1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static RequiredArgs
28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
29                                   llvm::Value *This, llvm::Value *ImplicitParam,
30                                   QualType ImplicitParamTy, const CallExpr *CE,
31                                   CallArgList &Args, CallArgList *RtlArgs) {
32   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
33          isa<CXXOperatorCallExpr>(CE));
34   assert(MD->isInstance() &&
35          "Trying to emit a member or operator call expr on a static method!");
36   ASTContext &C = CGF.getContext();
37 
38   // C++11 [class.mfct.non-static]p2:
39   //   If a non-static member function of a class X is called for an object that
40   //   is not of type X, or of a type derived from X, the behavior is undefined.
41   SourceLocation CallLoc;
42   if (CE)
43     CallLoc = CE->getExprLoc();
44   CGF.EmitTypeCheck(isa<CXXConstructorDecl>(MD)
45                         ? CodeGenFunction::TCK_ConstructorCall
46                         : CodeGenFunction::TCK_MemberCall,
47                     CallLoc, This, C.getRecordType(MD->getParent()));
48 
49   // Push the this ptr.
50   const CXXRecordDecl *RD =
51       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
52   Args.add(RValue::get(This),
53            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
54 
55   // If there is an implicit parameter (e.g. VTT), emit it.
56   if (ImplicitParam) {
57     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
58   }
59 
60   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
61   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
62 
63   // And the rest of the call args.
64   if (RtlArgs) {
65     // Special case: if the caller emitted the arguments right-to-left already
66     // (prior to emitting the *this argument), we're done. This happens for
67     // assignment operators.
68     Args.addFrom(*RtlArgs);
69   } else if (CE) {
70     // Special case: skip first argument of CXXOperatorCall (it is "this").
71     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
72     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
73                      CE->getDirectCallee());
74   } else {
75     assert(
76         FPT->getNumParams() == 0 &&
77         "No CallExpr specified for function with non-zero number of arguments");
78   }
79   return required;
80 }
81 
82 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
83     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
84     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85     const CallExpr *CE, CallArgList *RtlArgs) {
86   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87   CallArgList Args;
88   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
89       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
91                   Callee, ReturnValue, Args, MD);
92 }
93 
94 RValue CodeGenFunction::EmitCXXDestructorCall(
95     const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This,
96     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
97     StructorType Type) {
98   CallArgList Args;
99   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
100                                     ImplicitParamTy, CE, Args, nullptr);
101   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
102                   Callee, ReturnValueSlot(), Args, DD);
103 }
104 
105 static CXXRecordDecl *getCXXRecord(const Expr *E) {
106   QualType T = E->getType();
107   if (const PointerType *PTy = T->getAs<PointerType>())
108     T = PTy->getPointeeType();
109   const RecordType *Ty = T->castAs<RecordType>();
110   return cast<CXXRecordDecl>(Ty->getDecl());
111 }
112 
113 // Note: This function also emit constructor calls to support a MSVC
114 // extensions allowing explicit constructor function call.
115 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
116                                               ReturnValueSlot ReturnValue) {
117   const Expr *callee = CE->getCallee()->IgnoreParens();
118 
119   if (isa<BinaryOperator>(callee))
120     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
121 
122   const MemberExpr *ME = cast<MemberExpr>(callee);
123   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
124 
125   if (MD->isStatic()) {
126     // The method is static, emit it as we would a regular call.
127     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
128     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
129                     ReturnValue);
130   }
131 
132   bool HasQualifier = ME->hasQualifier();
133   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
134   bool IsArrow = ME->isArrow();
135   const Expr *Base = ME->getBase();
136 
137   return EmitCXXMemberOrOperatorMemberCallExpr(
138       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
139 }
140 
141 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
142     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
143     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
144     const Expr *Base) {
145   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
146 
147   // Compute the object pointer.
148   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
149 
150   const CXXMethodDecl *DevirtualizedMethod = nullptr;
151   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
152     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
153     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
154     assert(DevirtualizedMethod);
155     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
156     const Expr *Inner = Base->ignoreParenBaseCasts();
157     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
158         MD->getReturnType().getCanonicalType())
159       // If the return types are not the same, this might be a case where more
160       // code needs to run to compensate for it. For example, the derived
161       // method might return a type that inherits form from the return
162       // type of MD and has a prefix.
163       // For now we just avoid devirtualizing these covariant cases.
164       DevirtualizedMethod = nullptr;
165     else if (getCXXRecord(Inner) == DevirtualizedClass)
166       // If the class of the Inner expression is where the dynamic method
167       // is defined, build the this pointer from it.
168       Base = Inner;
169     else if (getCXXRecord(Base) != DevirtualizedClass) {
170       // If the method is defined in a class that is not the best dynamic
171       // one or the one of the full expression, we would have to build
172       // a derived-to-base cast to compute the correct this pointer, but
173       // we don't have support for that yet, so do a virtual call.
174       DevirtualizedMethod = nullptr;
175     }
176   }
177 
178   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
179   // operator before the LHS.
180   CallArgList RtlArgStorage;
181   CallArgList *RtlArgs = nullptr;
182   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
183     if (OCE->isAssignmentOp()) {
184       RtlArgs = &RtlArgStorage;
185       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
186                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
187                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
188     }
189   }
190 
191   Address This = Address::invalid();
192   if (IsArrow)
193     This = EmitPointerWithAlignment(Base);
194   else
195     This = EmitLValue(Base).getAddress();
196 
197 
198   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
199     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
200     if (isa<CXXConstructorDecl>(MD) &&
201         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
202       return RValue::get(nullptr);
203 
204     if (!MD->getParent()->mayInsertExtraPadding()) {
205       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
206         // We don't like to generate the trivial copy/move assignment operator
207         // when it isn't necessary; just produce the proper effect here.
208         LValue RHS = isa<CXXOperatorCallExpr>(CE)
209                          ? MakeNaturalAlignAddrLValue(
210                                (*RtlArgs)[0].RV.getScalarVal(),
211                                (*(CE->arg_begin() + 1))->getType())
212                          : EmitLValue(*CE->arg_begin());
213         EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
214         return RValue::get(This.getPointer());
215       }
216 
217       if (isa<CXXConstructorDecl>(MD) &&
218           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
219         // Trivial move and copy ctor are the same.
220         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
221         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
222         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
223         return RValue::get(This.getPointer());
224       }
225       llvm_unreachable("unknown trivial member function");
226     }
227   }
228 
229   // Compute the function type we're calling.
230   const CXXMethodDecl *CalleeDecl =
231       DevirtualizedMethod ? DevirtualizedMethod : MD;
232   const CGFunctionInfo *FInfo = nullptr;
233   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
234     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
235         Dtor, StructorType::Complete);
236   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
237     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
238         Ctor, StructorType::Complete);
239   else
240     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
241 
242   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
243 
244   // C++ [class.virtual]p12:
245   //   Explicit qualification with the scope operator (5.1) suppresses the
246   //   virtual call mechanism.
247   //
248   // We also don't emit a virtual call if the base expression has a record type
249   // because then we know what the type is.
