159486a2dSAnders Carlsson //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 259486a2dSAnders Carlsson // 359486a2dSAnders Carlsson // The LLVM Compiler Infrastructure 459486a2dSAnders Carlsson // 559486a2dSAnders Carlsson // This file is distributed under the University of Illinois Open Source 659486a2dSAnders Carlsson // License. See LICENSE.TXT for details. 759486a2dSAnders Carlsson // 859486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 959486a2dSAnders Carlsson // 1059486a2dSAnders Carlsson // This contains code dealing with code generation of C++ expressions 1159486a2dSAnders Carlsson // 1259486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 1359486a2dSAnders Carlsson 1491bbb554SDevang Patel #include "clang/Frontend/CodeGenOptions.h" 1559486a2dSAnders Carlsson #include "CodeGenFunction.h" 16fe883422SPeter Collingbourne #include "CGCUDARuntime.h" 175d865c32SJohn McCall #include "CGCXXABI.h" 1860d215b6SFariborz Jahanian #include "CGObjCRuntime.h" 1991bbb554SDevang Patel #include "CGDebugInfo.h" 2026008e07SChris Lattner #include "llvm/Intrinsics.h" 21bbe277c4SAnders Carlsson #include "llvm/Support/CallSite.h" 22bbe277c4SAnders Carlsson 2359486a2dSAnders Carlsson using namespace clang; 2459486a2dSAnders Carlsson using namespace CodeGen; 2559486a2dSAnders Carlsson 2627da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 2727da15baSAnders Carlsson llvm::Value *Callee, 2827da15baSAnders Carlsson ReturnValueSlot ReturnValue, 2927da15baSAnders Carlsson llvm::Value *This, 30e36a6b3eSAnders Carlsson llvm::Value *VTT, 3127da15baSAnders Carlsson CallExpr::const_arg_iterator ArgBeg, 3227da15baSAnders Carlsson CallExpr::const_arg_iterator ArgEnd) { 3327da15baSAnders Carlsson assert(MD->isInstance() && 3427da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 3527da15baSAnders Carlsson 3627da15baSAnders Carlsson CallArgList Args; 3727da15baSAnders Carlsson 3827da15baSAnders Carlsson // Push the this ptr. 3943dca6a8SEli Friedman Args.add(RValue::get(This), MD->getThisType(getContext())); 4027da15baSAnders Carlsson 41e36a6b3eSAnders Carlsson // If there is a VTT parameter, emit it. 42e36a6b3eSAnders Carlsson if (VTT) { 43e36a6b3eSAnders Carlsson QualType T = getContext().getPointerType(getContext().VoidPtrTy); 4443dca6a8SEli Friedman Args.add(RValue::get(VTT), T); 45e36a6b3eSAnders Carlsson } 46e36a6b3eSAnders Carlsson 47a729c62bSJohn McCall const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 48a729c62bSJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 49a729c62bSJohn McCall 50a729c62bSJohn McCall // And the rest of the call args. 5127da15baSAnders Carlsson EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 5227da15baSAnders Carlsson 538dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 54c50c27ccSRafael Espindola Callee, ReturnValue, Args, MD); 5527da15baSAnders Carlsson } 5627da15baSAnders Carlsson 57c53d9e83SAnders Carlsson // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 58c53d9e83SAnders Carlsson // quite what we want. 59c53d9e83SAnders Carlsson static const Expr *skipNoOpCastsAndParens(const Expr *E) { 60c53d9e83SAnders Carlsson while (true) { 61c53d9e83SAnders Carlsson if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 62c53d9e83SAnders Carlsson E = PE->getSubExpr(); 63c53d9e83SAnders Carlsson continue; 64c53d9e83SAnders Carlsson } 65c53d9e83SAnders Carlsson 66c53d9e83SAnders Carlsson if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 67c53d9e83SAnders Carlsson if (CE->getCastKind() == CK_NoOp) { 68c53d9e83SAnders Carlsson E = CE->getSubExpr(); 69c53d9e83SAnders Carlsson continue; 70c53d9e83SAnders Carlsson } 71c53d9e83SAnders Carlsson } 72c53d9e83SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 73c53d9e83SAnders Carlsson if (UO->getOpcode() == UO_Extension) { 74c53d9e83SAnders Carlsson E = UO->getSubExpr(); 75c53d9e83SAnders Carlsson continue; 76c53d9e83SAnders Carlsson } 77c53d9e83SAnders Carlsson } 78c53d9e83SAnders Carlsson return E; 79c53d9e83SAnders Carlsson } 80c53d9e83SAnders Carlsson } 81c53d9e83SAnders Carlsson 8227da15baSAnders Carlsson /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 8327da15baSAnders Carlsson /// expr can be devirtualized. 84252a47f6SFariborz Jahanian static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 85252a47f6SFariborz Jahanian const Expr *Base, 86a7911fa3SAnders Carlsson const CXXMethodDecl *MD) { 87a7911fa3SAnders Carlsson 881ae64c5aSAnders Carlsson // When building with -fapple-kext, all calls must go through the vtable since 891ae64c5aSAnders Carlsson // the kernel linker can do runtime patching of vtables. 90bbafb8a7SDavid Blaikie if (Context.getLangOpts().AppleKext) 91252a47f6SFariborz Jahanian return false; 92252a47f6SFariborz Jahanian 931ae64c5aSAnders Carlsson // If the most derived class is marked final, we know that no subclass can 941ae64c5aSAnders Carlsson // override this member function and so we can devirtualize it. For example: 951ae64c5aSAnders Carlsson // 961ae64c5aSAnders Carlsson // struct A { virtual void f(); } 971ae64c5aSAnders Carlsson // struct B final : A { }; 981ae64c5aSAnders Carlsson // 991ae64c5aSAnders Carlsson // void f(B *b) { 1001ae64c5aSAnders Carlsson // b->f(); 1011ae64c5aSAnders Carlsson // } 1021ae64c5aSAnders Carlsson // 103b7f5a9c5SRafael Espindola const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 1041ae64c5aSAnders Carlsson if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 1051ae64c5aSAnders Carlsson return true; 1061ae64c5aSAnders Carlsson 10719588aa4SAnders Carlsson // If the member function is marked 'final', we know that it can't be 108b00c2144SAnders Carlsson // overridden and can therefore devirtualize it. 1091eb95961SAnders Carlsson if (MD->hasAttr<FinalAttr>()) 110a7911fa3SAnders Carlsson return true; 111a7911fa3SAnders Carlsson 11219588aa4SAnders Carlsson // Similarly, if the class itself is marked 'final' it can't be overridden 11319588aa4SAnders Carlsson // and we can therefore devirtualize the member function call. 1141eb95961SAnders Carlsson if (MD->getParent()->hasAttr<FinalAttr>()) 115b00c2144SAnders Carlsson return true; 116b00c2144SAnders Carlsson 117c53d9e83SAnders Carlsson Base = skipNoOpCastsAndParens(Base); 11827da15baSAnders Carlsson if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 11927da15baSAnders Carlsson if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 12027da15baSAnders Carlsson // This is a record decl. We know the type and can devirtualize it. 12127da15baSAnders Carlsson return VD->getType()->isRecordType(); 12227da15baSAnders Carlsson } 12327da15baSAnders Carlsson 12427da15baSAnders Carlsson return false; 12527da15baSAnders Carlsson } 12627da15baSAnders Carlsson 12727da15baSAnders Carlsson // We can always devirtualize calls on temporary object expressions. 128a682427eSEli Friedman if (isa<CXXConstructExpr>(Base)) 12927da15baSAnders Carlsson return true; 13027da15baSAnders Carlsson 13127da15baSAnders Carlsson // And calls on bound temporaries. 13227da15baSAnders Carlsson if (isa<CXXBindTemporaryExpr>(Base)) 13327da15baSAnders Carlsson return true; 13427da15baSAnders Carlsson 13527da15baSAnders Carlsson // Check if this is a call expr that returns a record type. 13627da15baSAnders Carlsson if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 13727da15baSAnders Carlsson return CE->getCallReturnType()->isRecordType(); 13827da15baSAnders Carlsson 13927da15baSAnders Carlsson // We can't devirtualize the call. 14027da15baSAnders Carlsson return false; 14127da15baSAnders Carlsson } 14227da15baSAnders Carlsson 1433b33c4ecSRafael Espindola static CXXRecordDecl *getCXXRecord(const Expr *E) { 1443b33c4ecSRafael Espindola QualType T = E->getType(); 1453b33c4ecSRafael Espindola if (const PointerType *PTy = T->getAs<PointerType>()) 1463b33c4ecSRafael Espindola T = PTy->getPointeeType(); 1473b33c4ecSRafael Espindola const RecordType *Ty = T->castAs<RecordType>(); 1483b33c4ecSRafael Espindola return cast<CXXRecordDecl>(Ty->getDecl()); 1493b33c4ecSRafael Espindola } 1503b33c4ecSRafael Espindola 15164225794SFrancois Pichet // Note: This function also emit constructor calls to support a MSVC 15264225794SFrancois Pichet // extensions allowing explicit constructor function call. 15327da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 15427da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 1552d2e8707SJohn McCall const Expr *callee = CE->getCallee()->IgnoreParens(); 1562d2e8707SJohn McCall 1572d2e8707SJohn McCall if (isa<BinaryOperator>(callee)) 15827da15baSAnders Carlsson return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 15927da15baSAnders Carlsson 1602d2e8707SJohn McCall const MemberExpr *ME = cast<MemberExpr>(callee); 16127da15baSAnders Carlsson const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 16227da15baSAnders Carlsson 16391bbb554SDevang Patel CGDebugInfo *DI = getDebugInfo(); 164486e1fe9SAlexey Samsonov if (DI && CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo 165401c916cSDevang Patel && !isa<CallExpr>(ME->getBase())) { 16691bbb554SDevang Patel QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 16791bbb554SDevang Patel if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 16891bbb554SDevang Patel DI->getOrCreateRecordType(PTy->getPointeeType(), 16991bbb554SDevang Patel MD->getParent()->getLocation()); 17091bbb554SDevang Patel } 17191bbb554SDevang Patel } 17291bbb554SDevang Patel 17327da15baSAnders Carlsson if (MD->isStatic()) { 17427da15baSAnders Carlsson // The method is static, emit it as we would a regular call. 17527da15baSAnders Carlsson llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 17627da15baSAnders Carlsson return EmitCall(getContext().getPointerType(MD->getType()), Callee, 17727da15baSAnders Carlsson ReturnValue, CE->arg_begin(), CE->arg_end()); 17827da15baSAnders Carlsson } 17927da15baSAnders Carlsson 1800d635f53SJohn McCall // Compute the object pointer. 181ecbe2e97SRafael Espindola const Expr *Base = ME->getBase(); 182ecbe2e97SRafael Espindola bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 183ecbe2e97SRafael Espindola 1843b33c4ecSRafael Espindola const CXXMethodDecl *DevirtualizedMethod = NULL; 1853b33c4ecSRafael Espindola if (CanUseVirtualCall && 1863b33c4ecSRafael Espindola canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 1873b33c4ecSRafael Espindola const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 1883b33c4ecSRafael Espindola DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 1893b33c4ecSRafael Espindola assert(DevirtualizedMethod); 1903b33c4ecSRafael Espindola const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 1913b33c4ecSRafael Espindola const Expr *Inner = Base->ignoreParenBaseCasts(); 1923b33c4ecSRafael Espindola if (getCXXRecord(Inner) == DevirtualizedClass) 1933b33c4ecSRafael Espindola // If the class of the Inner expression is where the dynamic method 1943b33c4ecSRafael Espindola // is defined, build the this pointer from it. 1953b33c4ecSRafael Espindola Base = Inner; 1963b33c4ecSRafael Espindola else if (getCXXRecord(Base) != DevirtualizedClass) { 1973b33c4ecSRafael Espindola // If the method is defined in a class that is not the best dynamic 1983b33c4ecSRafael Espindola // one or the one of the full expression, we would have to build 1993b33c4ecSRafael Espindola // a derived-to-base cast to compute the correct this pointer, but 2003b33c4ecSRafael Espindola // we don't have support for that yet, so do a virtual call. 2013b33c4ecSRafael Espindola DevirtualizedMethod = NULL; 2023b33c4ecSRafael Espindola } 203b27564afSRafael Espindola // If the return types are not the same, this might be a case where more 204b27564afSRafael Espindola // code needs to run to compensate for it. For example, the derived 205b27564afSRafael Espindola // method might return a type that inherits form from the return 206b27564afSRafael Espindola // type of MD and has a prefix. 207b27564afSRafael Espindola // For now we just avoid devirtualizing these covariant cases. 