value *umul_with_overflow 854 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 855 856 llvm::Value *tsmV = 857 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 858 llvm::Value *result = 859 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 860 861 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 862 if (hasOverflow) 863 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 864 else 865 hasOverflow = overflowed; 866 867 size = CGF.Builder.CreateExtractValue(result, 0); 868 869 // Also scale up numElements by the array size multiplier. 870 if (arraySizeMultiplier != 1) { 871 // If the base element type size is 1, then we can re-use the 872 // multiply we just did. 873 if (typeSize.isOne()) { 874 assert(arraySizeMultiplier == typeSizeMultiplier); 875 numElements = size; 876 877 // Otherwise we need a separate multiply. 878 } else { 879 llvm::Value *asmV = 880 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 881 numElements = CGF.Builder.CreateMul(numElements, asmV); 882 } 883 } 884 } else { 885 // numElements doesn't need to be scaled. 886 assert(arraySizeMultiplier == 1); 887 } 888 889 // Add in the cookie size if necessary. 890 if (cookieSize != 0) { 891 sizeWithoutCookie = size; 892 893 llvm::Value *uadd_with_overflow 894 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 895 896 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 897 llvm::Value *result = 898 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 899 900 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 901 if (hasOverflow) 902 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 903 else 904 hasOverflow = overflowed; 905 906 size = CGF.Builder.CreateExtractValue(result, 0); 907 } 908 909 // If we had any possibility of dynamic overflow, make a select to 910 // overwrite 'size' with an all-ones value, which should cause 911 // operator new to throw. 912 if (hasOverflow) 913 size = CGF.Builder.CreateSelect(hasOverflow, 914 llvm::Constant::getAllOnesValue(CGF.SizeTy), 915 size); 916 } 917 918 if (cookieSize == 0) 919 sizeWithoutCookie = size; 920 else 921 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 922 923 return size; 924 } 925 926 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 927 QualType AllocType, Address NewPtr) { 928 // FIXME: Refactor with EmitExprAsInit. 929 switch (CGF.getEvaluationKind(AllocType)) { 930 case TEK_Scalar: 931 CGF.EmitScalarInit(Init, nullptr, 932 CGF.MakeAddrLValue(NewPtr, AllocType), false); 933 return; 934 case TEK_Complex: 935 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 936 /*isInit*/ true); 937 return; 938 case TEK_Aggregate: { 939 AggValueSlot Slot 940 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 941 AggValueSlot::IsDestructed, 942 AggValueSlot::DoesNotNeedGCBarriers, 943 AggValueSlot::IsNotAliased); 944 CGF.EmitAggExpr(Init, Slot); 945 return; 946 } 947 } 948 llvm_unreachable("bad evaluation kind"); 949 } 950 951 void CodeGenFunction::EmitNewArrayInitializer( 952 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 953 Address BeginPtr, llvm::Value *NumElements, 954 llvm::Value *AllocSizeWithoutCookie) { 955 // If we have a type with trivial initialization and no initializer, 956 // there's nothing to do. 957 if (!E->hasInitializer()) 958 return; 959 960 Address CurPtr = BeginPtr; 961 962 unsigned InitListElements = 0; 963 964 const Expr *Init = E->getInitializer(); 965 Address EndOfInit = Address::invalid(); 966 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 967 EHScopeStack::stable_iterator Cleanup; 968 llvm::Instruction *CleanupDominator = nullptr; 969 970 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 971 CharUnits ElementAlign = 972 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 973 974 // Attempt to perform zero-initialization using memset. 975 auto TryMemsetInitialization = [&]() -> bool { 976 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 977 // we can initialize with a memset to -1. 978 if (!CGM.getTypes().isZeroInitializable(ElementType)) 979 return false; 980 981 // Optimization: since zero initialization will just set the memory 982 // to all zeroes, generate a single memset to do it in one shot. 983 984 // Subtract out the size of any elements we've already initialized. 985 auto *RemainingSize = AllocSizeWithoutCookie; 986 if (InitListElements) { 987 // We know this can't overflow; we check this when doing the allocation. 988 auto *InitializedSize = llvm::ConstantInt::get( 989 RemainingSize->getType(), 990 getContext().getTypeSizeInChars(ElementType).getQuantity() * 991 InitListElements); 992 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 993 } 994 995 // Create the memset. 996 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 997 return true; 998 }; 999 1000 // If the initializer is an initializer list, first do the explicit elements. 1001 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1002 // Initializing from a (braced) string literal is a special case; the init 1003 // list element does not initialize a (single) array element. 1004 if (ILE->isStringLiteralInit()) { 1005 // Initialize the initial portion of length equal to that of the string 1006 // literal. The allocation must be for at least this much; we emitted a 1007 // check for that earlier. 1008 AggValueSlot Slot = 1009 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1010 AggValueSlot::IsDestructed, 1011 AggValueSlot::DoesNotNeedGCBarriers, 1012 AggValueSlot::IsNotAliased); 1013 EmitAggExpr(ILE->getInit(0), Slot); 1014 1015 // Move past these elements. 1016 InitListElements = 1017 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1018 ->getSize().getZExtValue(); 1019 CurPtr = 1020 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1021 Builder.getSize(InitListElements), 1022 "string.init.end"), 1023 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1024 ElementSize)); 1025 1026 // Zero out the rest, if any remain. 1027 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1028 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1029 bool OK = TryMemsetInitialization(); 1030 (void)OK; 1031 assert(OK && "couldn't memset character type?"); 1032 } 1033 return; 1034 } 1035 1036 InitListElements = ILE->getNumInits(); 1037 1038 // If this is a multi-dimensional array new, we will initialize multiple 1039 // elements with each init list element. 