250   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
251   llvm::Value *Callee;
252 
253   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
254     assert(CE->arg_begin() == CE->arg_end() &&
255            "Destructor shouldn't have explicit parameters");
256     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
257     if (UseVirtualCall) {
258       CGM.getCXXABI().EmitVirtualDestructorCall(
259           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
260     } else {
261       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
262         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
263       else if (!DevirtualizedMethod)
264         Callee =
265             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
266       else {
267         const CXXDestructorDecl *DDtor =
268           cast<CXXDestructorDecl>(DevirtualizedMethod);
269         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
270       }
271       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
272                                   /*ImplicitParam=*/nullptr, QualType(), CE,
273                                   nullptr);
274     }
275     return RValue::get(nullptr);
276   }
277 
278   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
279     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
280   } else if (UseVirtualCall) {
281     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
282                                                        CE->getLocStart());
283   } else {
284     if (SanOpts.has(SanitizerKind::CFINVCall) &&
285         MD->getParent()->isDynamicClass()) {
286       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
287       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
288                                 CE->getLocStart());
289     }
290 
291     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
292       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
293     else if (!DevirtualizedMethod)
294       Callee = CGM.GetAddrOfFunction(MD, Ty);
295     else {
296       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
297     }
298   }
299 
300   if (MD->isVirtual()) {
301     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
302         *this, CalleeDecl, This, UseVirtualCall);
303   }
304 
305   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
306                                      /*ImplicitParam=*/nullptr, QualType(), CE,
307                                      RtlArgs);
308 }
309 
310 RValue
311 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
312                                               ReturnValueSlot ReturnValue) {
313   const BinaryOperator *BO =
314       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
315   const Expr *BaseExpr = BO->getLHS();
316   const Expr *MemFnExpr = BO->getRHS();
317 
318   const MemberPointerType *MPT =
319     MemFnExpr->getType()->castAs<MemberPointerType>();
320 
321   const FunctionProtoType *FPT =
322     MPT->getPointeeType()->castAs<FunctionProtoType>();
323   const CXXRecordDecl *RD =
324     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
325 
326   // Emit the 'this' pointer.
327   Address This = Address::invalid();
328   if (BO->getOpcode() == BO_PtrMemI)
329     This = EmitPointerWithAlignment(BaseExpr);
330   else
331     This = EmitLValue(BaseExpr).getAddress();
332 
333   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
334                 QualType(MPT->getClass(), 0));
335 
336   // Get the member function pointer.
337   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
338 
339   // Ask the ABI to load the callee.  Note that This is modified.
340   llvm::Value *ThisPtrForCall = nullptr;
341   llvm::Value *Callee =
342     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
343                                              ThisPtrForCall, MemFnPtr, MPT);
344 
345   CallArgList Args;
346 
347   QualType ThisType =
348     getContext().getPointerType(getContext().getTagDeclType(RD));
349 
350   // Push the this ptr.
351   Args.add(RValue::get(ThisPtrForCall), ThisType);
352 
353   RequiredArgs required =
354       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
355 
356   // And the rest of the call args
357   EmitCallArgs(Args, FPT, E->arguments());
358   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
359                   Callee, ReturnValue, Args);
360 }
361 
362 RValue
363 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
364                                                const CXXMethodDecl *MD,
365                                                ReturnValueSlot ReturnValue) {
366   assert(MD->isInstance() &&
367          "Trying to emit a member call expr on a static method!");
368   return EmitCXXMemberOrOperatorMemberCallExpr(
369       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
370       /*IsArrow=*/false, E->getArg(0));
371 }
372 
373 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
374                                                ReturnValueSlot ReturnValue) {
375   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
376 }
377 
378 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
379                                             Address DestPtr,
380                                             const CXXRecordDecl *Base) {
381   if (Base->isEmpty())
382     return;
383 
384   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
385 
386   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
387   CharUnits NVSize = Layout.getNonVirtualSize();
388 
389   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
390   // present, they are initialized by the most derived class before calling the
391   // constructor.
392   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
393   Stores.emplace_back(CharUnits::Zero(), NVSize);
394 
395   // Each store is split by the existence of a vbptr.
396   CharUnits VBPtrWidth = CGF.getPointerSize();
397   std::vector<CharUnits> VBPtrOffsets =
398       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
399   for (CharUnits VBPtrOffset : VBPtrOffsets) {
400     // Stop before we hit any virtual base pointers located in virtual bases.
401     if (VBPtrOffset >= NVSize)
402       break;
403     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
404     CharUnits LastStoreOffset = LastStore.first;
405     CharUnits LastStoreSize = LastStore.second;
406 
407     CharUnits SplitBeforeOffset = LastStoreOffset;
408     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
409     assert(!SplitBeforeSize.isNegative() && "negative store size!");
410     if (!SplitBeforeSize.isZero())
411       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
412 
413     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
414     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
415     assert(!SplitAfterSize.isNegative() && "negative store size!");
416     if (!SplitAfterSize.isZero())
417       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
418   }
419 
420   // If the type contains a pointer to data member we can't memset it to zero.
421   // Instead, create a null constant and copy it to the destination.
422   // TODO: there are other patterns besides zero that we can usefully memset,
423   // like -1, which happens to be the pattern used by member-pointers.
424   // TODO: isZeroInitializable can be over-conservative in the case where a
425   // virtual base contains a member pointer.
426   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
427   if (!NullConstantForBase->isNullValue()) {
428     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
429         CGF.CGM.getModule(), NullConstantForBase->getType(),
430         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
431         NullConstantForBase, Twine());
432 
433     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
434                                DestPtr.getAlignment());
435     NullVariable->setAlignment(Align.getQuantity());
436 
437     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
438 
439     // Get and call the appropriate llvm.memcpy overload.
440     for (std::pair<CharUnits, CharUnits> Store : Stores) {
441       CharUnits StoreOffset = Store.first;
442       CharUnits StoreSize = Store.second;
443       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
444       CGF.Builder.CreateMemCpy(
445           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
446           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
447           StoreSizeVal);
448     }
449 
450   // Otherwise, just memset the whole thing to zero.  This is legal
451   // because in LLVM, all default initializers (other than the ones we just
452   // handled above) are guaranteed to have a bit pattern of all zeros.
453   } else {
454     for (std::pair<CharUnits, CharUnits> Store : Stores) {
455       CharUnits StoreOffset = Store.first;
456       CharUnits StoreSize = Store.second;
457       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
458       CGF.Builder.CreateMemSet(
459           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
460           CGF.Builder.getInt8(0), StoreSizeVal);
461     }
462   }
463 }
464 
465 void
466 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
467                                       AggValueSlot Dest) {
468   assert(!Dest.isIgnored() && "Must have a destination!");
469   const CXXConstructorDecl *CD = E->getConstructor();
470 
471   // If we require zero initialization before (or instead of) calling the
472   // constructor, as can be the case with a non-user-provided default
473   // constructor, emit the zero initialization now, unless destination is
474   // already zeroed.
475   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
476     switch (E->getConstructionKind()) {
477     case CXXConstructExpr::CK_Delegating:
478     case CXXConstructExpr::CK_Complete:
479       EmitNullInitialization(Dest.getAddress(), E->getType());
480       break;
481     case CXXConstructExpr::CK_VirtualBase:
482     case CXXConstructExpr::CK_NonVirtualBase:
483       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
484                                       CD->getParent());
485       break;
486     }
487   }
488 
489   // If this is a call to a trivial default constructor, do nothing.
490   if (CD->isTrivial() && CD->isDefaultConstructor())
491     return;
492 
493   // Elide the constructor if we're constructing from a temporary.
494   // The temporary check is required because Sema sets this on NRVO
495   // returns.
496   if (getLangOpts().ElideConstructors && E->isElidable()) {
497     assert(getContext().hasSameUnqualifiedType(E->getType(),
498                                                E->getArg(0)->getType()));
499     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
500       EmitAggExpr(E->getArg(0), Dest);
501       return;
502     }
503   }
504 
505   if (const ArrayType *arrayType
506         = getContext().getAsArrayType(E->getType())) {
507     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
508   } else {
509     CXXCtorType Type = Ctor_Complete;
510     bool ForVirtualBase = false;
511     bool Delegating = false;
512 
513     switch (E->getConstructionKind()) {
514      case CXXConstructExpr::CK_Delegating:
515       // We should be emitting a constructor; GlobalDecl will assert this
516       Type = CurGD.getCtorType();
517       Delegating = true;
518       break;
519 
520      case CXXConstructExpr::CK_Complete:
521       Type = Ctor_Complete;
522       break;
523 
524      case CXXConstructExpr::CK_VirtualBase:
525       ForVirtualBase = true;
526       // fall-through
527 
528      case CXXConstructExpr::CK_NonVirtualBase:
529       Type = Ctor_Base;
530     }
531 
532     // Call the constructor.