208b27564afSRafael Espindola if (DevirtualizedMethod && 209b27564afSRafael Espindola DevirtualizedMethod->getResultType().getCanonicalType() != 210b27564afSRafael Espindola MD->getResultType().getCanonicalType()) 211debc71ceSRafael Espindola DevirtualizedMethod = NULL; 2123b33c4ecSRafael Espindola } 213ecbe2e97SRafael Espindola 21427da15baSAnders Carlsson llvm::Value *This; 21527da15baSAnders Carlsson if (ME->isArrow()) 2163b33c4ecSRafael Espindola This = EmitScalarExpr(Base); 217f93ac894SFariborz Jahanian else 2183b33c4ecSRafael Espindola This = EmitLValue(Base).getAddress(); 219ecbe2e97SRafael Espindola 22027da15baSAnders Carlsson 2210d635f53SJohn McCall if (MD->isTrivial()) { 2220d635f53SJohn McCall if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 22364225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 22464225794SFrancois Pichet cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 22564225794SFrancois Pichet return RValue::get(0); 2260d635f53SJohn McCall 22722653bacSSebastian Redl if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 22822653bacSSebastian Redl // We don't like to generate the trivial copy/move assignment operator 22922653bacSSebastian Redl // when it isn't necessary; just produce the proper effect here. 23027da15baSAnders Carlsson llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 23127da15baSAnders Carlsson EmitAggregateCopy(This, RHS, CE->getType()); 23227da15baSAnders Carlsson return RValue::get(This); 23327da15baSAnders Carlsson } 23427da15baSAnders Carlsson 23564225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 23622653bacSSebastian Redl cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 23722653bacSSebastian Redl // Trivial move and copy ctor are the same. 23864225794SFrancois Pichet llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 23964225794SFrancois Pichet EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 24064225794SFrancois Pichet CE->arg_begin(), CE->arg_end()); 24164225794SFrancois Pichet return RValue::get(This); 24264225794SFrancois Pichet } 24364225794SFrancois Pichet llvm_unreachable("unknown trivial member function"); 24464225794SFrancois Pichet } 24564225794SFrancois Pichet 2460d635f53SJohn McCall // Compute the function type we're calling. 24764225794SFrancois Pichet const CGFunctionInfo *FInfo = 0; 24864225794SFrancois Pichet if (isa<CXXDestructorDecl>(MD)) 249a729c62bSJohn McCall FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), 25064225794SFrancois Pichet Dtor_Complete); 25164225794SFrancois Pichet else if (isa<CXXConstructorDecl>(MD)) 252a729c62bSJohn McCall FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration( 253a729c62bSJohn McCall cast<CXXConstructorDecl>(MD), 25464225794SFrancois Pichet Ctor_Complete); 25564225794SFrancois Pichet else 256a729c62bSJohn McCall FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD); 2570d635f53SJohn McCall 258a729c62bSJohn McCall llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 2590d635f53SJohn McCall 26027da15baSAnders Carlsson // C++ [class.virtual]p12: 26127da15baSAnders Carlsson // Explicit qualification with the scope operator (5.1) suppresses the 26227da15baSAnders Carlsson // virtual call mechanism. 26327da15baSAnders Carlsson // 26427da15baSAnders Carlsson // We also don't emit a virtual call if the base expression has a record type 26527da15baSAnders Carlsson // because then we know what the type is. 2663b33c4ecSRafael Espindola bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 26749e860b2SRafael Espindola 26827da15baSAnders Carlsson llvm::Value *Callee; 2690d635f53SJohn McCall if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 2700d635f53SJohn McCall if (UseVirtualCall) { 2710d635f53SJohn McCall Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 27227da15baSAnders Carlsson } else { 273bbafb8a7SDavid Blaikie if (getContext().getLangOpts().AppleKext && 274265c325eSFariborz Jahanian MD->isVirtual() && 275265c325eSFariborz Jahanian ME->hasQualifier()) 2767f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 2773b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 278727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 27949e860b2SRafael Espindola else { 2803b33c4ecSRafael Espindola const CXXDestructorDecl *DDtor = 2813b33c4ecSRafael Espindola cast<CXXDestructorDecl>(DevirtualizedMethod); 28249e860b2SRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 28349e860b2SRafael Espindola } 28427da15baSAnders Carlsson } 28564225794SFrancois Pichet } else if (const CXXConstructorDecl *Ctor = 28664225794SFrancois Pichet dyn_cast<CXXConstructorDecl>(MD)) { 28764225794SFrancois Pichet Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 2880d635f53SJohn McCall } else if (UseVirtualCall) { 28927da15baSAnders Carlsson Callee = BuildVirtualCall(MD, This, Ty); 29027da15baSAnders Carlsson } else { 291bbafb8a7SDavid Blaikie if (getContext().getLangOpts().AppleKext && 2929f9438b3SFariborz Jahanian MD->isVirtual() && 293252a47f6SFariborz Jahanian ME->hasQualifier()) 2947f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 2953b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 296727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(MD, Ty); 29749e860b2SRafael Espindola else { 2983b33c4ecSRafael Espindola Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 29949e860b2SRafael Espindola } 30027da15baSAnders Carlsson } 30127da15baSAnders Carlsson 302e36a6b3eSAnders Carlsson return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 30327da15baSAnders Carlsson CE->arg_begin(), CE->arg_end()); 30427da15baSAnders Carlsson } 30527da15baSAnders Carlsson 30627da15baSAnders Carlsson RValue 30727da15baSAnders Carlsson CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 30827da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 30927da15baSAnders Carlsson const BinaryOperator *BO = 31027da15baSAnders Carlsson cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 31127da15baSAnders Carlsson const Expr *BaseExpr = BO->getLHS(); 31227da15baSAnders Carlsson const Expr *MemFnExpr = BO->getRHS(); 31327da15baSAnders Carlsson 31427da15baSAnders Carlsson const MemberPointerType *MPT = 3150009fcc3SJohn McCall MemFnExpr->getType()->castAs<MemberPointerType>(); 316475999dcSJohn McCall 31727da15baSAnders Carlsson const FunctionProtoType *FPT = 3180009fcc3SJohn McCall MPT->getPointeeType()->castAs<FunctionProtoType>(); 31927da15baSAnders Carlsson const CXXRecordDecl *RD = 32027da15baSAnders Carlsson cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 32127da15baSAnders Carlsson 32227da15baSAnders Carlsson // Get the member function pointer. 323a1dee530SJohn McCall llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 32427da15baSAnders Carlsson 32527da15baSAnders Carlsson // Emit the 'this' pointer. 32627da15baSAnders Carlsson llvm::Value *This; 32727da15baSAnders Carlsson 328e302792bSJohn McCall if (BO->getOpcode() == BO_PtrMemI) 32927da15baSAnders Carlsson This = EmitScalarExpr(BaseExpr); 33027da15baSAnders Carlsson else 33127da15baSAnders Carlsson This = EmitLValue(BaseExpr).getAddress(); 33227da15baSAnders Carlsson 333475999dcSJohn McCall // Ask the ABI to load the callee. Note that This is modified. 334475999dcSJohn McCall llvm::Value *Callee = 335ad7c5c16SJohn McCall CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 33627da15baSAnders Carlsson 33727da15baSAnders Carlsson CallArgList Args; 33827da15baSAnders Carlsson 33927da15baSAnders Carlsson QualType ThisType = 34027da15baSAnders Carlsson getContext().getPointerType(getContext().getTagDeclType(RD)); 34127da15baSAnders Carlsson 34227da15baSAnders Carlsson // Push the this ptr. 34343dca6a8SEli Friedman Args.add(RValue::get(This), ThisType); 34427da15baSAnders Carlsson 3458dda7b27SJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 3468dda7b27SJohn McCall 34727da15baSAnders Carlsson // And the rest of the call args 34827da15baSAnders Carlsson EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 3498dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 35099cc30c3STilmann Scheller ReturnValue, Args); 35127da15baSAnders Carlsson } 35227da15baSAnders Carlsson 35327da15baSAnders Carlsson RValue 35427da15baSAnders Carlsson CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 35527da15baSAnders Carlsson const CXXMethodDecl *MD, 35627da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 35727da15baSAnders Carlsson assert(MD->isInstance() && 35827da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 359e26a872bSJohn McCall LValue LV = EmitLValue(E->getArg(0)); 360e26a872bSJohn McCall llvm::Value *This = LV.getAddress(); 361e26a872bSJohn McCall 362146b8e9aSDouglas Gregor if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 363146b8e9aSDouglas Gregor MD->isTrivial()) { 36427da15baSAnders Carlsson llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 36527da15baSAnders Carlsson QualType Ty = E->getType(); 36627da15baSAnders Carlsson EmitAggregateCopy(This, Src, Ty); 36727da15baSAnders Carlsson return RValue::get(This); 36827da15baSAnders Carlsson } 36927da15baSAnders Carlsson 370c36783e8SAnders Carlsson llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 371e36a6b3eSAnders Carlsson return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 37227da15baSAnders Carlsson E->arg_begin() + 1, E->arg_end()); 37327da15baSAnders Carlsson } 37427da15baSAnders Carlsson 375fe883422SPeter Collingbourne RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 376fe883422SPeter Collingbourne ReturnValueSlot ReturnValue) { 377fe883422SPeter Collingbourne return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 378fe883422SPeter Collingbourne } 379fe883422SPeter Collingbourne 380fde961dbSEli Friedman static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 381fde961dbSEli Friedman llvm::Value *DestPtr, 382fde961dbSEli Friedman const CXXRecordDecl *Base) { 383fde961dbSEli Friedman if (Base->isEmpty()) 384fde961dbSEli Friedman return; 385fde961dbSEli Friedman 386fde961dbSEli Friedman DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 387fde961dbSEli Friedman 388fde961dbSEli Friedman const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 389fde961dbSEli Friedman CharUnits Size = Layout.getNonVirtualSize(); 390fde961dbSEli Friedman CharUnits Align = Layout.getNonVirtualAlign(); 391fde961dbSEli Friedman 392fde961dbSEli Friedman llvm::Value *SizeVal = CGF.CGM.getSize(Size); 393fde961dbSEli Friedman 394fde961dbSEli Friedman // If the type contains a pointer to data member we can't memset it to zero. 395fde961dbSEli Friedman // Instead, create a null constant and copy it to the destination. 396fde961dbSEli Friedman // TODO: there are other patterns besides zero that we can usefully memset, 397fde961dbSEli Friedman // like -1, which happens to be the pattern used by member-pointers. 398fde961dbSEli Friedman // TODO: isZeroInitializable can be over-conservative in the case where a 399fde961dbSEli Friedman // virtual base contains a member pointer. 400fde961dbSEli Friedman if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 401fde961dbSEli Friedman llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 402fde961dbSEli Friedman 403fde961dbSEli Friedman llvm::GlobalVariable *NullVariable = 404fde961dbSEli Friedman new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 405fde961dbSEli Friedman /*isConstant=*/true, 406fde961dbSEli Friedman llvm::GlobalVariable::PrivateLinkage, 407fde961dbSEli Friedman NullConstant, Twine()); 408fde961dbSEli Friedman NullVariable->setAlignment(Align.getQuantity()); 409fde961dbSEli Friedman llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 410fde961dbSEli Friedman 411fde961dbSEli Friedman // Get and call the appropriate llvm.memcpy overload. 412fde961dbSEli Friedman CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 413fde961dbSEli Friedman return; 414fde961dbSEli Friedman } 415fde961dbSEli Friedman 416fde961dbSEli Friedman // Otherwise, just memset the whole thing to zero. This is legal 417fde961dbSEli Friedman // because in LLVM, all default initializers (other than the ones we just 418fde961dbSEli Friedman // handled above) are guaranteed to have a bit pattern of all zeros. 419fde961dbSEli Friedman CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 420fde961dbSEli Friedman Align.getQuantity()); 421fde961dbSEli Friedman } 422fde961dbSEli Friedman 42327da15baSAnders Carlsson void 4247a626f63SJohn McCall CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 4257a626f63SJohn McCall AggValueSlot Dest) { 4267a626f63SJohn McCall assert(!Dest.isIgnored() && "Must have a destination!"); 42727da15baSAnders Carlsson const CXXConstructorDecl *CD = E->getConstructor(); 428630c76efSDouglas Gregor 429630c76efSDouglas Gregor // If we require zero initialization before (or instead of) calling the 430630c76efSDouglas Gregor // constructor, as can be the case with a non-user-provided default 43103535265SArgyrios Kyrtzidis // constructor, emit the zero initialization now, unless destination is 43203535265SArgyrios Kyrtzidis // already zeroed. 433fde961dbSEli Friedman if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 434fde961dbSEli Friedman switch (E->getConstructionKind()) { 435fde961dbSEli Friedman case CXXConstructExpr::CK_Delegating: 436fde961dbSEli Friedman case CXXConstructExpr::CK_Complete: 4377a626f63SJohn McCall EmitNullInitialization(Dest.getAddr(), E->getType()); 438fde961dbSEli Friedman break; 439fde961dbSEli Friedman case CXXConstructExpr::CK_VirtualBase: 440fde961dbSEli Friedman case CXXConstructExpr::CK_NonVirtualBase: 441fde961dbSEli Friedman EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 442fde961dbSEli Friedman break; 443fde961dbSEli Friedman } 444fde961dbSEli Friedman } 445630c76efSDouglas Gregor 446630c76efSDouglas Gregor // If this is a call to a trivial default constructor, do nothing. 