1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static RequiredArgs
28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
29                                   llvm::Value *This, llvm::Value *ImplicitParam,
30                                   QualType ImplicitParamTy, const CallExpr *CE,
31                                   CallArgList &Args, CallArgList *RtlArgs) {
32   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
33          isa<CXXOperatorCallExpr>(CE));
34   assert(MD->isInstance() &&
35          "Trying to emit a member or operator call expr on a static method!");
36   ASTContext &C = CGF.getContext();
37 
38   // C++11 [class.mfct.non-static]p2:
39   //   If a non-static member function of a class X is called for an object that
40   //   is not of type X, or of a type derived from X, the behavior is undefined.
41   SourceLocation CallLoc;
42   if (CE)
43     CallLoc = CE->getExprLoc();
44   CGF.EmitTypeCheck(isa<CXXConstructorDecl>(MD)
45                         ? CodeGenFunction::TCK_ConstructorCall
46                         : CodeGenFunction::TCK_MemberCall,
47                     CallLoc, This, C.getRecordType(MD->getParent()));
48 
49   // Push the this ptr.
50   const CXXRecordDecl *RD =
51       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
52   Args.add(RValue::get(This),
53            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
54 
55   // If there is an implicit parameter (e.g. VTT), emit it.
56   if (ImplicitParam) {
57     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
58   }
59 
60   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
61   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
62 
63   // And the rest of the call args.
64   if (RtlArgs) {
65     // Special case: if the caller emitted the arguments right-to-left already
66     // (prior to emitting the *this argument), we're done. This happens for
67     // assignment operators.
68     Args.addFrom(*RtlArgs);
69   } else if (CE) {
70     // Special case: skip first argument of CXXOperatorCall (it is "this").
71     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
72     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
73                      CE->getDirectCallee());
74   } else {
75     assert(
76         FPT->getNumParams() == 0 &&
77         "No CallExpr specified for function with non-zero number of arguments");
78   }
79   return required;
80 }
81 
82 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
83     const CXXMethodDecl *MD, const CGCallee &Callee,
84     ReturnValueSlot ReturnValue,
85     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
86     const CallExpr *CE, CallArgList *RtlArgs) {
87   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
88   CallArgList Args;
89   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
90       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
91   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required);
92   return EmitCall(FnInfo, Callee, ReturnValue, Args);
93 }
94 
95 RValue CodeGenFunction::EmitCXXDestructorCall(
96     const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
97     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
98     StructorType Type) {
99   CallArgList Args;
100   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
101                                     ImplicitParamTy, CE, Args, nullptr);
102   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
103                   Callee, ReturnValueSlot(), Args);
104 }
105 
106 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
107                                             const CXXPseudoDestructorExpr *E) {
108   QualType DestroyedType = E->getDestroyedType();
109   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
110     // Automatic Reference Counting:
111     //   If the pseudo-expression names a retainable object with weak or
112     //   strong lifetime, the object shall be released.
113     Expr *BaseExpr = E->getBase();
114     Address BaseValue = Address::invalid();
115     Qualifiers BaseQuals;
116 
117     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
118     if (E->isArrow()) {
119       BaseValue = EmitPointerWithAlignment(BaseExpr);
120       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
121       BaseQuals = PTy->getPointeeType().getQualifiers();
122     } else {
123       LValue BaseLV = EmitLValue(BaseExpr);
124       BaseValue = BaseLV.getAddress();
125       QualType BaseTy = BaseExpr->getType();
126       BaseQuals = BaseTy.getQualifiers();
127     }
128 
129     switch (DestroyedType.getObjCLifetime()) {
130     case Qualifiers::OCL_None:
131     case Qualifiers::OCL_ExplicitNone:
132     case Qualifiers::OCL_Autoreleasing:
133       break;
134 
135     case Qualifiers::OCL_Strong:
136       EmitARCRelease(Builder.CreateLoad(BaseValue,
137                         DestroyedType.isVolatileQualified()),
138                      ARCPreciseLifetime);
139       break;
140 
141     case Qualifiers::OCL_Weak:
142       EmitARCDestroyWeak(BaseValue);
143       break;
144     }
145   } else {
146     // C++ [expr.pseudo]p1:
147     //   The result shall only be used as the operand for the function call
148     //   operator (), and the result of such a call has type void. The only
149     //   effect is the evaluation of the postfix-expression before the dot or
150     //   arrow.
151     EmitIgnoredExpr(E->getBase());
152   }
153 
154   return RValue::get(nullptr);
155 }
156 
157 static CXXRecordDecl *getCXXRecord(const Expr *E) {
158   QualType T = E->getType();
159   if (const PointerType *PTy = T->getAs<PointerType>())
160     T = PTy->getPointeeType();
161   const RecordType *Ty = T->castAs<RecordType>();
162   return cast<CXXRecordDecl>(Ty->getDecl());
163 }
164 
165 // Note: This function also emit constructor calls to support a MSVC
166 // extensions allowing explicit constructor function call.
167 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
168                                               ReturnValueSlot ReturnValue) {
169   const Expr *callee = CE->getCallee()->IgnoreParens();
170 
171   if (isa<BinaryOperator>(callee))
172     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
173 
174   const MemberExpr *ME = cast<MemberExpr>(callee);
175   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
176 
177   if (MD->isStatic()) {
178     // The method is static, emit it as we would a regular call.
179     CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
180     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
181                     ReturnValue);
182   }
183 
184   bool HasQualifier = ME->hasQualifier();
185   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
186   bool IsArrow = ME->isArrow();
187   const Expr *Base = ME->getBase();
188 
189   return EmitCXXMemberOrOperatorMemberCallExpr(
190       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
191 }
192 
193 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
194     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
195     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
196     const Expr *Base) {
197   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
198 
199   // Compute the object pointer.
200   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
201 
202   const CXXMethodDecl *DevirtualizedMethod = nullptr;
203   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
204     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
205     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
206     assert(DevirtualizedMethod);
207     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
208     const Expr *Inner = Base->ignoreParenBaseCasts();
209     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
210         MD->getReturnType().getCanonicalType())
211       // If the return types are not the same, this might be a case where more
212       // code needs to run to compensate for it. For example, the derived
213       // method might return a type that inherits form from the return
214       // type of MD and has a prefix.
215       // For now we just avoid devirtualizing these covariant cases.
216       DevirtualizedMethod = nullptr;
217     else if (getCXXRecord(Inner) == DevirtualizedClass)
218       // If the class of the Inner expression is where the dynamic method
219       // is defined, build the this pointer from it.
220       Base = Inner;
221     else if (getCXXRecord(Base) != DevirtualizedClass) {
222       // If the method is defined in a class that is not the best dynamic
223       // one or the one of the full expression, we would have to build
224       // a derived-to-base cast to compute the correct this pointer, but
225       // we don't have support for that yet, so do a virtual call.
226       DevirtualizedMethod = nullptr;
227     }
228   }
229 
230   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
231   // operator before the LHS.
232   CallArgList RtlArgStorage;
233   CallArgList *RtlArgs = nullptr;
234   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
235     if (OCE->isAssignmentOp()) {
236       RtlArgs = &RtlArgStorage;
237       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
238                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
239                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
240     }
241   }
242 
243   Address This = Address::invalid();
244   if (IsArrow)
245     This = EmitPointerWithAlignment(Base);
246   else
247     This = EmitLValue(Base).getAddress();
248 
249 
250   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
251     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
252     if (isa<CXXConstructorDecl>(MD) &&
253         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
254       return RValue::get(nullptr);
255 
256     if (!MD->getParent()->mayInsertExtraPadding()) {
257       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
258         // We don't like to generate the trivial copy/move assignment operator
259         // when it isn't necessary; just produce the proper effect here.
260         LValue RHS = isa<CXXOperatorCallExpr>(CE)
261                          ? MakeNaturalAlignAddrLValue(
262                                (*RtlArgs)[0].RV.getScalarVal(),
263                                (*(CE->arg_begin() + 1))->getType())
264                          : EmitLValue(*CE->arg_begin());
265         EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
266         return RValue::get(This.getPointer());
267       }
268 
269       if (isa<CXXConstructorDecl>(MD) &&
270           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
271         // Trivial move and copy ctor are the same.
272         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
273         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
274         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
275         return RValue::get(This.getPointer());
276       }
277       llvm_unreachable("unknown trivial member function");
278     }
279   }
280 
281   // Compute the function type we're calling.