533     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
534                            Dest.getAddress(), E);
535   }
536 }
537 
538 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
539                                                  const Expr *Exp) {
540   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
541     Exp = E->getSubExpr();
542   assert(isa<CXXConstructExpr>(Exp) &&
543          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
544   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
545   const CXXConstructorDecl *CD = E->getConstructor();
546   RunCleanupsScope Scope(*this);
547 
548   // If we require zero initialization before (or instead of) calling the
549   // constructor, as can be the case with a non-user-provided default
550   // constructor, emit the zero initialization now.
551   // FIXME. Do I still need this for a copy ctor synthesis?
552   if (E->requiresZeroInitialization())
553     EmitNullInitialization(Dest, E->getType());
554 
555   assert(!getContext().getAsConstantArrayType(E->getType())
556          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
557   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
558 }
559 
560 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
561                                         const CXXNewExpr *E) {
562   if (!E->isArray())
563     return CharUnits::Zero();
564 
565   // No cookie is required if the operator new[] being used is the
566   // reserved placement operator new[].
567   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
568     return CharUnits::Zero();
569 
570   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
571 }
572 
573 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
574                                         const CXXNewExpr *e,
575                                         unsigned minElements,
576                                         llvm::Value *&numElements,
577                                         llvm::Value *&sizeWithoutCookie) {
578   QualType type = e->getAllocatedType();
579 
580   if (!e->isArray()) {
581     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
582     sizeWithoutCookie
583       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
584     return sizeWithoutCookie;
585   }
586 
587   // The width of size_t.
588   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
589 
590   // Figure out the cookie size.
591   llvm::APInt cookieSize(sizeWidth,
592                          CalculateCookiePadding(CGF, e).getQuantity());
593 
594   // Emit the array size expression.
595   // We multiply the size of all dimensions for NumElements.
596   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
597   numElements = CGF.EmitScalarExpr(e->getArraySize());
598   assert(isa<llvm::IntegerType>(numElements->getType()));
599 
600   // The number of elements can be have an arbitrary integer type;
601   // essentially, we need to multiply it by a constant factor, add a
602   // cookie size, and verify that the result is representable as a
603   // size_t.  That's just a gloss, though, and it's wrong in one
604   // important way: if the count is negative, it's an error even if
605   // the cookie size would bring the total size >= 0.
606   bool isSigned
607     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
608   llvm::IntegerType *numElementsType
609     = cast<llvm::IntegerType>(numElements->getType());
610   unsigned numElementsWidth = numElementsType->getBitWidth();
611 
612   // Compute the constant factor.
613   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
614   while (const ConstantArrayType *CAT
615              = CGF.getContext().getAsConstantArrayType(type)) {
616     type = CAT->getElementType();
617     arraySizeMultiplier *= CAT->getSize();
618   }
619 
620   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
621   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
622   typeSizeMultiplier *= arraySizeMultiplier;
623 
624   // This will be a size_t.
625   llvm::Value *size;
626 
627   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
628   // Don't bloat the -O0 code.
629   if (llvm::ConstantInt *numElementsC =
630         dyn_cast<llvm::ConstantInt>(numElements)) {
631     const llvm::APInt &count = numElementsC->getValue();
632 
633     bool hasAnyOverflow = false;
634 
635     // If 'count' was a negative number, it's an overflow.
636     if (isSigned && count.isNegative())
637       hasAnyOverflow = true;
638 
639     // We want to do all this arithmetic in size_t.  If numElements is
640     // wider than that, check whether it's already too big, and if so,
641     // overflow.
642     else if (numElementsWidth > sizeWidth &&
643              numElementsWidth - sizeWidth > count.countLeadingZeros())
644       hasAnyOverflow = true;
645 
646     // Okay, compute a count at the right width.
647     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
648 
649     // If there is a brace-initializer, we cannot allocate fewer elements than
650     // there are initializers. If we do, that's treated like an overflow.
651     if (adjustedCount.ult(minElements))
652       hasAnyOverflow = true;
653 
654     // Scale numElements by that.  This might overflow, but we don't
655     // care because it only overflows if allocationSize does, too, and
656     // if that overflows then we shouldn't use this.
657     numElements = llvm::ConstantInt::get(CGF.SizeTy,
658                                          adjustedCount * arraySizeMultiplier);
659 
660     // Compute the size before cookie, and track whether it overflowed.
661     bool overflow;
662     llvm::APInt allocationSize
663       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
664     hasAnyOverflow |= overflow;
665 
666     // Add in the cookie, and check whether it's overflowed.
667     if (cookieSize != 0) {
668       // Save the current size without a cookie.  This shouldn't be
669       // used if there was overflow.
670       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
671 
672       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
673       hasAnyOverflow |= overflow;
674     }
675 
676     // On overflow, produce a -1 so operator new will fail.
677     if (hasAnyOverflow) {
678       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
679     } else {
680       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
681     }
682 
683   // Otherwise, we might need to use the overflow intrinsics.
684   } else {
685     // There are up to five conditions we need to test for:
686     // 1) if isSigned, we need to check whether numElements is negative;
687     // 2) if numElementsWidth > sizeWidth, we need to check whether
688     //   numElements is larger than something representable in size_t;
689     // 3) if minElements > 0, we need to check whether numElements is smaller
690     //    than that.
691     // 4) we need to compute
692     //      sizeWithoutCookie := numElements * typeSizeMultiplier
693     //    and check whether it overflows; and
694     // 5) if we need a cookie, we need to compute
695     //      size := sizeWithoutCookie + cookieSize
696     //    and check whether it overflows.
697 
698     llvm::Value *hasOverflow = nullptr;
699 
700     // If numElementsWidth > sizeWidth, then one way or another, we're
701     // going to have to do a comparison for (2), and this happens to
702     // take care of (1), too.
703     if (numElementsWidth > sizeWidth) {
704       llvm::APInt threshold(numElementsWidth, 1);
705       threshold <<= sizeWidth;
706 
707       llvm::Value *thresholdV
708         = llvm::ConstantInt::get(numElementsType, threshold);
709 
710       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
711       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
712 
713     // Otherwise, if we're signed, we want to sext up to size_t.
714     } else if (isSigned) {
715       if (numElementsWidth < sizeWidth)
716         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
717 
718       // If there's a non-1 type size multiplier, then we can do the
719       // signedness check at the same time as we do the multiply
720       // because a negative number times anything will cause an
721       // unsigned overflow.  Otherwise, we have to do it here. But at least
722       // in this case, we can subsume the >= minElements check.
723       if (typeSizeMultiplier == 1)
724         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
725                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
726 
727     // Otherwise, zext up to size_t if necessary.
728     } else if (numElementsWidth < sizeWidth) {
729       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
730     }
731 
732     assert(numElements->getType() == CGF.SizeTy);
733 
734     if (minElements) {
735       // Don't allow allocation of fewer elements than we have initializers.
736       if (!hasOverflow) {
737         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
738                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
739       } else if (numElementsWidth > sizeWidth) {
740         // The other existing overflow subsumes this check.
741         // We do an unsigned comparison, since any signed value < -1 is
742         // taken care of either above or below.
743         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
744                           CGF.Builder.CreateICmpULT(numElements,
745                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
746       }
747     }
748 
749     size = numElements;
750 
751     // Multiply by the type size if necessary.  This multiplier
752     // includes all the factors for nested arrays.
753     //
754     // This step also causes numElements to be scaled up by the
755     // nested-array factor if necessary.  Overflow on this computation
756     // can be ignored because the result shouldn't be used if
757     // allocation fails.
