1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "ConstantEmitter.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Intrinsics.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 struct MemberCallInfo { 30 RequiredArgs ReqArgs; 31 // Number of prefix arguments for the call. Ignores the `this` pointer. 32 unsigned PrefixSize; 33 }; 34 } 35 36 static MemberCallInfo 37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 38 llvm::Value *This, llvm::Value *ImplicitParam, 39 QualType ImplicitParamTy, const CallExpr *CE, 40 CallArgList &Args, CallArgList *RtlArgs) { 41 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 42 isa<CXXOperatorCallExpr>(CE)); 43 assert(MD->isInstance() && 44 "Trying to emit a member or operator call expr on a static method!"); 45 ASTContext &C = CGF.getContext(); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 50 Args.add(RValue::get(This), 51 RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 52 53 // If there is an implicit parameter (e.g. VTT), emit it. 54 if (ImplicitParam) { 55 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 56 } 57 58 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 59 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 60 unsigned PrefixSize = Args.size() - 1; 61 62 // And the rest of the call args. 63 if (RtlArgs) { 64 // Special case: if the caller emitted the arguments right-to-left already 65 // (prior to emitting the *this argument), we're done. This happens for 66 // assignment operators. 67 Args.addFrom(*RtlArgs); 68 } else if (CE) { 69 // Special case: skip first argument of CXXOperatorCall (it is "this"). 70 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 71 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 72 CE->getDirectCallee()); 73 } else { 74 assert( 75 FPT->getNumParams() == 0 && 76 "No CallExpr specified for function with non-zero number of arguments"); 77 } 78 return {required, PrefixSize}; 79 } 80 81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 82 const CXXMethodDecl *MD, const CGCallee &Callee, 83 ReturnValueSlot ReturnValue, 84 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85 const CallExpr *CE, CallArgList *RtlArgs) { 86 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 87 CallArgList Args; 88 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 89 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 90 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 91 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 92 return EmitCall(FnInfo, Callee, ReturnValue, Args); 93 } 94 95 RValue CodeGenFunction::EmitCXXDestructorCall( 96 const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, 97 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 98 StructorType Type) { 99 CallArgList Args; 100 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 101 ImplicitParamTy, CE, Args, nullptr); 102 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 103 Callee, ReturnValueSlot(), Args); 104 } 105 106 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 107 const CXXPseudoDestructorExpr *E) { 108 QualType DestroyedType = E->getDestroyedType(); 109 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 110 // Automatic Reference Counting: 111 // If the pseudo-expression names a retainable object with weak or 112 // strong lifetime, the object shall be released. 113 Expr *BaseExpr = E->getBase(); 114 Address BaseValue = Address::invalid(); 115 Qualifiers BaseQuals; 116 117 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 118 if (E->isArrow()) { 119 BaseValue = EmitPointerWithAlignment(BaseExpr); 120 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 121 BaseQuals = PTy->getPointeeType().getQualifiers(); 122 } else { 123 LValue BaseLV = EmitLValue(BaseExpr); 124 BaseValue = BaseLV.getAddress(); 125 QualType BaseTy = BaseExpr->getType(); 126 BaseQuals = BaseTy.getQualifiers(); 127 } 128 129 switch (DestroyedType.getObjCLifetime()) { 130 case Qualifiers::OCL_None: 131 case Qualifiers::OCL_ExplicitNone: 132 case Qualifiers::OCL_Autoreleasing: 133 break; 134 135 case Qualifiers::OCL_Strong: 136 EmitARCRelease(Builder.CreateLoad(BaseValue, 137 DestroyedType.isVolatileQualified()), 138 ARCPreciseLifetime); 139 break; 140 141 case Qualifiers::OCL_Weak: 142 EmitARCDestroyWeak(BaseValue); 143 break; 144 } 145 } else { 146 // C++ [expr.pseudo]p1: 147 // The result shall only be used as the operand for the function call 148 // operator (), and the result of such a call has type void. The only 149 // effect is the evaluation of the postfix-expression before the dot or 150 // arrow. 151 EmitIgnoredExpr(E->getBase()); 152 } 153 154 return RValue::get(nullptr); 155 } 156 157 static CXXRecordDecl *getCXXRecord(const Expr *E) { 158 QualType T = E->getType(); 159 if (const PointerType *PTy = T->getAs<PointerType>()) 160 T = PTy->getPointeeType(); 161 const RecordType *Ty = T->castAs<RecordType>(); 162 return cast<CXXRecordDecl>(Ty->getDecl()); 163 } 164 165 // Note: This function also emit constructor calls to support a MSVC 166 // extensions allowing explicit constructor function call. 167 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 168 ReturnValueSlot ReturnValue) { 169 const Expr *callee = CE->getCallee()->IgnoreParens(); 170 171 if (isa<BinaryOperator>(callee)) 172 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 173 174 const MemberExpr *ME = cast<MemberExpr>(callee); 175 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 176 177 if (MD->isStatic()) { 178 // The method is static, emit it as we would a regular call. 179 CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD); 180 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 181 ReturnValue); 182 } 183 184 bool HasQualifier = ME->hasQualifier(); 185 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 186 bool IsArrow = ME->isArrow(); 187 const Expr *Base = ME->getBase(); 188 189 return EmitCXXMemberOrOperatorMemberCallExpr( 190 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 191 } 192 193 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 194 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 195 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 196 const Expr *Base) { 197 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 198 199 // Compute the object pointer. 200 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 201 202 const CXXMethodDecl *DevirtualizedMethod = nullptr; 203 if (CanUseVirtualCall && 204 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 205 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 206 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 207 assert(DevirtualizedMethod); 208 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 209 const Expr *Inner = Base->ignoreParenBaseCasts(); 210 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 211 MD->getReturnType().getCanonicalType()) 212 // If the return types are not the same, this might be a case where more 213 // code needs to run to compensate for it. For example, the derived 214 // method might return a type that inherits form from the return 215 // type of MD and has a prefix. 216 // For now we just avoid devirtualizing these covariant cases. 217 DevirtualizedMethod = nullptr; 218 else if (getCXXRecord(Inner) == DevirtualizedClass) 219 // If the class of the Inner expression is where the dynamic method 220 // is defined, build the this pointer from it. 221 Base = Inner; 222 else if (getCXXRecord(Base) != DevirtualizedClass) { 223 // If the method is defined in a class that is not the best dynamic 224 // one or the one of the full expression, we would have to build 225 // a derived-to-base cast to compute the correct this pointer, but 226 // we don't have support for that yet, so do a virtual call. 227 DevirtualizedMethod = nullptr; 228 } 229 } 230 231 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 232 // operator before the LHS. 233 CallArgList RtlArgStorage; 234 CallArgList *RtlArgs = nullptr; 235 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 236 if (OCE->isAssignmentOp()) { 237 RtlArgs = &RtlArgStorage; 238 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 239 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 240 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 241 } 242 } 243 244 Address This = Address::invalid(); 245 if (IsArrow) 246 This = EmitPointerWithAlignment(Base); 247 else 248 This = EmitLValue(Base).getAddress(); 249 250 251 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 252 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 253 if (isa<CXXConstructorDecl>(MD) && 254 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 255 return RValue::get(nullptr); 256 257 if (!MD->getParent()->mayInsertExtraPadding()) { 258 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 259 // We don't like to generate the trivial copy/move assignment operator 260 // when it isn't necessary; just produce the proper effect here. 261 LValue RHS = isa<CXXOperatorCallExpr>(CE) 262 ? MakeNaturalAlignAddrLValue( 263 (*RtlArgs)[0].RV.getScalarVal(), 264 (*(CE->arg_begin() + 1))->getType()) 265 : EmitLValue(*CE->arg_begin()); 266 EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 267 return RValue::get(This.getPointer()); 268 } 269 270 if (isa<CXXConstructorDecl>(MD) && 271 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 272 // Trivial move and copy ctor are the same. 273 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 274 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 275 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 276 return RValue::get(This.getPointer()); 277 } 278 llvm_unreachable("unknown trivial member function"); 279 } 280 } 281 282 // Compute the function type we're calling. 