282   const CXXMethodDecl *CalleeDecl =
283       DevirtualizedMethod ? DevirtualizedMethod : MD;
284   const CGFunctionInfo *FInfo = nullptr;
285   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
286     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
287         Dtor, StructorType::Complete);
288   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
289     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
290         Ctor, StructorType::Complete);
291   else
292     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
293 
294   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
295 
296   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
297   // 'CalleeDecl' instead.
298 
299   // C++ [class.virtual]p12:
300   //   Explicit qualification with the scope operator (5.1) suppresses the
301   //   virtual call mechanism.
302   //
303   // We also don't emit a virtual call if the base expression has a record type
304   // because then we know what the type is.
305   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
306 
307   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
308     assert(CE->arg_begin() == CE->arg_end() &&
309            "Destructor shouldn't have explicit parameters");
310     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
311     if (UseVirtualCall) {
312       CGM.getCXXABI().EmitVirtualDestructorCall(
313           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
314     } else {
315       CGCallee Callee;
316       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
317         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
318       else if (!DevirtualizedMethod)
319         Callee = CGCallee::forDirect(
320             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
321                                      Dtor);
322       else {
323         const CXXDestructorDecl *DDtor =
324           cast<CXXDestructorDecl>(DevirtualizedMethod);
325         Callee = CGCallee::forDirect(
326                   CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
327                                      DDtor);
328       }
329       EmitCXXMemberOrOperatorCall(
330           CalleeDecl, Callee, ReturnValue, This.getPointer(),
331           /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
332     }
333     return RValue::get(nullptr);
334   }
335 
336   CGCallee Callee;
337   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
338     Callee = CGCallee::forDirect(
339                   CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
340                                  Ctor);
341   } else if (UseVirtualCall) {
342     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
343                                                        CE->getLocStart());
344   } else {
345     if (SanOpts.has(SanitizerKind::CFINVCall) &&
346         MD->getParent()->isDynamicClass()) {
347       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
348       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
349                                 CE->getLocStart());
350     }
351 
352     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
353       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
354     else if (!DevirtualizedMethod)
355       Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
356     else {
357       Callee = CGCallee::forDirect(
358                                 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
359                                    DevirtualizedMethod);
360     }
361   }
362 
363   if (MD->isVirtual()) {
364     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
365         *this, CalleeDecl, This, UseVirtualCall);
366   }
367 
368   return EmitCXXMemberOrOperatorCall(
369       CalleeDecl, Callee, ReturnValue, This.getPointer(),
370       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
371 }
372 
373 RValue
374 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
375                                               ReturnValueSlot ReturnValue) {
376   const BinaryOperator *BO =
377       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
378   const Expr *BaseExpr = BO->getLHS();
379   const Expr *MemFnExpr = BO->getRHS();
380 
381   const MemberPointerType *MPT =
382     MemFnExpr->getType()->castAs<MemberPointerType>();
383 
384   const FunctionProtoType *FPT =
385     MPT->getPointeeType()->castAs<FunctionProtoType>();
386   const CXXRecordDecl *RD =
387     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
388 
389   // Emit the 'this' pointer.
390   Address This = Address::invalid();
391   if (BO->getOpcode() == BO_PtrMemI)
392     This = EmitPointerWithAlignment(BaseExpr);
393   else
394     This = EmitLValue(BaseExpr).getAddress();
395 
396   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
397                 QualType(MPT->getClass(), 0));
398 
399   // Get the member function pointer.
400   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
401 
402   // Ask the ABI to load the callee.  Note that This is modified.
403   llvm::Value *ThisPtrForCall = nullptr;
404   CGCallee Callee =
405     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
406                                              ThisPtrForCall, MemFnPtr, MPT);
407 
408   CallArgList Args;
409 
410   QualType ThisType =
411     getContext().getPointerType(getContext().getTagDeclType(RD));
412 
413   // Push the this ptr.
414   Args.add(RValue::get(ThisPtrForCall), ThisType);
415 
416   RequiredArgs required =
417       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
418 
419   // And the rest of the call args
420   EmitCallArgs(Args, FPT, E->arguments());
421   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
422                   Callee, ReturnValue, Args);
423 }
424 
425 RValue
426 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
427                                                const CXXMethodDecl *MD,
428                                                ReturnValueSlot ReturnValue) {
429   assert(MD->isInstance() &&
430          "Trying to emit a member call expr on a static method!");
431   return EmitCXXMemberOrOperatorMemberCallExpr(
432       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
433       /*IsArrow=*/false, E->getArg(0));
434 }
435 
436 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
437                                                ReturnValueSlot ReturnValue) {
438   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
439 }
440 
441 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
442                                             Address DestPtr,
443                                             const CXXRecordDecl *Base) {
444   if (Base->isEmpty())
445     return;
446 
447   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
448 
449   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
450   CharUnits NVSize = Layout.getNonVirtualSize();
451 
452   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
453   // present, they are initialized by the most derived class before calling the
454   // constructor.
455   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
456   Stores.emplace_back(CharUnits::Zero(), NVSize);
457 
458   // Each store is split by the existence of a vbptr.
459   CharUnits VBPtrWidth = CGF.getPointerSize();
460   std::vector<CharUnits> VBPtrOffsets =
461       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
462   for (CharUnits VBPtrOffset : VBPtrOffsets) {
463     // Stop before we hit any virtual base pointers located in virtual bases.
464     if (VBPtrOffset >= NVSize)
465       break;
466     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
467     CharUnits LastStoreOffset = LastStore.first;
468     CharUnits LastStoreSize = LastStore.second;
469 
470     CharUnits SplitBeforeOffset = LastStoreOffset;
471     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
472     assert(!SplitBeforeSize.isNegative() && "negative store size!");
473     if (!SplitBeforeSize.isZero())
474       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
475 
476     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
477     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
478     assert(!SplitAfterSize.isNegative() && "negative store size!");
479     if (!SplitAfterSize.isZero())
480       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
481   }
482 
483   // If the type contains a pointer to data member we can't memset it to zero.
484   // Instead, create a null constant and copy it to the destination.
485   // TODO: there are other patterns besides zero that we can usefully memset,
486   // like -1, which happens to be the pattern used by member-pointers.
487   // TODO: isZeroInitializable can be over-conservative in the case where a
488   // virtual base contains a member pointer.
489   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
490   if (!NullConstantForBase->isNullValue()) {
491     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
492         CGF.CGM.getModule(), NullConstantForBase->getType(),
493         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
494         NullConstantForBase, Twine());
495 
496     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
497                                DestPtr.getAlignment());
498     NullVariable->setAlignment(Align.getQuantity());
499 
500     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
501 
502     // Get and call the appropriate llvm.memcpy overload.
503     for (std::pair<CharUnits, CharUnits> Store : Stores) {
504       CharUnits StoreOffset = Store.first;
505       CharUnits StoreSize = Store.second;
506       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
507       CGF.Builder.CreateMemCpy(
508           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
509           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
510           StoreSizeVal);
511     }
512 
513   // Otherwise, just memset the whole thing to zero.  This is legal
514   // because in LLVM, all default initializers (other than the ones we just
515   // handled above) are guaranteed to have a bit pattern of all zeros.
516   } else {
517     for (std::pair<CharUnits, CharUnits> Store : Stores) {
518       CharUnits StoreOffset = Store.first;
519       CharUnits StoreSize = Store.second;
520       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
521       CGF.Builder.CreateMemSet(
522           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
523           CGF.Builder.getInt8(0), StoreSizeVal);
524     }
525   }
526 }
527 
528 void
529 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
530                                       AggValueSlot Dest) {
531   assert(!Dest.isIgnored() && "Must have a destination!");
532   const CXXConstructorDecl *CD = E->getConstructor();
533 
534   // If we require zero initialization before (or instead of) calling the
535   // constructor, as can be the case with a non-user-provided default
536   // constructor, emit the zero initialization now, unless destination is
537   // already zeroed.
538   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
539     switch (E->getConstructionKind()) {
540     case CXXConstructExpr::CK_Delegating:
541     case CXXConstructExpr::CK_Complete:
542       EmitNullInitialization(Dest.getAddress(), E->getType());
543       break;
544     case CXXConstructExpr::CK_VirtualBase:
545     case CXXConstructExpr::CK_NonVirtualBase:
546       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
547                                       CD->getParent());
548       break;
549     }
550   }
551 
552   // If this is a call to a trivial default constructor, do nothing.
