1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 namespace {
29 struct MemberCallInfo {
30   RequiredArgs ReqArgs;
31   // Number of prefix arguments for the call. Ignores the `this` pointer.
32   unsigned PrefixSize;
33 };
34 }
35 
36 static MemberCallInfo
37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
38                                   llvm::Value *This, llvm::Value *ImplicitParam,
39                                   QualType ImplicitParamTy, const CallExpr *CE,
40                                   CallArgList &Args, CallArgList *RtlArgs) {
41   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42          isa<CXXOperatorCallExpr>(CE));
43   assert(MD->isInstance() &&
44          "Trying to emit a member or operator call expr on a static method!");
45   ASTContext &C = CGF.getContext();
46 
47   // Push the this ptr.
48   const CXXRecordDecl *RD =
49       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
50   Args.add(RValue::get(This),
51            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52 
53   // If there is an implicit parameter (e.g. VTT), emit it.
54   if (ImplicitParam) {
55     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56   }
57 
58   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60   unsigned PrefixSize = Args.size() - 1;
61 
62   // And the rest of the call args.
63   if (RtlArgs) {
64     // Special case: if the caller emitted the arguments right-to-left already
65     // (prior to emitting the *this argument), we're done. This happens for
66     // assignment operators.
67     Args.addFrom(*RtlArgs);
68   } else if (CE) {
69     // Special case: skip first argument of CXXOperatorCall (it is "this").
70     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72                      CE->getDirectCallee());
73   } else {
74     assert(
75         FPT->getNumParams() == 0 &&
76         "No CallExpr specified for function with non-zero number of arguments");
77   }
78   return {required, PrefixSize};
79 }
80 
81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
82     const CXXMethodDecl *MD, const CGCallee &Callee,
83     ReturnValueSlot ReturnValue,
84     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85     const CallExpr *CE, CallArgList *RtlArgs) {
86   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87   CallArgList Args;
88   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92   return EmitCall(FnInfo, Callee, ReturnValue, Args);
93 }
94 
95 RValue CodeGenFunction::EmitCXXDestructorCall(
96     const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
97     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
98     StructorType Type) {
99   CallArgList Args;
100   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
101                                     ImplicitParamTy, CE, Args, nullptr);
102   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
103                   Callee, ReturnValueSlot(), Args);
104 }
105 
106 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
107                                             const CXXPseudoDestructorExpr *E) {
108   QualType DestroyedType = E->getDestroyedType();
109   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
110     // Automatic Reference Counting:
111     //   If the pseudo-expression names a retainable object with weak or
112     //   strong lifetime, the object shall be released.
113     Expr *BaseExpr = E->getBase();
114     Address BaseValue = Address::invalid();
115     Qualifiers BaseQuals;
116 
117     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
118     if (E->isArrow()) {
119       BaseValue = EmitPointerWithAlignment(BaseExpr);
120       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
121       BaseQuals = PTy->getPointeeType().getQualifiers();
122     } else {
123       LValue BaseLV = EmitLValue(BaseExpr);
124       BaseValue = BaseLV.getAddress();
125       QualType BaseTy = BaseExpr->getType();
126       BaseQuals = BaseTy.getQualifiers();
127     }
128 
129     switch (DestroyedType.getObjCLifetime()) {
130     case Qualifiers::OCL_None:
131     case Qualifiers::OCL_ExplicitNone:
132     case Qualifiers::OCL_Autoreleasing:
133       break;
134 
135     case Qualifiers::OCL_Strong:
136       EmitARCRelease(Builder.CreateLoad(BaseValue,
137                         DestroyedType.isVolatileQualified()),
138                      ARCPreciseLifetime);
139       break;
140 
141     case Qualifiers::OCL_Weak:
142       EmitARCDestroyWeak(BaseValue);
143       break;
144     }
145   } else {
146     // C++ [expr.pseudo]p1:
147     //   The result shall only be used as the operand for the function call
148     //   operator (), and the result of such a call has type void. The only
149     //   effect is the evaluation of the postfix-expression before the dot or
150     //   arrow.
151     EmitIgnoredExpr(E->getBase());
152   }
153 
154   return RValue::get(nullptr);
155 }
156 
157 static CXXRecordDecl *getCXXRecord(const Expr *E) {
158   QualType T = E->getType();
159   if (const PointerType *PTy = T->getAs<PointerType>())
160     T = PTy->getPointeeType();
161   const RecordType *Ty = T->castAs<RecordType>();
162   return cast<CXXRecordDecl>(Ty->getDecl());
163 }
164 
165 // Note: This function also emit constructor calls to support a MSVC
166 // extensions allowing explicit constructor function call.
167 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
168                                               ReturnValueSlot ReturnValue) {
169   const Expr *callee = CE->getCallee()->IgnoreParens();
170 
171   if (isa<BinaryOperator>(callee))
172     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
173 
174   const MemberExpr *ME = cast<MemberExpr>(callee);
175   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
176 
177   if (MD->isStatic()) {
178     // The method is static, emit it as we would a regular call.
179     CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
180     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
181                     ReturnValue);
182   }
183 
184   bool HasQualifier = ME->hasQualifier();
185   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
186   bool IsArrow = ME->isArrow();
187   const Expr *Base = ME->getBase();
188 
189   return EmitCXXMemberOrOperatorMemberCallExpr(
190       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
191 }
192 
193 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
194     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
195     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
196     const Expr *Base) {
197   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
198 
199   // Compute the object pointer.
200   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
201 
202   const CXXMethodDecl *DevirtualizedMethod = nullptr;
203   if (CanUseVirtualCall &&
204       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
205     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
206     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
207     assert(DevirtualizedMethod);
208     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
209     const Expr *Inner = Base->ignoreParenBaseCasts();
210     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
211         MD->getReturnType().getCanonicalType())
212       // If the return types are not the same, this might be a case where more
213       // code needs to run to compensate for it. For example, the derived
214       // method might return a type that inherits form from the return
215       // type of MD and has a prefix.
216       // For now we just avoid devirtualizing these covariant cases.
217       DevirtualizedMethod = nullptr;
218     else if (getCXXRecord(Inner) == DevirtualizedClass)
219       // If the class of the Inner expression is where the dynamic method
220       // is defined, build the this pointer from it.
221       Base = Inner;
222     else if (getCXXRecord(Base) != DevirtualizedClass) {
223       // If the method is defined in a class that is not the best dynamic
224       // one or the one of the full expression, we would have to build
225       // a derived-to-base cast to compute the correct this pointer, but
226       // we don't have support for that yet, so do a virtual call.
227       DevirtualizedMethod = nullptr;
228     }
229   }
230 
231   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
232   // operator before the LHS.
233   CallArgList RtlArgStorage;
234   CallArgList *RtlArgs = nullptr;
235   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
236     if (OCE->isAssignmentOp()) {
237       RtlArgs = &RtlArgStorage;
238       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
239                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
240                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
241     }
242   }
243 
244   Address This = Address::invalid();
245   if (IsArrow)
246     This = EmitPointerWithAlignment(Base);
247   else
248     This = EmitLValue(Base).getAddress();
249 
250 
251   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
252     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
253     if (isa<CXXConstructorDecl>(MD) &&
254         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
255       return RValue::get(nullptr);
256 
257     if (!MD->getParent()->mayInsertExtraPadding()) {
258       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
259         // We don't like to generate the trivial copy/move assignment operator
260         // when it isn't necessary; just produce the proper effect here.
261         LValue RHS = isa<CXXOperatorCallExpr>(CE)
262                          ? MakeNaturalAlignAddrLValue(
263                                (*RtlArgs)[0].RV.getScalarVal(),
264                                (*(CE->arg_begin() + 1))->getType())
265                          : EmitLValue(*CE->arg_begin());
266         EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
267         return RValue::get(This.getPointer());
268       }
269 
270       if (isa<CXXConstructorDecl>(MD) &&
271           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
272         // Trivial move and copy ctor are the same.
273         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
274         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
275         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
276         return RValue::get(This.getPointer());
277       }
278       llvm_unreachable("unknown trivial member function");
279     }
280   }
281 
282   // Compute the function type we're calling.
283   const CXXMethodDecl *CalleeDecl =
284       DevirtualizedMethod ? DevirtualizedMethod : MD;
285   const CGFunctionInfo *FInfo = nullptr;
286   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
287     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
288         Dtor, StructorType::Complete);
289   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
290     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
291         Ctor, StructorType::Complete);
292   else
293     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
294 
295   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
296 
297   // C++11 [class.mfct.non-static]p2:
298   //   If a non-static member function of a class X is called for an object that
299   //   is not of type X, or of a type derived from X, the behavior is undefined.