758     if (typeSizeMultiplier != 1) {
759       llvm::Value *umul_with_overflow
760         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
761 
762       llvm::Value *tsmV =
763         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
764       llvm::Value *result =
765           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
766 
767       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
768       if (hasOverflow)
769         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
770       else
771         hasOverflow = overflowed;
772 
773       size = CGF.Builder.CreateExtractValue(result, 0);
774 
775       // Also scale up numElements by the array size multiplier.
776       if (arraySizeMultiplier != 1) {
777         // If the base element type size is 1, then we can re-use the
778         // multiply we just did.
779         if (typeSize.isOne()) {
780           assert(arraySizeMultiplier == typeSizeMultiplier);
781           numElements = size;
782 
783         // Otherwise we need a separate multiply.
784         } else {
785           llvm::Value *asmV =
786             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
787           numElements = CGF.Builder.CreateMul(numElements, asmV);
788         }
789       }
790     } else {
791       // numElements doesn't need to be scaled.
792       assert(arraySizeMultiplier == 1);
793     }
794 
795     // Add in the cookie size if necessary.
796     if (cookieSize != 0) {
797       sizeWithoutCookie = size;
798 
799       llvm::Value *uadd_with_overflow
800         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
801 
802       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
803       llvm::Value *result =
804           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
805 
806       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
807       if (hasOverflow)
808         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
809       else
810         hasOverflow = overflowed;
811 
812       size = CGF.Builder.CreateExtractValue(result, 0);
813     }
814 
815     // If we had any possibility of dynamic overflow, make a select to
816     // overwrite 'size' with an all-ones value, which should cause
817     // operator new to throw.
818     if (hasOverflow)
819       size = CGF.Builder.CreateSelect(hasOverflow,
820                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
821                                       size);
822   }
823 
824   if (cookieSize == 0)
825     sizeWithoutCookie = size;
826   else
827     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
828 
829   return size;
830 }
831 
832 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
833                                     QualType AllocType, Address NewPtr) {
834   // FIXME: Refactor with EmitExprAsInit.
835   switch (CGF.getEvaluationKind(AllocType)) {
836   case TEK_Scalar:
837     CGF.EmitScalarInit(Init, nullptr,
838                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
839     return;
840   case TEK_Complex:
841     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
842                                   /*isInit*/ true);
843     return;
844   case TEK_Aggregate: {
845     AggValueSlot Slot
846       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
847                               AggValueSlot::IsDestructed,
848                               AggValueSlot::DoesNotNeedGCBarriers,
849                               AggValueSlot::IsNotAliased);
850     CGF.EmitAggExpr(Init, Slot);
851     return;
852   }
853   }
854   llvm_unreachable("bad evaluation kind");
855 }
856 
857 void CodeGenFunction::EmitNewArrayInitializer(
858     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
859     Address BeginPtr, llvm::Value *NumElements,
860     llvm::Value *AllocSizeWithoutCookie) {
861   // If we have a type with trivial initialization and no initializer,
862   // there's nothing to do.
863   if (!E->hasInitializer())
864     return;
865 
866   Address CurPtr = BeginPtr;
867 
868   unsigned InitListElements = 0;
869 
870   const Expr *Init = E->getInitializer();
871   Address EndOfInit = Address::invalid();
872   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
873   EHScopeStack::stable_iterator Cleanup;
874   llvm::Instruction *CleanupDominator = nullptr;
875 
876   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
877   CharUnits ElementAlign =
878     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
879 
880   // Attempt to perform zero-initialization using memset.
881   auto TryMemsetInitialization = [&]() -> bool {
882     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
883     // we can initialize with a memset to -1.
884     if (!CGM.getTypes().isZeroInitializable(ElementType))
885       return false;
886 
887     // Optimization: since zero initialization will just set the memory
888     // to all zeroes, generate a single memset to do it in one shot.
889 
890     // Subtract out the size of any elements we've already initialized.
891     auto *RemainingSize = AllocSizeWithoutCookie;
892     if (InitListElements) {
893       // We know this can't overflow; we check this when doing the allocation.
894       auto *InitializedSize = llvm::ConstantInt::get(
895           RemainingSize->getType(),
896           getContext().getTypeSizeInChars(ElementType).getQuantity() *
897               InitListElements);
898       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
899     }
900 
901     // Create the memset.
902     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
903     return true;
904   };
905 
906   // If the initializer is an initializer list, first do the explicit elements.
907   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
908     // Initializing from a (braced) string literal is a special case; the init
909     // list element does not initialize a (single) array element.
910     if (ILE->isStringLiteralInit()) {
911       // Initialize the initial portion of length equal to that of the string
912       // literal. The allocation must be for at least this much; we emitted a
913       // check for that earlier.
914       AggValueSlot Slot =
915           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
916                                 AggValueSlot::IsDestructed,
917                                 AggValueSlot::DoesNotNeedGCBarriers,
918                                 AggValueSlot::IsNotAliased);
919       EmitAggExpr(ILE->getInit(0), Slot);
920 
921       // Move past these elements.
922       InitListElements =
923           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
924               ->getSize().getZExtValue();
925       CurPtr =
926           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
927                                             Builder.getSize(InitListElements),
928                                             "string.init.end"),
929                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
930                                                           ElementSize));
931 
932       // Zero out the rest, if any remain.
933       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
934       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
935         bool OK = TryMemsetInitialization();
936         (void)OK;
937         assert(OK && "couldn't memset character type?");
938       }
939       return;
940     }
941 
942     InitListElements = ILE->getNumInits();
943 
944     // If this is a multi-dimensional array new, we will initialize multiple
945     // elements with each init list element.
946     QualType AllocType = E->getAllocatedType();
947     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
948             AllocType->getAsArrayTypeUnsafe())) {
949       ElementTy = ConvertTypeForMem(AllocType);
950       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
951       InitListElements *= getContext().getConstantArrayElementCount(CAT);
952     }
953 
954     // Enter a partial-destruction Cleanup if necessary.
955     if (needsEHCleanup(DtorKind)) {
956       // In principle we could tell the Cleanup where we are more
957       // directly, but the control flow can get so varied here that it
958       // would actually be quite complex.  Therefore we go through an
959       // alloca.
960       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
961                                    "array.init.end");
962       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
963       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
964                                        ElementType, ElementAlign,
965                                        getDestroyer(DtorKind));
966       Cleanup = EHStack.stable_begin();
967     }
968 
969     CharUnits StartAlign = CurPtr.getAlignment();
970     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
971       // Tell the cleanup that it needs to destroy up to this
972       // element.  TODO: some of these stores can be trivially
973       // observed to be unnecessary.
974       if (EndOfInit.isValid()) {
975         auto FinishedPtr =
976           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
977         Builder.CreateStore(FinishedPtr, EndOfInit);
978       }
979       // FIXME: If the last initializer is an incomplete initializer list for
980       // an array, and we have an array filler, we can fold together the two
981       // initialization loops.
982       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
983                               ILE->getInit(i)->getType(), CurPtr);
984       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
985                                                  Builder.getSize(1),
986                                                  "array.exp.next"),
987                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
988     }
989 
990     // The remaining elements are filled with the array filler expression.
991     Init = ILE->getArrayFiller();
992 
993     // Extract the initializer for the individual array elements by pulling
994     // out the array filler from all the nested initializer lists. This avoids
995     // generating a nested loop for the initialization.
996     while (Init && Init->getType()->isConstantArrayType()) {
997       auto *SubILE = dyn_cast<InitListExpr>(Init);
998       if (!SubILE)
999         break;
1000       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1001       Init = SubILE->getArrayFiller();
1002     }
1003 
1004     // Switch back to initializing one base element at a time.
1005     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1006   }
1007 
1008   // If all elements have already been initialized, skip any further
1009   // initialization.
1010   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1011   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1012     // If there was a Cleanup, deactivate it.
1013     if (CleanupDominator)
1014       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1015     return;
1016   }
1017 
1018   assert(Init && "have trailing elements to initialize but no initializer");
1019 
1020   // If this is a constructor call, try to optimize it out, and failing that
1021   // emit a single loop to initialize all remaining elements.