553   if (CD->isTrivial() && CD->isDefaultConstructor())
554     return;
555 
556   // Elide the constructor if we're constructing from a temporary.
557   // The temporary check is required because Sema sets this on NRVO
558   // returns.
559   if (getLangOpts().ElideConstructors && E->isElidable()) {
560     assert(getContext().hasSameUnqualifiedType(E->getType(),
561                                                E->getArg(0)->getType()));
562     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
563       EmitAggExpr(E->getArg(0), Dest);
564       return;
565     }
566   }
567 
568   if (const ArrayType *arrayType
569         = getContext().getAsArrayType(E->getType())) {
570     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
571   } else {
572     CXXCtorType Type = Ctor_Complete;
573     bool ForVirtualBase = false;
574     bool Delegating = false;
575 
576     switch (E->getConstructionKind()) {
577      case CXXConstructExpr::CK_Delegating:
578       // We should be emitting a constructor; GlobalDecl will assert this
579       Type = CurGD.getCtorType();
580       Delegating = true;
581       break;
582 
583      case CXXConstructExpr::CK_Complete:
584       Type = Ctor_Complete;
585       break;
586 
587      case CXXConstructExpr::CK_VirtualBase:
588       ForVirtualBase = true;
589       // fall-through
590 
591      case CXXConstructExpr::CK_NonVirtualBase:
592       Type = Ctor_Base;
593     }
594 
595     // Call the constructor.
596     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
597                            Dest.getAddress(), E);
598   }
599 }
600 
601 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
602                                                  const Expr *Exp) {
603   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
604     Exp = E->getSubExpr();
605   assert(isa<CXXConstructExpr>(Exp) &&
606          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
607   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
608   const CXXConstructorDecl *CD = E->getConstructor();
609   RunCleanupsScope Scope(*this);
610 
611   // If we require zero initialization before (or instead of) calling the
612   // constructor, as can be the case with a non-user-provided default
613   // constructor, emit the zero initialization now.
614   // FIXME. Do I still need this for a copy ctor synthesis?
615   if (E->requiresZeroInitialization())
616     EmitNullInitialization(Dest, E->getType());
617 
618   assert(!getContext().getAsConstantArrayType(E->getType())
619          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
620   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
621 }
622 
623 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
624                                         const CXXNewExpr *E) {
625   if (!E->isArray())
626     return CharUnits::Zero();
627 
628   // No cookie is required if the operator new[] being used is the
629   // reserved placement operator new[].
630   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
631     return CharUnits::Zero();
632 
633   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
634 }
635 
636 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
637                                         const CXXNewExpr *e,
638                                         unsigned minElements,
639                                         llvm::Value *&numElements,
640                                         llvm::Value *&sizeWithoutCookie) {
641   QualType type = e->getAllocatedType();
642 
643   if (!e->isArray()) {
644     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
645     sizeWithoutCookie
646       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
647     return sizeWithoutCookie;
648   }
649 
650   // The width of size_t.
651   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
652 
653   // Figure out the cookie size.
654   llvm::APInt cookieSize(sizeWidth,
655                          CalculateCookiePadding(CGF, e).getQuantity());
656 
657   // Emit the array size expression.
658   // We multiply the size of all dimensions for NumElements.
659   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
660   numElements = CGF.EmitScalarExpr(e->getArraySize());
661   assert(isa<llvm::IntegerType>(numElements->getType()));
662 
663   // The number of elements can be have an arbitrary integer type;
664   // essentially, we need to multiply it by a constant factor, add a
665   // cookie size, and verify that the result is representable as a
666   // size_t.  That's just a gloss, though, and it's wrong in one
667   // important way: if the count is negative, it's an error even if
668   // the cookie size would bring the total size >= 0.
669   bool isSigned
670     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
671   llvm::IntegerType *numElementsType
672     = cast<llvm::IntegerType>(numElements->getType());
673   unsigned numElementsWidth = numElementsType->getBitWidth();
674 
675   // Compute the constant factor.
676   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
677   while (const ConstantArrayType *CAT
678              = CGF.getContext().getAsConstantArrayType(type)) {
679     type = CAT->getElementType();
680     arraySizeMultiplier *= CAT->getSize();
681   }
682 
683   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
684   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
685   typeSizeMultiplier *= arraySizeMultiplier;
686 
687   // This will be a size_t.
688   llvm::Value *size;
689 
690   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
691   // Don't bloat the -O0 code.
692   if (llvm::ConstantInt *numElementsC =
693         dyn_cast<llvm::ConstantInt>(numElements)) {
694     const llvm::APInt &count = numElementsC->getValue();
695 
696     bool hasAnyOverflow = false;
697 
698     // If 'count' was a negative number, it's an overflow.
699     if (isSigned && count.isNegative())
700       hasAnyOverflow = true;
701 
702     // We want to do all this arithmetic in size_t.  If numElements is
703     // wider than that, check whether it's already too big, and if so,
704     // overflow.
705     else if (numElementsWidth > sizeWidth &&
706              numElementsWidth - sizeWidth > count.countLeadingZeros())
707       hasAnyOverflow = true;
708 
709     // Okay, compute a count at the right width.
710     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
711 
712     // If there is a brace-initializer, we cannot allocate fewer elements than
713     // there are initializers. If we do, that's treated like an overflow.
714     if (adjustedCount.ult(minElements))
715       hasAnyOverflow = true;
716 
717     // Scale numElements by that.  This might overflow, but we don't
718     // care because it only overflows if allocationSize does, too, and
719     // if that overflows then we shouldn't use this.
720     numElements = llvm::ConstantInt::get(CGF.SizeTy,
721                                          adjustedCount * arraySizeMultiplier);
722 
723     // Compute the size before cookie, and track whether it overflowed.
724     bool overflow;
725     llvm::APInt allocationSize
726       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
727     hasAnyOverflow |= overflow;
728 
729     // Add in the cookie, and check whether it's overflowed.
730     if (cookieSize != 0) {
731       // Save the current size without a cookie.  This shouldn't be
732       // used if there was overflow.
733       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
734 
735       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
736       hasAnyOverflow |= overflow;
737     }
738 
739     // On overflow, produce a -1 so operator new will fail.
740     if (hasAnyOverflow) {
741       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
742     } else {
743       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
744     }
745 
746   // Otherwise, we might need to use the overflow intrinsics.
747   } else {
748     // There are up to five conditions we need to test for:
749     // 1) if isSigned, we need to check whether numElements is negative;
750     // 2) if numElementsWidth > sizeWidth, we need to check whether
751     //   numElements is larger than something representable in size_t;
752     // 3) if minElements > 0, we need to check whether numElements is smaller
753     //    than that.
754     // 4) we need to compute
755     //      sizeWithoutCookie := numElements * typeSizeMultiplier
756     //    and check whether it overflows; and
757     // 5) if we need a cookie, we need to compute
758     //      size := sizeWithoutCookie + cookieSize
759     //    and check whether it overflows.
760 
761     llvm::Value *hasOverflow = nullptr;
762 
763     // If numElementsWidth > sizeWidth, then one way or another, we're
764     // going to have to do a comparison for (2), and this happens to
765     // take care of (1), too.
766     if (numElementsWidth > sizeWidth) {
767       llvm::APInt threshold(numElementsWidth, 1);
768       threshold <<= sizeWidth;
769 
770       llvm::Value *thresholdV
771         = llvm::ConstantInt::get(numElementsType, threshold);
772 
773       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
774       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
775 
776     // Otherwise, if we're signed, we want to sext up to size_t.
777     } else if (isSigned) {
778       if (numElementsWidth < sizeWidth)
779         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
780 
781       // If there's a non-1 type size multiplier, then we can do the
782       // signedness check at the same time as we do the multiply
783       // because a negative number times anything will cause an
784       // unsigned overflow.  Otherwise, we have to do it here. But at least
785       // in this case, we can subsume the >= minElements check.
786       if (typeSizeMultiplier == 1)
787         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
788                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
789 
790     // Otherwise, zext up to size_t if necessary.
791     } else if (numElementsWidth < sizeWidth) {
792       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
793     }
794 
795     assert(numElements->getType() == CGF.SizeTy);
796 
797     if (minElements) {
798       // Don't allow allocation of fewer elements than we have initializers.
799       if (!hasOverflow) {
800         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
801                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
802       } else if (numElementsWidth > sizeWidth) {
803         // The other existing overflow subsumes this check.