447630c76efSDouglas Gregor if (CD->isTrivial() && CD->isDefaultConstructor()) 44827da15baSAnders Carlsson return; 449630c76efSDouglas Gregor 4508ea46b66SJohn McCall // Elide the constructor if we're constructing from a temporary. 4518ea46b66SJohn McCall // The temporary check is required because Sema sets this on NRVO 4528ea46b66SJohn McCall // returns. 453bbafb8a7SDavid Blaikie if (getContext().getLangOpts().ElideConstructors && E->isElidable()) { 4548ea46b66SJohn McCall assert(getContext().hasSameUnqualifiedType(E->getType(), 4558ea46b66SJohn McCall E->getArg(0)->getType())); 4567a626f63SJohn McCall if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 4577a626f63SJohn McCall EmitAggExpr(E->getArg(0), Dest); 45827da15baSAnders Carlsson return; 45927da15baSAnders Carlsson } 460222cf0efSDouglas Gregor } 461630c76efSDouglas Gregor 462f677a8e9SJohn McCall if (const ConstantArrayType *arrayType 463f677a8e9SJohn McCall = getContext().getAsConstantArrayType(E->getType())) { 464f677a8e9SJohn McCall EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 46527da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 466f677a8e9SJohn McCall } else { 467bceca20aSCameron Esfahani CXXCtorType Type = Ctor_Complete; 468271c3681SAlexis Hunt bool ForVirtualBase = false; 469271c3681SAlexis Hunt 470271c3681SAlexis Hunt switch (E->getConstructionKind()) { 471271c3681SAlexis Hunt case CXXConstructExpr::CK_Delegating: 47261bc1737SAlexis Hunt // We should be emitting a constructor; GlobalDecl will assert this 47361bc1737SAlexis Hunt Type = CurGD.getCtorType(); 474271c3681SAlexis Hunt break; 47561bc1737SAlexis Hunt 476271c3681SAlexis Hunt case CXXConstructExpr::CK_Complete: 477271c3681SAlexis Hunt Type = Ctor_Complete; 478271c3681SAlexis Hunt break; 479271c3681SAlexis Hunt 480271c3681SAlexis Hunt case CXXConstructExpr::CK_VirtualBase: 481271c3681SAlexis Hunt ForVirtualBase = true; 482271c3681SAlexis Hunt // fall-through 483271c3681SAlexis Hunt 484271c3681SAlexis Hunt case CXXConstructExpr::CK_NonVirtualBase: 485271c3681SAlexis Hunt Type = Ctor_Base; 486271c3681SAlexis Hunt } 487e11f9ce9SAnders Carlsson 48827da15baSAnders Carlsson // Call the constructor. 4897a626f63SJohn McCall EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 49027da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 49127da15baSAnders Carlsson } 492e11f9ce9SAnders Carlsson } 49327da15baSAnders Carlsson 494e988bdacSFariborz Jahanian void 495e988bdacSFariborz Jahanian CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 496e988bdacSFariborz Jahanian llvm::Value *Src, 49750198098SFariborz Jahanian const Expr *Exp) { 4985d413781SJohn McCall if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 499e988bdacSFariborz Jahanian Exp = E->getSubExpr(); 500e988bdacSFariborz Jahanian assert(isa<CXXConstructExpr>(Exp) && 501e988bdacSFariborz Jahanian "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 502e988bdacSFariborz Jahanian const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 503e988bdacSFariborz Jahanian const CXXConstructorDecl *CD = E->getConstructor(); 504e988bdacSFariborz Jahanian RunCleanupsScope Scope(*this); 505e988bdacSFariborz Jahanian 506e988bdacSFariborz Jahanian // If we require zero initialization before (or instead of) calling the 507e988bdacSFariborz Jahanian // constructor, as can be the case with a non-user-provided default 508e988bdacSFariborz Jahanian // constructor, emit the zero initialization now. 509e988bdacSFariborz Jahanian // FIXME. Do I still need this for a copy ctor synthesis? 510e988bdacSFariborz Jahanian if (E->requiresZeroInitialization()) 511e988bdacSFariborz Jahanian EmitNullInitialization(Dest, E->getType()); 512e988bdacSFariborz Jahanian 51399da11cfSChandler Carruth assert(!getContext().getAsConstantArrayType(E->getType()) 51499da11cfSChandler Carruth && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 515e988bdacSFariborz Jahanian EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 516e988bdacSFariborz Jahanian E->arg_begin(), E->arg_end()); 517e988bdacSFariborz Jahanian } 518e988bdacSFariborz Jahanian 5198ed55a54SJohn McCall static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 5208ed55a54SJohn McCall const CXXNewExpr *E) { 52121122cf6SAnders Carlsson if (!E->isArray()) 5223eb55cfeSKen Dyck return CharUnits::Zero(); 52321122cf6SAnders Carlsson 5247ec4b434SJohn McCall // No cookie is required if the operator new[] being used is the 5257ec4b434SJohn McCall // reserved placement operator new[]. 5267ec4b434SJohn McCall if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 5273eb55cfeSKen Dyck return CharUnits::Zero(); 528399f499fSAnders Carlsson 529284c48ffSJohn McCall return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 53059486a2dSAnders Carlsson } 53159486a2dSAnders Carlsson 532036f2f6bSJohn McCall static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 533036f2f6bSJohn McCall const CXXNewExpr *e, 534f862eb6aSSebastian Redl unsigned minElements, 535036f2f6bSJohn McCall llvm::Value *&numElements, 536036f2f6bSJohn McCall llvm::Value *&sizeWithoutCookie) { 537036f2f6bSJohn McCall QualType type = e->getAllocatedType(); 53859486a2dSAnders Carlsson 539036f2f6bSJohn McCall if (!e->isArray()) { 540036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 541036f2f6bSJohn McCall sizeWithoutCookie 542036f2f6bSJohn McCall = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 543036f2f6bSJohn McCall return sizeWithoutCookie; 54405fc5be3SDouglas Gregor } 54559486a2dSAnders Carlsson 546036f2f6bSJohn McCall // The width of size_t. 547036f2f6bSJohn McCall unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 548036f2f6bSJohn McCall 5498ed55a54SJohn McCall // Figure out the cookie size. 550036f2f6bSJohn McCall llvm::APInt cookieSize(sizeWidth, 551036f2f6bSJohn McCall CalculateCookiePadding(CGF, e).getQuantity()); 5528ed55a54SJohn McCall 55359486a2dSAnders Carlsson // Emit the array size expression. 5547648fb46SArgyrios Kyrtzidis // We multiply the size of all dimensions for NumElements. 5557648fb46SArgyrios Kyrtzidis // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 556036f2f6bSJohn McCall numElements = CGF.EmitScalarExpr(e->getArraySize()); 557036f2f6bSJohn McCall assert(isa<llvm::IntegerType>(numElements->getType())); 5588ed55a54SJohn McCall 559036f2f6bSJohn McCall // The number of elements can be have an arbitrary integer type; 560036f2f6bSJohn McCall // essentially, we need to multiply it by a constant factor, add a 561036f2f6bSJohn McCall // cookie size, and verify that the result is representable as a 562036f2f6bSJohn McCall // size_t. That's just a gloss, though, and it's wrong in one 563036f2f6bSJohn McCall // important way: if the count is negative, it's an error even if 564036f2f6bSJohn McCall // the cookie size would bring the total size >= 0. 5656ab2fa8fSDouglas Gregor bool isSigned 5666ab2fa8fSDouglas Gregor = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 5672192fe50SChris Lattner llvm::IntegerType *numElementsType 568036f2f6bSJohn McCall = cast<llvm::IntegerType>(numElements->getType()); 569036f2f6bSJohn McCall unsigned numElementsWidth = numElementsType->getBitWidth(); 570036f2f6bSJohn McCall 571036f2f6bSJohn McCall // Compute the constant factor. 572036f2f6bSJohn McCall llvm::APInt arraySizeMultiplier(sizeWidth, 1); 5737648fb46SArgyrios Kyrtzidis while (const ConstantArrayType *CAT 574036f2f6bSJohn McCall = CGF.getContext().getAsConstantArrayType(type)) { 575036f2f6bSJohn McCall type = CAT->getElementType(); 576036f2f6bSJohn McCall arraySizeMultiplier *= CAT->getSize(); 5777648fb46SArgyrios Kyrtzidis } 57859486a2dSAnders Carlsson 579036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 580036f2f6bSJohn McCall llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 581036f2f6bSJohn McCall typeSizeMultiplier *= arraySizeMultiplier; 582036f2f6bSJohn McCall 583036f2f6bSJohn McCall // This will be a size_t. 584036f2f6bSJohn McCall llvm::Value *size; 58532ac583dSChris Lattner 58632ac583dSChris Lattner // If someone is doing 'new int[42]' there is no need to do a dynamic check. 58732ac583dSChris Lattner // Don't bloat the -O0 code. 588036f2f6bSJohn McCall if (llvm::ConstantInt *numElementsC = 589036f2f6bSJohn McCall dyn_cast<llvm::ConstantInt>(numElements)) { 590036f2f6bSJohn McCall const llvm::APInt &count = numElementsC->getValue(); 59132ac583dSChris Lattner 592036f2f6bSJohn McCall bool hasAnyOverflow = false; 59332ac583dSChris Lattner 594036f2f6bSJohn McCall // If 'count' was a negative number, it's an overflow. 595036f2f6bSJohn McCall if (isSigned && count.isNegative()) 596036f2f6bSJohn McCall hasAnyOverflow = true; 5978ed55a54SJohn McCall 598036f2f6bSJohn McCall // We want to do all this arithmetic in size_t. If numElements is 599036f2f6bSJohn McCall // wider than that, check whether it's already too big, and if so, 600036f2f6bSJohn McCall // overflow. 601036f2f6bSJohn McCall else if (numElementsWidth > sizeWidth && 602036f2f6bSJohn McCall numElementsWidth - sizeWidth > count.countLeadingZeros()) 603036f2f6bSJohn McCall hasAnyOverflow = true; 604036f2f6bSJohn McCall 605036f2f6bSJohn McCall // Okay, compute a count at the right width. 606036f2f6bSJohn McCall llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 607036f2f6bSJohn McCall 608f862eb6aSSebastian Redl // If there is a brace-initializer, we cannot allocate fewer elements than 609f862eb6aSSebastian Redl // there are initializers. If we do, that's treated like an overflow. 610f862eb6aSSebastian Redl if (adjustedCount.ult(minElements)) 611f862eb6aSSebastian Redl hasAnyOverflow = true; 612f862eb6aSSebastian Redl 613036f2f6bSJohn McCall // Scale numElements by that. This might overflow, but we don't 614036f2f6bSJohn McCall // care because it only overflows if allocationSize does, too, and 615036f2f6bSJohn McCall // if that overflows then we shouldn't use this. 616036f2f6bSJohn McCall numElements = llvm::ConstantInt::get(CGF.SizeTy, 617036f2f6bSJohn McCall adjustedCount * arraySizeMultiplier); 618036f2f6bSJohn McCall 619036f2f6bSJohn McCall // Compute the size before cookie, and track whether it overflowed. 620036f2f6bSJohn McCall bool overflow; 621036f2f6bSJohn McCall llvm::APInt allocationSize 622036f2f6bSJohn McCall = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 623036f2f6bSJohn McCall hasAnyOverflow |= overflow; 624036f2f6bSJohn McCall 625036f2f6bSJohn McCall // Add in the cookie, and check whether it's overflowed. 626036f2f6bSJohn McCall if (cookieSize != 0) { 627036f2f6bSJohn McCall // Save the current size without a cookie. This shouldn't be 628036f2f6bSJohn McCall // used if there was overflow. 629036f2f6bSJohn McCall sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 630036f2f6bSJohn McCall 631036f2f6bSJohn McCall allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 632036f2f6bSJohn McCall hasAnyOverflow |= overflow; 6338ed55a54SJohn McCall } 6348ed55a54SJohn McCall 635036f2f6bSJohn McCall // On overflow, produce a -1 so operator new will fail. 636036f2f6bSJohn McCall if (hasAnyOverflow) { 637036f2f6bSJohn McCall size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 63832ac583dSChris Lattner } else { 639036f2f6bSJohn McCall size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 64032ac583dSChris Lattner } 64132ac583dSChris Lattner 642036f2f6bSJohn McCall // Otherwise, we might need to use the overflow intrinsics. 6438ed55a54SJohn McCall } else { 644f862eb6aSSebastian Redl // There are up to five conditions we need to test for: 645036f2f6bSJohn McCall // 1) if isSigned, we need to check whether numElements is negative; 646036f2f6bSJohn McCall // 2) if numElementsWidth > sizeWidth, we need to check whether 647036f2f6bSJohn McCall // numElements is larger than something representable in size_t; 648f862eb6aSSebastian Redl // 3) if minElements > 0, we need to check whether numElements is smaller 649f862eb6aSSebastian Redl // than that. 650f862eb6aSSebastian Redl // 4) we need to compute 651036f2f6bSJohn McCall // sizeWithoutCookie := numElements * typeSizeMultiplier 652036f2f6bSJohn McCall // and check whether it overflows; and 653f862eb6aSSebastian Redl // 5) if we need a cookie, we need to compute 654036f2f6bSJohn McCall // size := sizeWithoutCookie + cookieSize 655036f2f6bSJohn McCall // and check whether it overflows. 