1040 QualType AllocType = E->getAllocatedType(); 1041 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1042 AllocType->getAsArrayTypeUnsafe())) { 1043 ElementTy = ConvertTypeForMem(AllocType); 1044 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1045 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1046 } 1047 1048 // Enter a partial-destruction Cleanup if necessary. 1049 if (needsEHCleanup(DtorKind)) { 1050 // In principle we could tell the Cleanup where we are more 1051 // directly, but the control flow can get so varied here that it 1052 // would actually be quite complex. Therefore we go through an 1053 // alloca. 1054 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1055 "array.init.end"); 1056 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1057 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1058 ElementType, ElementAlign, 1059 getDestroyer(DtorKind)); 1060 Cleanup = EHStack.stable_begin(); 1061 } 1062 1063 CharUnits StartAlign = CurPtr.getAlignment(); 1064 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1065 // Tell the cleanup that it needs to destroy up to this 1066 // element. TODO: some of these stores can be trivially 1067 // observed to be unnecessary. 1068 if (EndOfInit.isValid()) { 1069 auto FinishedPtr = 1070 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1071 Builder.CreateStore(FinishedPtr, EndOfInit); 1072 } 1073 // FIXME: If the last initializer is an incomplete initializer list for 1074 // an array, and we have an array filler, we can fold together the two 1075 // initialization loops. 1076 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1077 ILE->getInit(i)->getType(), CurPtr); 1078 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1079 Builder.getSize(1), 1080 "array.exp.next"), 1081 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1082 } 1083 1084 // The remaining elements are filled with the array filler expression. 1085 Init = ILE->getArrayFiller(); 1086 1087 // Extract the initializer for the individual array elements by pulling 1088 // out the array filler from all the nested initializer lists. This avoids 1089 // generating a nested loop for the initialization. 1090 while (Init && Init->getType()->isConstantArrayType()) { 1091 auto *SubILE = dyn_cast<InitListExpr>(Init); 1092 if (!SubILE) 1093 break; 1094 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1095 Init = SubILE->getArrayFiller(); 1096 } 1097 1098 // Switch back to initializing one base element at a time. 1099 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1100 } 1101 1102 // If all elements have already been initialized, skip any further 1103 // initialization. 1104 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1105 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1106 // If there was a Cleanup, deactivate it. 1107 if (CleanupDominator) 1108 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1109 return; 1110 } 1111 1112 assert(Init && "have trailing elements to initialize but no initializer"); 1113 1114 // If this is a constructor call, try to optimize it out, and failing that 1115 // emit a single loop to initialize all remaining elements. 1116 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1117 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1118 if (Ctor->isTrivial()) { 1119 // If new expression did not specify value-initialization, then there 1120 // is no initialization. 1121 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1122 return; 1123 1124 if (TryMemsetInitialization()) 1125 return; 1126 } 1127 1128 // Store the new Cleanup position for irregular Cleanups. 1129 // 1130 // FIXME: Share this cleanup with the constructor call emission rather than 1131 // having it create a cleanup of its own. 1132 if (EndOfInit.isValid()) 1133 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1134 1135 // Emit a constructor call loop to initialize the remaining elements. 1136 if (InitListElements) 1137 NumElements = Builder.CreateSub( 1138 NumElements, 1139 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1140 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1141 CCE->requiresZeroInitialization()); 1142 return; 1143 } 1144 1145 // If this is value-initialization, we can usually use memset. 1146 ImplicitValueInitExpr IVIE(ElementType); 1147 if (isa<ImplicitValueInitExpr>(Init)) { 1148 if (TryMemsetInitialization()) 1149 return; 1150 1151 // Switch to an ImplicitValueInitExpr for the element type. This handles 1152 // only one case: multidimensional array new of pointers to members. In 1153 // all other cases, we already have an initializer for the array element. 1154 Init = &IVIE; 1155 } 1156 1157 // At this point we should have found an initializer for the individual 1158 // elements of the array. 1159 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1160 "got wrong type of element to initialize"); 1161 1162 // If we have an empty initializer list, we can usually use memset. 1163 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1164 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1165 return; 1166 1167 // If we have a struct whose every field is value-initialized, we can 1168 // usually use memset. 1169 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1170 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1171 if (RType->getDecl()->isStruct()) { 1172 unsigned NumElements = 0; 1173 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1174 NumElements = CXXRD->getNumBases(); 1175 for (auto *Field : RType->getDecl()->fields()) 1176 if (!Field->isUnnamedBitfield()) 1177 ++NumElements; 1178 // FIXME: Recurse into nested InitListExprs. 1179 if (ILE->getNumInits() == NumElements) 1180 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1181 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1182 --NumElements; 1183 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1184 return; 1185 } 1186 } 1187 } 1188 1189 // Create the loop blocks. 