804         // We do an unsigned comparison, since any signed value < -1 is
805         // taken care of either above or below.
806         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
807                           CGF.Builder.CreateICmpULT(numElements,
808                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
809       }
810     }
811 
812     size = numElements;
813 
814     // Multiply by the type size if necessary.  This multiplier
815     // includes all the factors for nested arrays.
816     //
817     // This step also causes numElements to be scaled up by the
818     // nested-array factor if necessary.  Overflow on this computation
819     // can be ignored because the result shouldn't be used if
820     // allocation fails.
821     if (typeSizeMultiplier != 1) {
822       llvm::Value *umul_with_overflow
823         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
824 
825       llvm::Value *tsmV =
826         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
827       llvm::Value *result =
828           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
829 
830       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
831       if (hasOverflow)
832         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
833       else
834         hasOverflow = overflowed;
835 
836       size = CGF.Builder.CreateExtractValue(result, 0);
837 
838       // Also scale up numElements by the array size multiplier.
839       if (arraySizeMultiplier != 1) {
840         // If the base element type size is 1, then we can re-use the
841         // multiply we just did.
842         if (typeSize.isOne()) {
843           assert(arraySizeMultiplier == typeSizeMultiplier);
844           numElements = size;
845 
846         // Otherwise we need a separate multiply.
847         } else {
848           llvm::Value *asmV =
849             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
850           numElements = CGF.Builder.CreateMul(numElements, asmV);
851         }
852       }
853     } else {
854       // numElements doesn't need to be scaled.
855       assert(arraySizeMultiplier == 1);
856     }
857 
858     // Add in the cookie size if necessary.
859     if (cookieSize != 0) {
860       sizeWithoutCookie = size;
861 
862       llvm::Value *uadd_with_overflow
863         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
864 
865       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
866       llvm::Value *result =
867           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
868 
869       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
870       if (hasOverflow)
871         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
872       else
873         hasOverflow = overflowed;
874 
875       size = CGF.Builder.CreateExtractValue(result, 0);
876     }
877 
878     // If we had any possibility of dynamic overflow, make a select to
879     // overwrite 'size' with an all-ones value, which should cause
880     // operator new to throw.
881     if (hasOverflow)
882       size = CGF.Builder.CreateSelect(hasOverflow,
883                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
884                                       size);
885   }
886 
887   if (cookieSize == 0)
888     sizeWithoutCookie = size;
889   else
890     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
891 
892   return size;
893 }
894 
895 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
896                                     QualType AllocType, Address NewPtr) {
897   // FIXME: Refactor with EmitExprAsInit.
898   switch (CGF.getEvaluationKind(AllocType)) {
899   case TEK_Scalar:
900     CGF.EmitScalarInit(Init, nullptr,
901                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
902     return;
903   case TEK_Complex:
904     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
905                                   /*isInit*/ true);
906     return;
907   case TEK_Aggregate: {
908     AggValueSlot Slot
909       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
910                               AggValueSlot::IsDestructed,
911                               AggValueSlot::DoesNotNeedGCBarriers,
912                               AggValueSlot::IsNotAliased);
913     CGF.EmitAggExpr(Init, Slot);
914     return;
915   }
916   }
917   llvm_unreachable("bad evaluation kind");
918 }
919 
920 void CodeGenFunction::EmitNewArrayInitializer(
921     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
922     Address BeginPtr, llvm::Value *NumElements,
923     llvm::Value *AllocSizeWithoutCookie) {
924   // If we have a type with trivial initialization and no initializer,
925   // there's nothing to do.
926   if (!E->hasInitializer())
927     return;
928 
929   Address CurPtr = BeginPtr;
930 
931   unsigned InitListElements = 0;
932 
933   const Expr *Init = E->getInitializer();
934   Address EndOfInit = Address::invalid();
935   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
936   EHScopeStack::stable_iterator Cleanup;
937   llvm::Instruction *CleanupDominator = nullptr;
938 
939   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
940   CharUnits ElementAlign =
941     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
942 
943   // Attempt to perform zero-initialization using memset.
944   auto TryMemsetInitialization = [&]() -> bool {
945     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
946     // we can initialize with a memset to -1.
947     if (!CGM.getTypes().isZeroInitializable(ElementType))
948       return false;
949 
950     // Optimization: since zero initialization will just set the memory
951     // to all zeroes, generate a single memset to do it in one shot.
952 
953     // Subtract out the size of any elements we've already initialized.
954     auto *RemainingSize = AllocSizeWithoutCookie;
955     if (InitListElements) {
956       // We know this can't overflow; we check this when doing the allocation.
957       auto *InitializedSize = llvm::ConstantInt::get(
958           RemainingSize->getType(),
959           getContext().getTypeSizeInChars(ElementType).getQuantity() *
960               InitListElements);
961       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
962     }
963 
964     // Create the memset.
965     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
966     return true;
967   };
968 
969   // If the initializer is an initializer list, first do the explicit elements.
970   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
971     // Initializing from a (braced) string literal is a special case; the init
972     // list element does not initialize a (single) array element.
973     if (ILE->isStringLiteralInit()) {
974       // Initialize the initial portion of length equal to that of the string
975       // literal. The allocation must be for at least this much; we emitted a
976       // check for that earlier.
977       AggValueSlot Slot =
978           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
979                                 AggValueSlot::IsDestructed,
980                                 AggValueSlot::DoesNotNeedGCBarriers,
981                                 AggValueSlot::IsNotAliased);
982       EmitAggExpr(ILE->getInit(0), Slot);
983 
984       // Move past these elements.
985       InitListElements =
986           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
987               ->getSize().getZExtValue();
988       CurPtr =
989           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
990                                             Builder.getSize(InitListElements),
991                                             "string.init.end"),
992                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
993                                                           ElementSize));
994 
995       // Zero out the rest, if any remain.
996       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
997       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
998         bool OK = TryMemsetInitialization();
999         (void)OK;
1000         assert(OK && "couldn't memset character type?");
1001       }
1002       return;
1003     }
1004 
1005     InitListElements = ILE->getNumInits();
1006 
1007     // If this is a multi-dimensional array new, we will initialize multiple
1008     // elements with each init list element.
1009     QualType AllocType = E->getAllocatedType();
1010     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1011             AllocType->getAsArrayTypeUnsafe())) {
1012       ElementTy = ConvertTypeForMem(AllocType);
1013       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1014       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1015     }
1016 
1017     // Enter a partial-destruction Cleanup if necessary.
1018     if (needsEHCleanup(DtorKind)) {
1019       // In principle we could tell the Cleanup where we are more
1020       // directly, but the control flow can get so varied here that it
1021       // would actually be quite complex.  Therefore we go through an
1022       // alloca.
1023       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1024                                    "array.init.end");
1025       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1026       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1027                                        ElementType, ElementAlign,
1028                                        getDestroyer(DtorKind));
1029       Cleanup = EHStack.stable_begin();
1030     }
1031 
1032     CharUnits StartAlign = CurPtr.getAlignment();
1033     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1034       // Tell the cleanup that it needs to destroy up to this
1035       // element.  TODO: some of these stores can be trivially
1036       // observed to be unnecessary.
1037       if (EndOfInit.isValid()) {
1038         auto FinishedPtr =
1039           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1040         Builder.CreateStore(FinishedPtr, EndOfInit);
1041       }
1042       // FIXME: If the last initializer is an incomplete initializer list for
1043       // an array, and we have an array filler, we can fold together the two
1044       // initialization loops.
1045       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1046                               ILE->getInit(i)->getType(), CurPtr);
1047       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1048                                                  Builder.getSize(1),
1049                                                  "array.exp.next"),
1050                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1051     }
1052 
1053     // The remaining elements are filled with the array filler expression.
1054     Init = ILE->getArrayFiller();
1055 
1056     // Extract the initializer for the individual array elements by pulling
1057     // out the array filler from all the nested initializer lists. This avoids
1058     // generating a nested loop for the initialization.
1059     while (Init && Init->getType()->isConstantArrayType()) {
1060       auto *SubILE = dyn_cast<InitListExpr>(Init);
1061       if (!SubILE)
1062         break;
1063       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1064       Init = SubILE->getArrayFiller();
1065     }
1066 
1067     // Switch back to initializing one base element at a time.
1068     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1069   }
1070 
1071   // If all elements have already been initialized, skip any further
1072   // initialization.