300   SourceLocation CallLoc;
301   ASTContext &C = getContext();
302   if (CE)
303     CallLoc = CE->getExprLoc();
304 
305   SanitizerSet SkippedChecks;
306   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
307     auto *IOA = CMCE->getImplicitObjectArgument();
308     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
309     if (IsImplicitObjectCXXThis)
310       SkippedChecks.set(SanitizerKind::Alignment, true);
311     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
312       SkippedChecks.set(SanitizerKind::Null, true);
313   }
314   EmitTypeCheck(
315       isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
316                                           : CodeGenFunction::TCK_MemberCall,
317       CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
318       /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319 
320   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
321   // 'CalleeDecl' instead.
322 
323   // C++ [class.virtual]p12:
324   //   Explicit qualification with the scope operator (5.1) suppresses the
325   //   virtual call mechanism.
326   //
327   // We also don't emit a virtual call if the base expression has a record type
328   // because then we know what the type is.
329   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
330 
331   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
332     assert(CE->arg_begin() == CE->arg_end() &&
333            "Destructor shouldn't have explicit parameters");
334     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
335     if (UseVirtualCall) {
336       CGM.getCXXABI().EmitVirtualDestructorCall(
337           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
338     } else {
339       CGCallee Callee;
340       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
341         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
342       else if (!DevirtualizedMethod)
343         Callee = CGCallee::forDirect(
344             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
345                                      Dtor);
346       else {
347         const CXXDestructorDecl *DDtor =
348           cast<CXXDestructorDecl>(DevirtualizedMethod);
349         Callee = CGCallee::forDirect(
350                   CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
351                                      DDtor);
352       }
353       EmitCXXMemberOrOperatorCall(
354           CalleeDecl, Callee, ReturnValue, This.getPointer(),
355           /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
356     }
357     return RValue::get(nullptr);
358   }
359 
360   CGCallee Callee;
361   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
362     Callee = CGCallee::forDirect(
363                   CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
364                                  Ctor);
365   } else if (UseVirtualCall) {
366     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
367                                                        CE->getLocStart());
368   } else {
369     if (SanOpts.has(SanitizerKind::CFINVCall) &&
370         MD->getParent()->isDynamicClass()) {
371       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
372       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
373                                 CE->getLocStart());
374     }
375 
376     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
377       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
378     else if (!DevirtualizedMethod)
379       Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
380     else {
381       Callee = CGCallee::forDirect(
382                                 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
383                                    DevirtualizedMethod);
384     }
385   }
386 
387   if (MD->isVirtual()) {
388     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
389         *this, CalleeDecl, This, UseVirtualCall);
390   }
391 
392   return EmitCXXMemberOrOperatorCall(
393       CalleeDecl, Callee, ReturnValue, This.getPointer(),
394       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
395 }
396 
397 RValue
398 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
399                                               ReturnValueSlot ReturnValue) {
400   const BinaryOperator *BO =
401       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
402   const Expr *BaseExpr = BO->getLHS();
403   const Expr *MemFnExpr = BO->getRHS();
404 
405   const MemberPointerType *MPT =
406     MemFnExpr->getType()->castAs<MemberPointerType>();
407 
408   const FunctionProtoType *FPT =
409     MPT->getPointeeType()->castAs<FunctionProtoType>();
410   const CXXRecordDecl *RD =
411     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
412 
413   // Emit the 'this' pointer.
414   Address This = Address::invalid();
415   if (BO->getOpcode() == BO_PtrMemI)
416     This = EmitPointerWithAlignment(BaseExpr);
417   else
418     This = EmitLValue(BaseExpr).getAddress();
419 
420   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
421                 QualType(MPT->getClass(), 0));
422 
423   // Get the member function pointer.
424   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
425 
426   // Ask the ABI to load the callee.  Note that This is modified.
427   llvm::Value *ThisPtrForCall = nullptr;
428   CGCallee Callee =
429     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
430                                              ThisPtrForCall, MemFnPtr, MPT);
431 
432   CallArgList Args;
433 
434   QualType ThisType =
435     getContext().getPointerType(getContext().getTagDeclType(RD));
436 
437   // Push the this ptr.
438   Args.add(RValue::get(ThisPtrForCall), ThisType);
439 
440   RequiredArgs required =
441       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
442 
443   // And the rest of the call args
444   EmitCallArgs(Args, FPT, E->arguments());
445   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
446                                                       /*PrefixSize=*/0),
447                   Callee, ReturnValue, Args);
448 }
449 
450 RValue
451 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
452                                                const CXXMethodDecl *MD,
453                                                ReturnValueSlot ReturnValue) {
454   assert(MD->isInstance() &&
455          "Trying to emit a member call expr on a static method!");
456   return EmitCXXMemberOrOperatorMemberCallExpr(
457       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
458       /*IsArrow=*/false, E->getArg(0));
459 }
460 
461 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
462                                                ReturnValueSlot ReturnValue) {
463   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
464 }
465 
466 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
467                                             Address DestPtr,
468                                             const CXXRecordDecl *Base) {
469   if (Base->isEmpty())
470     return;
471 
472   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
473 
474   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
475   CharUnits NVSize = Layout.getNonVirtualSize();
476 
477   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
478   // present, they are initialized by the most derived class before calling the
479   // constructor.
480   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
481   Stores.emplace_back(CharUnits::Zero(), NVSize);
482 
483   // Each store is split by the existence of a vbptr.
484   CharUnits VBPtrWidth = CGF.getPointerSize();
485   std::vector<CharUnits> VBPtrOffsets =
486       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
487   for (CharUnits VBPtrOffset : VBPtrOffsets) {
488     // Stop before we hit any virtual base pointers located in virtual bases.
489     if (VBPtrOffset >= NVSize)
490       break;
491     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
492     CharUnits LastStoreOffset = LastStore.first;
493     CharUnits LastStoreSize = LastStore.second;
494 
495     CharUnits SplitBeforeOffset = LastStoreOffset;
496     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
497     assert(!SplitBeforeSize.isNegative() && "negative store size!");
498     if (!SplitBeforeSize.isZero())
499       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
500 
501     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
502     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
503     assert(!SplitAfterSize.isNegative() && "negative store size!");
504     if (!SplitAfterSize.isZero())
505       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
506   }
507 
508   // If the type contains a pointer to data member we can't memset it to zero.
509   // Instead, create a null constant and copy it to the destination.
510   // TODO: there are other patterns besides zero that we can usefully memset,
511   // like -1, which happens to be the pattern used by member-pointers.
512   // TODO: isZeroInitializable can be over-conservative in the case where a
513   // virtual base contains a member pointer.
514   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
515   if (!NullConstantForBase->isNullValue()) {
516     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
517         CGF.CGM.getModule(), NullConstantForBase->getType(),
518         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
519         NullConstantForBase, Twine());
520 
521     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
522                                DestPtr.getAlignment());
523     NullVariable->setAlignment(Align.getQuantity());
524 
525     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
526 
527     // Get and call the appropriate llvm.memcpy overload.
528     for (std::pair<CharUnits, CharUnits> Store : Stores) {
529       CharUnits StoreOffset = Store.first;
530       CharUnits StoreSize = Store.second;
531       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
532       CGF.Builder.CreateMemCpy(
533           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
534           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
535           StoreSizeVal);
536     }
537 
538   // Otherwise, just memset the whole thing to zero.  This is legal
539   // because in LLVM, all default initializers (other than the ones we just
540   // handled above) are guaranteed to have a bit pattern of all zeros.
541   } else {
542     for (std::pair<CharUnits, CharUnits> Store : Stores) {
543       CharUnits StoreOffset = Store.first;
544       CharUnits StoreSize = Store.second;
545       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
546       CGF.Builder.CreateMemSet(
547           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
548           CGF.Builder.getInt8(0), StoreSizeVal);
549     }
550   }
551 }
552 
553 void
554 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
555                                       AggValueSlot Dest) {
556   assert(!Dest.isIgnored() && "Must have a destination!");
557   const CXXConstructorDecl *CD = E->getConstructor();
558 
559   // If we require zero initialization before (or instead of) calling the
560   // constructor, as can be the case with a non-user-provided default
561   // constructor, emit the zero initialization now, unless destination is
562   // already zeroed.