6568ed55a54SJohn McCall 657036f2f6bSJohn McCall llvm::Value *hasOverflow = 0; 6588ed55a54SJohn McCall 659036f2f6bSJohn McCall // If numElementsWidth > sizeWidth, then one way or another, we're 660036f2f6bSJohn McCall // going to have to do a comparison for (2), and this happens to 661036f2f6bSJohn McCall // take care of (1), too. 662036f2f6bSJohn McCall if (numElementsWidth > sizeWidth) { 663036f2f6bSJohn McCall llvm::APInt threshold(numElementsWidth, 1); 664036f2f6bSJohn McCall threshold <<= sizeWidth; 6658ed55a54SJohn McCall 666036f2f6bSJohn McCall llvm::Value *thresholdV 667036f2f6bSJohn McCall = llvm::ConstantInt::get(numElementsType, threshold); 668036f2f6bSJohn McCall 669036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 670036f2f6bSJohn McCall numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 671036f2f6bSJohn McCall 672036f2f6bSJohn McCall // Otherwise, if we're signed, we want to sext up to size_t. 673036f2f6bSJohn McCall } else if (isSigned) { 674036f2f6bSJohn McCall if (numElementsWidth < sizeWidth) 675036f2f6bSJohn McCall numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 676036f2f6bSJohn McCall 677036f2f6bSJohn McCall // If there's a non-1 type size multiplier, then we can do the 678036f2f6bSJohn McCall // signedness check at the same time as we do the multiply 679036f2f6bSJohn McCall // because a negative number times anything will cause an 680f862eb6aSSebastian Redl // unsigned overflow. Otherwise, we have to do it here. But at least 681f862eb6aSSebastian Redl // in this case, we can subsume the >= minElements check. 682036f2f6bSJohn McCall if (typeSizeMultiplier == 1) 683036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 684f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 685036f2f6bSJohn McCall 686036f2f6bSJohn McCall // Otherwise, zext up to size_t if necessary. 687036f2f6bSJohn McCall } else if (numElementsWidth < sizeWidth) { 688036f2f6bSJohn McCall numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 689036f2f6bSJohn McCall } 690036f2f6bSJohn McCall 691036f2f6bSJohn McCall assert(numElements->getType() == CGF.SizeTy); 692036f2f6bSJohn McCall 693f862eb6aSSebastian Redl if (minElements) { 694f862eb6aSSebastian Redl // Don't allow allocation of fewer elements than we have initializers. 695f862eb6aSSebastian Redl if (!hasOverflow) { 696f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateICmpULT(numElements, 697f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 698f862eb6aSSebastian Redl } else if (numElementsWidth > sizeWidth) { 699f862eb6aSSebastian Redl // The other existing overflow subsumes this check. 700f862eb6aSSebastian Redl // We do an unsigned comparison, since any signed value < -1 is 701f862eb6aSSebastian Redl // taken care of either above or below. 702f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateOr(hasOverflow, 703f862eb6aSSebastian Redl CGF.Builder.CreateICmpULT(numElements, 704f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements))); 705f862eb6aSSebastian Redl } 706f862eb6aSSebastian Redl } 707f862eb6aSSebastian Redl 708036f2f6bSJohn McCall size = numElements; 709036f2f6bSJohn McCall 710036f2f6bSJohn McCall // Multiply by the type size if necessary. This multiplier 711036f2f6bSJohn McCall // includes all the factors for nested arrays. 7128ed55a54SJohn McCall // 713036f2f6bSJohn McCall // This step also causes numElements to be scaled up by the 714036f2f6bSJohn McCall // nested-array factor if necessary. Overflow on this computation 715036f2f6bSJohn McCall // can be ignored because the result shouldn't be used if 716036f2f6bSJohn McCall // allocation fails. 717036f2f6bSJohn McCall if (typeSizeMultiplier != 1) { 718036f2f6bSJohn McCall llvm::Value *umul_with_overflow 7198d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 7208ed55a54SJohn McCall 721036f2f6bSJohn McCall llvm::Value *tsmV = 722036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 723036f2f6bSJohn McCall llvm::Value *result = 724036f2f6bSJohn McCall CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 7258ed55a54SJohn McCall 726036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 727036f2f6bSJohn McCall if (hasOverflow) 728036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 7298ed55a54SJohn McCall else 730036f2f6bSJohn McCall hasOverflow = overflowed; 73159486a2dSAnders Carlsson 732036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 733036f2f6bSJohn McCall 734036f2f6bSJohn McCall // Also scale up numElements by the array size multiplier. 735036f2f6bSJohn McCall if (arraySizeMultiplier != 1) { 736036f2f6bSJohn McCall // If the base element type size is 1, then we can re-use the 737036f2f6bSJohn McCall // multiply we just did. 738036f2f6bSJohn McCall if (typeSize.isOne()) { 739036f2f6bSJohn McCall assert(arraySizeMultiplier == typeSizeMultiplier); 740036f2f6bSJohn McCall numElements = size; 741036f2f6bSJohn McCall 742036f2f6bSJohn McCall // Otherwise we need a separate multiply. 743036f2f6bSJohn McCall } else { 744036f2f6bSJohn McCall llvm::Value *asmV = 745036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 746036f2f6bSJohn McCall numElements = CGF.Builder.CreateMul(numElements, asmV); 747036f2f6bSJohn McCall } 748036f2f6bSJohn McCall } 749036f2f6bSJohn McCall } else { 750036f2f6bSJohn McCall // numElements doesn't need to be scaled. 751036f2f6bSJohn McCall assert(arraySizeMultiplier == 1); 752036f2f6bSJohn McCall } 753036f2f6bSJohn McCall 754036f2f6bSJohn McCall // Add in the cookie size if necessary. 755036f2f6bSJohn McCall if (cookieSize != 0) { 756036f2f6bSJohn McCall sizeWithoutCookie = size; 757036f2f6bSJohn McCall 758036f2f6bSJohn McCall llvm::Value *uadd_with_overflow 7598d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 760036f2f6bSJohn McCall 761036f2f6bSJohn McCall llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 762036f2f6bSJohn McCall llvm::Value *result = 763036f2f6bSJohn McCall CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 764036f2f6bSJohn McCall 765036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 766036f2f6bSJohn McCall if (hasOverflow) 767036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 768036f2f6bSJohn McCall else 769036f2f6bSJohn McCall hasOverflow = overflowed; 770036f2f6bSJohn McCall 771036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 772036f2f6bSJohn McCall } 773036f2f6bSJohn McCall 774036f2f6bSJohn McCall // If we had any possibility of dynamic overflow, make a select to 775036f2f6bSJohn McCall // overwrite 'size' with an all-ones value, which should cause 776036f2f6bSJohn McCall // operator new to throw. 777036f2f6bSJohn McCall if (hasOverflow) 778036f2f6bSJohn McCall size = CGF.Builder.CreateSelect(hasOverflow, 779036f2f6bSJohn McCall llvm::Constant::getAllOnesValue(CGF.SizeTy), 780036f2f6bSJohn McCall size); 781036f2f6bSJohn McCall } 782036f2f6bSJohn McCall 783036f2f6bSJohn McCall if (cookieSize == 0) 784036f2f6bSJohn McCall sizeWithoutCookie = size; 785036f2f6bSJohn McCall else 786036f2f6bSJohn McCall assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 787036f2f6bSJohn McCall 788036f2f6bSJohn McCall return size; 78959486a2dSAnders Carlsson } 79059486a2dSAnders Carlsson 791f862eb6aSSebastian Redl static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 792f862eb6aSSebastian Redl QualType AllocType, llvm::Value *NewPtr) { 793d5202e09SFariborz Jahanian 79438cd36dbSEli Friedman CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 795d5202e09SFariborz Jahanian if (!CGF.hasAggregateLLVMType(AllocType)) 79638cd36dbSEli Friedman CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 797a0544d6fSEli Friedman Alignment), 7981553b190SJohn McCall false); 799d5202e09SFariborz Jahanian else if (AllocType->isAnyComplexType()) 800d5202e09SFariborz Jahanian CGF.EmitComplexExprIntoAddr(Init, NewPtr, 801d5202e09SFariborz Jahanian AllocType.isVolatileQualified()); 8027a626f63SJohn McCall else { 8037a626f63SJohn McCall AggValueSlot Slot 804c1d85b93SEli Friedman = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 8058d6fc958SJohn McCall AggValueSlot::IsDestructed, 80646759f4fSJohn McCall AggValueSlot::DoesNotNeedGCBarriers, 807615ed1a3SChad Rosier AggValueSlot::IsNotAliased); 8087a626f63SJohn McCall CGF.EmitAggExpr(Init, Slot); 809d026dc49SSebastian Redl 810d026dc49SSebastian Redl CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init); 8117a626f63SJohn McCall } 812d5202e09SFariborz Jahanian } 813d5202e09SFariborz Jahanian 814d5202e09SFariborz Jahanian void 815d5202e09SFariborz Jahanian CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 81699210dc9SJohn McCall QualType elementType, 81799210dc9SJohn McCall llvm::Value *beginPtr, 81899210dc9SJohn McCall llvm::Value *numElements) { 8196047f07eSSebastian Redl if (!E->hasInitializer()) 8206047f07eSSebastian Redl return; // We have a POD type. 821b66b08efSFariborz Jahanian 822f862eb6aSSebastian Redl llvm::Value *explicitPtr = beginPtr; 82399210dc9SJohn McCall // Find the end of the array, hoisted out of the loop. 82499210dc9SJohn McCall llvm::Value *endPtr = 82599210dc9SJohn McCall Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 826d5202e09SFariborz Jahanian 827f862eb6aSSebastian Redl unsigned initializerElements = 0; 828f862eb6aSSebastian Redl 829f862eb6aSSebastian Redl const Expr *Init = E->getInitializer(); 830f62290a1SChad Rosier llvm::AllocaInst *endOfInit = 0; 831f62290a1SChad Rosier QualType::DestructionKind dtorKind = elementType.isDestructedType(); 832f62290a1SChad Rosier EHScopeStack::stable_iterator cleanup; 833f62290a1SChad Rosier llvm::Instruction *cleanupDominator = 0; 834f862eb6aSSebastian Redl // If the initializer is an initializer list, first do the explicit elements. 835f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 836f862eb6aSSebastian Redl initializerElements = ILE->getNumInits(); 837f62290a1SChad Rosier 838f62290a1SChad Rosier // Enter a partial-destruction cleanup if necessary. 839f62290a1SChad Rosier if (needsEHCleanup(dtorKind)) { 840f62290a1SChad Rosier // In principle we could tell the cleanup where we are more 841f62290a1SChad Rosier // directly, but the control flow can get so varied here that it 842f62290a1SChad Rosier // would actually be quite complex. Therefore we go through an 843f62290a1SChad Rosier // alloca. 844f62290a1SChad Rosier endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 845f62290a1SChad Rosier cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 846f62290a1SChad Rosier pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 847f62290a1SChad Rosier getDestroyer(dtorKind)); 848f62290a1SChad Rosier cleanup = EHStack.stable_begin(); 849f62290a1SChad Rosier } 850f62290a1SChad Rosier 851f862eb6aSSebastian Redl for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 852f62290a1SChad Rosier // Tell the cleanup that it needs to destroy up to this 853f62290a1SChad Rosier // element. TODO: some of these stores can be trivially 854f62290a1SChad Rosier // observed to be unnecessary. 855f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 856f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 857f862eb6aSSebastian Redl explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 858f862eb6aSSebastian Redl } 859f862eb6aSSebastian Redl 860f862eb6aSSebastian Redl // The remaining elements are filled with the array filler expression. 861f862eb6aSSebastian Redl Init = ILE->getArrayFiller(); 862f862eb6aSSebastian Redl } 863f862eb6aSSebastian Redl 86499210dc9SJohn McCall // Create the continuation block. 86599210dc9SJohn McCall llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 866d5202e09SFariborz Jahanian 867f862eb6aSSebastian Redl // If the number of elements isn't constant, we have to now check if there is 868f862eb6aSSebastian Redl // anything left to initialize. 869f862eb6aSSebastian Redl if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 870f862eb6aSSebastian Redl // If all elements have already been initialized, skip the whole loop. 871f62290a1SChad Rosier if (constNum->getZExtValue() <= initializerElements) { 872f62290a1SChad Rosier // If there was a cleanup, deactivate it. 873f62290a1SChad Rosier if (cleanupDominator) 874f62290a1SChad Rosier DeactivateCleanupBlock(cleanup, cleanupDominator);; 875f62290a1SChad Rosier return; 876f62290a1SChad Rosier } 877f862eb6aSSebastian Redl } else { 87899210dc9SJohn McCall llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 879f862eb6aSSebastian Redl llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 88099210dc9SJohn McCall "array.isempty"); 88199210dc9SJohn McCall Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 88299210dc9SJohn McCall EmitBlock(nonEmptyBB); 88399210dc9SJohn McCall } 884d5202e09SFariborz Jahanian 88599210dc9SJohn McCall // Enter the loop. 88699210dc9SJohn McCall llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 88799210dc9SJohn McCall llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 888d5202e09SFariborz Jahanian 88999210dc9SJohn McCall EmitBlock(loopBB); 890d5202e09SFariborz Jahanian 89199210dc9SJohn McCall // Set up the current-element phi. 89299210dc9SJohn McCall llvm::PHINode *curPtr = 893f862eb6aSSebastian Redl Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 894f862eb6aSSebastian Redl curPtr->addIncoming(explicitPtr, entryBB); 895d5202e09SFariborz Jahanian 896f62290a1SChad Rosier // Store the new cleanup position for irregular cleanups. 897f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 898f62290a1SChad Rosier 89999210dc9SJohn McCall // Enter a partial-destruction cleanup if necessary. 