283 const CXXMethodDecl *CalleeDecl = 284 DevirtualizedMethod ? DevirtualizedMethod : MD; 285 const CGFunctionInfo *FInfo = nullptr; 286 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 287 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 288 Dtor, StructorType::Complete); 289 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 290 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 291 Ctor, StructorType::Complete); 292 else 293 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 294 295 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 296 297 // C++11 [class.mfct.non-static]p2: 298 // If a non-static member function of a class X is called for an object that 299 // is not of type X, or of a type derived from X, the behavior is undefined. 300 SourceLocation CallLoc; 301 ASTContext &C = getContext(); 302 if (CE) 303 CallLoc = CE->getExprLoc(); 304 305 SanitizerSet SkippedChecks; 306 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 307 auto *IOA = CMCE->getImplicitObjectArgument(); 308 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 309 if (IsImplicitObjectCXXThis) 310 SkippedChecks.set(SanitizerKind::Alignment, true); 311 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 312 SkippedChecks.set(SanitizerKind::Null, true); 313 } 314 EmitTypeCheck( 315 isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall 316 : CodeGenFunction::TCK_MemberCall, 317 CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), 318 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 319 320 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 321 // 'CalleeDecl' instead. 322 323 // C++ [class.virtual]p12: 324 // Explicit qualification with the scope operator (5.1) suppresses the 325 // virtual call mechanism. 326 // 327 // We also don't emit a virtual call if the base expression has a record type 328 // because then we know what the type is. 329 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 330 331 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 332 assert(CE->arg_begin() == CE->arg_end() && 333 "Destructor shouldn't have explicit parameters"); 334 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 335 if (UseVirtualCall) { 336 CGM.getCXXABI().EmitVirtualDestructorCall( 337 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 338 } else { 339 CGCallee Callee; 340 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 341 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 342 else if (!DevirtualizedMethod) 343 Callee = CGCallee::forDirect( 344 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), 345 Dtor); 346 else { 347 const CXXDestructorDecl *DDtor = 348 cast<CXXDestructorDecl>(DevirtualizedMethod); 349 Callee = CGCallee::forDirect( 350 CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), 351 DDtor); 352 } 353 EmitCXXMemberOrOperatorCall( 354 CalleeDecl, Callee, ReturnValue, This.getPointer(), 355 /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 356 } 357 return RValue::get(nullptr); 358 } 359 360 CGCallee Callee; 361 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 362 Callee = CGCallee::forDirect( 363 CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), 364 Ctor); 365 } else if (UseVirtualCall) { 366 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 367 CE->getLocStart()); 368 } else { 369 if (SanOpts.has(SanitizerKind::CFINVCall) && 370 MD->getParent()->isDynamicClass()) { 371 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 372 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 373 CE->getLocStart()); 374 } 375 376 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 377 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 378 else if (!DevirtualizedMethod) 379 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD); 380 else { 381 Callee = CGCallee::forDirect( 382 CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 383 DevirtualizedMethod); 384 } 385 } 386 387 if (MD->isVirtual()) { 388 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 389 *this, CalleeDecl, This, UseVirtualCall); 390 } 391 392 return EmitCXXMemberOrOperatorCall( 393 CalleeDecl, Callee, ReturnValue, This.getPointer(), 394 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 395 } 396 397 RValue 398 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 399 ReturnValueSlot ReturnValue) { 400 const BinaryOperator *BO = 401 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 402 const Expr *BaseExpr = BO->getLHS(); 403 const Expr *MemFnExpr = BO->getRHS(); 404 405 const MemberPointerType *MPT = 406 MemFnExpr->getType()->castAs<MemberPointerType>(); 407 408 const FunctionProtoType *FPT = 409 MPT->getPointeeType()->castAs<FunctionProtoType>(); 410 const CXXRecordDecl *RD = 411 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 412 413 // Emit the 'this' pointer. 414 Address This = Address::invalid(); 415 if (BO->getOpcode() == BO_PtrMemI) 416 This = EmitPointerWithAlignment(BaseExpr); 417 else 418 This = EmitLValue(BaseExpr).getAddress(); 419 420 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 421 QualType(MPT->getClass(), 0)); 422 423 // Get the member function pointer. 424 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 425 426 // Ask the ABI to load the callee. Note that This is modified. 427 llvm::Value *ThisPtrForCall = nullptr; 428 CGCallee Callee = 429 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 430 ThisPtrForCall, MemFnPtr, MPT); 431 432 CallArgList Args; 433 434 QualType ThisType = 435 getContext().getPointerType(getContext().getTagDeclType(RD)); 436 437 // Push the this ptr. 438 Args.add(RValue::get(ThisPtrForCall), ThisType); 439 440 RequiredArgs required = 441 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 442 443 // And the rest of the call args 444 EmitCallArgs(Args, FPT, E->arguments()); 445 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 446 /*PrefixSize=*/0), 447 Callee, ReturnValue, Args); 448 } 449 450 RValue 451 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 452 const CXXMethodDecl *MD, 453 ReturnValueSlot ReturnValue) { 454 assert(MD->isInstance() && 455 "Trying to emit a member call expr on a static method!"); 456 return EmitCXXMemberOrOperatorMemberCallExpr( 457 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 458 /*IsArrow=*/false, E->getArg(0)); 459 } 460 461 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 462 ReturnValueSlot ReturnValue) { 463 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 464 } 465 466 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 467 Address DestPtr, 468 const CXXRecordDecl *Base) { 469 if (Base->isEmpty()) 470 return; 471 472 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 473 474 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 475 CharUnits NVSize = Layout.getNonVirtualSize(); 476 477 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 478 // present, they are initialized by the most derived class before calling the 479 // constructor. 480 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 481 Stores.emplace_back(CharUnits::Zero(), NVSize); 482 483 // Each store is split by the existence of a vbptr. 484 CharUnits VBPtrWidth = CGF.getPointerSize(); 485 std::vector<CharUnits> VBPtrOffsets = 486 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 487 for (CharUnits VBPtrOffset : VBPtrOffsets) { 488 // Stop before we hit any virtual base pointers located in virtual bases. 489 if (VBPtrOffset >= NVSize) 490 break; 491 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 492 CharUnits LastStoreOffset = LastStore.first; 493 CharUnits LastStoreSize = LastStore.second; 494 495 CharUnits SplitBeforeOffset = LastStoreOffset; 496 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 497 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 498 if (!SplitBeforeSize.isZero()) 499 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 500 501 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 502 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 503 assert(!SplitAfterSize.isNegative() && "negative store size!"); 504 if (!SplitAfterSize.isZero()) 505 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 506 } 507 508 // If the type contains a pointer to data member we can't memset it to zero. 509 // Instead, create a null constant and copy it to the destination. 510 // TODO: there are other patterns besides zero that we can usefully memset, 511 // like -1, which happens to be the pattern used by member-pointers. 512 // TODO: isZeroInitializable can be over-conservative in the case where a 513 // virtual base contains a member pointer. 514 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 515 if (!NullConstantForBase->isNullValue()) { 516 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 517 CGF.CGM.getModule(), NullConstantForBase->getType(), 518 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 519 NullConstantForBase, Twine()); 520 521 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 522 DestPtr.getAlignment()); 523 NullVariable->setAlignment(Align.getQuantity()); 524 525 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 526 527 // Get and call the appropriate llvm.memcpy overload. 528 for (std::pair<CharUnits, CharUnits> Store : Stores) { 529 CharUnits StoreOffset = Store.first; 530 CharUnits StoreSize = Store.second; 531 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 532 CGF.Builder.CreateMemCpy( 533 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 534 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 535 StoreSizeVal); 536 } 537 538 // Otherwise, just memset the whole thing to zero. This is legal 539 // because in LLVM, all default initializers (other than the ones we just 540 // handled above) are guaranteed to have a bit pattern of all zeros. 