1073   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1074   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1075     // If there was a Cleanup, deactivate it.
1076     if (CleanupDominator)
1077       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1078     return;
1079   }
1080 
1081   assert(Init && "have trailing elements to initialize but no initializer");
1082 
1083   // If this is a constructor call, try to optimize it out, and failing that
1084   // emit a single loop to initialize all remaining elements.
1085   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1086     CXXConstructorDecl *Ctor = CCE->getConstructor();
1087     if (Ctor->isTrivial()) {
1088       // If new expression did not specify value-initialization, then there
1089       // is no initialization.
1090       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1091         return;
1092 
1093       if (TryMemsetInitialization())
1094         return;
1095     }
1096 
1097     // Store the new Cleanup position for irregular Cleanups.
1098     //
1099     // FIXME: Share this cleanup with the constructor call emission rather than
1100     // having it create a cleanup of its own.
1101     if (EndOfInit.isValid())
1102       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1103 
1104     // Emit a constructor call loop to initialize the remaining elements.
1105     if (InitListElements)
1106       NumElements = Builder.CreateSub(
1107           NumElements,
1108           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1109     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1110                                CCE->requiresZeroInitialization());
1111     return;
1112   }
1113 
1114   // If this is value-initialization, we can usually use memset.
1115   ImplicitValueInitExpr IVIE(ElementType);
1116   if (isa<ImplicitValueInitExpr>(Init)) {
1117     if (TryMemsetInitialization())
1118       return;
1119 
1120     // Switch to an ImplicitValueInitExpr for the element type. This handles
1121     // only one case: multidimensional array new of pointers to members. In
1122     // all other cases, we already have an initializer for the array element.
1123     Init = &IVIE;
1124   }
1125 
1126   // At this point we should have found an initializer for the individual
1127   // elements of the array.
1128   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1129          "got wrong type of element to initialize");
1130 
1131   // If we have an empty initializer list, we can usually use memset.
1132   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1133     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1134       return;
1135 
1136   // If we have a struct whose every field is value-initialized, we can
1137   // usually use memset.
1138   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1139     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1140       if (RType->getDecl()->isStruct()) {
1141         unsigned NumElements = 0;
1142         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1143           NumElements = CXXRD->getNumBases();
1144         for (auto *Field : RType->getDecl()->fields())
1145           if (!Field->isUnnamedBitfield())
1146             ++NumElements;
1147         // FIXME: Recurse into nested InitListExprs.
1148         if (ILE->getNumInits() == NumElements)
1149           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1150             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1151               --NumElements;
1152         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1153           return;
1154       }
1155     }
1156   }
1157 
1158   // Create the loop blocks.
1159   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1160   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1161   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1162 
1163   // Find the end of the array, hoisted out of the loop.
1164   llvm::Value *EndPtr =
1165     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1166 
1167   // If the number of elements isn't constant, we have to now check if there is
1168   // anything left to initialize.
1169   if (!ConstNum) {
1170     llvm::Value *IsEmpty =
1171       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1172     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1173   }
1174 
1175   // Enter the loop.
1176   EmitBlock(LoopBB);
1177 
1178   // Set up the current-element phi.
1179   llvm::PHINode *CurPtrPhi =
1180     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1181   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1182 
1183   CurPtr = Address(CurPtrPhi, ElementAlign);
1184 
1185   // Store the new Cleanup position for irregular Cleanups.
1186   if (EndOfInit.isValid())
1187     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1188 
1189   // Enter a partial-destruction Cleanup if necessary.
1190   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1191     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1192                                    ElementType, ElementAlign,
1193                                    getDestroyer(DtorKind));
1194     Cleanup = EHStack.stable_begin();
1195     CleanupDominator = Builder.CreateUnreachable();
1196   }
1197 
1198   // Emit the initializer into this element.
1199   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1200 
1201   // Leave the Cleanup if we entered one.
1202   if (CleanupDominator) {
1203     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1204     CleanupDominator->eraseFromParent();
1205   }
1206 
1207   // Advance to the next element by adjusting the pointer type as necessary.
1208   llvm::Value *NextPtr =
1209     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1210                                        "array.next");
1211 
1212   // Check whether we've gotten to the end of the array and, if so,
1213   // exit the loop.
1214   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1215   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1216   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1217 
1218   EmitBlock(ContBB);
1219 }
1220 
1221 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1222                                QualType ElementType, llvm::Type *ElementTy,
1223                                Address NewPtr, llvm::Value *NumElements,
1224                                llvm::Value *AllocSizeWithoutCookie) {
1225   ApplyDebugLocation DL(CGF, E);
1226   if (E->isArray())
1227     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1228                                 AllocSizeWithoutCookie);
1229   else if (const Expr *Init = E->getInitializer())
1230     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1231 }
1232 
1233 /// Emit a call to an operator new or operator delete function, as implicitly
1234 /// created by new-expressions and delete-expressions.
1235 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1236                                 const FunctionDecl *CalleeDecl,
1237                                 const FunctionProtoType *CalleeType,
1238                                 const CallArgList &Args) {
1239   llvm::Instruction *CallOrInvoke;
1240   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1241   CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1242   RValue RV =
1243       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1244                        Args, CalleeType, /*chainCall=*/false),
1245                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1246 
1247   /// C++1y [expr.new]p10:
1248   ///   [In a new-expression,] an implementation is allowed to omit a call
1249   ///   to a replaceable global allocation function.
1250   ///
1251   /// We model such elidable calls with the 'builtin' attribute.
1252   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1253   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1254       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1255     // FIXME: Add addAttribute to CallSite.
1256     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1257       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1258                        llvm::Attribute::Builtin);
1259     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1260       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1261                        llvm::Attribute::Builtin);
1262     else
1263       llvm_unreachable("unexpected kind of call instruction");
1264   }
1265 
1266   return RV;
1267 }
1268 
1269 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1270                                                  const Expr *Arg,
1271                                                  bool IsDelete) {
1272   CallArgList Args;
1273   const Stmt *ArgS = Arg;
1274   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1275   // Find the allocation or deallocation function that we're calling.
1276   ASTContext &Ctx = getContext();
1277   DeclarationName Name = Ctx.DeclarationNames
1278       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1279   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1280     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1281       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1282         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1283   llvm_unreachable("predeclared global operator new/delete is missing");
1284 }
1285 
1286 static std::pair<bool, bool>
1287 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) {
1288   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1289 
1290   // The first argument is always a void*.
1291   ++AI;
1292 
1293   // Figure out what other parameters we should be implicitly passing.
1294   bool PassSize = false;
1295   bool PassAlignment = false;
1296 
1297   if (AI != AE && (*AI)->isIntegerType()) {
1298     PassSize = true;
1299     ++AI;
1300   }
1301 
1302   if (AI != AE && (*AI)->isAlignValT()) {
1303     PassAlignment = true;
1304     ++AI;
1305   }
1306 
1307   assert(AI == AE && "unexpected usual deallocation function parameter");
1308   return {PassSize, PassAlignment};
1309 }
1310 
1311 namespace {
1312   /// A cleanup to call the given 'operator delete' function upon abnormal
1313   /// exit from a new expression. Templated on a traits type that deals with
1314   /// ensuring that the arguments dominate the cleanup if necessary.
1315   template<typename Traits>
1316   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1317     /// Type used to hold llvm::Value*s.
1318     typedef typename Traits::ValueTy ValueTy;
1319     /// Type used to hold RValues.
1320     typedef typename Traits::RValueTy RValueTy;
1321     struct PlacementArg {
1322       RValueTy ArgValue;
1323       QualType ArgType;
1324     };
1325 
1326     unsigned NumPlacementArgs : 31;
1327     unsigned PassAlignmentToPlacementDelete : 1;
1328     const FunctionDecl *OperatorDelete;
1329     ValueTy Ptr;
1330     ValueTy AllocSize;
1331     CharUnits AllocAlign;
1332 
1333     PlacementArg *getPlacementArgs() {
1334       return reinterpret_cast<PlacementArg *>(this + 1);
1335     }
1336 
1337   public:
1338     static size_t getExtraSize(size_t NumPlacementArgs) {
1339       return NumPlacementArgs * sizeof(PlacementArg);
1340     }
1341 
1342     CallDeleteDuringNew(size_t NumPlacementArgs,
1343                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1344                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1345                         CharUnits AllocAlign)
1346       : NumPlacementArgs(NumPlacementArgs),
1347         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1348         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1349         AllocAlign(AllocAlign) {}
1350 
1351     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1352       assert(I < NumPlacementArgs && "index out of range");
1353       getPlacementArgs()[I] = {Arg, Type};
1354     }
1355 
1356     void Emit(CodeGenFunction &CGF, Flags flags) override {
1357       const FunctionProtoType *FPT =
1358           OperatorDelete->getType()->getAs<FunctionProtoType>();
1359       CallArgList DeleteArgs;
1360 
1361       // The first argument is always a void*.