900f62290a1SChad Rosier if (!cleanupDominator && needsEHCleanup(dtorKind)) { 90199210dc9SJohn McCall pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 90299210dc9SJohn McCall getDestroyer(dtorKind)); 90399210dc9SJohn McCall cleanup = EHStack.stable_begin(); 904f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 90599210dc9SJohn McCall } 906d5202e09SFariborz Jahanian 90799210dc9SJohn McCall // Emit the initializer into this element. 908f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 909d5202e09SFariborz Jahanian 91099210dc9SJohn McCall // Leave the cleanup if we entered one. 911de6a86b4SEli Friedman if (cleanupDominator) { 912f4beacd0SJohn McCall DeactivateCleanupBlock(cleanup, cleanupDominator); 913f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 914f4beacd0SJohn McCall } 915d5202e09SFariborz Jahanian 91699210dc9SJohn McCall // Advance to the next element. 91799210dc9SJohn McCall llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 91899210dc9SJohn McCall 91999210dc9SJohn McCall // Check whether we've gotten to the end of the array and, if so, 92099210dc9SJohn McCall // exit the loop. 92199210dc9SJohn McCall llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 92299210dc9SJohn McCall Builder.CreateCondBr(isEnd, contBB, loopBB); 92399210dc9SJohn McCall curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 92499210dc9SJohn McCall 92599210dc9SJohn McCall EmitBlock(contBB); 926d5202e09SFariborz Jahanian } 927d5202e09SFariborz Jahanian 92805fc5be3SDouglas Gregor static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 92905fc5be3SDouglas Gregor llvm::Value *NewPtr, llvm::Value *Size) { 930ad7c5c16SJohn McCall CGF.EmitCastToVoidPtr(NewPtr); 931705ba07eSKen Dyck CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 932acc6b4e2SBenjamin Kramer CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 933705ba07eSKen Dyck Alignment.getQuantity(), false); 93405fc5be3SDouglas Gregor } 93505fc5be3SDouglas Gregor 93659486a2dSAnders Carlsson static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 93799210dc9SJohn McCall QualType ElementType, 93859486a2dSAnders Carlsson llvm::Value *NewPtr, 93905fc5be3SDouglas Gregor llvm::Value *NumElements, 94005fc5be3SDouglas Gregor llvm::Value *AllocSizeWithoutCookie) { 9416047f07eSSebastian Redl const Expr *Init = E->getInitializer(); 9423a202f60SAnders Carlsson if (E->isArray()) { 9436047f07eSSebastian Redl if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 9446047f07eSSebastian Redl CXXConstructorDecl *Ctor = CCE->getConstructor(); 94505fc5be3SDouglas Gregor bool RequiresZeroInitialization = false; 946d153103cSDouglas Gregor if (Ctor->isTrivial()) { 94705fc5be3SDouglas Gregor // If new expression did not specify value-initialization, then there 94805fc5be3SDouglas Gregor // is no initialization. 9496047f07eSSebastian Redl if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 95005fc5be3SDouglas Gregor return; 95105fc5be3SDouglas Gregor 95299210dc9SJohn McCall if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 95305fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 95405fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 95599210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 9563a202f60SAnders Carlsson return; 9573a202f60SAnders Carlsson } 95805fc5be3SDouglas Gregor 95905fc5be3SDouglas Gregor RequiresZeroInitialization = true; 96005fc5be3SDouglas Gregor } 96105fc5be3SDouglas Gregor 96205fc5be3SDouglas Gregor CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 9636047f07eSSebastian Redl CCE->arg_begin(), CCE->arg_end(), 96405fc5be3SDouglas Gregor RequiresZeroInitialization); 96505fc5be3SDouglas Gregor return; 9666047f07eSSebastian Redl } else if (Init && isa<ImplicitValueInitExpr>(Init) && 967de6a86b4SEli Friedman CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 96805fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 96905fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 97099210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 97105fc5be3SDouglas Gregor return; 9726047f07eSSebastian Redl } 97399210dc9SJohn McCall CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 974d5202e09SFariborz Jahanian return; 975d040e6b2SAnders Carlsson } 97659486a2dSAnders Carlsson 9776047f07eSSebastian Redl if (!Init) 978b66b08efSFariborz Jahanian return; 97959486a2dSAnders Carlsson 980f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 98159486a2dSAnders Carlsson } 98259486a2dSAnders Carlsson 983824c2f53SJohn McCall namespace { 984824c2f53SJohn McCall /// A cleanup to call the given 'operator delete' function upon 985824c2f53SJohn McCall /// abnormal exit from a new expression. 986824c2f53SJohn McCall class CallDeleteDuringNew : public EHScopeStack::Cleanup { 987824c2f53SJohn McCall size_t NumPlacementArgs; 988824c2f53SJohn McCall const FunctionDecl *OperatorDelete; 989824c2f53SJohn McCall llvm::Value *Ptr; 990824c2f53SJohn McCall llvm::Value *AllocSize; 991824c2f53SJohn McCall 992824c2f53SJohn McCall RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 993824c2f53SJohn McCall 994824c2f53SJohn McCall public: 995824c2f53SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 996824c2f53SJohn McCall return NumPlacementArgs * sizeof(RValue); 997824c2f53SJohn McCall } 998824c2f53SJohn McCall 999824c2f53SJohn McCall CallDeleteDuringNew(size_t NumPlacementArgs, 1000824c2f53SJohn McCall const FunctionDecl *OperatorDelete, 1001824c2f53SJohn McCall llvm::Value *Ptr, 1002824c2f53SJohn McCall llvm::Value *AllocSize) 1003824c2f53SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1004824c2f53SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 1005824c2f53SJohn McCall 1006824c2f53SJohn McCall void setPlacementArg(unsigned I, RValue Arg) { 1007824c2f53SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 1008824c2f53SJohn McCall getPlacementArgs()[I] = Arg; 1009824c2f53SJohn McCall } 1010824c2f53SJohn McCall 101130317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 1012824c2f53SJohn McCall const FunctionProtoType *FPT 1013824c2f53SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1014824c2f53SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1015d441b1e6SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1016824c2f53SJohn McCall 1017824c2f53SJohn McCall CallArgList DeleteArgs; 1018824c2f53SJohn McCall 1019824c2f53SJohn McCall // The first argument is always a void*. 1020824c2f53SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 102143dca6a8SEli Friedman DeleteArgs.add(RValue::get(Ptr), *AI++); 1022824c2f53SJohn McCall 1023824c2f53SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 1024824c2f53SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) 102543dca6a8SEli Friedman DeleteArgs.add(RValue::get(AllocSize), *AI++); 1026824c2f53SJohn McCall 1027824c2f53SJohn McCall // Pass the rest of the arguments, which must match exactly. 1028824c2f53SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) 102943dca6a8SEli Friedman DeleteArgs.add(getPlacementArgs()[I], *AI++); 1030824c2f53SJohn McCall 1031824c2f53SJohn McCall // Call 'operator delete'. 10328dda7b27SJohn McCall CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1033824c2f53SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 1034824c2f53SJohn McCall ReturnValueSlot(), DeleteArgs, OperatorDelete); 1035824c2f53SJohn McCall } 1036824c2f53SJohn McCall }; 10377f9c92a9SJohn McCall 10387f9c92a9SJohn McCall /// A cleanup to call the given 'operator delete' function upon 10397f9c92a9SJohn McCall /// abnormal exit from a new expression when the new expression is 10407f9c92a9SJohn McCall /// conditional. 10417f9c92a9SJohn McCall class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 10427f9c92a9SJohn McCall size_t NumPlacementArgs; 10437f9c92a9SJohn McCall const FunctionDecl *OperatorDelete; 1044cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr; 1045cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize; 10467f9c92a9SJohn McCall 1047cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type *getPlacementArgs() { 1048cb5f77f0SJohn McCall return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 10497f9c92a9SJohn McCall } 10507f9c92a9SJohn McCall 10517f9c92a9SJohn McCall public: 10527f9c92a9SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1053cb5f77f0SJohn McCall return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 10547f9c92a9SJohn McCall } 10557f9c92a9SJohn McCall 10567f9c92a9SJohn McCall CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 10577f9c92a9SJohn McCall const FunctionDecl *OperatorDelete, 1058cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr, 1059cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize) 10607f9c92a9SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 10617f9c92a9SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 10627f9c92a9SJohn McCall 1063cb5f77f0SJohn McCall void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 10647f9c92a9SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 10657f9c92a9SJohn McCall getPlacementArgs()[I] = Arg; 10667f9c92a9SJohn McCall } 10677f9c92a9SJohn McCall 106830317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 10697f9c92a9SJohn McCall const FunctionProtoType *FPT 10707f9c92a9SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 10717f9c92a9SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 10727f9c92a9SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 10737f9c92a9SJohn McCall 10747f9c92a9SJohn McCall CallArgList DeleteArgs; 10757f9c92a9SJohn McCall 10767f9c92a9SJohn McCall // The first argument is always a void*. 10777f9c92a9SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 107843dca6a8SEli Friedman DeleteArgs.add(Ptr.restore(CGF), *AI++); 10797f9c92a9SJohn McCall 10807f9c92a9SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 10817f9c92a9SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1082cb5f77f0SJohn McCall RValue RV = AllocSize.restore(CGF); 108343dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 10847f9c92a9SJohn McCall } 10857f9c92a9SJohn McCall 10867f9c92a9SJohn McCall // Pass the rest of the arguments, which must match exactly. 10877f9c92a9SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1088cb5f77f0SJohn McCall RValue RV = getPlacementArgs()[I].restore(CGF); 108943dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 10907f9c92a9SJohn McCall } 10917f9c92a9SJohn McCall 10927f9c92a9SJohn McCall // Call 'operator delete'. 10938dda7b27SJohn McCall CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 10947f9c92a9SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 10957f9c92a9SJohn McCall ReturnValueSlot(), DeleteArgs, OperatorDelete); 10967f9c92a9SJohn McCall } 10977f9c92a9SJohn McCall }; 10987f9c92a9SJohn McCall } 10997f9c92a9SJohn McCall 11007f9c92a9SJohn McCall /// Enter a cleanup to call 'operator delete' if the initializer in a 11017f9c92a9SJohn McCall /// new-expression throws. 11027f9c92a9SJohn McCall static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 11037f9c92a9SJohn McCall const CXXNewExpr *E, 11047f9c92a9SJohn McCall llvm::Value *NewPtr, 11057f9c92a9SJohn McCall llvm::Value *AllocSize, 11067f9c92a9SJohn McCall const CallArgList &NewArgs) { 11077f9c92a9SJohn McCall // If we're not inside a conditional branch, then the cleanup will 11087f9c92a9SJohn McCall // dominate and we can do the easier (and more efficient) thing. 11097f9c92a9SJohn McCall if (!CGF.isInConditionalBranch()) { 11107f9c92a9SJohn McCall CallDeleteDuringNew *Cleanup = CGF.EHStack 11117f9c92a9SJohn McCall .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 11127f9c92a9SJohn McCall E->getNumPlacementArgs(), 11137f9c92a9SJohn McCall E->getOperatorDelete(), 11147f9c92a9SJohn McCall NewPtr, AllocSize); 11157f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1116f4258eb4SEli Friedman Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 11177f9c92a9SJohn McCall 11187f9c92a9SJohn McCall return; 11197f9c92a9SJohn McCall } 11207f9c92a9SJohn McCall 11217f9c92a9SJohn McCall // Otherwise, we need to save all this stuff. 1122cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedNewPtr = 1123cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1124cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedAllocSize = 1125cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 11267f9c92a9SJohn McCall 11277f9c92a9SJohn McCall CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1128f4beacd0SJohn McCall .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 11297f9c92a9SJohn McCall E->getNumPlacementArgs(), 11307f9c92a9SJohn McCall E->getOperatorDelete(), 11317f9c92a9SJohn McCall SavedNewPtr, 11327f9c92a9SJohn McCall SavedAllocSize); 11337f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1134cb5f77f0SJohn McCall Cleanup->setPlacementArg(I, 1135f4258eb4SEli Friedman DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 11367f9c92a9SJohn McCall 1137f4beacd0SJohn McCall CGF.initFullExprCleanup(); 1138824c2f53SJohn McCall } 1139824c2f53SJohn McCall 114059486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 114175f9498aSJohn McCall // The element type being allocated. 