563   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
564     switch (E->getConstructionKind()) {
565     case CXXConstructExpr::CK_Delegating:
566     case CXXConstructExpr::CK_Complete:
567       EmitNullInitialization(Dest.getAddress(), E->getType());
568       break;
569     case CXXConstructExpr::CK_VirtualBase:
570     case CXXConstructExpr::CK_NonVirtualBase:
571       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
572                                       CD->getParent());
573       break;
574     }
575   }
576 
577   // If this is a call to a trivial default constructor, do nothing.
578   if (CD->isTrivial() && CD->isDefaultConstructor())
579     return;
580 
581   // Elide the constructor if we're constructing from a temporary.
582   // The temporary check is required because Sema sets this on NRVO
583   // returns.
584   if (getLangOpts().ElideConstructors && E->isElidable()) {
585     assert(getContext().hasSameUnqualifiedType(E->getType(),
586                                                E->getArg(0)->getType()));
587     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
588       EmitAggExpr(E->getArg(0), Dest);
589       return;
590     }
591   }
592 
593   if (const ArrayType *arrayType
594         = getContext().getAsArrayType(E->getType())) {
595     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
596   } else {
597     CXXCtorType Type = Ctor_Complete;
598     bool ForVirtualBase = false;
599     bool Delegating = false;
600 
601     switch (E->getConstructionKind()) {
602      case CXXConstructExpr::CK_Delegating:
603       // We should be emitting a constructor; GlobalDecl will assert this
604       Type = CurGD.getCtorType();
605       Delegating = true;
606       break;
607 
608      case CXXConstructExpr::CK_Complete:
609       Type = Ctor_Complete;
610       break;
611 
612      case CXXConstructExpr::CK_VirtualBase:
613       ForVirtualBase = true;
614       // fall-through
615 
616      case CXXConstructExpr::CK_NonVirtualBase:
617       Type = Ctor_Base;
618     }
619 
620     // Call the constructor.
621     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
622                            Dest.getAddress(), E);
623   }
624 }
625 
626 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
627                                                  const Expr *Exp) {
628   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
629     Exp = E->getSubExpr();
630   assert(isa<CXXConstructExpr>(Exp) &&
631          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
632   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
633   const CXXConstructorDecl *CD = E->getConstructor();
634   RunCleanupsScope Scope(*this);
635 
636   // If we require zero initialization before (or instead of) calling the
637   // constructor, as can be the case with a non-user-provided default
638   // constructor, emit the zero initialization now.
639   // FIXME. Do I still need this for a copy ctor synthesis?
640   if (E->requiresZeroInitialization())
641     EmitNullInitialization(Dest, E->getType());
642 
643   assert(!getContext().getAsConstantArrayType(E->getType())
644          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
645   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
646 }
647 
648 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
649                                         const CXXNewExpr *E) {
650   if (!E->isArray())
651     return CharUnits::Zero();
652 
653   // No cookie is required if the operator new[] being used is the
654   // reserved placement operator new[].
655   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
656     return CharUnits::Zero();
657 
658   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
659 }
660 
661 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
662                                         const CXXNewExpr *e,
663                                         unsigned minElements,
664                                         llvm::Value *&numElements,
665                                         llvm::Value *&sizeWithoutCookie) {
666   QualType type = e->getAllocatedType();
667 
668   if (!e->isArray()) {
669     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
670     sizeWithoutCookie
671       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
672     return sizeWithoutCookie;
673   }
674 
675   // The width of size_t.
676   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
677 
678   // Figure out the cookie size.
679   llvm::APInt cookieSize(sizeWidth,
680                          CalculateCookiePadding(CGF, e).getQuantity());
681 
682   // Emit the array size expression.
683   // We multiply the size of all dimensions for NumElements.
684   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
685   numElements =
686     ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
687   if (!numElements)
688     numElements = CGF.EmitScalarExpr(e->getArraySize());
689   assert(isa<llvm::IntegerType>(numElements->getType()));
690 
691   // The number of elements can be have an arbitrary integer type;
692   // essentially, we need to multiply it by a constant factor, add a
693   // cookie size, and verify that the result is representable as a
694   // size_t.  That's just a gloss, though, and it's wrong in one
695   // important way: if the count is negative, it's an error even if
696   // the cookie size would bring the total size >= 0.
697   bool isSigned
698     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
699   llvm::IntegerType *numElementsType
700     = cast<llvm::IntegerType>(numElements->getType());
701   unsigned numElementsWidth = numElementsType->getBitWidth();
702 
703   // Compute the constant factor.
704   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
705   while (const ConstantArrayType *CAT
706              = CGF.getContext().getAsConstantArrayType(type)) {
707     type = CAT->getElementType();
708     arraySizeMultiplier *= CAT->getSize();
709   }
710 
711   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
712   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
713   typeSizeMultiplier *= arraySizeMultiplier;
714 
715   // This will be a size_t.
716   llvm::Value *size;
717 
718   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
719   // Don't bloat the -O0 code.
720   if (llvm::ConstantInt *numElementsC =
721         dyn_cast<llvm::ConstantInt>(numElements)) {
722     const llvm::APInt &count = numElementsC->getValue();
723 
724     bool hasAnyOverflow = false;
725 
726     // If 'count' was a negative number, it's an overflow.
727     if (isSigned && count.isNegative())
728       hasAnyOverflow = true;
729 
730     // We want to do all this arithmetic in size_t.  If numElements is
731     // wider than that, check whether it's already too big, and if so,
732     // overflow.
733     else if (numElementsWidth > sizeWidth &&
734              numElementsWidth - sizeWidth > count.countLeadingZeros())
735       hasAnyOverflow = true;
736 
737     // Okay, compute a count at the right width.
738     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
739 
740     // If there is a brace-initializer, we cannot allocate fewer elements than
741     // there are initializers. If we do, that's treated like an overflow.
742     if (adjustedCount.ult(minElements))
743       hasAnyOverflow = true;
744 
745     // Scale numElements by that.  This might overflow, but we don't
746     // care because it only overflows if allocationSize does, too, and
747     // if that overflows then we shouldn't use this.
748     numElements = llvm::ConstantInt::get(CGF.SizeTy,
749                                          adjustedCount * arraySizeMultiplier);
750 
751     // Compute the size before cookie, and track whether it overflowed.
752     bool overflow;
753     llvm::APInt allocationSize
754       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
755     hasAnyOverflow |= overflow;
756 
757     // Add in the cookie, and check whether it's overflowed.
758     if (cookieSize != 0) {
759       // Save the current size without a cookie.  This shouldn't be
760       // used if there was overflow.
761       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
762 
763       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
764       hasAnyOverflow |= overflow;
765     }
766 
767     // On overflow, produce a -1 so operator new will fail.
768     if (hasAnyOverflow) {
769       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
770     } else {
771       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
772     }
773 
774   // Otherwise, we might need to use the overflow intrinsics.
775   } else {
776     // There are up to five conditions we need to test for:
777     // 1) if isSigned, we need to check whether numElements is negative;
778     // 2) if numElementsWidth > sizeWidth, we need to check whether
779     //   numElements is larger than something representable in size_t;
780     // 3) if minElements > 0, we need to check whether numElements is smaller
781     //    than that.
782     // 4) we need to compute
783     //      sizeWithoutCookie := numElements * typeSizeMultiplier
784     //    and check whether it overflows; and
785     // 5) if we need a cookie, we need to compute
786     //      size := sizeWithoutCookie + cookieSize
787     //    and check whether it overflows.
788 
789     llvm::Value *hasOverflow = nullptr;
790 
791     // If numElementsWidth > sizeWidth, then one way or another, we're
792     // going to have to do a comparison for (2), and this happens to
793     // take care of (1), too.
794     if (numElementsWidth > sizeWidth) {
795       llvm::APInt threshold(numElementsWidth, 1);
796       threshold <<= sizeWidth;
797 
798       llvm::Value *thresholdV
799         = llvm::ConstantInt::get(numElementsType, threshold);
800 
801       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
802       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
803 
804     // Otherwise, if we're signed, we want to sext up to size_t.
805     } else if (isSigned) {
806       if (numElementsWidth < sizeWidth)
807         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
808 
809       // If there's a non-1 type size multiplier, then we can do the
810       // signedness check at the same time as we do the multiply
811       // because a negative number times anything will cause an
812       // unsigned overflow.  Otherwise, we have to do it here. But at least
813       // in this case, we can subsume the >= minElements check.
814       if (typeSizeMultiplier == 1)
815         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
816                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
817 
818     // Otherwise, zext up to size_t if necessary.