1190 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1191 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1192 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1193 1194 // Find the end of the array, hoisted out of the loop. 1195 llvm::Value *EndPtr = 1196 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1197 1198 // If the number of elements isn't constant, we have to now check if there is 1199 // anything left to initialize. 1200 if (!ConstNum) { 1201 llvm::Value *IsEmpty = 1202 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1203 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1204 } 1205 1206 // Enter the loop. 1207 EmitBlock(LoopBB); 1208 1209 // Set up the current-element phi. 1210 llvm::PHINode *CurPtrPhi = 1211 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1212 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1213 1214 CurPtr = Address(CurPtrPhi, ElementAlign); 1215 1216 // Store the new Cleanup position for irregular Cleanups. 1217 if (EndOfInit.isValid()) 1218 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1219 1220 // Enter a partial-destruction Cleanup if necessary. 1221 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1222 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1223 ElementType, ElementAlign, 1224 getDestroyer(DtorKind)); 1225 Cleanup = EHStack.stable_begin(); 1226 CleanupDominator = Builder.CreateUnreachable(); 1227 } 1228 1229 // Emit the initializer into this element. 1230 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1231 1232 // Leave the Cleanup if we entered one. 1233 if (CleanupDominator) { 1234 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1235 CleanupDominator->eraseFromParent(); 1236 } 1237 1238 // Advance to the next element by adjusting the pointer type as necessary. 1239 llvm::Value *NextPtr = 1240 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1241 "array.next"); 1242 1243 // Check whether we've gotten to the end of the array and, if so, 1244 // exit the loop. 1245 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1246 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1247 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1248 1249 EmitBlock(ContBB); 1250 } 1251 1252 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1253 QualType ElementType, llvm::Type *ElementTy, 1254 Address NewPtr, llvm::Value *NumElements, 1255 llvm::Value *AllocSizeWithoutCookie) { 1256 ApplyDebugLocation DL(CGF, E); 1257 if (E->isArray()) 1258 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1259 AllocSizeWithoutCookie); 1260 else if (const Expr *Init = E->getInitializer()) 1261 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1262 } 1263 1264 /// Emit a call to an operator new or operator delete function, as implicitly 1265 /// created by new-expressions and delete-expressions. 1266 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1267 const FunctionDecl *CalleeDecl, 1268 const FunctionProtoType *CalleeType, 1269 const CallArgList &Args) { 1270 llvm::Instruction *CallOrInvoke; 1271 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1272 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1273 RValue RV = 1274 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1275 Args, CalleeType, /*chainCall=*/false), 1276 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1277 1278 /// C++1y [expr.new]p10: 1279 /// [In a new-expression,] an implementation is allowed to omit a call 1280 /// to a replaceable global allocation function. 1281 /// 1282 /// We model such elidable calls with the 'builtin' attribute. 1283 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1284 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1285 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1286 // FIXME: Add addAttribute to CallSite. 1287 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1288 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1289 llvm::Attribute::Builtin); 1290 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1291 II->addAttribute(llvm::AttributeList::FunctionIndex, 1292 llvm::Attribute::Builtin); 1293 else 1294 llvm_unreachable("unexpected kind of call instruction"); 1295 } 1296 1297 return RV; 1298 } 1299 1300 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1301 const Expr *Arg, 1302 bool IsDelete) { 1303 CallArgList Args; 1304 const Stmt *ArgS = Arg; 1305 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1306 // Find the allocation or deallocation function that we're calling. 1307 ASTContext &Ctx = getContext(); 1308 DeclarationName Name = Ctx.DeclarationNames 1309 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1310 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1311 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1312 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1313 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1314 llvm_unreachable("predeclared global operator new/delete is missing"); 1315 } 1316 1317 namespace { 1318 /// The parameters to pass to a usual operator delete. 1319 struct UsualDeleteParams { 1320 bool DestroyingDelete = false; 1321 bool Size = false; 1322 bool Alignment = false; 1323 }; 1324 } 1325 1326 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1327 UsualDeleteParams Params; 1328 1329 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1330 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1331 1332 // The first argument is always a void*. 1333 ++AI; 1334 1335 // The next parameter may be a std::destroying_delete_t. 1336 if (FD->isDestroyingOperatorDelete()) { 1337 Params.DestroyingDelete = true; 1338 assert(AI != AE); 1339 ++AI; 1340 } 1341 1342 // Figure out what other parameters we should be implicitly passing. 1343 if (AI != AE && (*AI)->isIntegerType()) { 1344 Params.Size = true; 1345 ++AI; 1346 } 1347 1348 if (AI != AE && (*AI)->isAlignValT()) { 1349 Params.Alignment = true; 1350 ++AI; 1351 } 1352 1353 assert(AI == AE && "unexpected usual deallocation function parameter"); 1354 return Params; 1355 } 1356 1357 namespace { 1358 /// A cleanup to call the given 'operator delete' function upon abnormal 1359 /// exit from a new expression. Templated on a traits type that deals with 1360 /// ensuring that the arguments dominate the cleanup if necessary. 1361 template<typename Traits> 1362 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1363 /// Type used to hold llvm::Value*s. 1364 typedef typename Traits::ValueTy ValueTy; 1365 /// Type used to hold RValues. 