1362       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1363 
1364       // Figure out what other parameters we should be implicitly passing.
1365       bool PassSize = false;
1366       bool PassAlignment = false;
1367       if (NumPlacementArgs) {
1368         // A placement deallocation function is implicitly passed an alignment
1369         // if the placement allocation function was, but is never passed a size.
1370         PassAlignment = PassAlignmentToPlacementDelete;
1371       } else {
1372         // For a non-placement new-expression, 'operator delete' can take a
1373         // size and/or an alignment if it has the right parameters.
1374         std::tie(PassSize, PassAlignment) =
1375             shouldPassSizeAndAlignToUsualDelete(FPT);
1376       }
1377 
1378       // The second argument can be a std::size_t (for non-placement delete).
1379       if (PassSize)
1380         DeleteArgs.add(Traits::get(CGF, AllocSize),
1381                        CGF.getContext().getSizeType());
1382 
1383       // The next (second or third) argument can be a std::align_val_t, which
1384       // is an enum whose underlying type is std::size_t.
1385       // FIXME: Use the right type as the parameter type. Note that in a call
1386       // to operator delete(size_t, ...), we may not have it available.
1387       if (PassAlignment)
1388         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1389                            CGF.SizeTy, AllocAlign.getQuantity())),
1390                        CGF.getContext().getSizeType());
1391 
1392       // Pass the rest of the arguments, which must match exactly.
1393       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1394         auto Arg = getPlacementArgs()[I];
1395         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1396       }
1397 
1398       // Call 'operator delete'.
1399       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1400     }
1401   };
1402 }
1403 
1404 /// Enter a cleanup to call 'operator delete' if the initializer in a
1405 /// new-expression throws.
1406 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1407                                   const CXXNewExpr *E,
1408                                   Address NewPtr,
1409                                   llvm::Value *AllocSize,
1410                                   CharUnits AllocAlign,
1411                                   const CallArgList &NewArgs) {
1412   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1413 
1414   // If we're not inside a conditional branch, then the cleanup will
1415   // dominate and we can do the easier (and more efficient) thing.
1416   if (!CGF.isInConditionalBranch()) {
1417     struct DirectCleanupTraits {
1418       typedef llvm::Value *ValueTy;
1419       typedef RValue RValueTy;
1420       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1421       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1422     };
1423 
1424     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1425 
1426     DirectCleanup *Cleanup = CGF.EHStack
1427       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1428                                            E->getNumPlacementArgs(),
1429                                            E->getOperatorDelete(),
1430                                            NewPtr.getPointer(),
1431                                            AllocSize,
1432                                            E->passAlignment(),
1433                                            AllocAlign);
1434     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1435       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1436       Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1437     }
1438 
1439     return;
1440   }
1441 
1442   // Otherwise, we need to save all this stuff.
1443   DominatingValue<RValue>::saved_type SavedNewPtr =
1444     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1445   DominatingValue<RValue>::saved_type SavedAllocSize =
1446     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1447 
1448   struct ConditionalCleanupTraits {
1449     typedef DominatingValue<RValue>::saved_type ValueTy;
1450     typedef DominatingValue<RValue>::saved_type RValueTy;
1451     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1452       return V.restore(CGF);
1453     }
1454   };
1455   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1456 
1457   ConditionalCleanup *Cleanup = CGF.EHStack
1458     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1459                                               E->getNumPlacementArgs(),
1460                                               E->getOperatorDelete(),
1461                                               SavedNewPtr,
1462                                               SavedAllocSize,
1463                                               E->passAlignment(),
1464                                               AllocAlign);
1465   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1466     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1467     Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1468                              Arg.Ty);
1469   }
1470 
1471   CGF.initFullExprCleanup();
1472 }
1473 
1474 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1475   // The element type being allocated.
1476   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1477 
1478   // 1. Build a call to the allocation function.
1479   FunctionDecl *allocator = E->getOperatorNew();
1480 
1481   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1482   unsigned minElements = 0;
1483   if (E->isArray() && E->hasInitializer()) {
1484     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1485     if (ILE && ILE->isStringLiteralInit())
1486       minElements =
1487           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1488               ->getSize().getZExtValue();
1489     else if (ILE)
1490       minElements = ILE->getNumInits();
1491   }
1492 
1493   llvm::Value *numElements = nullptr;
1494   llvm::Value *allocSizeWithoutCookie = nullptr;
1495   llvm::Value *allocSize =
1496     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1497                         allocSizeWithoutCookie);
1498   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1499 
1500   // Emit the allocation call.  If the allocator is a global placement
1501   // operator, just "inline" it directly.
1502   Address allocation = Address::invalid();
1503   CallArgList allocatorArgs;
1504   if (allocator->isReservedGlobalPlacementOperator()) {
1505     assert(E->getNumPlacementArgs() == 1);
1506     const Expr *arg = *E->placement_arguments().begin();
1507 
1508     AlignmentSource alignSource;
1509     allocation = EmitPointerWithAlignment(arg, &alignSource);
1510 
1511     // The pointer expression will, in many cases, be an opaque void*.
1512     // In these cases, discard the computed alignment and use the
1513     // formal alignment of the allocated type.
1514     if (alignSource != AlignmentSource::Decl)
1515       allocation = Address(allocation.getPointer(), allocAlign);
1516 
1517     // Set up allocatorArgs for the call to operator delete if it's not
1518     // the reserved global operator.
1519     if (E->getOperatorDelete() &&
1520         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1521       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1522       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1523     }
1524 
1525   } else {
1526     const FunctionProtoType *allocatorType =
1527       allocator->getType()->castAs<FunctionProtoType>();
1528     unsigned ParamsToSkip = 0;
1529 
1530     // The allocation size is the first argument.
1531     QualType sizeType = getContext().getSizeType();
1532     allocatorArgs.add(RValue::get(allocSize), sizeType);
1533     ++ParamsToSkip;
1534 
1535     if (allocSize != allocSizeWithoutCookie) {
1536       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1537       allocAlign = std::max(allocAlign, cookieAlign);
1538     }
1539 
1540     // The allocation alignment may be passed as the second argument.
1541     if (E->passAlignment()) {
1542       QualType AlignValT = sizeType;
1543       if (allocatorType->getNumParams() > 1) {
1544         AlignValT = allocatorType->getParamType(1);
1545         assert(getContext().hasSameUnqualifiedType(
1546                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1547                    sizeType) &&
1548                "wrong type for alignment parameter");
1549         ++ParamsToSkip;
1550       } else {
1551         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1552         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1553       }
1554       allocatorArgs.add(
1555           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1556           AlignValT);
1557     }
1558 
1559     // FIXME: Why do we not pass a CalleeDecl here?
1560     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1561                  /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip);
1562 
1563     RValue RV =
1564       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1565 
1566     // If this was a call to a global replaceable allocation function that does
1567     // not take an alignment argument, the allocator is known to produce
1568     // storage that's suitably aligned for any object that fits, up to a known
1569     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1570     CharUnits allocationAlign = allocAlign;
1571     if (!E->passAlignment() &&
1572         allocator->isReplaceableGlobalAllocationFunction()) {
1573       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1574           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1575       allocationAlign = std::max(
1576           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1577     }
1578 
1579     allocation = Address(RV.getScalarVal(), allocationAlign);
1580   }
1581 
1582   // Emit a null check on the allocation result if the allocation
1583   // function is allowed to return null (because it has a non-throwing
1584   // exception spec or is the reserved placement new) and we have an
1585   // interesting initializer.
1586   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1587     (!allocType.isPODType(getContext()) || E->hasInitializer());
1588 
1589   llvm::BasicBlock *nullCheckBB = nullptr;
1590   llvm::BasicBlock *contBB = nullptr;
1591 
1592   // The null-check means that the initializer is conditionally
1593   // evaluated.