1022   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1023     CXXConstructorDecl *Ctor = CCE->getConstructor();
1024     if (Ctor->isTrivial()) {
1025       // If new expression did not specify value-initialization, then there
1026       // is no initialization.
1027       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1028         return;
1029 
1030       if (TryMemsetInitialization())
1031         return;
1032     }
1033 
1034     // Store the new Cleanup position for irregular Cleanups.
1035     //
1036     // FIXME: Share this cleanup with the constructor call emission rather than
1037     // having it create a cleanup of its own.
1038     if (EndOfInit.isValid())
1039       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1040 
1041     // Emit a constructor call loop to initialize the remaining elements.
1042     if (InitListElements)
1043       NumElements = Builder.CreateSub(
1044           NumElements,
1045           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1046     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1047                                CCE->requiresZeroInitialization());
1048     return;
1049   }
1050 
1051   // If this is value-initialization, we can usually use memset.
1052   ImplicitValueInitExpr IVIE(ElementType);
1053   if (isa<ImplicitValueInitExpr>(Init)) {
1054     if (TryMemsetInitialization())
1055       return;
1056 
1057     // Switch to an ImplicitValueInitExpr for the element type. This handles
1058     // only one case: multidimensional array new of pointers to members. In
1059     // all other cases, we already have an initializer for the array element.
1060     Init = &IVIE;
1061   }
1062 
1063   // At this point we should have found an initializer for the individual
1064   // elements of the array.
1065   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1066          "got wrong type of element to initialize");
1067 
1068   // If we have an empty initializer list, we can usually use memset.
1069   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1070     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1071       return;
1072 
1073   // If we have a struct whose every field is value-initialized, we can
1074   // usually use memset.
1075   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1076     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1077       if (RType->getDecl()->isStruct()) {
1078         unsigned NumElements = 0;
1079         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1080           NumElements = CXXRD->getNumBases();
1081         for (auto *Field : RType->getDecl()->fields())
1082           if (!Field->isUnnamedBitfield())
1083             ++NumElements;
1084         // FIXME: Recurse into nested InitListExprs.
1085         if (ILE->getNumInits() == NumElements)
1086           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1087             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1088               --NumElements;
1089         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1090           return;
1091       }
1092     }
1093   }
1094 
1095   // Create the loop blocks.
1096   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1097   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1098   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1099 
1100   // Find the end of the array, hoisted out of the loop.
1101   llvm::Value *EndPtr =
1102     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1103 
1104   // If the number of elements isn't constant, we have to now check if there is
1105   // anything left to initialize.
1106   if (!ConstNum) {
1107     llvm::Value *IsEmpty =
1108       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1109     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1110   }
1111 
1112   // Enter the loop.
1113   EmitBlock(LoopBB);
1114 
1115   // Set up the current-element phi.
1116   llvm::PHINode *CurPtrPhi =
1117     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1118   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1119 
1120   CurPtr = Address(CurPtrPhi, ElementAlign);
1121 
1122   // Store the new Cleanup position for irregular Cleanups.
1123   if (EndOfInit.isValid())
1124     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1125 
1126   // Enter a partial-destruction Cleanup if necessary.
1127   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1128     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1129                                    ElementType, ElementAlign,
1130                                    getDestroyer(DtorKind));
1131     Cleanup = EHStack.stable_begin();
1132     CleanupDominator = Builder.CreateUnreachable();
1133   }
1134 
1135   // Emit the initializer into this element.
1136   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1137 
1138   // Leave the Cleanup if we entered one.
1139   if (CleanupDominator) {
1140     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1141     CleanupDominator->eraseFromParent();
1142   }
1143 
1144   // Advance to the next element by adjusting the pointer type as necessary.
1145   llvm::Value *NextPtr =
1146     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1147                                        "array.next");
1148 
1149   // Check whether we've gotten to the end of the array and, if so,
1150   // exit the loop.
1151   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1152   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1153   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1154 
1155   EmitBlock(ContBB);
1156 }
1157 
1158 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1159                                QualType ElementType, llvm::Type *ElementTy,
1160                                Address NewPtr, llvm::Value *NumElements,
1161                                llvm::Value *AllocSizeWithoutCookie) {
1162   ApplyDebugLocation DL(CGF, E);
1163   if (E->isArray())
1164     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1165                                 AllocSizeWithoutCookie);
1166   else if (const Expr *Init = E->getInitializer())
1167     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1168 }
1169 
1170 /// Emit a call to an operator new or operator delete function, as implicitly
1171 /// created by new-expressions and delete-expressions.
1172 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1173                                 const FunctionDecl *Callee,
1174                                 const FunctionProtoType *CalleeType,
1175                                 const CallArgList &Args) {
1176   llvm::Instruction *CallOrInvoke;
1177   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1178   RValue RV =
1179       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1180                        Args, CalleeType, /*chainCall=*/false),
1181                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1182 
1183   /// C++1y [expr.new]p10:
1184   ///   [In a new-expression,] an implementation is allowed to omit a call
1185   ///   to a replaceable global allocation function.
1186   ///
1187   /// We model such elidable calls with the 'builtin' attribute.
1188   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1189   if (Callee->isReplaceableGlobalAllocationFunction() &&
1190       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1191     // FIXME: Add addAttribute to CallSite.
1192     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1193       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1194                        llvm::Attribute::Builtin);
1195     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1196       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1197                        llvm::Attribute::Builtin);
1198     else
1199       llvm_unreachable("unexpected kind of call instruction");
1200   }
1201 
1202   return RV;
1203 }
1204 
1205 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1206                                                  const Expr *Arg,
1207                                                  bool IsDelete) {
1208   CallArgList Args;
1209   const Stmt *ArgS = Arg;
1210   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1211   // Find the allocation or deallocation function that we're calling.
1212   ASTContext &Ctx = getContext();
1213   DeclarationName Name = Ctx.DeclarationNames
1214       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1215   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1216     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1217       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1218         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1219   llvm_unreachable("predeclared global operator new/delete is missing");
1220 }
1221 
1222 namespace {
1223   /// A cleanup to call the given 'operator delete' function upon
1224   /// abnormal exit from a new expression.
1225   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1226     size_t NumPlacementArgs;
1227     const FunctionDecl *OperatorDelete;
1228     llvm::Value *Ptr;
1229     llvm::Value *AllocSize;
1230 
1231     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1232 
1233   public:
1234     static size_t getExtraSize(size_t NumPlacementArgs) {
1235       return NumPlacementArgs * sizeof(RValue);
1236     }
1237 
1238     CallDeleteDuringNew(size_t NumPlacementArgs,
1239                         const FunctionDecl *OperatorDelete,
1240                         llvm::Value *Ptr,
1241                         llvm::Value *AllocSize)
1242       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1243         Ptr(Ptr), AllocSize(AllocSize) {}
1244 
1245     void setPlacementArg(unsigned I, RValue Arg) {
1246       assert(I < NumPlacementArgs && "index out of range");
1247       getPlacementArgs()[I] = Arg;
1248     }
1249 
1250     void Emit(CodeGenFunction &CGF, Flags flags) override {
1251       const FunctionProtoType *FPT
1252         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1253       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1254              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1255 
1256       CallArgList DeleteArgs;
1257 
1258       // The first argument is always a void*.
1259       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1260       DeleteArgs.add(RValue::get(Ptr), *AI++);
1261 
1262       // A member 'operator delete' can take an extra 'size_t' argument.
1263       if (FPT->getNumParams() == NumPlacementArgs + 2)
1264         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1265 
1266       // Pass the rest of the arguments, which must match exactly.
1267       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1268         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1269 
1270       // Call 'operator delete'.
1271       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1272     }
1273   };
1274 
1275   /// A cleanup to call the given 'operator delete' function upon
1276   /// abnormal exit from a new expression when the new expression is
1277   /// conditional.