1366 typedef typename Traits::RValueTy RValueTy; 1367 struct PlacementArg { 1368 RValueTy ArgValue; 1369 QualType ArgType; 1370 }; 1371 1372 unsigned NumPlacementArgs : 31; 1373 unsigned PassAlignmentToPlacementDelete : 1; 1374 const FunctionDecl *OperatorDelete; 1375 ValueTy Ptr; 1376 ValueTy AllocSize; 1377 CharUnits AllocAlign; 1378 1379 PlacementArg *getPlacementArgs() { 1380 return reinterpret_cast<PlacementArg *>(this + 1); 1381 } 1382 1383 public: 1384 static size_t getExtraSize(size_t NumPlacementArgs) { 1385 return NumPlacementArgs * sizeof(PlacementArg); 1386 } 1387 1388 CallDeleteDuringNew(size_t NumPlacementArgs, 1389 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1390 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1391 CharUnits AllocAlign) 1392 : NumPlacementArgs(NumPlacementArgs), 1393 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1394 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1395 AllocAlign(AllocAlign) {} 1396 1397 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1398 assert(I < NumPlacementArgs && "index out of range"); 1399 getPlacementArgs()[I] = {Arg, Type}; 1400 } 1401 1402 void Emit(CodeGenFunction &CGF, Flags flags) override { 1403 const FunctionProtoType *FPT = 1404 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1405 CallArgList DeleteArgs; 1406 1407 // The first argument is always a void* (or C* for a destroying operator 1408 // delete for class type C). 1409 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1410 1411 // Figure out what other parameters we should be implicitly passing. 1412 UsualDeleteParams Params; 1413 if (NumPlacementArgs) { 1414 // A placement deallocation function is implicitly passed an alignment 1415 // if the placement allocation function was, but is never passed a size. 1416 Params.Alignment = PassAlignmentToPlacementDelete; 1417 } else { 1418 // For a non-placement new-expression, 'operator delete' can take a 1419 // size and/or an alignment if it has the right parameters. 1420 Params = getUsualDeleteParams(OperatorDelete); 1421 } 1422 1423 assert(!Params.DestroyingDelete && 1424 "should not call destroying delete in a new-expression"); 1425 1426 // The second argument can be a std::size_t (for non-placement delete). 1427 if (Params.Size) 1428 DeleteArgs.add(Traits::get(CGF, AllocSize), 1429 CGF.getContext().getSizeType()); 1430 1431 // The next (second or third) argument can be a std::align_val_t, which 1432 // is an enum whose underlying type is std::size_t. 1433 // FIXME: Use the right type as the parameter type. Note that in a call 1434 // to operator delete(size_t, ...), we may not have it available. 1435 if (Params.Alignment) 1436 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1437 CGF.SizeTy, AllocAlign.getQuantity())), 1438 CGF.getContext().getSizeType()); 1439 1440 // Pass the rest of the arguments, which must match exactly. 1441 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1442 auto Arg = getPlacementArgs()[I]; 1443 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1444 } 1445 1446 // Call 'operator delete'. 1447 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1448 } 1449 }; 1450 } 1451 1452 /// Enter a cleanup to call 'operator delete' if the initializer in a 1453 /// new-expression throws. 1454 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1455 const CXXNewExpr *E, 1456 Address NewPtr, 1457 llvm::Value *AllocSize, 1458 CharUnits AllocAlign, 1459 const CallArgList &NewArgs) { 1460 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1461 1462 // If we're not inside a conditional branch, then the cleanup will 1463 // dominate and we can do the easier (and more efficient) thing. 1464 if (!CGF.isInConditionalBranch()) { 1465 struct DirectCleanupTraits { 1466 typedef llvm::Value *ValueTy; 1467 typedef RValue RValueTy; 1468 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1469 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1470 }; 1471 1472 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1473 1474 DirectCleanup *Cleanup = CGF.EHStack 1475 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1476 E->getNumPlacementArgs(), 1477 E->getOperatorDelete(), 1478 NewPtr.getPointer(), 1479 AllocSize, 1480 E->passAlignment(), 1481 AllocAlign); 1482 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1483 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1484 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1485 } 1486 1487 return; 1488 } 1489 1490 // Otherwise, we need to save all this stuff. 1491 DominatingValue<RValue>::saved_type SavedNewPtr = 1492 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1493 DominatingValue<RValue>::saved_type SavedAllocSize = 1494 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1495 1496 struct ConditionalCleanupTraits { 1497 typedef DominatingValue<RValue>::saved_type ValueTy; 1498 typedef DominatingValue<RValue>::saved_type RValueTy; 1499 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1500 return V.restore(CGF); 1501 } 1502 }; 1503 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1504 1505 ConditionalCleanup *Cleanup = CGF.EHStack 1506 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1507 E->getNumPlacementArgs(), 1508 E->getOperatorDelete(), 1509 SavedNewPtr, 1510 SavedAllocSize, 1511 E->passAlignment(), 1512 AllocAlign); 1513 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1514 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1515 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1516 Arg.Ty); 1517 } 1518 1519 CGF.initFullExprCleanup(); 1520 } 1521 1522 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1523 // The element type being allocated. 1524 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1525 1526 // 1. Build a call to the allocation function. 1527 FunctionDecl *allocator = E->getOperatorNew(); 1528 1529 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1530 unsigned minElements = 0; 1531 if (E->isArray() && E->hasInitializer()) { 1532 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1533 if (ILE && ILE->isStringLiteralInit()) 1534 minElements = 1535 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1536 ->getSize().getZExtValue(); 1537 else if (ILE) 1538 minElements = ILE->getNumInits(); 1539 } 1540 1541 llvm::Value *numElements = nullptr; 1542 llvm::Value *allocSizeWithoutCookie = nullptr; 1543 llvm::Value *allocSize = 1544 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1545 allocSizeWithoutCookie); 1546 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1547 1548 // Emit the allocation call. If the allocator is a global placement 1549 // operator, just "inline" it directly. 