1594   ConditionalEvaluation conditional(*this);
1595 
1596   if (nullCheck) {
1597     conditional.begin(*this);
1598 
1599     nullCheckBB = Builder.GetInsertBlock();
1600     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1601     contBB = createBasicBlock("new.cont");
1602 
1603     llvm::Value *isNull =
1604       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1605     Builder.CreateCondBr(isNull, contBB, notNullBB);
1606     EmitBlock(notNullBB);
1607   }
1608 
1609   // If there's an operator delete, enter a cleanup to call it if an
1610   // exception is thrown.
1611   EHScopeStack::stable_iterator operatorDeleteCleanup;
1612   llvm::Instruction *cleanupDominator = nullptr;
1613   if (E->getOperatorDelete() &&
1614       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1615     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1616                           allocatorArgs);
1617     operatorDeleteCleanup = EHStack.stable_begin();
1618     cleanupDominator = Builder.CreateUnreachable();
1619   }
1620 
1621   assert((allocSize == allocSizeWithoutCookie) ==
1622          CalculateCookiePadding(*this, E).isZero());
1623   if (allocSize != allocSizeWithoutCookie) {
1624     assert(E->isArray());
1625     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1626                                                        numElements,
1627                                                        E, allocType);
1628   }
1629 
1630   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1631   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1632 
1633   // Passing pointer through invariant.group.barrier to avoid propagation of
1634   // vptrs information which may be included in previous type.
1635   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1636       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1637       allocator->isReservedGlobalPlacementOperator())
1638     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1639                      result.getAlignment());
1640 
1641   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1642                      allocSizeWithoutCookie);
1643   if (E->isArray()) {
1644     // NewPtr is a pointer to the base element type.  If we're
1645     // allocating an array of arrays, we'll need to cast back to the
1646     // array pointer type.
1647     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1648     if (result.getType() != resultType)
1649       result = Builder.CreateBitCast(result, resultType);
1650   }
1651 
1652   // Deactivate the 'operator delete' cleanup if we finished
1653   // initialization.
1654   if (operatorDeleteCleanup.isValid()) {
1655     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1656     cleanupDominator->eraseFromParent();
1657   }
1658 
1659   llvm::Value *resultPtr = result.getPointer();
1660   if (nullCheck) {
1661     conditional.end(*this);
1662 
1663     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1664     EmitBlock(contBB);
1665 
1666     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1667     PHI->addIncoming(resultPtr, notNullBB);
1668     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1669                      nullCheckBB);
1670 
1671     resultPtr = PHI;
1672   }
1673 
1674   return resultPtr;
1675 }
1676 
1677 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1678                                      llvm::Value *Ptr, QualType DeleteTy,
1679                                      llvm::Value *NumElements,
1680                                      CharUnits CookieSize) {
1681   assert((!NumElements && CookieSize.isZero()) ||
1682          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1683 
1684   const FunctionProtoType *DeleteFTy =
1685     DeleteFD->getType()->getAs<FunctionProtoType>();
1686 
1687   CallArgList DeleteArgs;
1688 
1689   std::pair<bool, bool> PassSizeAndAlign =
1690       shouldPassSizeAndAlignToUsualDelete(DeleteFTy);
1691 
1692   auto ParamTypeIt = DeleteFTy->param_type_begin();
1693 
1694   // Pass the pointer itself.
1695   QualType ArgTy = *ParamTypeIt++;
1696   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1697   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1698 
1699   // Pass the size if the delete function has a size_t parameter.
1700   if (PassSizeAndAlign.first) {
1701     QualType SizeType = *ParamTypeIt++;
1702     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1703     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1704                                                DeleteTypeSize.getQuantity());
1705 
1706     // For array new, multiply by the number of elements.
1707     if (NumElements)
1708       Size = Builder.CreateMul(Size, NumElements);
1709 
1710     // If there is a cookie, add the cookie size.
1711     if (!CookieSize.isZero())
1712       Size = Builder.CreateAdd(
1713           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1714 
1715     DeleteArgs.add(RValue::get(Size), SizeType);
1716   }
1717 
1718   // Pass the alignment if the delete function has an align_val_t parameter.
1719   if (PassSizeAndAlign.second) {
1720     QualType AlignValType = *ParamTypeIt++;
1721     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1722         getContext().getTypeAlignIfKnown(DeleteTy));
1723     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1724                                                 DeleteTypeAlign.getQuantity());
1725     DeleteArgs.add(RValue::get(Align), AlignValType);
1726   }
1727 
1728   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1729          "unknown parameter to usual delete function");
1730 
1731   // Emit the call to delete.
1732   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1733 }
1734 
1735 namespace {
1736   /// Calls the given 'operator delete' on a single object.
1737   struct CallObjectDelete final : EHScopeStack::Cleanup {
1738     llvm::Value *Ptr;
1739     const FunctionDecl *OperatorDelete;
1740     QualType ElementType;
1741 
1742     CallObjectDelete(llvm::Value *Ptr,
1743                      const FunctionDecl *OperatorDelete,
1744                      QualType ElementType)
1745       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1746 
1747     void Emit(CodeGenFunction &CGF, Flags flags) override {
1748       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1749     }
1750   };
1751 }
1752 
1753 void
1754 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1755                                              llvm::Value *CompletePtr,
1756                                              QualType ElementType) {
1757   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1758                                         OperatorDelete, ElementType);
1759 }
1760 
1761 /// Emit the code for deleting a single object.
1762 static void EmitObjectDelete(CodeGenFunction &CGF,
1763                              const CXXDeleteExpr *DE,
1764                              Address Ptr,
1765                              QualType ElementType) {
1766   // Find the destructor for the type, if applicable.  If the
1767   // destructor is virtual, we'll just emit the vcall and return.
1768   const CXXDestructorDecl *Dtor = nullptr;
1769   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1770     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1771     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1772       Dtor = RD->getDestructor();
1773 
1774       if (Dtor->isVirtual()) {
1775         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1776                                                     Dtor);
1777         return;
1778       }
1779     }
1780   }
1781 
1782   // Make sure that we call delete even if the dtor throws.
1783   // This doesn't have to a conditional cleanup because we're going
1784   // to pop it off in a second.
1785   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1786   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1787                                             Ptr.getPointer(),
1788                                             OperatorDelete, ElementType);
1789 
1790   if (Dtor)
1791     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1792                               /*ForVirtualBase=*/false,
1793                               /*Delegating=*/false,
1794                               Ptr);
1795   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1796     switch (Lifetime) {
1797     case Qualifiers::OCL_None:
1798     case Qualifiers::OCL_ExplicitNone:
1799     case Qualifiers::OCL_Autoreleasing:
1800       break;
1801 
1802     case Qualifiers::OCL_Strong:
1803       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1804       break;
1805 
1806     case Qualifiers::OCL_Weak:
1807       CGF.EmitARCDestroyWeak(Ptr);
1808       break;
1809     }
1810   }
1811 
1812   CGF.PopCleanupBlock();
1813 }
1814 
1815 namespace {
1816   /// Calls the given 'operator delete' on an array of objects.
1817   struct CallArrayDelete final : EHScopeStack::Cleanup {
1818     llvm::Value *Ptr;
1819     const FunctionDecl *OperatorDelete;
1820     llvm::Value *NumElements;
1821     QualType ElementType;
1822     CharUnits CookieSize;
1823 
1824     CallArrayDelete(llvm::Value *Ptr,
1825                     const FunctionDecl *OperatorDelete,
1826                     llvm::Value *NumElements,
1827                     QualType ElementType,
1828                     CharUnits CookieSize)
1829       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1830         ElementType(ElementType), CookieSize(CookieSize) {}
1831 
1832     void Emit(CodeGenFunction &CGF, Flags flags) override {
1833       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1834                          CookieSize);
1835     }
1836   };
1837 }
1838 
1839 /// Emit the code for deleting an array of objects.
1840 static void EmitArrayDelete(CodeGenFunction &CGF,
1841                             const CXXDeleteExpr *E,
1842                             Address deletedPtr,
1843                             QualType elementType) {
1844   llvm::Value *numElements = nullptr;
1845   llvm::Value *allocatedPtr = nullptr;
1846   CharUnits cookieSize;
1847   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1848                                       numElements, allocatedPtr, cookieSize);
1849 
1850   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1851 
1852   // Make sure that we call delete even if one of the dtors throws.
1853   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1854   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1855                                            allocatedPtr, operatorDelete,
1856                                            numElements, elementType,
1857                                            cookieSize);
1858 
1859   // Destroy the elements.