819     } else if (numElementsWidth < sizeWidth) {
820       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
821     }
822 
823     assert(numElements->getType() == CGF.SizeTy);
824 
825     if (minElements) {
826       // Don't allow allocation of fewer elements than we have initializers.
827       if (!hasOverflow) {
828         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
829                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
830       } else if (numElementsWidth > sizeWidth) {
831         // The other existing overflow subsumes this check.
832         // We do an unsigned comparison, since any signed value < -1 is
833         // taken care of either above or below.
834         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
835                           CGF.Builder.CreateICmpULT(numElements,
836                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
837       }
838     }
839 
840     size = numElements;
841 
842     // Multiply by the type size if necessary.  This multiplier
843     // includes all the factors for nested arrays.
844     //
845     // This step also causes numElements to be scaled up by the
846     // nested-array factor if necessary.  Overflow on this computation
847     // can be ignored because the result shouldn't be used if
848     // allocation fails.
849     if (typeSizeMultiplier != 1) {
850       llvm::Value *umul_with_overflow
851         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
852 
853       llvm::Value *tsmV =
854         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
855       llvm::Value *result =
856           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
857 
858       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
859       if (hasOverflow)
860         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
861       else
862         hasOverflow = overflowed;
863 
864       size = CGF.Builder.CreateExtractValue(result, 0);
865 
866       // Also scale up numElements by the array size multiplier.
867       if (arraySizeMultiplier != 1) {
868         // If the base element type size is 1, then we can re-use the
869         // multiply we just did.
870         if (typeSize.isOne()) {
871           assert(arraySizeMultiplier == typeSizeMultiplier);
872           numElements = size;
873 
874         // Otherwise we need a separate multiply.
875         } else {
876           llvm::Value *asmV =
877             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
878           numElements = CGF.Builder.CreateMul(numElements, asmV);
879         }
880       }
881     } else {
882       // numElements doesn't need to be scaled.
883       assert(arraySizeMultiplier == 1);
884     }
885 
886     // Add in the cookie size if necessary.
887     if (cookieSize != 0) {
888       sizeWithoutCookie = size;
889 
890       llvm::Value *uadd_with_overflow
891         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
892 
893       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
894       llvm::Value *result =
895           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
896 
897       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
898       if (hasOverflow)
899         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
900       else
901         hasOverflow = overflowed;
902 
903       size = CGF.Builder.CreateExtractValue(result, 0);
904     }
905 
906     // If we had any possibility of dynamic overflow, make a select to
907     // overwrite 'size' with an all-ones value, which should cause
908     // operator new to throw.
909     if (hasOverflow)
910       size = CGF.Builder.CreateSelect(hasOverflow,
911                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
912                                       size);
913   }
914 
915   if (cookieSize == 0)
916     sizeWithoutCookie = size;
917   else
918     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
919 
920   return size;
921 }
922 
923 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
924                                     QualType AllocType, Address NewPtr) {
925   // FIXME: Refactor with EmitExprAsInit.
926   switch (CGF.getEvaluationKind(AllocType)) {
927   case TEK_Scalar:
928     CGF.EmitScalarInit(Init, nullptr,
929                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
930     return;
931   case TEK_Complex:
932     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
933                                   /*isInit*/ true);
934     return;
935   case TEK_Aggregate: {
936     AggValueSlot Slot
937       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
938                               AggValueSlot::IsDestructed,
939                               AggValueSlot::DoesNotNeedGCBarriers,
940                               AggValueSlot::IsNotAliased);
941     CGF.EmitAggExpr(Init, Slot);
942     return;
943   }
944   }
945   llvm_unreachable("bad evaluation kind");
946 }
947 
948 void CodeGenFunction::EmitNewArrayInitializer(
949     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
950     Address BeginPtr, llvm::Value *NumElements,
951     llvm::Value *AllocSizeWithoutCookie) {
952   // If we have a type with trivial initialization and no initializer,
953   // there's nothing to do.
954   if (!E->hasInitializer())
955     return;
956 
957   Address CurPtr = BeginPtr;
958 
959   unsigned InitListElements = 0;
960 
961   const Expr *Init = E->getInitializer();
962   Address EndOfInit = Address::invalid();
963   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
964   EHScopeStack::stable_iterator Cleanup;
965   llvm::Instruction *CleanupDominator = nullptr;
966 
967   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
968   CharUnits ElementAlign =
969     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
970 
971   // Attempt to perform zero-initialization using memset.
972   auto TryMemsetInitialization = [&]() -> bool {
973     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
974     // we can initialize with a memset to -1.
975     if (!CGM.getTypes().isZeroInitializable(ElementType))
976       return false;
977 
978     // Optimization: since zero initialization will just set the memory
979     // to all zeroes, generate a single memset to do it in one shot.
980 
981     // Subtract out the size of any elements we've already initialized.
982     auto *RemainingSize = AllocSizeWithoutCookie;
983     if (InitListElements) {
984       // We know this can't overflow; we check this when doing the allocation.
985       auto *InitializedSize = llvm::ConstantInt::get(
986           RemainingSize->getType(),
987           getContext().getTypeSizeInChars(ElementType).getQuantity() *
988               InitListElements);
989       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
990     }
991 
992     // Create the memset.
993     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
994     return true;
995   };
996 
997   // If the initializer is an initializer list, first do the explicit elements.
998   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
999     // Initializing from a (braced) string literal is a special case; the init
1000     // list element does not initialize a (single) array element.
1001     if (ILE->isStringLiteralInit()) {
1002       // Initialize the initial portion of length equal to that of the string
1003       // literal. The allocation must be for at least this much; we emitted a
1004       // check for that earlier.
1005       AggValueSlot Slot =
1006           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1007                                 AggValueSlot::IsDestructed,
1008                                 AggValueSlot::DoesNotNeedGCBarriers,
1009                                 AggValueSlot::IsNotAliased);
1010       EmitAggExpr(ILE->getInit(0), Slot);
1011 
1012       // Move past these elements.
1013       InitListElements =
1014           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1015               ->getSize().getZExtValue();
1016       CurPtr =
1017           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1018                                             Builder.getSize(InitListElements),
1019                                             "string.init.end"),
1020                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1021                                                           ElementSize));
1022 
1023       // Zero out the rest, if any remain.
1024       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1025       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1026         bool OK = TryMemsetInitialization();
1027         (void)OK;
1028         assert(OK && "couldn't memset character type?");
1029       }
1030       return;
1031     }
1032 
1033     InitListElements = ILE->getNumInits();
1034 
1035     // If this is a multi-dimensional array new, we will initialize multiple
1036     // elements with each init list element.
1037     QualType AllocType = E->getAllocatedType();
1038     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1039             AllocType->getAsArrayTypeUnsafe())) {
1040       ElementTy = ConvertTypeForMem(AllocType);
1041       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1042       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1043     }
1044 
1045     // Enter a partial-destruction Cleanup if necessary.
1046     if (needsEHCleanup(DtorKind)) {
1047       // In principle we could tell the Cleanup where we are more
1048       // directly, but the control flow can get so varied here that it
1049       // would actually be quite complex.  Therefore we go through an
1050       // alloca.
1051       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1052                                    "array.init.end");
1053       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1054       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1055                                        ElementType, ElementAlign,
1056                                        getDestroyer(DtorKind));
1057       Cleanup = EHStack.stable_begin();
1058     }
1059 
1060     CharUnits StartAlign = CurPtr.getAlignment();
1061     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1062       // Tell the cleanup that it needs to destroy up to this
1063       // element.  TODO: some of these stores can be trivially
1064       // observed to be unnecessary.
1065       if (EndOfInit.isValid()) {
1066         auto FinishedPtr =
1067           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1068         Builder.CreateStore(FinishedPtr, EndOfInit);
1069       }
1070       // FIXME: If the last initializer is an incomplete initializer list for
1071       // an array, and we have an array filler, we can fold together the two
1072       // initialization loops.
1073       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1074                               ILE->getInit(i)->getType(), CurPtr);
1075       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1076                                                  Builder.getSize(1),
1077                                                  "array.exp.next"),
1078                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1079     }
1080 
1081     // The remaining elements are filled with the array filler expression.
1082     Init = ILE->getArrayFiller();
1083 
1084     // Extract the initializer for the individual array elements by pulling
1085     // out the array filler from all the nested initializer lists. This avoids
1086     // generating a nested loop for the initialization.
1087     while (Init && Init->getType()->isConstantArrayType()) {
1088       auto *SubILE = dyn_cast<InitListExpr>(Init);
1089       if (!SubILE)
1090         break;
1091       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1092       Init = SubILE->getArrayFiller();
1093     }
1094 
1095     // Switch back to initializing one base element at a time.