1550 Address allocation = Address::invalid(); 1551 CallArgList allocatorArgs; 1552 if (allocator->isReservedGlobalPlacementOperator()) { 1553 assert(E->getNumPlacementArgs() == 1); 1554 const Expr *arg = *E->placement_arguments().begin(); 1555 1556 LValueBaseInfo BaseInfo; 1557 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1558 1559 // The pointer expression will, in many cases, be an opaque void*. 1560 // In these cases, discard the computed alignment and use the 1561 // formal alignment of the allocated type. 1562 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1563 allocation = Address(allocation.getPointer(), allocAlign); 1564 1565 // Set up allocatorArgs for the call to operator delete if it's not 1566 // the reserved global operator. 1567 if (E->getOperatorDelete() && 1568 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1569 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1570 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1571 } 1572 1573 } else { 1574 const FunctionProtoType *allocatorType = 1575 allocator->getType()->castAs<FunctionProtoType>(); 1576 unsigned ParamsToSkip = 0; 1577 1578 // The allocation size is the first argument. 1579 QualType sizeType = getContext().getSizeType(); 1580 allocatorArgs.add(RValue::get(allocSize), sizeType); 1581 ++ParamsToSkip; 1582 1583 if (allocSize != allocSizeWithoutCookie) { 1584 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1585 allocAlign = std::max(allocAlign, cookieAlign); 1586 } 1587 1588 // The allocation alignment may be passed as the second argument. 1589 if (E->passAlignment()) { 1590 QualType AlignValT = sizeType; 1591 if (allocatorType->getNumParams() > 1) { 1592 AlignValT = allocatorType->getParamType(1); 1593 assert(getContext().hasSameUnqualifiedType( 1594 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1595 sizeType) && 1596 "wrong type for alignment parameter"); 1597 ++ParamsToSkip; 1598 } else { 1599 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1600 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1601 } 1602 allocatorArgs.add( 1603 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1604 AlignValT); 1605 } 1606 1607 // FIXME: Why do we not pass a CalleeDecl here? 1608 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1609 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1610 1611 RValue RV = 1612 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1613 1614 // If this was a call to a global replaceable allocation function that does 1615 // not take an alignment argument, the allocator is known to produce 1616 // storage that's suitably aligned for any object that fits, up to a known 1617 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1618 CharUnits allocationAlign = allocAlign; 1619 if (!E->passAlignment() && 1620 allocator->isReplaceableGlobalAllocationFunction()) { 1621 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1622 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1623 allocationAlign = std::max( 1624 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1625 } 1626 1627 allocation = Address(RV.getScalarVal(), allocationAlign); 1628 } 1629 1630 // Emit a null check on the allocation result if the allocation 1631 // function is allowed to return null (because it has a non-throwing 1632 // exception spec or is the reserved placement new) and we have an 1633 // interesting initializer. 1634 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1635 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1636 1637 llvm::BasicBlock *nullCheckBB = nullptr; 1638 llvm::BasicBlock *contBB = nullptr; 1639 1640 // The null-check means that the initializer is conditionally 1641 // evaluated. 1642 ConditionalEvaluation conditional(*this); 1643 1644 if (nullCheck) { 1645 conditional.begin(*this); 1646 1647 nullCheckBB = Builder.GetInsertBlock(); 1648 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1649 contBB = createBasicBlock("new.cont"); 1650 1651 llvm::Value *isNull = 1652 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1653 Builder.CreateCondBr(isNull, contBB, notNullBB); 1654 EmitBlock(notNullBB); 1655 } 1656 1657 // If there's an operator delete, enter a cleanup to call it if an 1658 // exception is thrown. 1659 EHScopeStack::stable_iterator operatorDeleteCleanup; 1660 llvm::Instruction *cleanupDominator = nullptr; 1661 if (E->getOperatorDelete() && 1662 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1663 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1664 allocatorArgs); 1665 operatorDeleteCleanup = EHStack.stable_begin(); 1666 cleanupDominator = Builder.CreateUnreachable(); 1667 } 1668 1669 assert((allocSize == allocSizeWithoutCookie) == 1670 CalculateCookiePadding(*this, E).isZero()); 1671 if (allocSize != allocSizeWithoutCookie) { 1672 assert(E->isArray()); 1673 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1674 numElements, 1675 E, allocType); 1676 } 1677 1678 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1679 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1680 1681 // Passing pointer through invariant.group.barrier to avoid propagation of 1682 // vptrs information which may be included in previous type. 1683 // To not break LTO with different optimizations levels, we do it regardless 1684 // of optimization level. 1685 if (CGM.getCodeGenOpts().StrictVTablePointers && 1686 allocator->isReservedGlobalPlacementOperator()) 1687 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1688 result.getAlignment()); 1689 1690 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1691 allocSizeWithoutCookie); 1692 if (E->isArray()) { 1693 // NewPtr is a pointer to the base element type. If we're 1694 // allocating an array of arrays, we'll need to cast back to the 1695 // array pointer type. 1696 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1697 if (result.getType() != resultType) 1698 result = Builder.CreateBitCast(result, resultType); 1699 } 1700 1701 // Deactivate the 'operator delete' cleanup if we finished 1702 // initialization. 