1860   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1861     assert(numElements && "no element count for a type with a destructor!");
1862 
1863     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1864     CharUnits elementAlign =
1865       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1866 
1867     llvm::Value *arrayBegin = deletedPtr.getPointer();
1868     llvm::Value *arrayEnd =
1869       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1870 
1871     // Note that it is legal to allocate a zero-length array, and we
1872     // can never fold the check away because the length should always
1873     // come from a cookie.
1874     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1875                          CGF.getDestroyer(dtorKind),
1876                          /*checkZeroLength*/ true,
1877                          CGF.needsEHCleanup(dtorKind));
1878   }
1879 
1880   // Pop the cleanup block.
1881   CGF.PopCleanupBlock();
1882 }
1883 
1884 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1885   const Expr *Arg = E->getArgument();
1886   Address Ptr = EmitPointerWithAlignment(Arg);
1887 
1888   // Null check the pointer.
1889   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1890   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1891 
1892   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1893 
1894   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1895   EmitBlock(DeleteNotNull);
1896 
1897   // We might be deleting a pointer to array.  If so, GEP down to the
1898   // first non-array element.
1899   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1900   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1901   if (DeleteTy->isConstantArrayType()) {
1902     llvm::Value *Zero = Builder.getInt32(0);
1903     SmallVector<llvm::Value*,8> GEP;
1904 
1905     GEP.push_back(Zero); // point at the outermost array
1906 
1907     // For each layer of array type we're pointing at:
1908     while (const ConstantArrayType *Arr
1909              = getContext().getAsConstantArrayType(DeleteTy)) {
1910       // 1. Unpeel the array type.
1911       DeleteTy = Arr->getElementType();
1912 
1913       // 2. GEP to the first element of the array.
1914       GEP.push_back(Zero);
1915     }
1916 
1917     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1918                   Ptr.getAlignment());
1919   }
1920 
1921   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1922 
1923   if (E->isArrayForm()) {
1924     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1925   } else {
1926     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1927   }
1928 
1929   EmitBlock(DeleteEnd);
1930 }
1931 
1932 static bool isGLValueFromPointerDeref(const Expr *E) {
1933   E = E->IgnoreParens();
1934 
1935   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1936     if (!CE->getSubExpr()->isGLValue())
1937       return false;
1938     return isGLValueFromPointerDeref(CE->getSubExpr());
1939   }
1940 
1941   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1942     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1943 
1944   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1945     if (BO->getOpcode() == BO_Comma)
1946       return isGLValueFromPointerDeref(BO->getRHS());
1947 
1948   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1949     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1950            isGLValueFromPointerDeref(ACO->getFalseExpr());
1951 
1952   // C++11 [expr.sub]p1:
1953   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1954   if (isa<ArraySubscriptExpr>(E))
1955     return true;
1956 
1957   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1958     if (UO->getOpcode() == UO_Deref)
1959       return true;
1960 
1961   return false;
1962 }
1963 
1964 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1965                                          llvm::Type *StdTypeInfoPtrTy) {
1966   // Get the vtable pointer.
1967   Address ThisPtr = CGF.EmitLValue(E).getAddress();
1968 
1969   // C++ [expr.typeid]p2:
1970   //   If the glvalue expression is obtained by applying the unary * operator to
1971   //   a pointer and the pointer is a null pointer value, the typeid expression
1972   //   throws the std::bad_typeid exception.
1973   //
1974   // However, this paragraph's intent is not clear.  We choose a very generous
1975   // interpretation which implores us to consider comma operators, conditional
1976   // operators, parentheses and other such constructs.
1977   QualType SrcRecordTy = E->getType();
1978   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1979           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1980     llvm::BasicBlock *BadTypeidBlock =
1981         CGF.createBasicBlock("typeid.bad_typeid");
1982     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1983 
1984     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
1985     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1986 
1987     CGF.EmitBlock(BadTypeidBlock);
1988     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1989     CGF.EmitBlock(EndBlock);
1990   }
1991 
1992   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1993                                         StdTypeInfoPtrTy);
1994 }
1995 
1996 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1997   llvm::Type *StdTypeInfoPtrTy =
1998     ConvertType(E->getType())->getPointerTo();
1999 
2000   if (E->isTypeOperand()) {
2001     llvm::Constant *TypeInfo =
2002         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2003     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2004   }
2005 
2006   // C++ [expr.typeid]p2:
2007   //   When typeid is applied to a glvalue expression whose type is a
2008   //   polymorphic class type, the result refers to a std::type_info object
2009   //   representing the type of the most derived object (that is, the dynamic
2010   //   type) to which the glvalue refers.
2011   if (E->isPotentiallyEvaluated())
2012     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2013                                 StdTypeInfoPtrTy);
2014 
2015   QualType OperandTy = E->getExprOperand()->getType();
2016   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2017                                StdTypeInfoPtrTy);
2018 }
2019 
2020 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2021                                           QualType DestTy) {
2022   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2023   if (DestTy->isPointerType())
2024     return llvm::Constant::getNullValue(DestLTy);
2025 
2026   /// C++ [expr.dynamic.cast]p9:
2027   ///   A failed cast to reference type throws std::bad_cast
2028   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2029     return nullptr;
2030 
2031   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2032   return llvm::UndefValue::get(DestLTy);
2033 }
2034 
2035 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2036                                               const CXXDynamicCastExpr *DCE) {
2037   CGM.EmitExplicitCastExprType(DCE, this);
2038   QualType DestTy = DCE->getTypeAsWritten();
2039 
2040   if (DCE->isAlwaysNull())
2041     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2042       return T;
2043 
2044   QualType SrcTy = DCE->getSubExpr()->getType();
2045 
2046   // C++ [expr.dynamic.cast]p7:
2047   //   If T is "pointer to cv void," then the result is a pointer to the most
2048   //   derived object pointed to by v.
2049   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2050 
2051   bool isDynamicCastToVoid;
2052   QualType SrcRecordTy;
2053   QualType DestRecordTy;
2054   if (DestPTy) {
2055     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2056     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2057     DestRecordTy = DestPTy->getPointeeType();
2058   } else {
2059     isDynamicCastToVoid = false;
2060     SrcRecordTy = SrcTy;
2061     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2062   }
2063 
2064   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2065 
2066   // C++ [expr.dynamic.cast]p4:
2067   //   If the value of v is a null pointer value in the pointer case, the result
2068   //   is the null pointer value of type T.
2069   bool ShouldNullCheckSrcValue =
2070       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2071                                                          SrcRecordTy);
2072 
2073   llvm::BasicBlock *CastNull = nullptr;
2074   llvm::BasicBlock *CastNotNull = nullptr;
2075   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2076 
2077   if (ShouldNullCheckSrcValue) {
2078     CastNull = createBasicBlock("dynamic_cast.null");
2079     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2080 
2081     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2082     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2083     EmitBlock(CastNotNull);
2084   }
2085 
2086   llvm::Value *Value;
2087   if (isDynamicCastToVoid) {
2088     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2089                                                   DestTy);
2090   } else {
2091     assert(DestRecordTy->isRecordType() &&
2092            "destination type must be a record type!");
2093     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2094                                                 DestTy, DestRecordTy, CastEnd);
2095     CastNotNull = Builder.GetInsertBlock();
2096   }
2097 
2098   if (ShouldNullCheckSrcValue) {
2099     EmitBranch(CastEnd);
2100 
2101     EmitBlock(CastNull);
2102     EmitBranch(CastEnd);
2103   }
2104 
2105   EmitBlock(CastEnd);
2106 
2107   if (ShouldNullCheckSrcValue) {
2108     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2109     PHI->addIncoming(Value, CastNotNull);
2110     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2111 
2112     Value = PHI;
2113   }
2114 
2115   return Value;
2116 }
2117 
2118 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2119   RunCleanupsScope Scope(*this);
2120   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2121 
2122   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2123   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2124                                                e = E->capture_init_end();
2125        i != e; ++i, ++CurField) {
2126     // Emit initialization
2127     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2128     if (CurField->hasCapturedVLAType()) {
2129       auto VAT = CurField->getCapturedVLAType();
2130       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2131     } else {
2132       ArrayRef<VarDecl *> ArrayIndexes;
2133       if (CurField->getType()->isArrayType())
2134         ArrayIndexes = E->getCaptureInitIndexVars(i);
2135       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
2136     }
2137   }
2138 }
2139