1096     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1097   }
1098 
1099   // If all elements have already been initialized, skip any further
1100   // initialization.
1101   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1102   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1103     // If there was a Cleanup, deactivate it.
1104     if (CleanupDominator)
1105       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1106     return;
1107   }
1108 
1109   assert(Init && "have trailing elements to initialize but no initializer");
1110 
1111   // If this is a constructor call, try to optimize it out, and failing that
1112   // emit a single loop to initialize all remaining elements.
1113   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1114     CXXConstructorDecl *Ctor = CCE->getConstructor();
1115     if (Ctor->isTrivial()) {
1116       // If new expression did not specify value-initialization, then there
1117       // is no initialization.
1118       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1119         return;
1120 
1121       if (TryMemsetInitialization())
1122         return;
1123     }
1124 
1125     // Store the new Cleanup position for irregular Cleanups.
1126     //
1127     // FIXME: Share this cleanup with the constructor call emission rather than
1128     // having it create a cleanup of its own.
1129     if (EndOfInit.isValid())
1130       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1131 
1132     // Emit a constructor call loop to initialize the remaining elements.
1133     if (InitListElements)
1134       NumElements = Builder.CreateSub(
1135           NumElements,
1136           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1137     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1138                                CCE->requiresZeroInitialization());
1139     return;
1140   }
1141 
1142   // If this is value-initialization, we can usually use memset.
1143   ImplicitValueInitExpr IVIE(ElementType);
1144   if (isa<ImplicitValueInitExpr>(Init)) {
1145     if (TryMemsetInitialization())
1146       return;
1147 
1148     // Switch to an ImplicitValueInitExpr for the element type. This handles
1149     // only one case: multidimensional array new of pointers to members. In
1150     // all other cases, we already have an initializer for the array element.
1151     Init = &IVIE;
1152   }
1153 
1154   // At this point we should have found an initializer for the individual
1155   // elements of the array.
1156   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1157          "got wrong type of element to initialize");
1158 
1159   // If we have an empty initializer list, we can usually use memset.
1160   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1161     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1162       return;
1163 
1164   // If we have a struct whose every field is value-initialized, we can
1165   // usually use memset.
1166   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1167     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1168       if (RType->getDecl()->isStruct()) {
1169         unsigned NumElements = 0;
1170         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1171           NumElements = CXXRD->getNumBases();
1172         for (auto *Field : RType->getDecl()->fields())
1173           if (!Field->isUnnamedBitfield())
1174             ++NumElements;
1175         // FIXME: Recurse into nested InitListExprs.
1176         if (ILE->getNumInits() == NumElements)
1177           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1178             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1179               --NumElements;
1180         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1181           return;
1182       }
1183     }
1184   }
1185 
1186   // Create the loop blocks.
1187   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1188   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1189   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1190 
1191   // Find the end of the array, hoisted out of the loop.
1192   llvm::Value *EndPtr =
1193     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1194 
1195   // If the number of elements isn't constant, we have to now check if there is
1196   // anything left to initialize.
1197   if (!ConstNum) {
1198     llvm::Value *IsEmpty =
1199       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1200     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1201   }
1202 
1203   // Enter the loop.
1204   EmitBlock(LoopBB);
1205 
1206   // Set up the current-element phi.
1207   llvm::PHINode *CurPtrPhi =
1208     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1209   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1210 
1211   CurPtr = Address(CurPtrPhi, ElementAlign);
1212 
1213   // Store the new Cleanup position for irregular Cleanups.
1214   if (EndOfInit.isValid())
1215     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1216 
1217   // Enter a partial-destruction Cleanup if necessary.
1218   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1219     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1220                                    ElementType, ElementAlign,
1221                                    getDestroyer(DtorKind));
1222     Cleanup = EHStack.stable_begin();
1223     CleanupDominator = Builder.CreateUnreachable();
1224   }
1225 
1226   // Emit the initializer into this element.
1227   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1228 
1229   // Leave the Cleanup if we entered one.
1230   if (CleanupDominator) {
1231     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1232     CleanupDominator->eraseFromParent();
1233   }
1234 
1235   // Advance to the next element by adjusting the pointer type as necessary.
1236   llvm::Value *NextPtr =
1237     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1238                                        "array.next");
1239 
1240   // Check whether we've gotten to the end of the array and, if so,
1241   // exit the loop.
1242   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1243   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1244   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1245 
1246   EmitBlock(ContBB);
1247 }
1248 
1249 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1250                                QualType ElementType, llvm::Type *ElementTy,
1251                                Address NewPtr, llvm::Value *NumElements,
1252                                llvm::Value *AllocSizeWithoutCookie) {
1253   ApplyDebugLocation DL(CGF, E);
1254   if (E->isArray())
1255     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1256                                 AllocSizeWithoutCookie);
1257   else if (const Expr *Init = E->getInitializer())
1258     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1259 }
1260 
1261 /// Emit a call to an operator new or operator delete function, as implicitly
1262 /// created by new-expressions and delete-expressions.
1263 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1264                                 const FunctionDecl *CalleeDecl,
1265                                 const FunctionProtoType *CalleeType,
1266                                 const CallArgList &Args) {
1267   llvm::Instruction *CallOrInvoke;
1268   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1269   CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1270   RValue RV =
1271       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1272                        Args, CalleeType, /*chainCall=*/false),
1273                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1274 
1275   /// C++1y [expr.new]p10:
1276   ///   [In a new-expression,] an implementation is allowed to omit a call
1277   ///   to a replaceable global allocation function.
1278   ///
1279   /// We model such elidable calls with the 'builtin' attribute.
1280   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1281   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1282       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1283     // FIXME: Add addAttribute to CallSite.
1284     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1285       CI->addAttribute(llvm::AttributeList::FunctionIndex,
1286                        llvm::Attribute::Builtin);
1287     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1288       II->addAttribute(llvm::AttributeList::FunctionIndex,
1289                        llvm::Attribute::Builtin);
1290     else
1291       llvm_unreachable("unexpected kind of call instruction");
1292   }
1293 
1294   return RV;
1295 }
1296 
1297 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1298                                                  const Expr *Arg,
1299                                                  bool IsDelete) {
1300   CallArgList Args;
1301   const Stmt *ArgS = Arg;
1302   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1303   // Find the allocation or deallocation function that we're calling.
1304   ASTContext &Ctx = getContext();
1305   DeclarationName Name = Ctx.DeclarationNames
1306       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1307   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1308     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1309       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1310         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1311   llvm_unreachable("predeclared global operator new/delete is missing");
1312 }
1313 
1314 static std::pair<bool, bool>
1315 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) {
1316   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1317 
1318   // The first argument is always a void*.
1319   ++AI;
1320 
1321   // Figure out what other parameters we should be implicitly passing.
1322   bool PassSize = false;
1323   bool PassAlignment = false;
1324 
1325   if (AI != AE && (*AI)->isIntegerType()) {
1326     PassSize = true;
1327     ++AI;
1328   }
1329 
1330   if (AI != AE && (*AI)->isAlignValT()) {
1331     PassAlignment = true;
1332     ++AI;
1333   }
1334 
1335   assert(AI == AE && "unexpected usual deallocation function parameter");
1336   return {PassSize, PassAlignment};
1337 }
1338 
1339 namespace {
1340   /// A cleanup to call the given 'operator delete' function upon abnormal
1341   /// exit from a new expression. Templated on a traits type that deals with
1342   /// ensuring that the arguments dominate the cleanup if necessary.
1343   template<typename Traits>
1344   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1345     /// Type used to hold llvm::Value*s.
1346     typedef typename Traits::ValueTy ValueTy;
1347     /// Type used to hold RValues.
1348     typedef typename Traits::RValueTy RValueTy;
1349     struct PlacementArg {
1350       RValueTy ArgValue;
1351       QualType ArgType;
1352     };
1353 
1354     unsigned NumPlacementArgs : 31;
1355     unsigned PassAlignmentToPlacementDelete : 1;
1356     const FunctionDecl *OperatorDelete;
1357     ValueTy Ptr;
1358     ValueTy AllocSize;
1359     CharUnits AllocAlign;
1360 
1361     PlacementArg *getPlacementArgs() {
1362       return reinterpret_cast<PlacementArg *>(this + 1);
1363     }
1364 
1365   public:
1366     static size_t getExtraSize(size_t NumPlacementArgs) {
1367       return NumPlacementArgs * sizeof(PlacementArg);
1368     }
1369 
1370     CallDeleteDuringNew(size_t NumPlacementArgs,
1371                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1372                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1373                         CharUnits AllocAlign)
1374       : NumPlacementArgs(NumPlacementArgs),
1375         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1376         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1377         AllocAlign(AllocAlign) {}
1378 
1379     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1380       assert(I < NumPlacementArgs && "index out of range");
1381       getPlacementArgs()[I] = {Arg, Type};
1382     }
1383 
1384     void Emit(CodeGenFunction &CGF, Flags flags) override {
1385       const FunctionProtoType *FPT =
1386           OperatorDelete->getType()->getAs<FunctionProtoType>();
1387       CallArgList DeleteArgs;
1388 
1389       // The first argument is always a void*.