1703 if (operatorDeleteCleanup.isValid()) { 1704 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1705 cleanupDominator->eraseFromParent(); 1706 } 1707 1708 llvm::Value *resultPtr = result.getPointer(); 1709 if (nullCheck) { 1710 conditional.end(*this); 1711 1712 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1713 EmitBlock(contBB); 1714 1715 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1716 PHI->addIncoming(resultPtr, notNullBB); 1717 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1718 nullCheckBB); 1719 1720 resultPtr = PHI; 1721 } 1722 1723 return resultPtr; 1724 } 1725 1726 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1727 llvm::Value *Ptr, QualType DeleteTy, 1728 llvm::Value *NumElements, 1729 CharUnits CookieSize) { 1730 assert((!NumElements && CookieSize.isZero()) || 1731 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1732 1733 const FunctionProtoType *DeleteFTy = 1734 DeleteFD->getType()->getAs<FunctionProtoType>(); 1735 1736 CallArgList DeleteArgs; 1737 1738 auto Params = getUsualDeleteParams(DeleteFD); 1739 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1740 1741 // Pass the pointer itself. 1742 QualType ArgTy = *ParamTypeIt++; 1743 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1744 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1745 1746 // Pass the std::destroying_delete tag if present. 1747 if (Params.DestroyingDelete) { 1748 QualType DDTag = *ParamTypeIt++; 1749 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1750 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1751 DeleteArgs.add(RValue::get(V), DDTag); 1752 } 1753 1754 // Pass the size if the delete function has a size_t parameter. 1755 if (Params.Size) { 1756 QualType SizeType = *ParamTypeIt++; 1757 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1758 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1759 DeleteTypeSize.getQuantity()); 1760 1761 // For array new, multiply by the number of elements. 1762 if (NumElements) 1763 Size = Builder.CreateMul(Size, NumElements); 1764 1765 // If there is a cookie, add the cookie size. 1766 if (!CookieSize.isZero()) 1767 Size = Builder.CreateAdd( 1768 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1769 1770 DeleteArgs.add(RValue::get(Size), SizeType); 1771 } 1772 1773 // Pass the alignment if the delete function has an align_val_t parameter. 1774 if (Params.Alignment) { 1775 QualType AlignValType = *ParamTypeIt++; 1776 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1777 getContext().getTypeAlignIfKnown(DeleteTy)); 1778 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1779 DeleteTypeAlign.getQuantity()); 1780 DeleteArgs.add(RValue::get(Align), AlignValType); 1781 } 1782 1783 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1784 "unknown parameter to usual delete function"); 1785 1786 // Emit the call to delete. 1787 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1788 } 1789 1790 namespace { 1791 /// Calls the given 'operator delete' on a single object. 1792 struct CallObjectDelete final : EHScopeStack::Cleanup { 1793 llvm::Value *Ptr; 1794 const FunctionDecl *OperatorDelete; 1795 QualType ElementType; 1796 1797 CallObjectDelete(llvm::Value *Ptr, 1798 const FunctionDecl *OperatorDelete, 1799 QualType ElementType) 1800 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1801 1802 void Emit(CodeGenFunction &CGF, Flags flags) override { 1803 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1804 } 1805 }; 1806 } 1807 1808 void 1809 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1810 llvm::Value *CompletePtr, 1811 QualType ElementType) { 1812 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1813 OperatorDelete, ElementType); 1814 } 1815 1816 /// Emit the code for deleting a single object with a destroying operator 1817 /// delete. If the element type has a non-virtual destructor, Ptr has already 1818 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1819 /// Ptr points to an object of the static type. 1820 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1821 const CXXDeleteExpr *DE, Address Ptr, 1822 QualType ElementType) { 1823 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1824 if (Dtor && Dtor->isVirtual()) 1825 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1826 Dtor); 1827 else 1828 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1829 } 1830 1831 /// Emit the code for deleting a single object. 1832 static void EmitObjectDelete(CodeGenFunction &CGF, 1833 const CXXDeleteExpr *DE, 1834 Address Ptr, 1835 QualType ElementType) { 1836 // C++11 [expr.delete]p3: 1837 // If the static type of the object to be deleted is different from its 1838 // dynamic type, the static type shall be a base class of the dynamic type 1839 // of the object to be deleted and the static type shall have a virtual 1840 // destructor or the behavior is undefined. 1841 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1842 DE->getExprLoc(), Ptr.getPointer(), 1843 ElementType); 1844 1845 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1846 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1847 1848 // Find the destructor for the type, if applicable. If the 1849 // destructor is virtual, we'll just emit the vcall and return. 1850 const CXXDestructorDecl *Dtor = nullptr; 1851 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1852 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1853 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1854 Dtor = RD->getDestructor(); 1855 1856 if (Dtor->isVirtual()) { 1857 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1858 Dtor); 1859 return; 1860 } 1861 } 1862 } 1863 1864 // Make sure that we call delete even if the dtor throws. 1865 // This doesn't have to a conditional cleanup because we're going 1866 // to pop it off in a second. 