541 } else { 542 for (std::pair<CharUnits, CharUnits> Store : Stores) { 543 CharUnits StoreOffset = Store.first; 544 CharUnits StoreSize = Store.second; 545 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 546 CGF.Builder.CreateMemSet( 547 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 548 CGF.Builder.getInt8(0), StoreSizeVal); 549 } 550 } 551 } 552 553 void 554 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 555 AggValueSlot Dest) { 556 assert(!Dest.isIgnored() && "Must have a destination!"); 557 const CXXConstructorDecl *CD = E->getConstructor(); 558 559 // If we require zero initialization before (or instead of) calling the 560 // constructor, as can be the case with a non-user-provided default 561 // constructor, emit the zero initialization now, unless destination is 562 // already zeroed. 563 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 564 switch (E->getConstructionKind()) { 565 case CXXConstructExpr::CK_Delegating: 566 case CXXConstructExpr::CK_Complete: 567 EmitNullInitialization(Dest.getAddress(), E->getType()); 568 break; 569 case CXXConstructExpr::CK_VirtualBase: 570 case CXXConstructExpr::CK_NonVirtualBase: 571 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 572 CD->getParent()); 573 break; 574 } 575 } 576 577 // If this is a call to a trivial default constructor, do nothing. 578 if (CD->isTrivial() && CD->isDefaultConstructor()) 579 return; 580 581 // Elide the constructor if we're constructing from a temporary. 582 // The temporary check is required because Sema sets this on NRVO 583 // returns. 584 if (getLangOpts().ElideConstructors && E->isElidable()) { 585 assert(getContext().hasSameUnqualifiedType(E->getType(), 586 E->getArg(0)->getType())); 587 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 588 EmitAggExpr(E->getArg(0), Dest); 589 return; 590 } 591 } 592 593 if (const ArrayType *arrayType 594 = getContext().getAsArrayType(E->getType())) { 595 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 596 } else { 597 CXXCtorType Type = Ctor_Complete; 598 bool ForVirtualBase = false; 599 bool Delegating = false; 600 601 switch (E->getConstructionKind()) { 602 case CXXConstructExpr::CK_Delegating: 603 // We should be emitting a constructor; GlobalDecl will assert this 604 Type = CurGD.getCtorType(); 605 Delegating = true; 606 break; 607 608 case CXXConstructExpr::CK_Complete: 609 Type = Ctor_Complete; 610 break; 611 612 case CXXConstructExpr::CK_VirtualBase: 613 ForVirtualBase = true; 614 // fall-through 615 616 case CXXConstructExpr::CK_NonVirtualBase: 617 Type = Ctor_Base; 618 } 619 620 // Call the constructor. 621 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 622 Dest.getAddress(), E); 623 } 624 } 625 626 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 627 const Expr *Exp) { 628 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 629 Exp = E->getSubExpr(); 630 assert(isa<CXXConstructExpr>(Exp) && 631 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 632 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 633 const CXXConstructorDecl *CD = E->getConstructor(); 634 RunCleanupsScope Scope(*this); 635 636 // If we require zero initialization before (or instead of) calling the 637 // constructor, as can be the case with a non-user-provided default 638 // constructor, emit the zero initialization now. 639 // FIXME. Do I still need this for a copy ctor synthesis? 640 if (E->requiresZeroInitialization()) 641 EmitNullInitialization(Dest, E->getType()); 642 643 assert(!getContext().getAsConstantArrayType(E->getType()) 644 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 645 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 646 } 647 648 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 649 const CXXNewExpr *E) { 650 if (!E->isArray()) 651 return CharUnits::Zero(); 652 653 // No cookie is required if the operator new[] being used is the 654 // reserved placement operator new[]. 655 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 656 return CharUnits::Zero(); 657 658 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 659 } 660 661 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 662 const CXXNewExpr *e, 663 unsigned minElements, 664 llvm::Value *&numElements, 665 llvm::Value *&sizeWithoutCookie) { 666 QualType type = e->getAllocatedType(); 667 668 if (!e->isArray()) { 669 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 670 sizeWithoutCookie 671 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 672 return sizeWithoutCookie; 673 } 674 675 // The width of size_t. 676 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 677 678 // Figure out the cookie size. 679 llvm::APInt cookieSize(sizeWidth, 680 CalculateCookiePadding(CGF, e).getQuantity()); 681 682 // Emit the array size expression. 683 // We multiply the size of all dimensions for NumElements. 684 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 685 numElements = 686 ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); 687 if (!numElements) 688 numElements = CGF.EmitScalarExpr(e->getArraySize()); 689 assert(isa<llvm::IntegerType>(numElements->getType())); 690 691 // The number of elements can be have an arbitrary integer type; 692 // essentially, we need to multiply it by a constant factor, add a 693 // cookie size, and verify that the result is representable as a 694 // size_t. That's just a gloss, though, and it's wrong in one 695 // important way: if the count is negative, it's an error even if 696 // the cookie size would bring the total size >= 0. 697 bool isSigned 698 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 699 llvm::IntegerType *numElementsType 700 = cast<llvm::IntegerType>(numElements->getType()); 701 unsigned numElementsWidth = numElementsType->getBitWidth(); 702 703 // Compute the constant factor. 704 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 705 while (const ConstantArrayType *CAT 706 = CGF.getContext().getAsConstantArrayType(type)) { 707 type = CAT->getElementType(); 708 arraySizeMultiplier *= CAT->getSize(); 709 } 710 711 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 712 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 713 typeSizeMultiplier *= arraySizeMultiplier; 714 715 // This will be a size_t. 716 llvm::Value *size; 717 718 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 719 // Don't bloat the -O0 code. 720 if (llvm::ConstantInt *numElementsC = 721 dyn_cast<llvm::ConstantInt>(numElements)) { 722 const llvm::APInt &count = numElementsC->getValue(); 723 724 bool hasAnyOverflow = false; 725 726 // If 'count' was a negative number, it's an overflow. 727 if (isSigned && count.isNegative()) 728 hasAnyOverflow = true; 729 730 // We want to do all this arithmetic in size_t. If numElements is 731 // wider than that, check whether it's already too big, and if so, 732 // overflow. 733 else if (numElementsWidth > sizeWidth && 734 numElementsWidth - sizeWidth > count.countLeadingZeros()) 735 hasAnyOverflow = true; 736 737 // Okay, compute a count at the right width. 738 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 739 740 // If there is a brace-initializer, we cannot allocate fewer elements than 741 // there are initializers. If we do, that's treated like an overflow. 742 if (adjustedCount.ult(minElements)) 743 hasAnyOverflow = true; 744 745 // Scale numElements by that. This might overflow, but we don't 746 // care because it only overflows if allocationSize does, too, and 747 // if that overflows then we shouldn't use this. 748 numElements = llvm::ConstantInt::get(CGF.SizeTy, 749 adjustedCount * arraySizeMultiplier); 750 751 // Compute the size before cookie, and track whether it overflowed. 752 bool overflow; 753 llvm::APInt allocationSize 754 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 755 hasAnyOverflow |= overflow; 756 757 // Add in the cookie, and check whether it's overflowed. 758 if (cookieSize != 0) { 759 // Save the current size without a cookie. This shouldn't be 760 // used if there was overflow. 761 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 762 763 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 764 hasAnyOverflow |= overflow; 765 } 766 767 // On overflow, produce a -1 so operator new will fail. 768 if (hasAnyOverflow) { 769 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 770 } else { 771 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 772 } 773 774 // Otherwise, we might need to use the overflow intrinsics. 775 } else { 776 // There are up to five conditions we need to test for: 777 // 1) if isSigned, we need to check whether numElements is negative; 778 // 2) if numElementsWidth > sizeWidth, we need to check whether 779 // numElements is larger than something representable in size_t; 780 // 3) if minElements > 0, we need to check whether numElements is smaller 781 // than that. 782 // 4) we need to compute 783 // sizeWithoutCookie := numElements * typeSizeMultiplier 784 // and check whether it overflows; and 785 // 5) if we need a cookie, we need to compute 786 // size := sizeWithoutCookie + cookieSize 787 // and check whether it overflows. 788 789 llvm::Value *hasOverflow = nullptr; 790 791 // If numElementsWidth > sizeWidth, then one way or another, we're 792 // going to have to do a comparison for (2), and this happens to 793 // take care of (1), too. 794 if (numElementsWidth > sizeWidth) { 795 llvm::APInt threshold(numElementsWidth, 1); 796 threshold <<= sizeWidth; 797 798 llvm::Value *thresholdV 799 = llvm::ConstantInt::get(numElementsType, threshold); 800 801 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 802 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 803 804 // Otherwise, if we're signed, we want to sext up to size_t. 805 } else if (isSigned) { 806 if (numElementsWidth < sizeWidth) 807 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 808 809 // If there's a non-1 type size multiplier, then we can do the 810 // signedness check at the same time as we do the multiply 811 // because a negative number times anything will cause an 812 // unsigned overflow. Otherwise, we have to do it here. But at least 813 // in this case, we can subsume the >= minElements check. 