1390       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1391 
1392       // Figure out what other parameters we should be implicitly passing.
1393       bool PassSize = false;
1394       bool PassAlignment = false;
1395       if (NumPlacementArgs) {
1396         // A placement deallocation function is implicitly passed an alignment
1397         // if the placement allocation function was, but is never passed a size.
1398         PassAlignment = PassAlignmentToPlacementDelete;
1399       } else {
1400         // For a non-placement new-expression, 'operator delete' can take a
1401         // size and/or an alignment if it has the right parameters.
1402         std::tie(PassSize, PassAlignment) =
1403             shouldPassSizeAndAlignToUsualDelete(FPT);
1404       }
1405 
1406       // The second argument can be a std::size_t (for non-placement delete).
1407       if (PassSize)
1408         DeleteArgs.add(Traits::get(CGF, AllocSize),
1409                        CGF.getContext().getSizeType());
1410 
1411       // The next (second or third) argument can be a std::align_val_t, which
1412       // is an enum whose underlying type is std::size_t.
1413       // FIXME: Use the right type as the parameter type. Note that in a call
1414       // to operator delete(size_t, ...), we may not have it available.
1415       if (PassAlignment)
1416         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1417                            CGF.SizeTy, AllocAlign.getQuantity())),
1418                        CGF.getContext().getSizeType());
1419 
1420       // Pass the rest of the arguments, which must match exactly.
1421       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1422         auto Arg = getPlacementArgs()[I];
1423         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1424       }
1425 
1426       // Call 'operator delete'.
1427       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1428     }
1429   };
1430 }
1431 
1432 /// Enter a cleanup to call 'operator delete' if the initializer in a
1433 /// new-expression throws.
1434 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1435                                   const CXXNewExpr *E,
1436                                   Address NewPtr,
1437                                   llvm::Value *AllocSize,
1438                                   CharUnits AllocAlign,
1439                                   const CallArgList &NewArgs) {
1440   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1441 
1442   // If we're not inside a conditional branch, then the cleanup will
1443   // dominate and we can do the easier (and more efficient) thing.
1444   if (!CGF.isInConditionalBranch()) {
1445     struct DirectCleanupTraits {
1446       typedef llvm::Value *ValueTy;
1447       typedef RValue RValueTy;
1448       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1449       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1450     };
1451 
1452     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1453 
1454     DirectCleanup *Cleanup = CGF.EHStack
1455       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1456                                            E->getNumPlacementArgs(),
1457                                            E->getOperatorDelete(),
1458                                            NewPtr.getPointer(),
1459                                            AllocSize,
1460                                            E->passAlignment(),
1461                                            AllocAlign);
1462     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1463       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1464       Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1465     }
1466 
1467     return;
1468   }
1469 
1470   // Otherwise, we need to save all this stuff.
1471   DominatingValue<RValue>::saved_type SavedNewPtr =
1472     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1473   DominatingValue<RValue>::saved_type SavedAllocSize =
1474     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1475 
1476   struct ConditionalCleanupTraits {
1477     typedef DominatingValue<RValue>::saved_type ValueTy;
1478     typedef DominatingValue<RValue>::saved_type RValueTy;
1479     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1480       return V.restore(CGF);
1481     }
1482   };
1483   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1484 
1485   ConditionalCleanup *Cleanup = CGF.EHStack
1486     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1487                                               E->getNumPlacementArgs(),
1488                                               E->getOperatorDelete(),
1489                                               SavedNewPtr,
1490                                               SavedAllocSize,
1491                                               E->passAlignment(),
1492                                               AllocAlign);
1493   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1494     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1495     Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1496                              Arg.Ty);
1497   }
1498 
1499   CGF.initFullExprCleanup();
1500 }
1501 
1502 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1503   // The element type being allocated.
1504   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1505 
1506   // 1. Build a call to the allocation function.
1507   FunctionDecl *allocator = E->getOperatorNew();
1508 
1509   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1510   unsigned minElements = 0;
1511   if (E->isArray() && E->hasInitializer()) {
1512     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1513     if (ILE && ILE->isStringLiteralInit())
1514       minElements =
1515           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1516               ->getSize().getZExtValue();
1517     else if (ILE)
1518       minElements = ILE->getNumInits();
1519   }
1520 
1521   llvm::Value *numElements = nullptr;
1522   llvm::Value *allocSizeWithoutCookie = nullptr;
1523   llvm::Value *allocSize =
1524     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1525                         allocSizeWithoutCookie);
1526   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1527 
1528   // Emit the allocation call.  If the allocator is a global placement
1529   // operator, just "inline" it directly.
1530   Address allocation = Address::invalid();
1531   CallArgList allocatorArgs;
1532   if (allocator->isReservedGlobalPlacementOperator()) {
1533     assert(E->getNumPlacementArgs() == 1);
1534     const Expr *arg = *E->placement_arguments().begin();
1535 
1536     LValueBaseInfo BaseInfo;
1537     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1538 
1539     // The pointer expression will, in many cases, be an opaque void*.
1540     // In these cases, discard the computed alignment and use the
1541     // formal alignment of the allocated type.
1542     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1543       allocation = Address(allocation.getPointer(), allocAlign);
1544 
1545     // Set up allocatorArgs for the call to operator delete if it's not
1546     // the reserved global operator.
1547     if (E->getOperatorDelete() &&
1548         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1549       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1550       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1551     }
1552 
1553   } else {
1554     const FunctionProtoType *allocatorType =
1555       allocator->getType()->castAs<FunctionProtoType>();
1556     unsigned ParamsToSkip = 0;
1557 
1558     // The allocation size is the first argument.
1559     QualType sizeType = getContext().getSizeType();
1560     allocatorArgs.add(RValue::get(allocSize), sizeType);
1561     ++ParamsToSkip;
1562 
1563     if (allocSize != allocSizeWithoutCookie) {
1564       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1565       allocAlign = std::max(allocAlign, cookieAlign);
1566     }
1567 
1568     // The allocation alignment may be passed as the second argument.
1569     if (E->passAlignment()) {
1570       QualType AlignValT = sizeType;
1571       if (allocatorType->getNumParams() > 1) {
1572         AlignValT = allocatorType->getParamType(1);
1573         assert(getContext().hasSameUnqualifiedType(
1574                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1575                    sizeType) &&
1576                "wrong type for alignment parameter");
1577         ++ParamsToSkip;
1578       } else {
1579         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1580         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1581       }
1582       allocatorArgs.add(
1583           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1584           AlignValT);
1585     }
1586 
1587     // FIXME: Why do we not pass a CalleeDecl here?
1588     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1589                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1590 
1591     RValue RV =
1592       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1593 
1594     // If this was a call to a global replaceable allocation function that does
1595     // not take an alignment argument, the allocator is known to produce
1596     // storage that's suitably aligned for any object that fits, up to a known
1597     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1598     CharUnits allocationAlign = allocAlign;
1599     if (!E->passAlignment() &&
1600         allocator->isReplaceableGlobalAllocationFunction()) {
1601       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1602           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1603       allocationAlign = std::max(
1604           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1605     }
1606 
1607     allocation = Address(RV.getScalarVal(), allocationAlign);
1608   }
1609 
1610   // Emit a null check on the allocation result if the allocation
1611   // function is allowed to return null (because it has a non-throwing
1612   // exception spec or is the reserved placement new) and we have an
1613   // interesting initializer.
1614   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1615     (!allocType.isPODType(getContext()) || E->hasInitializer());
1616 
1617   llvm::BasicBlock *nullCheckBB = nullptr;
1618   llvm::BasicBlock *contBB = nullptr;
1619 
1620   // The null-check means that the initializer is conditionally
1621   // evaluated.