1867 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1868 Ptr.getPointer(), 1869 OperatorDelete, ElementType); 1870 1871 if (Dtor) 1872 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1873 /*ForVirtualBase=*/false, 1874 /*Delegating=*/false, 1875 Ptr); 1876 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1877 switch (Lifetime) { 1878 case Qualifiers::OCL_None: 1879 case Qualifiers::OCL_ExplicitNone: 1880 case Qualifiers::OCL_Autoreleasing: 1881 break; 1882 1883 case Qualifiers::OCL_Strong: 1884 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1885 break; 1886 1887 case Qualifiers::OCL_Weak: 1888 CGF.EmitARCDestroyWeak(Ptr); 1889 break; 1890 } 1891 } 1892 1893 CGF.PopCleanupBlock(); 1894 } 1895 1896 namespace { 1897 /// Calls the given 'operator delete' on an array of objects. 1898 struct CallArrayDelete final : EHScopeStack::Cleanup { 1899 llvm::Value *Ptr; 1900 const FunctionDecl *OperatorDelete; 1901 llvm::Value *NumElements; 1902 QualType ElementType; 1903 CharUnits CookieSize; 1904 1905 CallArrayDelete(llvm::Value *Ptr, 1906 const FunctionDecl *OperatorDelete, 1907 llvm::Value *NumElements, 1908 QualType ElementType, 1909 CharUnits CookieSize) 1910 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1911 ElementType(ElementType), CookieSize(CookieSize) {} 1912 1913 void Emit(CodeGenFunction &CGF, Flags flags) override { 1914 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1915 CookieSize); 1916 } 1917 }; 1918 } 1919 1920 /// Emit the code for deleting an array of objects. 1921 static void EmitArrayDelete(CodeGenFunction &CGF, 1922 const CXXDeleteExpr *E, 1923 Address deletedPtr, 1924 QualType elementType) { 1925 llvm::Value *numElements = nullptr; 1926 llvm::Value *allocatedPtr = nullptr; 1927 CharUnits cookieSize; 1928 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1929 numElements, allocatedPtr, cookieSize); 1930 1931 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1932 1933 // Make sure that we call delete even if one of the dtors throws. 1934 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1935 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1936 allocatedPtr, operatorDelete, 1937 numElements, elementType, 1938 cookieSize); 1939 1940 // Destroy the elements. 1941 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1942 assert(numElements && "no element count for a type with a destructor!"); 1943 1944 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1945 CharUnits elementAlign = 1946 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1947 1948 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1949 llvm::Value *arrayEnd = 1950 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1951 1952 // Note that it is legal to allocate a zero-length array, and we 1953 // can never fold the check away because the length should always 1954 // come from a cookie. 1955 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1956 CGF.getDestroyer(dtorKind), 1957 /*checkZeroLength*/ true, 1958 CGF.needsEHCleanup(dtorKind)); 1959 } 1960 1961 // Pop the cleanup block. 1962 CGF.PopCleanupBlock(); 1963 } 1964 1965 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1966 const Expr *Arg = E->getArgument(); 1967 Address Ptr = EmitPointerWithAlignment(Arg); 1968 1969 // Null check the pointer. 1970 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1971 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1972 1973 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1974 1975 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1976 EmitBlock(DeleteNotNull); 1977 1978 QualType DeleteTy = E->getDestroyedType(); 1979 1980 // A destroying operator delete overrides the entire operation of the 1981 // delete expression. 1982 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 1983 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 1984 EmitBlock(DeleteEnd); 1985 return; 1986 } 1987 1988 // We might be deleting a pointer to array. If so, GEP down to the 1989 // first non-array element. 1990 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1991 if (DeleteTy->isConstantArrayType()) { 1992 llvm::Value *Zero = Builder.getInt32(0); 1993 SmallVector<llvm::Value*,8> GEP; 1994 1995 GEP.push_back(Zero); // point at the outermost array 1996 1997 // For each layer of array type we're pointing at: 1998 while (const ConstantArrayType *Arr 1999 = getContext().getAsConstantArrayType(DeleteTy)) { 2000 // 1. Unpeel the array type. 2001 DeleteTy = Arr->getElementType(); 2002 2003 // 2. GEP to the first element of the array. 2004 GEP.push_back(Zero); 2005 } 2006 2007 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2008 Ptr.getAlignment()); 2009 } 2010 2011 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2012 2013 if (E->isArrayForm()) { 2014 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2015 } else { 2016 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2017 } 2018 2019 EmitBlock(DeleteEnd); 2020 } 2021 2022 static bool isGLValueFromPointerDeref(const Expr *E) { 2023 E = E->IgnoreParens(); 2024 2025 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2026 if (!CE->getSubExpr()->isGLValue()) 2027 return false; 2028 return isGLValueFromPointerDeref(CE->getSubExpr()); 2029 } 2030 2031 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2032 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2033 2034 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2035 if (BO->getOpcode() == BO_Comma) 2036 return isGLValueFromPointerDeref(BO->getRHS()); 2037 2038 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2039 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2040 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2041 2042 // C++11 [expr.sub]p1: 2043 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2044 if (isa<ArraySubscriptExpr>(E)) 2045 return true; 2046 2047 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2048 if (UO->getOpcode() == UO_Deref) 2049 return true; 2050 2051 return false; 2052 } 2053 2054 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2055 llvm::Type *StdTypeInfoPtrTy) { 2056 // Get the vtable pointer. 2057 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2058 2059 QualType SrcRecordTy = E->getType(); 2060 2061 // C++ [class.cdtor]p4: 2062 // If the operand of typeid refers to the object under construction or 2063 // destruction and the static type of the operand is neither the constructor 2064 // or destructor’s class nor one of its bases, the behavior is undefined. 