814 if (typeSizeMultiplier == 1) 815 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 816 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 817 818 // Otherwise, zext up to size_t if necessary. 819 } else if (numElementsWidth < sizeWidth) { 820 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 821 } 822 823 assert(numElements->getType() == CGF.SizeTy); 824 825 if (minElements) { 826 // Don't allow allocation of fewer elements than we have initializers. 827 if (!hasOverflow) { 828 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 829 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 830 } else if (numElementsWidth > sizeWidth) { 831 // The other existing overflow subsumes this check. 832 // We do an unsigned comparison, since any signed value < -1 is 833 // taken care of either above or below. 834 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 835 CGF.Builder.CreateICmpULT(numElements, 836 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 837 } 838 } 839 840 size = numElements; 841 842 // Multiply by the type size if necessary. This multiplier 843 // includes all the factors for nested arrays. 844 // 845 // This step also causes numElements to be scaled up by the 846 // nested-array factor if necessary. Overflow on this computation 847 // can be ignored because the result shouldn't be used if 848 // allocation fails. 849 if (typeSizeMultiplier != 1) { 850 llvm::Value *umul_with_overflow 851 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 852 853 llvm::Value *tsmV = 854 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 855 llvm::Value *result = 856 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 857 858 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 859 if (hasOverflow) 860 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 861 else 862 hasOverflow = overflowed; 863 864 size = CGF.Builder.CreateExtractValue(result, 0); 865 866 // Also scale up numElements by the array size multiplier. 867 if (arraySizeMultiplier != 1) { 868 // If the base element type size is 1, then we can re-use the 869 // multiply we just did. 870 if (typeSize.isOne()) { 871 assert(arraySizeMultiplier == typeSizeMultiplier); 872 numElements = size; 873 874 // Otherwise we need a separate multiply. 875 } else { 876 llvm::Value *asmV = 877 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 878 numElements = CGF.Builder.CreateMul(numElements, asmV); 879 } 880 } 881 } else { 882 // numElements doesn't need to be scaled. 883 assert(arraySizeMultiplier == 1); 884 } 885 886 // Add in the cookie size if necessary. 887 if (cookieSize != 0) { 888 sizeWithoutCookie = size; 889 890 llvm::Value *uadd_with_overflow 891 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 892 893 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 894 llvm::Value *result = 895 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 896 897 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 898 if (hasOverflow) 899 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 900 else 901 hasOverflow = overflowed; 902 903 size = CGF.Builder.CreateExtractValue(result, 0); 904 } 905 906 // If we had any possibility of dynamic overflow, make a select to 907 // overwrite 'size' with an all-ones value, which should cause 908 // operator new to throw. 909 if (hasOverflow) 910 size = CGF.Builder.CreateSelect(hasOverflow, 911 llvm::Constant::getAllOnesValue(CGF.SizeTy), 912 size); 913 } 914 915 if (cookieSize == 0) 916 sizeWithoutCookie = size; 917 else 918 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 919 920 return size; 921 } 922 923 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 924 QualType AllocType, Address NewPtr) { 925 // FIXME: Refactor with EmitExprAsInit. 926 switch (CGF.getEvaluationKind(AllocType)) { 927 case TEK_Scalar: 928 CGF.EmitScalarInit(Init, nullptr, 929 CGF.MakeAddrLValue(NewPtr, AllocType), false); 930 return; 931 case TEK_Complex: 932 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 933 /*isInit*/ true); 934 return; 935 case TEK_Aggregate: { 936 AggValueSlot Slot 937 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 938 AggValueSlot::IsDestructed, 939 AggValueSlot::DoesNotNeedGCBarriers, 940 AggValueSlot::IsNotAliased); 941 CGF.EmitAggExpr(Init, Slot); 942 return; 943 } 944 } 945 llvm_unreachable("bad evaluation kind"); 946 } 947 948 void CodeGenFunction::EmitNewArrayInitializer( 949 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 950 Address BeginPtr, llvm::Value *NumElements, 951 llvm::Value *AllocSizeWithoutCookie) { 952 // If we have a type with trivial initialization and no initializer, 953 // there's nothing to do. 954 if (!E->hasInitializer()) 955 return; 956 957 Address CurPtr = BeginPtr; 958 959 unsigned InitListElements = 0; 960 961 const Expr *Init = E->getInitializer(); 962 Address EndOfInit = Address::invalid(); 963 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 964 EHScopeStack::stable_iterator Cleanup; 965 llvm::Instruction *CleanupDominator = nullptr; 966 967 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 968 CharUnits ElementAlign = 969 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 970 971 // Attempt to perform zero-initialization using memset. 972 auto TryMemsetInitialization = [&]() -> bool { 973 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 974 // we can initialize with a memset to -1. 975 if (!CGM.getTypes().isZeroInitializable(ElementType)) 976 return false; 977 978 // Optimization: since zero initialization will just set the memory 979 // to all zeroes, generate a single memset to do it in one shot. 980 981 // Subtract out the size of any elements we've already initialized. 982 auto *RemainingSize = AllocSizeWithoutCookie; 983 if (InitListElements) { 984 // We know this can't overflow; we check this when doing the allocation. 985 auto *InitializedSize = llvm::ConstantInt::get( 986 RemainingSize->getType(), 987 getContext().getTypeSizeInChars(ElementType).getQuantity() * 988 InitListElements); 989 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 990 } 991 992 // Create the memset. 993 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 994 return true; 995 }; 996 997 // If the initializer is an initializer list, first do the explicit elements. 998 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 999 // Initializing from a (braced) string literal is a special case; the init 1000 // list element does not initialize a (single) array element. 1001 if (ILE->isStringLiteralInit()) { 1002 // Initialize the initial portion of length equal to that of the string 1003 // literal. The allocation must be for at least this much; we emitted a 1004 // check for that earlier. 1005 AggValueSlot Slot = 1006 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1007 AggValueSlot::IsDestructed, 1008 AggValueSlot::DoesNotNeedGCBarriers, 1009 AggValueSlot::IsNotAliased); 1010 EmitAggExpr(ILE->getInit(0), Slot); 1011 1012 // Move past these elements. 1013 InitListElements = 1014 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1015 ->getSize().getZExtValue(); 1016 CurPtr = 1017 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1018 Builder.getSize(InitListElements), 1019 "string.init.end"), 1020 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1021 ElementSize)); 1022 1023 // Zero out the rest, if any remain. 1024 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1025 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1026 bool OK = TryMemsetInitialization(); 1027 (void)OK; 1028 assert(OK && "couldn't memset character type?"); 1029 } 1030 return; 1031 } 1032 1033 InitListElements = ILE->getNumInits(); 1034 1035 // If this is a multi-dimensional array new, we will initialize multiple 1036 // elements with each init list element. 1037 QualType AllocType = E->getAllocatedType(); 1038 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1039 AllocType->getAsArrayTypeUnsafe())) { 1040 ElementTy = ConvertTypeForMem(AllocType); 1041 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1042 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1043 } 1044 1045 // Enter a partial-destruction Cleanup if necessary. 1046 if (needsEHCleanup(DtorKind)) { 1047 // In principle we could tell the Cleanup where we are more 1048 // directly, but the control flow can get so varied here that it 1049 // would actually be quite complex. Therefore we go through an 1050 // alloca. 1051 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1052 "array.init.end"); 1053 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1054 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1055 ElementType, ElementAlign, 1056 getDestroyer(DtorKind)); 1057 Cleanup = EHStack.stable_begin(); 1058 } 1059 1060 CharUnits StartAlign = CurPtr.getAlignment(); 1061 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1062 // Tell the cleanup that it needs to destroy up to this 1063 // element. TODO: some of these stores can be trivially 1064 // observed to be unnecessary. 1065 if (EndOfInit.isValid()) { 1066 auto FinishedPtr = 1067 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1068 Builder.CreateStore(FinishedPtr, EndOfInit); 1069 } 1070 // FIXME: If the last initializer is an incomplete initializer list for 1071 // an array, and we have an array filler, we can fold together the two 1072 // initialization loops. 1073 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1074 ILE->getInit(i)->getType(), CurPtr); 1075 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1076 Builder.getSize(1), 1077 "array.exp.next"), 1078 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1079 } 1080 1081 // The remaining elements are filled with the array filler expression. 