1622   ConditionalEvaluation conditional(*this);
1623 
1624   if (nullCheck) {
1625     conditional.begin(*this);
1626 
1627     nullCheckBB = Builder.GetInsertBlock();
1628     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1629     contBB = createBasicBlock("new.cont");
1630 
1631     llvm::Value *isNull =
1632       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1633     Builder.CreateCondBr(isNull, contBB, notNullBB);
1634     EmitBlock(notNullBB);
1635   }
1636 
1637   // If there's an operator delete, enter a cleanup to call it if an
1638   // exception is thrown.
1639   EHScopeStack::stable_iterator operatorDeleteCleanup;
1640   llvm::Instruction *cleanupDominator = nullptr;
1641   if (E->getOperatorDelete() &&
1642       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1643     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1644                           allocatorArgs);
1645     operatorDeleteCleanup = EHStack.stable_begin();
1646     cleanupDominator = Builder.CreateUnreachable();
1647   }
1648 
1649   assert((allocSize == allocSizeWithoutCookie) ==
1650          CalculateCookiePadding(*this, E).isZero());
1651   if (allocSize != allocSizeWithoutCookie) {
1652     assert(E->isArray());
1653     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1654                                                        numElements,
1655                                                        E, allocType);
1656   }
1657 
1658   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1659   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1660 
1661   // Passing pointer through invariant.group.barrier to avoid propagation of
1662   // vptrs information which may be included in previous type.
1663   // To not break LTO with different optimizations levels, we do it regardless
1664   // of optimization level.
1665   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1666       allocator->isReservedGlobalPlacementOperator())
1667     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1668                      result.getAlignment());
1669 
1670   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1671                      allocSizeWithoutCookie);
1672   if (E->isArray()) {
1673     // NewPtr is a pointer to the base element type.  If we're
1674     // allocating an array of arrays, we'll need to cast back to the
1675     // array pointer type.
1676     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1677     if (result.getType() != resultType)
1678       result = Builder.CreateBitCast(result, resultType);
1679   }
1680 
1681   // Deactivate the 'operator delete' cleanup if we finished
1682   // initialization.
1683   if (operatorDeleteCleanup.isValid()) {
1684     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1685     cleanupDominator->eraseFromParent();
1686   }
1687 
1688   llvm::Value *resultPtr = result.getPointer();
1689   if (nullCheck) {
1690     conditional.end(*this);
1691 
1692     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1693     EmitBlock(contBB);
1694 
1695     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1696     PHI->addIncoming(resultPtr, notNullBB);
1697     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1698                      nullCheckBB);
1699 
1700     resultPtr = PHI;
1701   }
1702 
1703   return resultPtr;
1704 }
1705 
1706 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1707                                      llvm::Value *Ptr, QualType DeleteTy,
1708                                      llvm::Value *NumElements,
1709                                      CharUnits CookieSize) {
1710   assert((!NumElements && CookieSize.isZero()) ||
1711          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1712 
1713   const FunctionProtoType *DeleteFTy =
1714     DeleteFD->getType()->getAs<FunctionProtoType>();
1715 
1716   CallArgList DeleteArgs;
1717 
1718   std::pair<bool, bool> PassSizeAndAlign =
1719       shouldPassSizeAndAlignToUsualDelete(DeleteFTy);
1720 
1721   auto ParamTypeIt = DeleteFTy->param_type_begin();
1722 
1723   // Pass the pointer itself.
1724   QualType ArgTy = *ParamTypeIt++;
1725   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1726   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1727 
1728   // Pass the size if the delete function has a size_t parameter.
1729   if (PassSizeAndAlign.first) {
1730     QualType SizeType = *ParamTypeIt++;
1731     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1732     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1733                                                DeleteTypeSize.getQuantity());
1734 
1735     // For array new, multiply by the number of elements.
1736     if (NumElements)
1737       Size = Builder.CreateMul(Size, NumElements);
1738 
1739     // If there is a cookie, add the cookie size.
1740     if (!CookieSize.isZero())
1741       Size = Builder.CreateAdd(
1742           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1743 
1744     DeleteArgs.add(RValue::get(Size), SizeType);
1745   }
1746 
1747   // Pass the alignment if the delete function has an align_val_t parameter.
1748   if (PassSizeAndAlign.second) {
1749     QualType AlignValType = *ParamTypeIt++;
1750     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1751         getContext().getTypeAlignIfKnown(DeleteTy));
1752     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1753                                                 DeleteTypeAlign.getQuantity());
1754     DeleteArgs.add(RValue::get(Align), AlignValType);
1755   }
1756 
1757   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1758          "unknown parameter to usual delete function");
1759 
1760   // Emit the call to delete.
1761   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1762 }
1763 
1764 namespace {
1765   /// Calls the given 'operator delete' on a single object.
1766   struct CallObjectDelete final : EHScopeStack::Cleanup {
1767     llvm::Value *Ptr;
1768     const FunctionDecl *OperatorDelete;
1769     QualType ElementType;
1770 
1771     CallObjectDelete(llvm::Value *Ptr,
1772                      const FunctionDecl *OperatorDelete,
1773                      QualType ElementType)
1774       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1775 
1776     void Emit(CodeGenFunction &CGF, Flags flags) override {
1777       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1778     }
1779   };
1780 }
1781 
1782 void
1783 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1784                                              llvm::Value *CompletePtr,
1785                                              QualType ElementType) {
1786   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1787                                         OperatorDelete, ElementType);
1788 }
1789 
1790 /// Emit the code for deleting a single object.
1791 static void EmitObjectDelete(CodeGenFunction &CGF,
1792                              const CXXDeleteExpr *DE,
1793                              Address Ptr,
1794                              QualType ElementType) {
1795   // C++11 [expr.delete]p3:
1796   //   If the static type of the object to be deleted is different from its
1797   //   dynamic type, the static type shall be a base class of the dynamic type
1798   //   of the object to be deleted and the static type shall have a virtual
1799   //   destructor or the behavior is undefined.
1800   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1801                     DE->getExprLoc(), Ptr.getPointer(),
1802                     ElementType);
1803 
1804   // Find the destructor for the type, if applicable.  If the
1805   // destructor is virtual, we'll just emit the vcall and return.
1806   const CXXDestructorDecl *Dtor = nullptr;
1807   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1808     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1809     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1810       Dtor = RD->getDestructor();
1811 
1812       if (Dtor->isVirtual()) {
1813         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1814                                                     Dtor);
1815         return;
1816       }
1817     }
1818   }
1819 
1820   // Make sure that we call delete even if the dtor throws.
1821   // This doesn't have to a conditional cleanup because we're going
1822   // to pop it off in a second.
1823   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1824   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1825                                             Ptr.getPointer(),
1826                                             OperatorDelete, ElementType);
1827 
1828   if (Dtor)
1829     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1830                               /*ForVirtualBase=*/false,
1831                               /*Delegating=*/false,
1832                               Ptr);
1833   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1834     switch (Lifetime) {
1835     case Qualifiers::OCL_None:
1836     case Qualifiers::OCL_ExplicitNone:
1837     case Qualifiers::OCL_Autoreleasing:
1838       break;
1839 
1840     case Qualifiers::OCL_Strong:
1841       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1842       break;
1843 
1844     case Qualifiers::OCL_Weak:
1845       CGF.EmitARCDestroyWeak(Ptr);
1846       break;
1847     }
1848   }
1849 
1850   CGF.PopCleanupBlock();
1851 }
1852 
1853 namespace {
1854   /// Calls the given 'operator delete' on an array of objects.
1855   struct CallArrayDelete final : EHScopeStack::Cleanup {
1856     llvm::Value *Ptr;
1857     const FunctionDecl *OperatorDelete;
1858     llvm::Value *NumElements;
1859     QualType ElementType;
1860     CharUnits CookieSize;
1861 
1862     CallArrayDelete(llvm::Value *Ptr,
1863                     const FunctionDecl *OperatorDelete,
1864                     llvm::Value *NumElements,
1865                     QualType ElementType,
1866                     CharUnits CookieSize)
1867       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1868         ElementType(ElementType), CookieSize(CookieSize) {}
1869 
1870     void Emit(CodeGenFunction &CGF, Flags flags) override {
1871       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1872                          CookieSize);
1873     }
1874   };
1875 }
1876 
1877 /// Emit the code for deleting an array of objects.
1878 static void EmitArrayDelete(CodeGenFunction &CGF,
1879                             const CXXDeleteExpr *E,
1880                             Address deletedPtr,
1881                             QualType elementType) {
1882   llvm::Value *numElements = nullptr;
1883   llvm::Value *allocatedPtr = nullptr;
1884   CharUnits cookieSize;
1885   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1886                                       numElements, allocatedPtr, cookieSize);
1887 
1888   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1889 
1890   // Make sure that we call delete even if one of the dtors throws.