2065 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2066 ThisPtr.getPointer(), SrcRecordTy); 2067 2068 // C++ [expr.typeid]p2: 2069 // If the glvalue expression is obtained by applying the unary * operator to 2070 // a pointer and the pointer is a null pointer value, the typeid expression 2071 // throws the std::bad_typeid exception. 2072 // 2073 // However, this paragraph's intent is not clear. We choose a very generous 2074 // interpretation which implores us to consider comma operators, conditional 2075 // operators, parentheses and other such constructs. 2076 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2077 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2078 llvm::BasicBlock *BadTypeidBlock = 2079 CGF.createBasicBlock("typeid.bad_typeid"); 2080 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2081 2082 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2083 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2084 2085 CGF.EmitBlock(BadTypeidBlock); 2086 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2087 CGF.EmitBlock(EndBlock); 2088 } 2089 2090 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2091 StdTypeInfoPtrTy); 2092 } 2093 2094 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2095 llvm::Type *StdTypeInfoPtrTy = 2096 ConvertType(E->getType())->getPointerTo(); 2097 2098 if (E->isTypeOperand()) { 2099 llvm::Constant *TypeInfo = 2100 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2101 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2102 } 2103 2104 // C++ [expr.typeid]p2: 2105 // When typeid is applied to a glvalue expression whose type is a 2106 // polymorphic class type, the result refers to a std::type_info object 2107 // representing the type of the most derived object (that is, the dynamic 2108 // type) to which the glvalue refers. 2109 if (E->isPotentiallyEvaluated()) 2110 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2111 StdTypeInfoPtrTy); 2112 2113 QualType OperandTy = E->getExprOperand()->getType(); 2114 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2115 StdTypeInfoPtrTy); 2116 } 2117 2118 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2119 QualType DestTy) { 2120 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2121 if (DestTy->isPointerType()) 2122 return llvm::Constant::getNullValue(DestLTy); 2123 2124 /// C++ [expr.dynamic.cast]p9: 2125 /// A failed cast to reference type throws std::bad_cast 2126 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2127 return nullptr; 2128 2129 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2130 return llvm::UndefValue::get(DestLTy); 2131 } 2132 2133 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2134 const CXXDynamicCastExpr *DCE) { 2135 CGM.EmitExplicitCastExprType(DCE, this); 2136 QualType DestTy = DCE->getTypeAsWritten(); 2137 2138 QualType SrcTy = DCE->getSubExpr()->getType(); 2139 2140 // C++ [expr.dynamic.cast]p7: 2141 // If T is "pointer to cv void," then the result is a pointer to the most 2142 // derived object pointed to by v. 2143 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2144 2145 bool isDynamicCastToVoid; 2146 QualType SrcRecordTy; 2147 QualType DestRecordTy; 2148 if (DestPTy) { 2149 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2150 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2151 DestRecordTy = DestPTy->getPointeeType(); 2152 } else { 2153 isDynamicCastToVoid = false; 2154 SrcRecordTy = SrcTy; 2155 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2156 } 2157 2158 // C++ [class.cdtor]p5: 2159 // If the operand of the dynamic_cast refers to the object under 2160 // construction or destruction and the static type of the operand is not a 2161 // pointer to or object of the constructor or destructor’s own class or one 2162 // of its bases, the dynamic_cast results in undefined behavior. 2163 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2164 SrcRecordTy); 2165 2166 if (DCE->isAlwaysNull()) 2167 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2168 return T; 2169 2170 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2171 2172 // C++ [expr.dynamic.cast]p4: 2173 // If the value of v is a null pointer value in the pointer case, the result 2174 // is the null pointer value of type T. 2175 bool ShouldNullCheckSrcValue = 2176 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2177 SrcRecordTy); 2178 2179 llvm::BasicBlock *CastNull = nullptr; 2180 llvm::BasicBlock *CastNotNull = nullptr; 2181 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2182 2183 if (ShouldNullCheckSrcValue) { 2184 CastNull = createBasicBlock("dynamic_cast.null"); 2185 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2186 2187 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2188 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2189 EmitBlock(CastNotNull); 2190 } 2191 2192 llvm::Value *Value; 2193 if (isDynamicCastToVoid) { 2194 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2195 DestTy); 2196 } else { 2197 assert(DestRecordTy->isRecordType() && 2198 "destination type must be a record type!"); 2199 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2200 DestTy, DestRecordTy, CastEnd); 2201 CastNotNull = Builder.GetInsertBlock(); 2202 } 2203 2204 if (ShouldNullCheckSrcValue) { 2205 EmitBranch(CastEnd); 2206 2207 EmitBlock(CastNull); 2208 EmitBranch(CastEnd); 2209 } 2210 2211 EmitBlock(CastEnd); 2212 2213 if (ShouldNullCheckSrcValue) { 2214 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2215 PHI->addIncoming(Value, CastNotNull); 2216 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2217 2218 Value = PHI; 2219 } 2220 2221 return Value; 2222 } 2223 2224 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2225 RunCleanupsScope Scope(*this); 2226 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2227 2228 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2229 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2230 e = E->capture_init_end(); 2231 i != e; ++i, ++CurField) { 2232 // Emit initialization 2233 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2234 if (CurField->hasCapturedVLAType()) { 2235 auto VAT = CurField->getCapturedVLAType(); 2236 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2237 } else { 2238 EmitInitializerForField(*CurField, LV, *i); 2239 } 2240 } 2241 } 2242