1278   class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup {
1279     size_t NumPlacementArgs;
1280     const FunctionDecl *OperatorDelete;
1281     DominatingValue<RValue>::saved_type Ptr;
1282     DominatingValue<RValue>::saved_type AllocSize;
1283 
1284     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1285       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1286     }
1287 
1288   public:
1289     static size_t getExtraSize(size_t NumPlacementArgs) {
1290       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1291     }
1292 
1293     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1294                                    const FunctionDecl *OperatorDelete,
1295                                    DominatingValue<RValue>::saved_type Ptr,
1296                               DominatingValue<RValue>::saved_type AllocSize)
1297       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1298         Ptr(Ptr), AllocSize(AllocSize) {}
1299 
1300     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1301       assert(I < NumPlacementArgs && "index out of range");
1302       getPlacementArgs()[I] = Arg;
1303     }
1304 
1305     void Emit(CodeGenFunction &CGF, Flags flags) override {
1306       const FunctionProtoType *FPT
1307         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1308       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1309              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1310 
1311       CallArgList DeleteArgs;
1312 
1313       // The first argument is always a void*.
1314       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1315       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1316 
1317       // A member 'operator delete' can take an extra 'size_t' argument.
1318       if (FPT->getNumParams() == NumPlacementArgs + 2) {
1319         RValue RV = AllocSize.restore(CGF);
1320         DeleteArgs.add(RV, *AI++);
1321       }
1322 
1323       // Pass the rest of the arguments, which must match exactly.
1324       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1325         RValue RV = getPlacementArgs()[I].restore(CGF);
1326         DeleteArgs.add(RV, *AI++);
1327       }
1328 
1329       // Call 'operator delete'.
1330       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1331     }
1332   };
1333 }
1334 
1335 /// Enter a cleanup to call 'operator delete' if the initializer in a
1336 /// new-expression throws.
1337 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1338                                   const CXXNewExpr *E,
1339                                   Address NewPtr,
1340                                   llvm::Value *AllocSize,
1341                                   const CallArgList &NewArgs) {
1342   // If we're not inside a conditional branch, then the cleanup will
1343   // dominate and we can do the easier (and more efficient) thing.
1344   if (!CGF.isInConditionalBranch()) {
1345     CallDeleteDuringNew *Cleanup = CGF.EHStack
1346       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1347                                                  E->getNumPlacementArgs(),
1348                                                  E->getOperatorDelete(),
1349                                                  NewPtr.getPointer(),
1350                                                  AllocSize);
1351     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1352       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1353 
1354     return;
1355   }
1356 
1357   // Otherwise, we need to save all this stuff.
1358   DominatingValue<RValue>::saved_type SavedNewPtr =
1359     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1360   DominatingValue<RValue>::saved_type SavedAllocSize =
1361     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1362 
1363   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1364     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1365                                                  E->getNumPlacementArgs(),
1366                                                  E->getOperatorDelete(),
1367                                                  SavedNewPtr,
1368                                                  SavedAllocSize);
1369   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1370     Cleanup->setPlacementArg(I,
1371                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1372 
1373   CGF.initFullExprCleanup();
1374 }
1375 
1376 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1377   // The element type being allocated.
1378   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1379 
1380   // 1. Build a call to the allocation function.
1381   FunctionDecl *allocator = E->getOperatorNew();
1382 
1383   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1384   unsigned minElements = 0;
1385   if (E->isArray() && E->hasInitializer()) {
1386     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1387     if (ILE && ILE->isStringLiteralInit())
1388       minElements =
1389           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1390               ->getSize().getZExtValue();
1391     else if (ILE)
1392       minElements = ILE->getNumInits();
1393   }
1394 
1395   llvm::Value *numElements = nullptr;
1396   llvm::Value *allocSizeWithoutCookie = nullptr;
1397   llvm::Value *allocSize =
1398     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1399                         allocSizeWithoutCookie);
1400 
1401   // Emit the allocation call.  If the allocator is a global placement
1402   // operator, just "inline" it directly.
1403   Address allocation = Address::invalid();
1404   CallArgList allocatorArgs;
1405   if (allocator->isReservedGlobalPlacementOperator()) {
1406     assert(E->getNumPlacementArgs() == 1);
1407     const Expr *arg = *E->placement_arguments().begin();
1408 
1409     AlignmentSource alignSource;
1410     allocation = EmitPointerWithAlignment(arg, &alignSource);
1411 
1412     // The pointer expression will, in many cases, be an opaque void*.
1413     // In these cases, discard the computed alignment and use the
1414     // formal alignment of the allocated type.
1415     if (alignSource != AlignmentSource::Decl) {
1416       allocation = Address(allocation.getPointer(),
1417                            getContext().getTypeAlignInChars(allocType));
1418     }
1419 
1420     // Set up allocatorArgs for the call to operator delete if it's not
1421     // the reserved global operator.
1422     if (E->getOperatorDelete() &&
1423         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1424       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1425       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1426     }
1427 
1428   } else {
1429     const FunctionProtoType *allocatorType =
1430       allocator->getType()->castAs<FunctionProtoType>();
1431 
1432     // The allocation size is the first argument.
1433     QualType sizeType = getContext().getSizeType();
1434     allocatorArgs.add(RValue::get(allocSize), sizeType);
1435 
1436     // We start at 1 here because the first argument (the allocation size)
1437     // has already been emitted.
1438     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1439                  /* CalleeDecl */ nullptr,
1440                  /*ParamsToSkip*/ 1);
1441 
1442     RValue RV =
1443       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1444 
1445     // For now, only assume that the allocation function returns
1446     // something satisfactorily aligned for the element type, plus
1447     // the cookie if we have one.
1448     CharUnits allocationAlign =
1449       getContext().getTypeAlignInChars(allocType);
1450     if (allocSize != allocSizeWithoutCookie) {
1451       CharUnits cookieAlign = getSizeAlign(); // FIXME?
1452       allocationAlign = std::max(allocationAlign, cookieAlign);
1453     }
1454 
1455     allocation = Address(RV.getScalarVal(), allocationAlign);
1456   }
1457 
1458   // Emit a null check on the allocation result if the allocation
1459   // function is allowed to return null (because it has a non-throwing
1460   // exception spec or is the reserved placement new) and we have an
1461   // interesting initializer.
1462   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1463     (!allocType.isPODType(getContext()) || E->hasInitializer());
1464 
1465   llvm::BasicBlock *nullCheckBB = nullptr;
1466   llvm::BasicBlock *contBB = nullptr;
1467 
1468   // The null-check means that the initializer is conditionally
1469   // evaluated.
1470   ConditionalEvaluation conditional(*this);
1471 
1472   if (nullCheck) {
1473     conditional.begin(*this);
1474 
1475     nullCheckBB = Builder.GetInsertBlock();
1476     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1477     contBB = createBasicBlock("new.cont");
1478 
1479     llvm::Value *isNull =
1480       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1481     Builder.CreateCondBr(isNull, contBB, notNullBB);
1482     EmitBlock(notNullBB);
1483   }
1484 
1485   // If there's an operator delete, enter a cleanup to call it if an
1486   // exception is thrown.
1487   EHScopeStack::stable_iterator operatorDeleteCleanup;
1488   llvm::Instruction *cleanupDominator = nullptr;
1489   if (E->getOperatorDelete() &&
1490       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1491     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1492     operatorDeleteCleanup = EHStack.stable_begin();
1493     cleanupDominator = Builder.CreateUnreachable();
1494   }
1495 
1496   assert((allocSize == allocSizeWithoutCookie) ==
1497          CalculateCookiePadding(*this, E).isZero());
1498   if (allocSize != allocSizeWithoutCookie) {
1499     assert(E->isArray());
1500     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1501                                                        numElements,
1502                                                        E, allocType);
1503   }
1504 
1505   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1506   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1507 
1508   // Passing pointer through invariant.group.barrier to avoid propagation of
1509   // vptrs information which may be included in previous type.