1891   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1892   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1893                                            allocatedPtr, operatorDelete,
1894                                            numElements, elementType,
1895                                            cookieSize);
1896 
1897   // Destroy the elements.
1898   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1899     assert(numElements && "no element count for a type with a destructor!");
1900 
1901     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1902     CharUnits elementAlign =
1903       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1904 
1905     llvm::Value *arrayBegin = deletedPtr.getPointer();
1906     llvm::Value *arrayEnd =
1907       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1908 
1909     // Note that it is legal to allocate a zero-length array, and we
1910     // can never fold the check away because the length should always
1911     // come from a cookie.
1912     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1913                          CGF.getDestroyer(dtorKind),
1914                          /*checkZeroLength*/ true,
1915                          CGF.needsEHCleanup(dtorKind));
1916   }
1917 
1918   // Pop the cleanup block.
1919   CGF.PopCleanupBlock();
1920 }
1921 
1922 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1923   const Expr *Arg = E->getArgument();
1924   Address Ptr = EmitPointerWithAlignment(Arg);
1925 
1926   // Null check the pointer.
1927   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1928   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1929 
1930   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1931 
1932   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1933   EmitBlock(DeleteNotNull);
1934 
1935   // We might be deleting a pointer to array.  If so, GEP down to the
1936   // first non-array element.
1937   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1938   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1939   if (DeleteTy->isConstantArrayType()) {
1940     llvm::Value *Zero = Builder.getInt32(0);
1941     SmallVector<llvm::Value*,8> GEP;
1942 
1943     GEP.push_back(Zero); // point at the outermost array
1944 
1945     // For each layer of array type we're pointing at:
1946     while (const ConstantArrayType *Arr
1947              = getContext().getAsConstantArrayType(DeleteTy)) {
1948       // 1. Unpeel the array type.
1949       DeleteTy = Arr->getElementType();
1950 
1951       // 2. GEP to the first element of the array.
1952       GEP.push_back(Zero);
1953     }
1954 
1955     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1956                   Ptr.getAlignment());
1957   }
1958 
1959   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1960 
1961   if (E->isArrayForm()) {
1962     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1963   } else {
1964     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1965   }
1966 
1967   EmitBlock(DeleteEnd);
1968 }
1969 
1970 static bool isGLValueFromPointerDeref(const Expr *E) {
1971   E = E->IgnoreParens();
1972 
1973   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1974     if (!CE->getSubExpr()->isGLValue())
1975       return false;
1976     return isGLValueFromPointerDeref(CE->getSubExpr());
1977   }
1978 
1979   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1980     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1981 
1982   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1983     if (BO->getOpcode() == BO_Comma)
1984       return isGLValueFromPointerDeref(BO->getRHS());
1985 
1986   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1987     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1988            isGLValueFromPointerDeref(ACO->getFalseExpr());
1989 
1990   // C++11 [expr.sub]p1:
1991   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1992   if (isa<ArraySubscriptExpr>(E))
1993     return true;
1994 
1995   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1996     if (UO->getOpcode() == UO_Deref)
1997       return true;
1998 
1999   return false;
2000 }
2001 
2002 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2003                                          llvm::Type *StdTypeInfoPtrTy) {
2004   // Get the vtable pointer.
2005   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2006 
2007   // C++ [expr.typeid]p2:
2008   //   If the glvalue expression is obtained by applying the unary * operator to
2009   //   a pointer and the pointer is a null pointer value, the typeid expression
2010   //   throws the std::bad_typeid exception.
2011   //
2012   // However, this paragraph's intent is not clear.  We choose a very generous
2013   // interpretation which implores us to consider comma operators, conditional
2014   // operators, parentheses and other such constructs.
2015   QualType SrcRecordTy = E->getType();
2016   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2017           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2018     llvm::BasicBlock *BadTypeidBlock =
2019         CGF.createBasicBlock("typeid.bad_typeid");
2020     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2021 
2022     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2023     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2024 
2025     CGF.EmitBlock(BadTypeidBlock);
2026     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2027     CGF.EmitBlock(EndBlock);
2028   }
2029 
2030   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2031                                         StdTypeInfoPtrTy);
2032 }
2033 
2034 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2035   llvm::Type *StdTypeInfoPtrTy =
2036     ConvertType(E->getType())->getPointerTo();
2037 
2038   if (E->isTypeOperand()) {
2039     llvm::Constant *TypeInfo =
2040         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2041     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2042   }
2043 
2044   // C++ [expr.typeid]p2:
2045   //   When typeid is applied to a glvalue expression whose type is a
2046   //   polymorphic class type, the result refers to a std::type_info object
2047   //   representing the type of the most derived object (that is, the dynamic
2048   //   type) to which the glvalue refers.
2049   if (E->isPotentiallyEvaluated())
2050     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2051                                 StdTypeInfoPtrTy);
2052 
2053   QualType OperandTy = E->getExprOperand()->getType();
2054   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2055                                StdTypeInfoPtrTy);
2056 }
2057 
2058 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2059                                           QualType DestTy) {
2060   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2061   if (DestTy->isPointerType())
2062     return llvm::Constant::getNullValue(DestLTy);
2063 
2064   /// C++ [expr.dynamic.cast]p9:
2065   ///   A failed cast to reference type throws std::bad_cast
2066   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2067     return nullptr;
2068 
2069   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2070   return llvm::UndefValue::get(DestLTy);
2071 }
2072 
2073 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2074                                               const CXXDynamicCastExpr *DCE) {
2075   CGM.EmitExplicitCastExprType(DCE, this);
2076   QualType DestTy = DCE->getTypeAsWritten();
2077 
2078   if (DCE->isAlwaysNull())
2079     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2080       return T;
2081 
2082   QualType SrcTy = DCE->getSubExpr()->getType();
2083 
2084   // C++ [expr.dynamic.cast]p7:
2085   //   If T is "pointer to cv void," then the result is a pointer to the most
2086   //   derived object pointed to by v.
2087   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2088 
2089   bool isDynamicCastToVoid;
2090   QualType SrcRecordTy;
2091   QualType DestRecordTy;
2092   if (DestPTy) {
2093     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2094     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2095     DestRecordTy = DestPTy->getPointeeType();
2096   } else {
2097     isDynamicCastToVoid = false;
2098     SrcRecordTy = SrcTy;
2099     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2100   }
2101 
2102   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2103 
2104   // C++ [expr.dynamic.cast]p4:
2105   //   If the value of v is a null pointer value in the pointer case, the result
2106   //   is the null pointer value of type T.
2107   bool ShouldNullCheckSrcValue =
2108       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2109                                                          SrcRecordTy);
2110 
2111   llvm::BasicBlock *CastNull = nullptr;
2112   llvm::BasicBlock *CastNotNull = nullptr;
2113   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2114 
2115   if (ShouldNullCheckSrcValue) {
2116     CastNull = createBasicBlock("dynamic_cast.null");
2117     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2118 
2119     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2120     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2121     EmitBlock(CastNotNull);
2122   }
2123 
2124   llvm::Value *Value;
2125   if (isDynamicCastToVoid) {
2126     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2127                                                   DestTy);
2128   } else {
2129     assert(DestRecordTy->isRecordType() &&
2130            "destination type must be a record type!");
2131     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2132                                                 DestTy, DestRecordTy, CastEnd);
2133     CastNotNull = Builder.GetInsertBlock();
2134   }
2135 
2136   if (ShouldNullCheckSrcValue) {
2137     EmitBranch(CastEnd);
2138 
2139     EmitBlock(CastNull);
2140     EmitBranch(CastEnd);
2141   }
2142 
2143   EmitBlock(CastEnd);
2144 
2145   if (ShouldNullCheckSrcValue) {
2146     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2147     PHI->addIncoming(Value, CastNotNull);
2148     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2149 
2150     Value = PHI;
2151   }
2152 
2153   return Value;
2154 }
2155 
2156 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2157   RunCleanupsScope Scope(*this);
2158   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2159 
2160   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2161   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2162                                                e = E->capture_init_end();
2163        i != e; ++i, ++CurField) {
2164     // Emit initialization
2165     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2166     if (CurField->hasCapturedVLAType()) {
2167       auto VAT = CurField->getCapturedVLAType();
2168       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2169     } else {
2170       EmitInitializerForField(*CurField, LV, *i);
2171     }
2172   }
2173 }
2174