114275f9498aSJohn McCall QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 11438ed55a54SJohn McCall 114475f9498aSJohn McCall // 1. Build a call to the allocation function. 114575f9498aSJohn McCall FunctionDecl *allocator = E->getOperatorNew(); 114675f9498aSJohn McCall const FunctionProtoType *allocatorType = 114775f9498aSJohn McCall allocator->getType()->castAs<FunctionProtoType>(); 114859486a2dSAnders Carlsson 114975f9498aSJohn McCall CallArgList allocatorArgs; 115059486a2dSAnders Carlsson 115159486a2dSAnders Carlsson // The allocation size is the first argument. 115275f9498aSJohn McCall QualType sizeType = getContext().getSizeType(); 115359486a2dSAnders Carlsson 1154f862eb6aSSebastian Redl // If there is a brace-initializer, cannot allocate fewer elements than inits. 1155f862eb6aSSebastian Redl unsigned minElements = 0; 1156f862eb6aSSebastian Redl if (E->isArray() && E->hasInitializer()) { 1157f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1158f862eb6aSSebastian Redl minElements = ILE->getNumInits(); 1159f862eb6aSSebastian Redl } 1160f862eb6aSSebastian Redl 116175f9498aSJohn McCall llvm::Value *numElements = 0; 116275f9498aSJohn McCall llvm::Value *allocSizeWithoutCookie = 0; 116375f9498aSJohn McCall llvm::Value *allocSize = 1164f862eb6aSSebastian Redl EmitCXXNewAllocSize(*this, E, minElements, numElements, 1165f862eb6aSSebastian Redl allocSizeWithoutCookie); 116659486a2dSAnders Carlsson 116743dca6a8SEli Friedman allocatorArgs.add(RValue::get(allocSize), sizeType); 116859486a2dSAnders Carlsson 116959486a2dSAnders Carlsson // Emit the rest of the arguments. 117059486a2dSAnders Carlsson // FIXME: Ideally, this should just use EmitCallArgs. 117175f9498aSJohn McCall CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 117259486a2dSAnders Carlsson 117359486a2dSAnders Carlsson // First, use the types from the function type. 117459486a2dSAnders Carlsson // We start at 1 here because the first argument (the allocation size) 117559486a2dSAnders Carlsson // has already been emitted. 117675f9498aSJohn McCall for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 117775f9498aSJohn McCall ++i, ++placementArg) { 117875f9498aSJohn McCall QualType argType = allocatorType->getArgType(i); 117959486a2dSAnders Carlsson 118075f9498aSJohn McCall assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 118175f9498aSJohn McCall placementArg->getType()) && 118259486a2dSAnders Carlsson "type mismatch in call argument!"); 118359486a2dSAnders Carlsson 118432ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, argType); 118559486a2dSAnders Carlsson } 118659486a2dSAnders Carlsson 118759486a2dSAnders Carlsson // Either we've emitted all the call args, or we have a call to a 118859486a2dSAnders Carlsson // variadic function. 118975f9498aSJohn McCall assert((placementArg == E->placement_arg_end() || 119075f9498aSJohn McCall allocatorType->isVariadic()) && 119175f9498aSJohn McCall "Extra arguments to non-variadic function!"); 119259486a2dSAnders Carlsson 119359486a2dSAnders Carlsson // If we still have any arguments, emit them using the type of the argument. 119475f9498aSJohn McCall for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 119575f9498aSJohn McCall placementArg != placementArgsEnd; ++placementArg) { 119632ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 119759486a2dSAnders Carlsson } 119859486a2dSAnders Carlsson 11997ec4b434SJohn McCall // Emit the allocation call. If the allocator is a global placement 12007ec4b434SJohn McCall // operator, just "inline" it directly. 12017ec4b434SJohn McCall RValue RV; 12027ec4b434SJohn McCall if (allocator->isReservedGlobalPlacementOperator()) { 12037ec4b434SJohn McCall assert(allocatorArgs.size() == 2); 12047ec4b434SJohn McCall RV = allocatorArgs[1].RV; 12057ec4b434SJohn McCall // TODO: kill any unnecessary computations done for the size 12067ec4b434SJohn McCall // argument. 12077ec4b434SJohn McCall } else { 12088dda7b27SJohn McCall RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs, 1209a729c62bSJohn McCall allocatorType), 121075f9498aSJohn McCall CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 121175f9498aSJohn McCall allocatorArgs, allocator); 12127ec4b434SJohn McCall } 121359486a2dSAnders Carlsson 121475f9498aSJohn McCall // Emit a null check on the allocation result if the allocation 121575f9498aSJohn McCall // function is allowed to return null (because it has a non-throwing 121675f9498aSJohn McCall // exception spec; for this part, we inline 121775f9498aSJohn McCall // CXXNewExpr::shouldNullCheckAllocation()) and we have an 121875f9498aSJohn McCall // interesting initializer. 121931ad754cSSebastian Redl bool nullCheck = allocatorType->isNothrow(getContext()) && 12206047f07eSSebastian Redl (!allocType.isPODType(getContext()) || E->hasInitializer()); 122159486a2dSAnders Carlsson 122275f9498aSJohn McCall llvm::BasicBlock *nullCheckBB = 0; 122375f9498aSJohn McCall llvm::BasicBlock *contBB = 0; 122459486a2dSAnders Carlsson 122575f9498aSJohn McCall llvm::Value *allocation = RV.getScalarVal(); 122675f9498aSJohn McCall unsigned AS = 122775f9498aSJohn McCall cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 122859486a2dSAnders Carlsson 1229f7dcf320SJohn McCall // The null-check means that the initializer is conditionally 1230f7dcf320SJohn McCall // evaluated. 1231f7dcf320SJohn McCall ConditionalEvaluation conditional(*this); 1232f7dcf320SJohn McCall 123375f9498aSJohn McCall if (nullCheck) { 1234f7dcf320SJohn McCall conditional.begin(*this); 123575f9498aSJohn McCall 123675f9498aSJohn McCall nullCheckBB = Builder.GetInsertBlock(); 123775f9498aSJohn McCall llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 123875f9498aSJohn McCall contBB = createBasicBlock("new.cont"); 123975f9498aSJohn McCall 124075f9498aSJohn McCall llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 124175f9498aSJohn McCall Builder.CreateCondBr(isNull, contBB, notNullBB); 124275f9498aSJohn McCall EmitBlock(notNullBB); 124359486a2dSAnders Carlsson } 124459486a2dSAnders Carlsson 1245824c2f53SJohn McCall // If there's an operator delete, enter a cleanup to call it if an 1246824c2f53SJohn McCall // exception is thrown. 124775f9498aSJohn McCall EHScopeStack::stable_iterator operatorDeleteCleanup; 1248f4beacd0SJohn McCall llvm::Instruction *cleanupDominator = 0; 12497ec4b434SJohn McCall if (E->getOperatorDelete() && 12507ec4b434SJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 125175f9498aSJohn McCall EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 125275f9498aSJohn McCall operatorDeleteCleanup = EHStack.stable_begin(); 1253f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 1254824c2f53SJohn McCall } 1255824c2f53SJohn McCall 1256cf9b1f65SEli Friedman assert((allocSize == allocSizeWithoutCookie) == 1257cf9b1f65SEli Friedman CalculateCookiePadding(*this, E).isZero()); 1258cf9b1f65SEli Friedman if (allocSize != allocSizeWithoutCookie) { 1259cf9b1f65SEli Friedman assert(E->isArray()); 1260cf9b1f65SEli Friedman allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1261cf9b1f65SEli Friedman numElements, 1262cf9b1f65SEli Friedman E, allocType); 1263cf9b1f65SEli Friedman } 1264cf9b1f65SEli Friedman 12652192fe50SChris Lattner llvm::Type *elementPtrTy 126675f9498aSJohn McCall = ConvertTypeForMem(allocType)->getPointerTo(AS); 126775f9498aSJohn McCall llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1268824c2f53SJohn McCall 126999210dc9SJohn McCall EmitNewInitializer(*this, E, allocType, result, numElements, 127099210dc9SJohn McCall allocSizeWithoutCookie); 12718ed55a54SJohn McCall if (E->isArray()) { 12728ed55a54SJohn McCall // NewPtr is a pointer to the base element type. If we're 12738ed55a54SJohn McCall // allocating an array of arrays, we'll need to cast back to the 12748ed55a54SJohn McCall // array pointer type. 12752192fe50SChris Lattner llvm::Type *resultType = ConvertTypeForMem(E->getType()); 127675f9498aSJohn McCall if (result->getType() != resultType) 127775f9498aSJohn McCall result = Builder.CreateBitCast(result, resultType); 127847b4629bSFariborz Jahanian } 127959486a2dSAnders Carlsson 1280824c2f53SJohn McCall // Deactivate the 'operator delete' cleanup if we finished 1281824c2f53SJohn McCall // initialization. 1282f4beacd0SJohn McCall if (operatorDeleteCleanup.isValid()) { 1283f4beacd0SJohn McCall DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1284f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 1285f4beacd0SJohn McCall } 1286824c2f53SJohn McCall 128775f9498aSJohn McCall if (nullCheck) { 1288f7dcf320SJohn McCall conditional.end(*this); 1289f7dcf320SJohn McCall 129075f9498aSJohn McCall llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 129175f9498aSJohn McCall EmitBlock(contBB); 129259486a2dSAnders Carlsson 129320c0f02cSJay Foad llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 129475f9498aSJohn McCall PHI->addIncoming(result, notNullBB); 129575f9498aSJohn McCall PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 129675f9498aSJohn McCall nullCheckBB); 129759486a2dSAnders Carlsson 129875f9498aSJohn McCall result = PHI; 129959486a2dSAnders Carlsson } 130059486a2dSAnders Carlsson 130175f9498aSJohn McCall return result; 130259486a2dSAnders Carlsson } 130359486a2dSAnders Carlsson 130459486a2dSAnders Carlsson void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 130559486a2dSAnders Carlsson llvm::Value *Ptr, 130659486a2dSAnders Carlsson QualType DeleteTy) { 13078ed55a54SJohn McCall assert(DeleteFD->getOverloadedOperator() == OO_Delete); 13088ed55a54SJohn McCall 130959486a2dSAnders Carlsson const FunctionProtoType *DeleteFTy = 131059486a2dSAnders Carlsson DeleteFD->getType()->getAs<FunctionProtoType>(); 131159486a2dSAnders Carlsson 131259486a2dSAnders Carlsson CallArgList DeleteArgs; 131359486a2dSAnders Carlsson 131421122cf6SAnders Carlsson // Check if we need to pass the size to the delete operator. 131521122cf6SAnders Carlsson llvm::Value *Size = 0; 131621122cf6SAnders Carlsson QualType SizeTy; 131721122cf6SAnders Carlsson if (DeleteFTy->getNumArgs() == 2) { 131821122cf6SAnders Carlsson SizeTy = DeleteFTy->getArgType(1); 13197df3cbebSKen Dyck CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 13207df3cbebSKen Dyck Size = llvm::ConstantInt::get(ConvertType(SizeTy), 13217df3cbebSKen Dyck DeleteTypeSize.getQuantity()); 132221122cf6SAnders Carlsson } 132321122cf6SAnders Carlsson 132459486a2dSAnders Carlsson QualType ArgTy = DeleteFTy->getArgType(0); 132559486a2dSAnders Carlsson llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 132643dca6a8SEli Friedman DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 132759486a2dSAnders Carlsson 132821122cf6SAnders Carlsson if (Size) 132943dca6a8SEli Friedman DeleteArgs.add(RValue::get(Size), SizeTy); 133059486a2dSAnders Carlsson 133159486a2dSAnders Carlsson // Emit the call to delete. 13328dda7b27SJohn McCall EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy), 133361a401caSAnders Carlsson CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 133459486a2dSAnders Carlsson DeleteArgs, DeleteFD); 133559486a2dSAnders Carlsson } 133659486a2dSAnders Carlsson 13378ed55a54SJohn McCall namespace { 13388ed55a54SJohn McCall /// Calls the given 'operator delete' on a single object. 13398ed55a54SJohn McCall struct CallObjectDelete : EHScopeStack::Cleanup { 13408ed55a54SJohn McCall llvm::Value *Ptr; 13418ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 13428ed55a54SJohn McCall QualType ElementType; 13438ed55a54SJohn McCall 13448ed55a54SJohn McCall CallObjectDelete(llvm::Value *Ptr, 13458ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13468ed55a54SJohn McCall QualType ElementType) 13478ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 13488ed55a54SJohn McCall 134930317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 13508ed55a54SJohn McCall CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 13518ed55a54SJohn McCall } 13528ed55a54SJohn McCall }; 13538ed55a54SJohn McCall } 13548ed55a54SJohn McCall 13558ed55a54SJohn McCall /// Emit the code for deleting a single object. 13568ed55a54SJohn McCall static void EmitObjectDelete(CodeGenFunction &CGF, 13578ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13588ed55a54SJohn McCall llvm::Value *Ptr, 13591c2e20d7SDouglas Gregor QualType ElementType, 13601c2e20d7SDouglas Gregor bool UseGlobalDelete) { 13618ed55a54SJohn McCall // Find the destructor for the type, if applicable. If the 13628ed55a54SJohn McCall // destructor is virtual, we'll just emit the vcall and return. 13638ed55a54SJohn McCall const CXXDestructorDecl *Dtor = 0; 13648ed55a54SJohn McCall if (const RecordType *RT = ElementType->getAs<RecordType>()) { 13658ed55a54SJohn McCall CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1366b23533dbSEli Friedman if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 13678ed55a54SJohn McCall Dtor = RD->getDestructor(); 13688ed55a54SJohn McCall 13698ed55a54SJohn McCall if (Dtor->isVirtual()) { 13701c2e20d7SDouglas Gregor if (UseGlobalDelete) { 13711c2e20d7SDouglas Gregor // If we're supposed to call the global delete, make sure we do so 13721c2e20d7SDouglas Gregor // even if the destructor throws. 