1082 Init = ILE->getArrayFiller(); 1083 1084 // Extract the initializer for the individual array elements by pulling 1085 // out the array filler from all the nested initializer lists. This avoids 1086 // generating a nested loop for the initialization. 1087 while (Init && Init->getType()->isConstantArrayType()) { 1088 auto *SubILE = dyn_cast<InitListExpr>(Init); 1089 if (!SubILE) 1090 break; 1091 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1092 Init = SubILE->getArrayFiller(); 1093 } 1094 1095 // Switch back to initializing one base element at a time. 1096 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1097 } 1098 1099 // If all elements have already been initialized, skip any further 1100 // initialization. 1101 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1102 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1103 // If there was a Cleanup, deactivate it. 1104 if (CleanupDominator) 1105 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1106 return; 1107 } 1108 1109 assert(Init && "have trailing elements to initialize but no initializer"); 1110 1111 // If this is a constructor call, try to optimize it out, and failing that 1112 // emit a single loop to initialize all remaining elements. 1113 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1114 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1115 if (Ctor->isTrivial()) { 1116 // If new expression did not specify value-initialization, then there 1117 // is no initialization. 1118 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1119 return; 1120 1121 if (TryMemsetInitialization()) 1122 return; 1123 } 1124 1125 // Store the new Cleanup position for irregular Cleanups. 1126 // 1127 // FIXME: Share this cleanup with the constructor call emission rather than 1128 // having it create a cleanup of its own. 1129 if (EndOfInit.isValid()) 1130 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1131 1132 // Emit a constructor call loop to initialize the remaining elements. 1133 if (InitListElements) 1134 NumElements = Builder.CreateSub( 1135 NumElements, 1136 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1137 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1138 CCE->requiresZeroInitialization()); 1139 return; 1140 } 1141 1142 // If this is value-initialization, we can usually use memset. 1143 ImplicitValueInitExpr IVIE(ElementType); 1144 if (isa<ImplicitValueInitExpr>(Init)) { 1145 if (TryMemsetInitialization()) 1146 return; 1147 1148 // Switch to an ImplicitValueInitExpr for the element type. This handles 1149 // only one case: multidimensional array new of pointers to members. In 1150 // all other cases, we already have an initializer for the array element. 1151 Init = &IVIE; 1152 } 1153 1154 // At this point we should have found an initializer for the individual 1155 // elements of the array. 1156 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1157 "got wrong type of element to initialize"); 1158 1159 // If we have an empty initializer list, we can usually use memset. 1160 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1161 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1162 return; 1163 1164 // If we have a struct whose every field is value-initialized, we can 1165 // usually use memset. 1166 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1167 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1168 if (RType->getDecl()->isStruct()) { 1169 unsigned NumElements = 0; 1170 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1171 NumElements = CXXRD->getNumBases(); 1172 for (auto *Field : RType->getDecl()->fields()) 1173 if (!Field->isUnnamedBitfield()) 1174 ++NumElements; 1175 // FIXME: Recurse into nested InitListExprs. 1176 if (ILE->getNumInits() == NumElements) 1177 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1178 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1179 --NumElements; 1180 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1181 return; 1182 } 1183 } 1184 } 1185 1186 // Create the loop blocks. 1187 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1188 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1189 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1190 1191 // Find the end of the array, hoisted out of the loop. 1192 llvm::Value *EndPtr = 1193 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1194 1195 // If the number of elements isn't constant, we have to now check if there is 1196 // anything left to initialize. 1197 if (!ConstNum) { 1198 llvm::Value *IsEmpty = 1199 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1200 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1201 } 1202 1203 // Enter the loop. 1204 EmitBlock(LoopBB); 1205 1206 // Set up the current-element phi. 1207 llvm::PHINode *CurPtrPhi = 1208 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1209 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1210 1211 CurPtr = Address(CurPtrPhi, ElementAlign); 1212 1213 // Store the new Cleanup position for irregular Cleanups. 1214 if (EndOfInit.isValid()) 1215 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1216 1217 // Enter a partial-destruction Cleanup if necessary. 1218 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1219 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1220 ElementType, ElementAlign, 1221 getDestroyer(DtorKind)); 1222 Cleanup = EHStack.stable_begin(); 1223 CleanupDominator = Builder.CreateUnreachable(); 1224 } 1225 1226 // Emit the initializer into this element. 1227 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1228 1229 // Leave the Cleanup if we entered one. 1230 if (CleanupDominator) { 1231 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1232 CleanupDominator->eraseFromParent(); 1233 } 1234 1235 // Advance to the next element by adjusting the pointer type as necessary. 1236 llvm::Value *NextPtr = 1237 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1238 "array.next"); 1239 1240 // Check whether we've gotten to the end of the array and, if so, 1241 // exit the loop. 1242 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1243 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1244 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1245 1246 EmitBlock(ContBB); 1247 } 1248 1249 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1250 QualType ElementType, llvm::Type *ElementTy, 1251 Address NewPtr, llvm::Value *NumElements, 1252 llvm::Value *AllocSizeWithoutCookie) { 1253 ApplyDebugLocation DL(CGF, E); 1254 if (E->isArray()) 1255 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1256 AllocSizeWithoutCookie); 1257 else if (const Expr *Init = E->getInitializer()) 1258 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1259 } 1260 1261 /// Emit a call to an operator new or operator delete function, as implicitly 1262 /// created by new-expressions and delete-expressions. 1263 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1264 const FunctionDecl *CalleeDecl, 1265 const FunctionProtoType *CalleeType, 1266 const CallArgList &Args) { 1267 llvm::Instruction *CallOrInvoke; 1268 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1269 CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl); 1270 RValue RV = 1271 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1272 Args, CalleeType, /*chainCall=*/false), 1273 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1274 1275 /// C++1y [expr.new]p10: 1276 /// [In a new-expression,] an implementation is allowed to omit a call 1277 /// to a replaceable global allocation function. 1278 /// 1279 /// We model such elidable calls with the 'builtin' attribute. 1280 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1281 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1282 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1283 // FIXME: Add addAttribute to CallSite. 1284 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1285 CI->addAttribute(llvm::AttributeList::FunctionIndex, 1286 llvm::Attribute::Builtin); 1287 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1288 II->addAttribute(llvm::AttributeList::FunctionIndex, 1289 llvm::Attribute::Builtin); 1290 else 1291 llvm_unreachable("unexpected kind of call instruction"); 1292 } 1293 1294 return RV; 1295 } 1296 1297 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1298 const Expr *Arg, 1299 bool IsDelete) { 1300 CallArgList Args; 1301 const Stmt *ArgS = Arg; 1302 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1303 // Find the allocation or deallocation function that we're calling. 1304 ASTContext &Ctx = getContext(); 1305 DeclarationName Name = Ctx.DeclarationNames 1306 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1307 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1308 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1309 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1310 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1311 llvm_unreachable("predeclared global operator new/delete is missing"); 1312 } 1313 1314 static std::pair<bool, bool> 1315 shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) { 1316 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1317 1318 // The first argument is always a void*. 1319 ++AI; 1320 1321 // Figure out what other parameters we should be implicitly passing. 1322 bool PassSize = false; 1323 bool PassAlignment = false; 1324 1325 if (AI != AE && (*AI)->isIntegerType()) { 1326 PassSize = true; 1327 ++AI; 1328 } 1329 1330 if (AI != AE && (*AI)->isAlignValT()) { 1331 PassAlignment = true; 1332 ++AI; 1333 } 1334 1335 assert(AI == AE && "unexpected usual deallocation function parameter"); 1336 return {PassSize, PassAlignment}; 1337 } 1338 1339 namespace { 1340 /// A cleanup to call the given 'operator delete' function upon abnormal 1341 /// exit from a new expression. Templated on a traits type that deals with 1342 /// ensuring that the arguments dominate the cleanup if necessary. 