1510   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1511       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1512       allocator->isReservedGlobalPlacementOperator())
1513     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1514                      result.getAlignment());
1515 
1516   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1517                      allocSizeWithoutCookie);
1518   if (E->isArray()) {
1519     // NewPtr is a pointer to the base element type.  If we're
1520     // allocating an array of arrays, we'll need to cast back to the
1521     // array pointer type.
1522     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1523     if (result.getType() != resultType)
1524       result = Builder.CreateBitCast(result, resultType);
1525   }
1526 
1527   // Deactivate the 'operator delete' cleanup if we finished
1528   // initialization.
1529   if (operatorDeleteCleanup.isValid()) {
1530     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1531     cleanupDominator->eraseFromParent();
1532   }
1533 
1534   llvm::Value *resultPtr = result.getPointer();
1535   if (nullCheck) {
1536     conditional.end(*this);
1537 
1538     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1539     EmitBlock(contBB);
1540 
1541     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1542     PHI->addIncoming(resultPtr, notNullBB);
1543     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1544                      nullCheckBB);
1545 
1546     resultPtr = PHI;
1547   }
1548 
1549   return resultPtr;
1550 }
1551 
1552 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1553                                      llvm::Value *Ptr,
1554                                      QualType DeleteTy) {
1555   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1556 
1557   const FunctionProtoType *DeleteFTy =
1558     DeleteFD->getType()->getAs<FunctionProtoType>();
1559 
1560   CallArgList DeleteArgs;
1561 
1562   // Check if we need to pass the size to the delete operator.
1563   llvm::Value *Size = nullptr;
1564   QualType SizeTy;
1565   if (DeleteFTy->getNumParams() == 2) {
1566     SizeTy = DeleteFTy->getParamType(1);
1567     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1568     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1569                                   DeleteTypeSize.getQuantity());
1570   }
1571 
1572   QualType ArgTy = DeleteFTy->getParamType(0);
1573   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1574   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1575 
1576   if (Size)
1577     DeleteArgs.add(RValue::get(Size), SizeTy);
1578 
1579   // Emit the call to delete.
1580   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1581 }
1582 
1583 namespace {
1584   /// Calls the given 'operator delete' on a single object.
1585   struct CallObjectDelete final : EHScopeStack::Cleanup {
1586     llvm::Value *Ptr;
1587     const FunctionDecl *OperatorDelete;
1588     QualType ElementType;
1589 
1590     CallObjectDelete(llvm::Value *Ptr,
1591                      const FunctionDecl *OperatorDelete,
1592                      QualType ElementType)
1593       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1594 
1595     void Emit(CodeGenFunction &CGF, Flags flags) override {
1596       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1597     }
1598   };
1599 }
1600 
1601 void
1602 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1603                                              llvm::Value *CompletePtr,
1604                                              QualType ElementType) {
1605   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1606                                         OperatorDelete, ElementType);
1607 }
1608 
1609 /// Emit the code for deleting a single object.
1610 static void EmitObjectDelete(CodeGenFunction &CGF,
1611                              const CXXDeleteExpr *DE,
1612                              Address Ptr,
1613                              QualType ElementType) {
1614   // Find the destructor for the type, if applicable.  If the
1615   // destructor is virtual, we'll just emit the vcall and return.
1616   const CXXDestructorDecl *Dtor = nullptr;
1617   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1618     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1619     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1620       Dtor = RD->getDestructor();
1621 
1622       if (Dtor->isVirtual()) {
1623         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1624                                                     Dtor);
1625         return;
1626       }
1627     }
1628   }
1629 
1630   // Make sure that we call delete even if the dtor throws.
1631   // This doesn't have to a conditional cleanup because we're going
1632   // to pop it off in a second.
1633   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1634   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1635                                             Ptr.getPointer(),
1636                                             OperatorDelete, ElementType);
1637 
1638   if (Dtor)
1639     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1640                               /*ForVirtualBase=*/false,
1641                               /*Delegating=*/false,
1642                               Ptr);
1643   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1644     switch (Lifetime) {
1645     case Qualifiers::OCL_None:
1646     case Qualifiers::OCL_ExplicitNone:
1647     case Qualifiers::OCL_Autoreleasing:
1648       break;
1649 
1650     case Qualifiers::OCL_Strong:
1651       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1652       break;
1653 
1654     case Qualifiers::OCL_Weak:
1655       CGF.EmitARCDestroyWeak(Ptr);
1656       break;
1657     }
1658   }
1659 
1660   CGF.PopCleanupBlock();
1661 }
1662 
1663 namespace {
1664   /// Calls the given 'operator delete' on an array of objects.
1665   struct CallArrayDelete final : EHScopeStack::Cleanup {
1666     llvm::Value *Ptr;
1667     const FunctionDecl *OperatorDelete;
1668     llvm::Value *NumElements;
1669     QualType ElementType;
1670     CharUnits CookieSize;
1671 
1672     CallArrayDelete(llvm::Value *Ptr,
1673                     const FunctionDecl *OperatorDelete,
1674                     llvm::Value *NumElements,
1675                     QualType ElementType,
1676                     CharUnits CookieSize)
1677       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1678         ElementType(ElementType), CookieSize(CookieSize) {}
1679 
1680     void Emit(CodeGenFunction &CGF, Flags flags) override {
1681       const FunctionProtoType *DeleteFTy =
1682         OperatorDelete->getType()->getAs<FunctionProtoType>();
1683       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1684 
1685       CallArgList Args;
1686 
1687       // Pass the pointer as the first argument.
1688       QualType VoidPtrTy = DeleteFTy->getParamType(0);
1689       llvm::Value *DeletePtr
1690         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1691       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1692 
1693       // Pass the original requested size as the second argument.
1694       if (DeleteFTy->getNumParams() == 2) {
1695         QualType size_t = DeleteFTy->getParamType(1);
1696         llvm::IntegerType *SizeTy
1697           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1698 
1699         CharUnits ElementTypeSize =
1700           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1701 
1702         // The size of an element, multiplied by the number of elements.
1703         llvm::Value *Size
1704           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1705         if (NumElements)
1706           Size = CGF.Builder.CreateMul(Size, NumElements);
1707 
1708         // Plus the size of the cookie if applicable.
1709         if (!CookieSize.isZero()) {
1710           llvm::Value *CookieSizeV
1711             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1712           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1713         }
1714 
1715         Args.add(RValue::get(Size), size_t);
1716       }
1717 
1718       // Emit the call to delete.
1719       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1720     }
1721   };
1722 }
1723 
1724 /// Emit the code for deleting an array of objects.
1725 static void EmitArrayDelete(CodeGenFunction &CGF,
1726                             const CXXDeleteExpr *E,
1727                             Address deletedPtr,
1728                             QualType elementType) {
1729   llvm::Value *numElements = nullptr;
1730   llvm::Value *allocatedPtr = nullptr;
1731   CharUnits cookieSize;
1732   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1733                                       numElements, allocatedPtr, cookieSize);
1734 
1735   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1736 
1737   // Make sure that we call delete even if one of the dtors throws.
1738   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1739   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1740                                            allocatedPtr, operatorDelete,
1741                                            numElements, elementType,
1742                                            cookieSize);
1743 
1744   // Destroy the elements.
1745   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1746     assert(numElements && "no element count for a type with a destructor!");
1747 
1748     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1749     CharUnits elementAlign =
1750       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1751 
1752     llvm::Value *arrayBegin = deletedPtr.getPointer();
1753     llvm::Value *arrayEnd =
1754       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1755 
1756     // Note that it is legal to allocate a zero-length array, and we
1757     // can never fold the check away because the length should always
1758     // come from a cookie.