13731c2e20d7SDouglas Gregor CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 13741c2e20d7SDouglas Gregor Ptr, OperatorDelete, 13751c2e20d7SDouglas Gregor ElementType); 13761c2e20d7SDouglas Gregor } 13771c2e20d7SDouglas Gregor 13782192fe50SChris Lattner llvm::Type *Ty = 1379a729c62bSJohn McCall CGF.getTypes().GetFunctionType( 1380a729c62bSJohn McCall CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete)); 13818ed55a54SJohn McCall 13828ed55a54SJohn McCall llvm::Value *Callee 13831c2e20d7SDouglas Gregor = CGF.BuildVirtualCall(Dtor, 13841c2e20d7SDouglas Gregor UseGlobalDelete? Dtor_Complete : Dtor_Deleting, 13851c2e20d7SDouglas Gregor Ptr, Ty); 13868ed55a54SJohn McCall CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 13878ed55a54SJohn McCall 0, 0); 13888ed55a54SJohn McCall 13891c2e20d7SDouglas Gregor if (UseGlobalDelete) { 13901c2e20d7SDouglas Gregor CGF.PopCleanupBlock(); 13911c2e20d7SDouglas Gregor } 13921c2e20d7SDouglas Gregor 13938ed55a54SJohn McCall return; 13948ed55a54SJohn McCall } 13958ed55a54SJohn McCall } 13968ed55a54SJohn McCall } 13978ed55a54SJohn McCall 13988ed55a54SJohn McCall // Make sure that we call delete even if the dtor throws. 1399e4df6c8dSJohn McCall // This doesn't have to a conditional cleanup because we're going 1400e4df6c8dSJohn McCall // to pop it off in a second. 14018ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 14028ed55a54SJohn McCall Ptr, OperatorDelete, ElementType); 14038ed55a54SJohn McCall 14048ed55a54SJohn McCall if (Dtor) 14058ed55a54SJohn McCall CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 14068ed55a54SJohn McCall /*ForVirtualBase=*/false, Ptr); 1407bbafb8a7SDavid Blaikie else if (CGF.getLangOpts().ObjCAutoRefCount && 140831168b07SJohn McCall ElementType->isObjCLifetimeType()) { 140931168b07SJohn McCall switch (ElementType.getObjCLifetime()) { 141031168b07SJohn McCall case Qualifiers::OCL_None: 141131168b07SJohn McCall case Qualifiers::OCL_ExplicitNone: 141231168b07SJohn McCall case Qualifiers::OCL_Autoreleasing: 141331168b07SJohn McCall break; 141431168b07SJohn McCall 141531168b07SJohn McCall case Qualifiers::OCL_Strong: { 141631168b07SJohn McCall // Load the pointer value. 141731168b07SJohn McCall llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 141831168b07SJohn McCall ElementType.isVolatileQualified()); 141931168b07SJohn McCall 142031168b07SJohn McCall CGF.EmitARCRelease(PtrValue, /*precise*/ true); 142131168b07SJohn McCall break; 142231168b07SJohn McCall } 142331168b07SJohn McCall 142431168b07SJohn McCall case Qualifiers::OCL_Weak: 142531168b07SJohn McCall CGF.EmitARCDestroyWeak(Ptr); 142631168b07SJohn McCall break; 142731168b07SJohn McCall } 142831168b07SJohn McCall } 14298ed55a54SJohn McCall 14308ed55a54SJohn McCall CGF.PopCleanupBlock(); 14318ed55a54SJohn McCall } 14328ed55a54SJohn McCall 14338ed55a54SJohn McCall namespace { 14348ed55a54SJohn McCall /// Calls the given 'operator delete' on an array of objects. 14358ed55a54SJohn McCall struct CallArrayDelete : EHScopeStack::Cleanup { 14368ed55a54SJohn McCall llvm::Value *Ptr; 14378ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 14388ed55a54SJohn McCall llvm::Value *NumElements; 14398ed55a54SJohn McCall QualType ElementType; 14408ed55a54SJohn McCall CharUnits CookieSize; 14418ed55a54SJohn McCall 14428ed55a54SJohn McCall CallArrayDelete(llvm::Value *Ptr, 14438ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 14448ed55a54SJohn McCall llvm::Value *NumElements, 14458ed55a54SJohn McCall QualType ElementType, 14468ed55a54SJohn McCall CharUnits CookieSize) 14478ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 14488ed55a54SJohn McCall ElementType(ElementType), CookieSize(CookieSize) {} 14498ed55a54SJohn McCall 145030317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 14518ed55a54SJohn McCall const FunctionProtoType *DeleteFTy = 14528ed55a54SJohn McCall OperatorDelete->getType()->getAs<FunctionProtoType>(); 14538ed55a54SJohn McCall assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 14548ed55a54SJohn McCall 14558ed55a54SJohn McCall CallArgList Args; 14568ed55a54SJohn McCall 14578ed55a54SJohn McCall // Pass the pointer as the first argument. 14588ed55a54SJohn McCall QualType VoidPtrTy = DeleteFTy->getArgType(0); 14598ed55a54SJohn McCall llvm::Value *DeletePtr 14608ed55a54SJohn McCall = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 146143dca6a8SEli Friedman Args.add(RValue::get(DeletePtr), VoidPtrTy); 14628ed55a54SJohn McCall 14638ed55a54SJohn McCall // Pass the original requested size as the second argument. 14648ed55a54SJohn McCall if (DeleteFTy->getNumArgs() == 2) { 14658ed55a54SJohn McCall QualType size_t = DeleteFTy->getArgType(1); 14662192fe50SChris Lattner llvm::IntegerType *SizeTy 14678ed55a54SJohn McCall = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 14688ed55a54SJohn McCall 14698ed55a54SJohn McCall CharUnits ElementTypeSize = 14708ed55a54SJohn McCall CGF.CGM.getContext().getTypeSizeInChars(ElementType); 14718ed55a54SJohn McCall 14728ed55a54SJohn McCall // The size of an element, multiplied by the number of elements. 14738ed55a54SJohn McCall llvm::Value *Size 14748ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 14758ed55a54SJohn McCall Size = CGF.Builder.CreateMul(Size, NumElements); 14768ed55a54SJohn McCall 14778ed55a54SJohn McCall // Plus the size of the cookie if applicable. 14788ed55a54SJohn McCall if (!CookieSize.isZero()) { 14798ed55a54SJohn McCall llvm::Value *CookieSizeV 14808ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 14818ed55a54SJohn McCall Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 14828ed55a54SJohn McCall } 14838ed55a54SJohn McCall 148443dca6a8SEli Friedman Args.add(RValue::get(Size), size_t); 14858ed55a54SJohn McCall } 14868ed55a54SJohn McCall 14878ed55a54SJohn McCall // Emit the call to delete. 14888dda7b27SJohn McCall CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy), 14898ed55a54SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 14908ed55a54SJohn McCall ReturnValueSlot(), Args, OperatorDelete); 14918ed55a54SJohn McCall } 14928ed55a54SJohn McCall }; 14938ed55a54SJohn McCall } 14948ed55a54SJohn McCall 14958ed55a54SJohn McCall /// Emit the code for deleting an array of objects. 14968ed55a54SJohn McCall static void EmitArrayDelete(CodeGenFunction &CGF, 1497284c48ffSJohn McCall const CXXDeleteExpr *E, 1498ca2c56f2SJohn McCall llvm::Value *deletedPtr, 1499ca2c56f2SJohn McCall QualType elementType) { 1500ca2c56f2SJohn McCall llvm::Value *numElements = 0; 1501ca2c56f2SJohn McCall llvm::Value *allocatedPtr = 0; 1502ca2c56f2SJohn McCall CharUnits cookieSize; 1503ca2c56f2SJohn McCall CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1504ca2c56f2SJohn McCall numElements, allocatedPtr, cookieSize); 15058ed55a54SJohn McCall 1506ca2c56f2SJohn McCall assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 15078ed55a54SJohn McCall 15088ed55a54SJohn McCall // Make sure that we call delete even if one of the dtors throws. 1509ca2c56f2SJohn McCall const FunctionDecl *operatorDelete = E->getOperatorDelete(); 15108ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1511ca2c56f2SJohn McCall allocatedPtr, operatorDelete, 1512ca2c56f2SJohn McCall numElements, elementType, 1513ca2c56f2SJohn McCall cookieSize); 15148ed55a54SJohn McCall 1515ca2c56f2SJohn McCall // Destroy the elements. 1516ca2c56f2SJohn McCall if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1517ca2c56f2SJohn McCall assert(numElements && "no element count for a type with a destructor!"); 151831168b07SJohn McCall 1519ca2c56f2SJohn McCall llvm::Value *arrayEnd = 1520ca2c56f2SJohn McCall CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 152197eab0a2SJohn McCall 152297eab0a2SJohn McCall // Note that it is legal to allocate a zero-length array, and we 152397eab0a2SJohn McCall // can never fold the check away because the length should always 152497eab0a2SJohn McCall // come from a cookie. 1525ca2c56f2SJohn McCall CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1526ca2c56f2SJohn McCall CGF.getDestroyer(dtorKind), 152797eab0a2SJohn McCall /*checkZeroLength*/ true, 1528ca2c56f2SJohn McCall CGF.needsEHCleanup(dtorKind)); 15298ed55a54SJohn McCall } 15308ed55a54SJohn McCall 1531ca2c56f2SJohn McCall // Pop the cleanup block. 15328ed55a54SJohn McCall CGF.PopCleanupBlock(); 15338ed55a54SJohn McCall } 15348ed55a54SJohn McCall 153559486a2dSAnders Carlsson void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 153659486a2dSAnders Carlsson const Expr *Arg = E->getArgument(); 153759486a2dSAnders Carlsson llvm::Value *Ptr = EmitScalarExpr(Arg); 153859486a2dSAnders Carlsson 153959486a2dSAnders Carlsson // Null check the pointer. 154059486a2dSAnders Carlsson llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 154159486a2dSAnders Carlsson llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 154259486a2dSAnders Carlsson 154398981b10SAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 154459486a2dSAnders Carlsson 154559486a2dSAnders Carlsson Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 154659486a2dSAnders Carlsson EmitBlock(DeleteNotNull); 154759486a2dSAnders Carlsson 15488ed55a54SJohn McCall // We might be deleting a pointer to array. If so, GEP down to the 15498ed55a54SJohn McCall // first non-array element. 15508ed55a54SJohn McCall // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 15518ed55a54SJohn McCall QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 15528ed55a54SJohn McCall if (DeleteTy->isConstantArrayType()) { 15538ed55a54SJohn McCall llvm::Value *Zero = Builder.getInt32(0); 15540e62c1ccSChris Lattner SmallVector<llvm::Value*,8> GEP; 155559486a2dSAnders Carlsson 15568ed55a54SJohn McCall GEP.push_back(Zero); // point at the outermost array 15578ed55a54SJohn McCall 15588ed55a54SJohn McCall // For each layer of array type we're pointing at: 15598ed55a54SJohn McCall while (const ConstantArrayType *Arr 15608ed55a54SJohn McCall = getContext().getAsConstantArrayType(DeleteTy)) { 15618ed55a54SJohn McCall // 1. Unpeel the array type. 15628ed55a54SJohn McCall DeleteTy = Arr->getElementType(); 15638ed55a54SJohn McCall 15648ed55a54SJohn McCall // 2. GEP to the first element of the array. 15658ed55a54SJohn McCall GEP.push_back(Zero); 15668ed55a54SJohn McCall } 15678ed55a54SJohn McCall 1568040dd82fSJay Foad Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 15698ed55a54SJohn McCall } 15708ed55a54SJohn McCall 157104f36218SDouglas Gregor assert(ConvertTypeForMem(DeleteTy) == 157204f36218SDouglas Gregor cast<llvm::PointerType>(Ptr->getType())->getElementType()); 15738ed55a54SJohn McCall 157459486a2dSAnders Carlsson if (E->isArrayForm()) { 1575284c48ffSJohn McCall EmitArrayDelete(*this, E, Ptr, DeleteTy); 15768ed55a54SJohn McCall } else { 15771c2e20d7SDouglas Gregor EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 15781c2e20d7SDouglas Gregor E->isGlobalDelete()); 157959486a2dSAnders Carlsson } 158059486a2dSAnders Carlsson 158159486a2dSAnders Carlsson EmitBlock(DeleteEnd); 158259486a2dSAnders Carlsson } 158359486a2dSAnders Carlsson 15840c63350bSAnders Carlsson static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 15850c63350bSAnders Carlsson // void __cxa_bad_typeid(); 1586ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 15870c63350bSAnders Carlsson 15880c63350bSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 15890c63350bSAnders Carlsson } 15900c63350bSAnders Carlsson 15910c63350bSAnders Carlsson static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1592bbe277c4SAnders Carlsson llvm::Value *Fn = getBadTypeidFn(CGF); 15935bd375a6SJay Foad CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 15940c63350bSAnders Carlsson CGF.Builder.CreateUnreachable(); 15950c63350bSAnders Carlsson } 15960c63350bSAnders Carlsson 1597940f02d2SAnders Carlsson static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1598940f02d2SAnders Carlsson const Expr *E, 15992192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy) { 1600940f02d2SAnders Carlsson // Get the vtable pointer. 1601940f02d2SAnders Carlsson llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1602940f02d2SAnders Carlsson 1603940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1604940f02d2SAnders Carlsson // If the glvalue expression is obtained by applying the unary * operator to 1605940f02d2SAnders Carlsson // a pointer and the pointer is a null pointer value, the typeid expression 1606940f02d2SAnders Carlsson // throws the std::bad_typeid exception. 