1343 template<typename Traits> 1344 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1345 /// Type used to hold llvm::Value*s. 1346 typedef typename Traits::ValueTy ValueTy; 1347 /// Type used to hold RValues. 1348 typedef typename Traits::RValueTy RValueTy; 1349 struct PlacementArg { 1350 RValueTy ArgValue; 1351 QualType ArgType; 1352 }; 1353 1354 unsigned NumPlacementArgs : 31; 1355 unsigned PassAlignmentToPlacementDelete : 1; 1356 const FunctionDecl *OperatorDelete; 1357 ValueTy Ptr; 1358 ValueTy AllocSize; 1359 CharUnits AllocAlign; 1360 1361 PlacementArg *getPlacementArgs() { 1362 return reinterpret_cast<PlacementArg *>(this + 1); 1363 } 1364 1365 public: 1366 static size_t getExtraSize(size_t NumPlacementArgs) { 1367 return NumPlacementArgs * sizeof(PlacementArg); 1368 } 1369 1370 CallDeleteDuringNew(size_t NumPlacementArgs, 1371 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1372 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1373 CharUnits AllocAlign) 1374 : NumPlacementArgs(NumPlacementArgs), 1375 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1376 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1377 AllocAlign(AllocAlign) {} 1378 1379 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1380 assert(I < NumPlacementArgs && "index out of range"); 1381 getPlacementArgs()[I] = {Arg, Type}; 1382 } 1383 1384 void Emit(CodeGenFunction &CGF, Flags flags) override { 1385 const FunctionProtoType *FPT = 1386 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1387 CallArgList DeleteArgs; 1388 1389 // The first argument is always a void*. 1390 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1391 1392 // Figure out what other parameters we should be implicitly passing. 1393 bool PassSize = false; 1394 bool PassAlignment = false; 1395 if (NumPlacementArgs) { 1396 // A placement deallocation function is implicitly passed an alignment 1397 // if the placement allocation function was, but is never passed a size. 1398 PassAlignment = PassAlignmentToPlacementDelete; 1399 } else { 1400 // For a non-placement new-expression, 'operator delete' can take a 1401 // size and/or an alignment if it has the right parameters. 1402 std::tie(PassSize, PassAlignment) = 1403 shouldPassSizeAndAlignToUsualDelete(FPT); 1404 } 1405 1406 // The second argument can be a std::size_t (for non-placement delete). 1407 if (PassSize) 1408 DeleteArgs.add(Traits::get(CGF, AllocSize), 1409 CGF.getContext().getSizeType()); 1410 1411 // The next (second or third) argument can be a std::align_val_t, which 1412 // is an enum whose underlying type is std::size_t. 1413 // FIXME: Use the right type as the parameter type. Note that in a call 1414 // to operator delete(size_t, ...), we may not have it available. 1415 if (PassAlignment) 1416 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1417 CGF.SizeTy, AllocAlign.getQuantity())), 1418 CGF.getContext().getSizeType()); 1419 1420 // Pass the rest of the arguments, which must match exactly. 1421 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1422 auto Arg = getPlacementArgs()[I]; 1423 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1424 } 1425 1426 // Call 'operator delete'. 1427 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1428 } 1429 }; 1430 } 1431 1432 /// Enter a cleanup to call 'operator delete' if the initializer in a 1433 /// new-expression throws. 1434 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1435 const CXXNewExpr *E, 1436 Address NewPtr, 1437 llvm::Value *AllocSize, 1438 CharUnits AllocAlign, 1439 const CallArgList &NewArgs) { 1440 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1441 1442 // If we're not inside a conditional branch, then the cleanup will 1443 // dominate and we can do the easier (and more efficient) thing. 1444 if (!CGF.isInConditionalBranch()) { 1445 struct DirectCleanupTraits { 1446 typedef llvm::Value *ValueTy; 1447 typedef RValue RValueTy; 1448 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1449 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1450 }; 1451 1452 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1453 1454 DirectCleanup *Cleanup = CGF.EHStack 1455 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1456 E->getNumPlacementArgs(), 1457 E->getOperatorDelete(), 1458 NewPtr.getPointer(), 1459 AllocSize, 1460 E->passAlignment(), 1461 AllocAlign); 1462 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1463 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1464 Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1465 } 1466 1467 return; 1468 } 1469 1470 // Otherwise, we need to save all this stuff. 1471 DominatingValue<RValue>::saved_type SavedNewPtr = 1472 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1473 DominatingValue<RValue>::saved_type SavedAllocSize = 1474 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1475 1476 struct ConditionalCleanupTraits { 1477 typedef DominatingValue<RValue>::saved_type ValueTy; 1478 typedef DominatingValue<RValue>::saved_type RValueTy; 1479 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1480 return V.restore(CGF); 1481 } 1482 }; 1483 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1484 1485 ConditionalCleanup *Cleanup = CGF.EHStack 1486 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1487 E->getNumPlacementArgs(), 1488 E->getOperatorDelete(), 1489 SavedNewPtr, 1490 SavedAllocSize, 1491 E->passAlignment(), 1492 AllocAlign); 1493 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1494 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1495 Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1496 Arg.Ty); 1497 } 1498 1499 CGF.initFullExprCleanup(); 1500 } 1501 1502 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1503 // The element type being allocated. 1504 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1505 1506 // 1. Build a call to the allocation function. 1507 FunctionDecl *allocator = E->getOperatorNew(); 1508 1509 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1510 unsigned minElements = 0; 1511 if (E->isArray() && E->hasInitializer()) { 1512 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1513 if (ILE && ILE->isStringLiteralInit()) 1514 minElements = 1515 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1516 ->getSize().getZExtValue(); 1517 else if (ILE) 1518 minElements = ILE->getNumInits(); 1519 } 1520 1521 llvm::Value *numElements = nullptr; 1522 llvm::Value *allocSizeWithoutCookie = nullptr; 1523 llvm::Value *allocSize = 1524 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1525 allocSizeWithoutCookie); 1526 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1527 1528 // Emit the allocation call. If the allocator is a global placement 1529 // operator, just "inline" it directly. 1530 Address allocation = Address::invalid(); 1531 CallArgList allocatorArgs; 1532 if (allocator->isReservedGlobalPlacementOperator()) { 1533 assert(E->getNumPlacementArgs() == 1); 1534 const Expr *arg = *E->placement_arguments().begin(); 1535 1536 LValueBaseInfo BaseInfo; 1537 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1538 1539 // The pointer expression will, in many cases, be an opaque void*. 1540 // In these cases, discard the computed alignment and use the 1541 // formal alignment of the allocated type. 1542 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1543 allocation = Address(allocation.getPointer(), allocAlign); 1544 1545 // Set up allocatorArgs for the call to operator delete if it's not 1546 // the reserved global operator. 1547 if (E->getOperatorDelete() && 1548 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1549 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1550 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1551 } 1552 1553 } else { 1554 const FunctionProtoType *allocatorType = 1555 allocator->getType()->castAs<FunctionProtoType>(); 1556 unsigned ParamsToSkip = 0; 1557 1558 // The allocation size is the first argument. 1559 QualType sizeType = getContext().getSizeType(); 1560 allocatorArgs.add(RValue::get(allocSize), sizeType); 1561 ++ParamsToSkip; 1562 1563 if (allocSize != allocSizeWithoutCookie) { 1564 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1565 allocAlign = std::max(allocAlign, cookieAlign); 1566 } 1567 1568 // The allocation alignment may be passed as the second argument. 1569 if (E->passAlignment()) { 1570 QualType AlignValT = sizeType; 1571 if (allocatorType->getNumParams() > 1) { 1572 AlignValT = allocatorType->getParamType(1); 1573 assert(getContext().hasSameUnqualifiedType( 1574 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1575 sizeType) && 1576 "wrong type for alignment parameter"); 1577 ++ParamsToSkip; 1578 } else { 1579 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1580 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1581 } 1582 allocatorArgs.add( 1583 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1584 AlignValT); 1585 } 1586 1587 // FIXME: Why do we not pass a CalleeDecl here? 1588 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1589 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1590 1591 RValue RV = 1592 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1593 1594 // If this was a call to a global replaceable allocation function that does 1595 // not take an alignment argument, the allocator is known to produce 1596 // storage that's suitably aligned for any object that fits, up to a known 1597 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1598 CharUnits allocationAlign = allocAlign; 1599 if (!E->passAlignment() && 1600 allocator->isReplaceableGlobalAllocationFunction()) { 1601 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1602 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1603 allocationAlign = std::max( 1604 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1605 } 1606 1607 allocation = Address(RV.getScalarVal(), allocationAlign); 1608 } 1609 1610 // Emit a null check on the allocation result if the allocation 1611 // function is allowed to return null (because it has a non-throwing 1612 // exception spec or is the reserved placement new) and we have an 1613 // interesting initializer. 