1759     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1760                          CGF.getDestroyer(dtorKind),
1761                          /*checkZeroLength*/ true,
1762                          CGF.needsEHCleanup(dtorKind));
1763   }
1764 
1765   // Pop the cleanup block.
1766   CGF.PopCleanupBlock();
1767 }
1768 
1769 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1770   const Expr *Arg = E->getArgument();
1771   Address Ptr = EmitPointerWithAlignment(Arg);
1772 
1773   // Null check the pointer.
1774   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1775   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1776 
1777   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1778 
1779   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1780   EmitBlock(DeleteNotNull);
1781 
1782   // We might be deleting a pointer to array.  If so, GEP down to the
1783   // first non-array element.
1784   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1785   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1786   if (DeleteTy->isConstantArrayType()) {
1787     llvm::Value *Zero = Builder.getInt32(0);
1788     SmallVector<llvm::Value*,8> GEP;
1789 
1790     GEP.push_back(Zero); // point at the outermost array
1791 
1792     // For each layer of array type we're pointing at:
1793     while (const ConstantArrayType *Arr
1794              = getContext().getAsConstantArrayType(DeleteTy)) {
1795       // 1. Unpeel the array type.
1796       DeleteTy = Arr->getElementType();
1797 
1798       // 2. GEP to the first element of the array.
1799       GEP.push_back(Zero);
1800     }
1801 
1802     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1803                   Ptr.getAlignment());
1804   }
1805 
1806   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1807 
1808   if (E->isArrayForm()) {
1809     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1810   } else {
1811     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1812   }
1813 
1814   EmitBlock(DeleteEnd);
1815 }
1816 
1817 static bool isGLValueFromPointerDeref(const Expr *E) {
1818   E = E->IgnoreParens();
1819 
1820   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1821     if (!CE->getSubExpr()->isGLValue())
1822       return false;
1823     return isGLValueFromPointerDeref(CE->getSubExpr());
1824   }
1825 
1826   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1827     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1828 
1829   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1830     if (BO->getOpcode() == BO_Comma)
1831       return isGLValueFromPointerDeref(BO->getRHS());
1832 
1833   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1834     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1835            isGLValueFromPointerDeref(ACO->getFalseExpr());
1836 
1837   // C++11 [expr.sub]p1:
1838   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1839   if (isa<ArraySubscriptExpr>(E))
1840     return true;
1841 
1842   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1843     if (UO->getOpcode() == UO_Deref)
1844       return true;
1845 
1846   return false;
1847 }
1848 
1849 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1850                                          llvm::Type *StdTypeInfoPtrTy) {
1851   // Get the vtable pointer.
1852   Address ThisPtr = CGF.EmitLValue(E).getAddress();
1853 
1854   // C++ [expr.typeid]p2:
1855   //   If the glvalue expression is obtained by applying the unary * operator to
1856   //   a pointer and the pointer is a null pointer value, the typeid expression
1857   //   throws the std::bad_typeid exception.
1858   //
1859   // However, this paragraph's intent is not clear.  We choose a very generous
1860   // interpretation which implores us to consider comma operators, conditional
1861   // operators, parentheses and other such constructs.
1862   QualType SrcRecordTy = E->getType();
1863   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1864           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1865     llvm::BasicBlock *BadTypeidBlock =
1866         CGF.createBasicBlock("typeid.bad_typeid");
1867     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1868 
1869     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
1870     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1871 
1872     CGF.EmitBlock(BadTypeidBlock);
1873     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1874     CGF.EmitBlock(EndBlock);
1875   }
1876 
1877   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1878                                         StdTypeInfoPtrTy);
1879 }
1880 
1881 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1882   llvm::Type *StdTypeInfoPtrTy =
1883     ConvertType(E->getType())->getPointerTo();
1884 
1885   if (E->isTypeOperand()) {
1886     llvm::Constant *TypeInfo =
1887         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1888     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1889   }
1890 
1891   // C++ [expr.typeid]p2:
1892   //   When typeid is applied to a glvalue expression whose type is a
1893   //   polymorphic class type, the result refers to a std::type_info object
1894   //   representing the type of the most derived object (that is, the dynamic
1895   //   type) to which the glvalue refers.
1896   if (E->isPotentiallyEvaluated())
1897     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1898                                 StdTypeInfoPtrTy);
1899 
1900   QualType OperandTy = E->getExprOperand()->getType();
1901   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1902                                StdTypeInfoPtrTy);
1903 }
1904 
1905 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1906                                           QualType DestTy) {
1907   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1908   if (DestTy->isPointerType())
1909     return llvm::Constant::getNullValue(DestLTy);
1910 
1911   /// C++ [expr.dynamic.cast]p9:
1912   ///   A failed cast to reference type throws std::bad_cast
1913   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1914     return nullptr;
1915 
1916   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1917   return llvm::UndefValue::get(DestLTy);
1918 }
1919 
1920 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
1921                                               const CXXDynamicCastExpr *DCE) {
1922   CGM.EmitExplicitCastExprType(DCE, this);
1923   QualType DestTy = DCE->getTypeAsWritten();
1924 
1925   if (DCE->isAlwaysNull())
1926     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1927       return T;
1928 
1929   QualType SrcTy = DCE->getSubExpr()->getType();
1930 
1931   // C++ [expr.dynamic.cast]p7:
1932   //   If T is "pointer to cv void," then the result is a pointer to the most
1933   //   derived object pointed to by v.
1934   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1935 
1936   bool isDynamicCastToVoid;
1937   QualType SrcRecordTy;
1938   QualType DestRecordTy;
1939   if (DestPTy) {
1940     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1941     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1942     DestRecordTy = DestPTy->getPointeeType();
1943   } else {
1944     isDynamicCastToVoid = false;
1945     SrcRecordTy = SrcTy;
1946     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1947   }
1948 
1949   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1950 
1951   // C++ [expr.dynamic.cast]p4:
1952   //   If the value of v is a null pointer value in the pointer case, the result
1953   //   is the null pointer value of type T.
1954   bool ShouldNullCheckSrcValue =
1955       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1956                                                          SrcRecordTy);
1957 
1958   llvm::BasicBlock *CastNull = nullptr;
1959   llvm::BasicBlock *CastNotNull = nullptr;
1960   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1961 
1962   if (ShouldNullCheckSrcValue) {
1963     CastNull = createBasicBlock("dynamic_cast.null");
1964     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1965 
1966     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
1967     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1968     EmitBlock(CastNotNull);
1969   }
1970 
1971   llvm::Value *Value;
1972   if (isDynamicCastToVoid) {
1973     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
1974                                                   DestTy);
1975   } else {
1976     assert(DestRecordTy->isRecordType() &&
1977            "destination type must be a record type!");
1978     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
1979                                                 DestTy, DestRecordTy, CastEnd);
1980     CastNotNull = Builder.GetInsertBlock();
1981   }
1982 
1983   if (ShouldNullCheckSrcValue) {
1984     EmitBranch(CastEnd);
1985 
1986     EmitBlock(CastNull);
1987     EmitBranch(CastEnd);
1988   }
1989 
1990   EmitBlock(CastEnd);
1991 
1992   if (ShouldNullCheckSrcValue) {
1993     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1994     PHI->addIncoming(Value, CastNotNull);
1995     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1996 
1997     Value = PHI;
1998   }
1999 
2000   return Value;
2001 }
2002 
2003 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2004   RunCleanupsScope Scope(*this);
2005   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2006 
2007   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2008   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2009                                                e = E->capture_init_end();
2010        i != e; ++i, ++CurField) {
2011     // Emit initialization
2012     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2013     if (CurField->hasCapturedVLAType()) {
2014       auto VAT = CurField->getCapturedVLAType();
2015       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2016     } else {
2017       ArrayRef<VarDecl *> ArrayIndexes;
2018       if (CurField->getType()->isArrayType())
2019         ArrayIndexes = E->getCaptureInitIndexVars(i);
2020       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
2021     }
2022   }
2023 }
2024