1607940f02d2SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1608940f02d2SAnders Carlsson if (UO->getOpcode() == UO_Deref) { 1609940f02d2SAnders Carlsson llvm::BasicBlock *BadTypeidBlock = 1610940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.bad_typeid"); 1611940f02d2SAnders Carlsson llvm::BasicBlock *EndBlock = 1612940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.end"); 1613940f02d2SAnders Carlsson 1614940f02d2SAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1615940f02d2SAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1616940f02d2SAnders Carlsson 1617940f02d2SAnders Carlsson CGF.EmitBlock(BadTypeidBlock); 1618940f02d2SAnders Carlsson EmitBadTypeidCall(CGF); 1619940f02d2SAnders Carlsson CGF.EmitBlock(EndBlock); 1620940f02d2SAnders Carlsson } 1621940f02d2SAnders Carlsson } 1622940f02d2SAnders Carlsson 1623940f02d2SAnders Carlsson llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1624940f02d2SAnders Carlsson StdTypeInfoPtrTy->getPointerTo()); 1625940f02d2SAnders Carlsson 1626940f02d2SAnders Carlsson // Load the type info. 1627940f02d2SAnders Carlsson Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1628940f02d2SAnders Carlsson return CGF.Builder.CreateLoad(Value); 1629940f02d2SAnders Carlsson } 1630940f02d2SAnders Carlsson 163159486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 16322192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy = 1633940f02d2SAnders Carlsson ConvertType(E->getType())->getPointerTo(); 1634fd7dfeb7SAnders Carlsson 16353f4336cbSAnders Carlsson if (E->isTypeOperand()) { 16363f4336cbSAnders Carlsson llvm::Constant *TypeInfo = 16373f4336cbSAnders Carlsson CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1638940f02d2SAnders Carlsson return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 16393f4336cbSAnders Carlsson } 1640fd7dfeb7SAnders Carlsson 1641940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1642940f02d2SAnders Carlsson // When typeid is applied to a glvalue expression whose type is a 1643940f02d2SAnders Carlsson // polymorphic class type, the result refers to a std::type_info object 1644940f02d2SAnders Carlsson // representing the type of the most derived object (that is, the dynamic 1645940f02d2SAnders Carlsson // type) to which the glvalue refers. 1646*ef8bf436SRichard Smith if (E->isPotentiallyEvaluated()) 1647940f02d2SAnders Carlsson return EmitTypeidFromVTable(*this, E->getExprOperand(), 1648940f02d2SAnders Carlsson StdTypeInfoPtrTy); 1649940f02d2SAnders Carlsson 1650940f02d2SAnders Carlsson QualType OperandTy = E->getExprOperand()->getType(); 1651940f02d2SAnders Carlsson return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1652940f02d2SAnders Carlsson StdTypeInfoPtrTy); 165359486a2dSAnders Carlsson } 165459486a2dSAnders Carlsson 1655882d790fSAnders Carlsson static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1656882d790fSAnders Carlsson // void *__dynamic_cast(const void *sub, 1657882d790fSAnders Carlsson // const abi::__class_type_info *src, 1658882d790fSAnders Carlsson // const abi::__class_type_info *dst, 1659882d790fSAnders Carlsson // std::ptrdiff_t src2dst_offset); 1660882d790fSAnders Carlsson 1661ece0409aSChris Lattner llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1662a5f58b05SChris Lattner llvm::Type *PtrDiffTy = 1663882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1664882d790fSAnders Carlsson 1665a5f58b05SChris Lattner llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1666882d790fSAnders Carlsson 16672192fe50SChris Lattner llvm::FunctionType *FTy = 1668882d790fSAnders Carlsson llvm::FunctionType::get(Int8PtrTy, Args, false); 1669882d790fSAnders Carlsson 1670882d790fSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1671882d790fSAnders Carlsson } 1672882d790fSAnders Carlsson 1673882d790fSAnders Carlsson static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1674882d790fSAnders Carlsson // void __cxa_bad_cast(); 1675ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1676882d790fSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1677882d790fSAnders Carlsson } 1678882d790fSAnders Carlsson 1679c1c9971cSAnders Carlsson static void EmitBadCastCall(CodeGenFunction &CGF) { 1680bbe277c4SAnders Carlsson llvm::Value *Fn = getBadCastFn(CGF); 16815bd375a6SJay Foad CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1682c1c9971cSAnders Carlsson CGF.Builder.CreateUnreachable(); 1683c1c9971cSAnders Carlsson } 1684c1c9971cSAnders Carlsson 1685882d790fSAnders Carlsson static llvm::Value * 1686882d790fSAnders Carlsson EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1687882d790fSAnders Carlsson QualType SrcTy, QualType DestTy, 1688882d790fSAnders Carlsson llvm::BasicBlock *CastEnd) { 16892192fe50SChris Lattner llvm::Type *PtrDiffLTy = 1690882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 16912192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1692882d790fSAnders Carlsson 1693882d790fSAnders Carlsson if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1694882d790fSAnders Carlsson if (PTy->getPointeeType()->isVoidType()) { 1695882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p7: 1696882d790fSAnders Carlsson // If T is "pointer to cv void," then the result is a pointer to the 1697882d790fSAnders Carlsson // most derived object pointed to by v. 1698882d790fSAnders Carlsson 1699882d790fSAnders Carlsson // Get the vtable pointer. 1700882d790fSAnders Carlsson llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1701882d790fSAnders Carlsson 1702882d790fSAnders Carlsson // Get the offset-to-top from the vtable. 1703882d790fSAnders Carlsson llvm::Value *OffsetToTop = 1704882d790fSAnders Carlsson CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1705882d790fSAnders Carlsson OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1706882d790fSAnders Carlsson 1707882d790fSAnders Carlsson // Finally, add the offset to the pointer. 1708882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1709882d790fSAnders Carlsson Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1710882d790fSAnders Carlsson 1711882d790fSAnders Carlsson return CGF.Builder.CreateBitCast(Value, DestLTy); 1712882d790fSAnders Carlsson } 1713882d790fSAnders Carlsson } 1714882d790fSAnders Carlsson 1715882d790fSAnders Carlsson QualType SrcRecordTy; 1716882d790fSAnders Carlsson QualType DestRecordTy; 1717882d790fSAnders Carlsson 1718882d790fSAnders Carlsson if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1719882d790fSAnders Carlsson SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1720882d790fSAnders Carlsson DestRecordTy = DestPTy->getPointeeType(); 1721882d790fSAnders Carlsson } else { 1722882d790fSAnders Carlsson SrcRecordTy = SrcTy; 1723882d790fSAnders Carlsson DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1724882d790fSAnders Carlsson } 1725882d790fSAnders Carlsson 1726882d790fSAnders Carlsson assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1727882d790fSAnders Carlsson assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1728882d790fSAnders Carlsson 1729882d790fSAnders Carlsson llvm::Value *SrcRTTI = 1730882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1731882d790fSAnders Carlsson llvm::Value *DestRTTI = 1732882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1733882d790fSAnders Carlsson 1734882d790fSAnders Carlsson // FIXME: Actually compute a hint here. 1735882d790fSAnders Carlsson llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1736882d790fSAnders Carlsson 1737882d790fSAnders Carlsson // Emit the call to __dynamic_cast. 1738882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1739882d790fSAnders Carlsson Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1740882d790fSAnders Carlsson SrcRTTI, DestRTTI, OffsetHint); 1741882d790fSAnders Carlsson Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1742882d790fSAnders Carlsson 1743882d790fSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1744882d790fSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1745882d790fSAnders Carlsson if (DestTy->isReferenceType()) { 1746882d790fSAnders Carlsson llvm::BasicBlock *BadCastBlock = 1747882d790fSAnders Carlsson CGF.createBasicBlock("dynamic_cast.bad_cast"); 1748882d790fSAnders Carlsson 1749882d790fSAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1750882d790fSAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1751882d790fSAnders Carlsson 1752882d790fSAnders Carlsson CGF.EmitBlock(BadCastBlock); 1753c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1754882d790fSAnders Carlsson } 1755882d790fSAnders Carlsson 1756882d790fSAnders Carlsson return Value; 1757882d790fSAnders Carlsson } 1758882d790fSAnders Carlsson 1759c1c9971cSAnders Carlsson static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1760c1c9971cSAnders Carlsson QualType DestTy) { 17612192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1762c1c9971cSAnders Carlsson if (DestTy->isPointerType()) 1763c1c9971cSAnders Carlsson return llvm::Constant::getNullValue(DestLTy); 1764c1c9971cSAnders Carlsson 1765c1c9971cSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1766c1c9971cSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1767c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1768c1c9971cSAnders Carlsson 1769c1c9971cSAnders Carlsson CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1770c1c9971cSAnders Carlsson return llvm::UndefValue::get(DestLTy); 1771c1c9971cSAnders Carlsson } 1772c1c9971cSAnders Carlsson 1773882d790fSAnders Carlsson llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 177459486a2dSAnders Carlsson const CXXDynamicCastExpr *DCE) { 17753f4336cbSAnders Carlsson QualType DestTy = DCE->getTypeAsWritten(); 17763f4336cbSAnders Carlsson 1777c1c9971cSAnders Carlsson if (DCE->isAlwaysNull()) 1778c1c9971cSAnders Carlsson return EmitDynamicCastToNull(*this, DestTy); 1779c1c9971cSAnders Carlsson 1780c1c9971cSAnders Carlsson QualType SrcTy = DCE->getSubExpr()->getType(); 1781c1c9971cSAnders Carlsson 1782882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p4: 1783882d790fSAnders Carlsson // If the value of v is a null pointer value in the pointer case, the result 1784882d790fSAnders Carlsson // is the null pointer value of type T. 1785882d790fSAnders Carlsson bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 178659486a2dSAnders Carlsson 1787882d790fSAnders Carlsson llvm::BasicBlock *CastNull = 0; 1788882d790fSAnders Carlsson llvm::BasicBlock *CastNotNull = 0; 1789882d790fSAnders Carlsson llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1790fa8b4955SDouglas Gregor 1791882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1792882d790fSAnders Carlsson CastNull = createBasicBlock("dynamic_cast.null"); 1793882d790fSAnders Carlsson CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1794882d790fSAnders Carlsson 1795882d790fSAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Value); 1796882d790fSAnders Carlsson Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1797882d790fSAnders Carlsson EmitBlock(CastNotNull); 179859486a2dSAnders Carlsson } 179959486a2dSAnders Carlsson 1800882d790fSAnders Carlsson Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 18013f4336cbSAnders Carlsson 1802882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1803882d790fSAnders Carlsson EmitBranch(CastEnd); 180459486a2dSAnders Carlsson 1805882d790fSAnders Carlsson EmitBlock(CastNull); 1806882d790fSAnders Carlsson EmitBranch(CastEnd); 180759486a2dSAnders Carlsson } 180859486a2dSAnders Carlsson 1809882d790fSAnders Carlsson EmitBlock(CastEnd); 181059486a2dSAnders Carlsson 1811882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1812882d790fSAnders Carlsson llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1813882d790fSAnders Carlsson PHI->addIncoming(Value, CastNotNull); 1814882d790fSAnders Carlsson PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 181559486a2dSAnders Carlsson 1816882d790fSAnders Carlsson Value = PHI; 181759486a2dSAnders Carlsson } 181859486a2dSAnders Carlsson 1819882d790fSAnders Carlsson return Value; 182059486a2dSAnders Carlsson } 1821c370a7eeSEli Friedman 1822c370a7eeSEli Friedman void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 18238631f3e8SEli Friedman RunCleanupsScope Scope(*this); 18247f1ff600SEli Friedman LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 18257f1ff600SEli Friedman Slot.getAlignment()); 18268631f3e8SEli Friedman 1827c370a7eeSEli Friedman CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1828c370a7eeSEli Friedman for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1829c370a7eeSEli Friedman e = E->capture_init_end(); 1830c370a7eeSEli Friedman i != e; ++i, ++CurField) { 1831c370a7eeSEli Friedman // Emit initialization 18327f1ff600SEli Friedman 183340ed2973SDavid Blaikie LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 18345f1a04ffSEli Friedman ArrayRef<VarDecl *> ArrayIndexes; 18355f1a04ffSEli Friedman if (CurField->getType()->isArrayType()) 18365f1a04ffSEli Friedman ArrayIndexes = E->getCaptureInitIndexVars(i); 183740ed2973SDavid Blaikie EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1838c370a7eeSEli Friedman } 1839c370a7eeSEli Friedman } 1840