1614 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1615 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1616 1617 llvm::BasicBlock *nullCheckBB = nullptr; 1618 llvm::BasicBlock *contBB = nullptr; 1619 1620 // The null-check means that the initializer is conditionally 1621 // evaluated. 1622 ConditionalEvaluation conditional(*this); 1623 1624 if (nullCheck) { 1625 conditional.begin(*this); 1626 1627 nullCheckBB = Builder.GetInsertBlock(); 1628 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1629 contBB = createBasicBlock("new.cont"); 1630 1631 llvm::Value *isNull = 1632 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1633 Builder.CreateCondBr(isNull, contBB, notNullBB); 1634 EmitBlock(notNullBB); 1635 } 1636 1637 // If there's an operator delete, enter a cleanup to call it if an 1638 // exception is thrown. 1639 EHScopeStack::stable_iterator operatorDeleteCleanup; 1640 llvm::Instruction *cleanupDominator = nullptr; 1641 if (E->getOperatorDelete() && 1642 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1643 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1644 allocatorArgs); 1645 operatorDeleteCleanup = EHStack.stable_begin(); 1646 cleanupDominator = Builder.CreateUnreachable(); 1647 } 1648 1649 assert((allocSize == allocSizeWithoutCookie) == 1650 CalculateCookiePadding(*this, E).isZero()); 1651 if (allocSize != allocSizeWithoutCookie) { 1652 assert(E->isArray()); 1653 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1654 numElements, 1655 E, allocType); 1656 } 1657 1658 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1659 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1660 1661 // Passing pointer through invariant.group.barrier to avoid propagation of 1662 // vptrs information which may be included in previous type. 1663 // To not break LTO with different optimizations levels, we do it regardless 1664 // of optimization level. 1665 if (CGM.getCodeGenOpts().StrictVTablePointers && 1666 allocator->isReservedGlobalPlacementOperator()) 1667 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1668 result.getAlignment()); 1669 1670 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1671 allocSizeWithoutCookie); 1672 if (E->isArray()) { 1673 // NewPtr is a pointer to the base element type. If we're 1674 // allocating an array of arrays, we'll need to cast back to the 1675 // array pointer type. 1676 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1677 if (result.getType() != resultType) 1678 result = Builder.CreateBitCast(result, resultType); 1679 } 1680 1681 // Deactivate the 'operator delete' cleanup if we finished 1682 // initialization. 1683 if (operatorDeleteCleanup.isValid()) { 1684 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1685 cleanupDominator->eraseFromParent(); 1686 } 1687 1688 llvm::Value *resultPtr = result.getPointer(); 1689 if (nullCheck) { 1690 conditional.end(*this); 1691 1692 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1693 EmitBlock(contBB); 1694 1695 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1696 PHI->addIncoming(resultPtr, notNullBB); 1697 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1698 nullCheckBB); 1699 1700 resultPtr = PHI; 1701 } 1702 1703 return resultPtr; 1704 } 1705 1706 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1707 llvm::Value *Ptr, QualType DeleteTy, 1708 llvm::Value *NumElements, 1709 CharUnits CookieSize) { 1710 assert((!NumElements && CookieSize.isZero()) || 1711 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1712 1713 const FunctionProtoType *DeleteFTy = 1714 DeleteFD->getType()->getAs<FunctionProtoType>(); 1715 1716 CallArgList DeleteArgs; 1717 1718 std::pair<bool, bool> PassSizeAndAlign = 1719 shouldPassSizeAndAlignToUsualDelete(DeleteFTy); 1720 1721 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1722 1723 // Pass the pointer itself. 1724 QualType ArgTy = *ParamTypeIt++; 1725 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1726 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1727 1728 // Pass the size if the delete function has a size_t parameter. 1729 if (PassSizeAndAlign.first) { 1730 QualType SizeType = *ParamTypeIt++; 1731 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1732 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1733 DeleteTypeSize.getQuantity()); 1734 1735 // For array new, multiply by the number of elements. 1736 if (NumElements) 1737 Size = Builder.CreateMul(Size, NumElements); 1738 1739 // If there is a cookie, add the cookie size. 1740 if (!CookieSize.isZero()) 1741 Size = Builder.CreateAdd( 1742 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1743 1744 DeleteArgs.add(RValue::get(Size), SizeType); 1745 } 1746 1747 // Pass the alignment if the delete function has an align_val_t parameter. 1748 if (PassSizeAndAlign.second) { 1749 QualType AlignValType = *ParamTypeIt++; 1750 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1751 getContext().getTypeAlignIfKnown(DeleteTy)); 1752 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1753 DeleteTypeAlign.getQuantity()); 1754 DeleteArgs.add(RValue::get(Align), AlignValType); 1755 } 1756 1757 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1758 "unknown parameter to usual delete function"); 1759 1760 // Emit the call to delete. 1761 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1762 } 1763 1764 namespace { 1765 /// Calls the given 'operator delete' on a single object. 1766 struct CallObjectDelete final : EHScopeStack::Cleanup { 1767 llvm::Value *Ptr; 1768 const FunctionDecl *OperatorDelete; 1769 QualType ElementType; 1770 1771 CallObjectDelete(llvm::Value *Ptr, 1772 const FunctionDecl *OperatorDelete, 1773 QualType ElementType) 1774 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1775 1776 void Emit(CodeGenFunction &CGF, Flags flags) override { 1777 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1778 } 1779 }; 1780 } 1781 1782 void 1783 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1784 llvm::Value *CompletePtr, 1785 QualType ElementType) { 1786 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1787 OperatorDelete, ElementType); 1788 } 1789 1790 /// Emit the code for deleting a single object. 1791 static void EmitObjectDelete(CodeGenFunction &CGF, 1792 const CXXDeleteExpr *DE, 1793 Address Ptr, 1794 QualType ElementType) { 1795 // C++11 [expr.delete]p3: 1796 // If the static type of the object to be deleted is different from its 1797 // dynamic type, the static type shall be a base class of the dynamic type 1798 // of the object to be deleted and the static type shall have a virtual 1799 // destructor or the behavior is undefined. 1800 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1801 DE->getExprLoc(), Ptr.getPointer(), 1802 ElementType); 1803 1804 // Find the destructor for the type, if applicable. If the 1805 // destructor is virtual, we'll just emit the vcall and return. 1806 const CXXDestructorDecl *Dtor = nullptr; 1807 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1808 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1809 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1810 Dtor = RD->getDestructor(); 1811 1812 if (Dtor->isVirtual()) { 1813 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1814 Dtor); 1815 return; 1816 } 1817 } 1818 } 1819 1820 // Make sure that we call delete even if the dtor throws. 1821 // This doesn't have to a conditional cleanup because we're going 1822 // to pop it off in a second. 1823 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1824 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1825 Ptr.getPointer(), 1826 OperatorDelete, ElementType); 1827 1828 if (Dtor) 1829 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1830 /*ForVirtualBase=*/false, 1831 /*Delegating=*/false, 1832 Ptr); 1833 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1834 switch (Lifetime) { 1835 case Qualifiers::OCL_None: 1836 case Qualifiers::OCL_ExplicitNone: 1837 case Qualifiers::OCL_Autoreleasing: 1838 break; 1839 1840 case Qualifiers::OCL_Strong: 1841 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1842 break; 1843 1844 case Qualifiers::OCL_Weak: 1845 CGF.EmitARCDestroyWeak(Ptr); 1846 break; 1847 } 1848 } 1849 1850 CGF.PopCleanupBlock(); 1851 } 1852 1853 namespace { 1854 /// Calls the given 'operator delete' on an array of objects. 1855 struct CallArrayDelete final : EHScopeStack::Cleanup { 1856 llvm::Value *Ptr; 1857 const FunctionDecl *OperatorDelete; 1858 llvm::Value *NumElements; 1859 QualType ElementType; 1860 CharUnits CookieSize; 1861 1862 CallArrayDelete(llvm::Value *Ptr, 1863 const FunctionDecl *OperatorDelete, 1864 llvm::Value *NumElements, 1865 QualType ElementType, 1866 CharUnits CookieSize) 1867 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1868 ElementType(ElementType), CookieSize(CookieSize) {} 1869 1870 void Emit(CodeGenFunction &CGF, Flags flags) override { 1871 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1872 CookieSize); 1873 } 1874 }; 1875 } 1876 1877 /// Emit the code for deleting an array of objects. 1878 static void EmitArrayDelete(CodeGenFunction &CGF, 1879 const CXXDeleteExpr *E, 1880 Address deletedPtr, 1881 QualType elementType) { 1882 llvm::Value *numElements = nullptr; 1883 llvm::Value *allocatedPtr = nullptr; 1884 CharUnits cookieSize; 1885 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1886 numElements, allocatedPtr, cookieSize); 1887 1888 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1889 1890 // Make sure that we call delete even if one of the dtors throws. 1891 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1892 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1893 allocatedPtr, operatorDelete, 1894 numElements, elementType, 1895 cookieSize); 1896 1897 // Destroy the elements. 1898 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1899 assert(numElements && "no element count for a type with a destructor!"); 1900 1901 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1902 CharUnits elementAlign = 1903 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1904 1905 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1906 llvm::Value *arrayEnd = 1907 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1908 1909 // Note that it is legal to allocate a zero-length array, and we 1910 // can never fold the check away because the length should always 1911 // come from a cookie. 1912 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1913 CGF.getDestroyer(dtorKind), 1914 /*checkZeroLength*/ true, 1915 CGF.needsEHCleanup(dtorKind)); 1916 } 1917 1918 // Pop the cleanup block. 1919 CGF.PopCleanupBlock(); 1920 } 1921 1922 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1923 const Expr *Arg = E->getArgument(); 1924 Address Ptr = EmitPointerWithAlignment(Arg); 1925 1926 // Null check the pointer. 1927 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1928 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1929 1930 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1931 1932 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1933 EmitBlock(DeleteNotNull); 1934 1935 // We might be deleting a pointer to array. If so, GEP down to the 1936 // first non-array element. 1937 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1938 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1939 if (DeleteTy->isConstantArrayType()) { 1940 llvm::Value *Zero = Builder.getInt32(0); 1941 SmallVector<llvm::Value*,8> GEP; 1942 1943 GEP.push_back(Zero); // point at the outermost array 1944 1945 // For each layer of array type we're pointing at: 1946 while (const ConstantArrayType *Arr 1947 = getContext().getAsConstantArrayType(DeleteTy)) { 1948 // 1. Unpeel the array type. 1949 DeleteTy = Arr->getElementType(); 1950 1951 // 2. GEP to the first element of the array. 1952 GEP.push_back(Zero); 1953 } 1954 1955 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1956 Ptr.getAlignment()); 1957 } 1958 1959 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1960 1961 if (E->isArrayForm()) { 1962 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1963 } else { 1964 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1965 } 1966 1967 EmitBlock(DeleteEnd); 1968 } 1969 1970 static bool isGLValueFromPointerDeref(const Expr *E) { 1971 E = E->IgnoreParens(); 1972 1973 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1974 if (!CE->getSubExpr()->isGLValue()) 1975 return false; 1976 return isGLValueFromPointerDeref(CE->getSubExpr()); 1977 } 1978 1979 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1980 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1981 1982 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1983 if (BO->getOpcode() == BO_Comma) 1984 return isGLValueFromPointerDeref(BO->getRHS()); 1985 1986 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1987 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1988 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1989 1990 // C++11 [expr.sub]p1: 1991 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1992 if (isa<ArraySubscriptExpr>(E)) 1993 return true; 1994 1995 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1996 if (UO->getOpcode() == UO_Deref) 1997 return true; 1998 1999 return false; 2000 } 2001 2002 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2003 llvm::Type *StdTypeInfoPtrTy) { 2004 // Get the vtable pointer. 2005 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2006 2007 // C++ [expr.typeid]p2: 2008 // If the glvalue expression is obtained by applying the unary * operator to 2009 // a pointer and the pointer is a null pointer value, the typeid expression 2010 // throws the std::bad_typeid exception. 2011 // 2012 // However, this paragraph's intent is not clear. We choose a very generous 2013 // interpretation which implores us to consider comma operators, conditional 2014 // operators, parentheses and other such constructs. 2015 QualType SrcRecordTy = E->getType(); 2016 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2017 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2018 llvm::BasicBlock *BadTypeidBlock = 2019 CGF.createBasicBlock("typeid.bad_typeid"); 2020 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2021 2022 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2023 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2024 2025 CGF.EmitBlock(BadTypeidBlock); 2026 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2027 CGF.EmitBlock(EndBlock); 2028 } 2029 2030 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2031 StdTypeInfoPtrTy); 2032 } 2033 2034 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2035 llvm::Type *StdTypeInfoPtrTy = 2036 ConvertType(E->getType())->getPointerTo(); 2037 2038 if (E->isTypeOperand()) { 2039 llvm::Constant *TypeInfo = 2040 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2041 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2042 } 2043 2044 // C++ [expr.typeid]p2: 2045 // When typeid is applied to a glvalue expression whose type is a 2046 // polymorphic class type, the result refers to a std::type_info object 2047 // representing the type of the most derived object (that is, the dynamic 2048 // type) to which the glvalue refers. 2049 if (E->isPotentiallyEvaluated()) 2050 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2051 StdTypeInfoPtrTy); 2052 2053 QualType OperandTy = E->getExprOperand()->getType(); 2054 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2055 StdTypeInfoPtrTy); 2056 } 2057 2058 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2059 QualType DestTy) { 2060 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2061 if (DestTy->isPointerType()) 2062 return llvm::Constant::getNullValue(DestLTy); 2063 2064 /// C++ [expr.dynamic.cast]p9: 2065 /// A failed cast to reference type throws std::bad_cast 2066 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2067 return nullptr; 2068 2069 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2070 return llvm::UndefValue::get(DestLTy); 2071 } 2072 2073 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2074 const CXXDynamicCastExpr *DCE) { 2075 CGM.EmitExplicitCastExprType(DCE, this); 2076 QualType DestTy = DCE->getTypeAsWritten(); 2077 2078 if (DCE->isAlwaysNull()) 2079 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2080 return T; 2081 2082 QualType SrcTy = DCE->getSubExpr()->getType(); 2083 2084 // C++ [expr.dynamic.cast]p7: 2085 // If T is "pointer to cv void," then the result is a pointer to the most 2086 // derived object pointed to by v. 2087 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2088 2089 bool isDynamicCastToVoid; 2090 QualType SrcRecordTy; 2091 QualType DestRecordTy; 2092 if (DestPTy) { 2093 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2094 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2095 DestRecordTy = DestPTy->getPointeeType(); 2096 } else { 2097 isDynamicCastToVoid = false; 2098 SrcRecordTy = SrcTy; 2099 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2100 } 2101 2102 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2103 2104 // C++ [expr.dynamic.cast]p4: 2105 // If the value of v is a null pointer value in the pointer case, the result 2106 // is the null pointer value of type T. 2107 bool ShouldNullCheckSrcValue = 2108 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2109 SrcRecordTy); 2110 2111 llvm::BasicBlock *CastNull = nullptr; 2112 llvm::BasicBlock *CastNotNull = nullptr; 2113 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2114 2115 if (ShouldNullCheckSrcValue) { 2116 CastNull = createBasicBlock("dynamic_cast.null"); 2117 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2118 2119 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2120 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2121 EmitBlock(CastNotNull); 2122 } 2123 2124 llvm::Value *Value; 2125 if (isDynamicCastToVoid) { 2126 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2127 DestTy); 2128 } else { 2129 assert(DestRecordTy->isRecordType() && 2130 "destination type must be a record type!"); 2131 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2132 DestTy, DestRecordTy, CastEnd); 2133 CastNotNull = Builder.GetInsertBlock(); 2134 } 2135 2136 if (ShouldNullCheckSrcValue) { 2137 EmitBranch(CastEnd); 2138 2139 EmitBlock(CastNull); 2140 EmitBranch(CastEnd); 2141 } 2142 2143 EmitBlock(CastEnd); 2144 2145 if (ShouldNullCheckSrcValue) { 2146 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2147 PHI->addIncoming(Value, CastNotNull); 2148 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2149 2150 Value = PHI; 2151 } 2152 2153 return Value; 2154 } 2155 2156 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 2157 RunCleanupsScope Scope(*this); 2158 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 2159 2160 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 2161 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2162 e = E->capture_init_end(); 2163 i != e; ++i, ++CurField) { 2164 // Emit initialization 2165 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2166 if (CurField->hasCapturedVLAType()) { 2167 auto VAT = CurField->getCapturedVLAType(); 2168 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2169 } else { 2170 EmitInitializerForField(*CurField, LV, *i); 2171 } 2172 } 2173 } 2174