159486a2dSAnders Carlsson //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 259486a2dSAnders Carlsson // 359486a2dSAnders Carlsson // The LLVM Compiler Infrastructure 459486a2dSAnders Carlsson // 559486a2dSAnders Carlsson // This file is distributed under the University of Illinois Open Source 659486a2dSAnders Carlsson // License. See LICENSE.TXT for details. 759486a2dSAnders Carlsson // 859486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 959486a2dSAnders Carlsson // 1059486a2dSAnders Carlsson // This contains code dealing with code generation of C++ expressions 1159486a2dSAnders Carlsson // 1259486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 1359486a2dSAnders Carlsson 1491bbb554SDevang Patel #include "clang/Frontend/CodeGenOptions.h" 1559486a2dSAnders Carlsson #include "CodeGenFunction.h" 16fe883422SPeter Collingbourne #include "CGCUDARuntime.h" 175d865c32SJohn McCall #include "CGCXXABI.h" 1860d215b6SFariborz Jahanian #include "CGObjCRuntime.h" 1991bbb554SDevang Patel #include "CGDebugInfo.h" 2026008e07SChris Lattner #include "llvm/Intrinsics.h" 21bbe277c4SAnders Carlsson #include "llvm/Support/CallSite.h" 22bbe277c4SAnders Carlsson 2359486a2dSAnders Carlsson using namespace clang; 2459486a2dSAnders Carlsson using namespace CodeGen; 2559486a2dSAnders Carlsson 2627da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 2727da15baSAnders Carlsson llvm::Value *Callee, 2827da15baSAnders Carlsson ReturnValueSlot ReturnValue, 2927da15baSAnders Carlsson llvm::Value *This, 30e36a6b3eSAnders Carlsson llvm::Value *VTT, 3127da15baSAnders Carlsson CallExpr::const_arg_iterator ArgBeg, 3227da15baSAnders Carlsson CallExpr::const_arg_iterator ArgEnd) { 3327da15baSAnders Carlsson assert(MD->isInstance() && 3427da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 3527da15baSAnders Carlsson 3627da15baSAnders Carlsson CallArgList Args; 3727da15baSAnders Carlsson 3827da15baSAnders Carlsson // Push the this ptr. 3943dca6a8SEli Friedman Args.add(RValue::get(This), MD->getThisType(getContext())); 4027da15baSAnders Carlsson 41e36a6b3eSAnders Carlsson // If there is a VTT parameter, emit it. 42e36a6b3eSAnders Carlsson if (VTT) { 43e36a6b3eSAnders Carlsson QualType T = getContext().getPointerType(getContext().VoidPtrTy); 4443dca6a8SEli Friedman Args.add(RValue::get(VTT), T); 45e36a6b3eSAnders Carlsson } 46e36a6b3eSAnders Carlsson 47a729c62bSJohn McCall const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 48a729c62bSJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 49a729c62bSJohn McCall 50a729c62bSJohn McCall // And the rest of the call args. 5127da15baSAnders Carlsson EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 5227da15baSAnders Carlsson 53a729c62bSJohn McCall return EmitCall(CGM.getTypes().arrangeFunctionCall(FPT->getResultType(), Args, 54a729c62bSJohn McCall FPT->getExtInfo(), 55a729c62bSJohn McCall required), 56c50c27ccSRafael Espindola Callee, ReturnValue, Args, MD); 5727da15baSAnders Carlsson } 5827da15baSAnders Carlsson 591ae64c5aSAnders Carlsson static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) { 606b3afd7dSAnders Carlsson const Expr *E = Base; 616b3afd7dSAnders Carlsson 626b3afd7dSAnders Carlsson while (true) { 636b3afd7dSAnders Carlsson E = E->IgnoreParens(); 646b3afd7dSAnders Carlsson if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 656b3afd7dSAnders Carlsson if (CE->getCastKind() == CK_DerivedToBase || 666b3afd7dSAnders Carlsson CE->getCastKind() == CK_UncheckedDerivedToBase || 676b3afd7dSAnders Carlsson CE->getCastKind() == CK_NoOp) { 686b3afd7dSAnders Carlsson E = CE->getSubExpr(); 696b3afd7dSAnders Carlsson continue; 706b3afd7dSAnders Carlsson } 716b3afd7dSAnders Carlsson } 726b3afd7dSAnders Carlsson 736b3afd7dSAnders Carlsson break; 746b3afd7dSAnders Carlsson } 756b3afd7dSAnders Carlsson 766b3afd7dSAnders Carlsson QualType DerivedType = E->getType(); 771ae64c5aSAnders Carlsson if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 781ae64c5aSAnders Carlsson DerivedType = PTy->getPointeeType(); 791ae64c5aSAnders Carlsson 801ae64c5aSAnders Carlsson return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl()); 811ae64c5aSAnders Carlsson } 821ae64c5aSAnders Carlsson 83c53d9e83SAnders Carlsson // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 84c53d9e83SAnders Carlsson // quite what we want. 85c53d9e83SAnders Carlsson static const Expr *skipNoOpCastsAndParens(const Expr *E) { 86c53d9e83SAnders Carlsson while (true) { 87c53d9e83SAnders Carlsson if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 88c53d9e83SAnders Carlsson E = PE->getSubExpr(); 89c53d9e83SAnders Carlsson continue; 90c53d9e83SAnders Carlsson } 91c53d9e83SAnders Carlsson 92c53d9e83SAnders Carlsson if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 93c53d9e83SAnders Carlsson if (CE->getCastKind() == CK_NoOp) { 94c53d9e83SAnders Carlsson E = CE->getSubExpr(); 95c53d9e83SAnders Carlsson continue; 96c53d9e83SAnders Carlsson } 97c53d9e83SAnders Carlsson } 98c53d9e83SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 99c53d9e83SAnders Carlsson if (UO->getOpcode() == UO_Extension) { 100c53d9e83SAnders Carlsson E = UO->getSubExpr(); 101c53d9e83SAnders Carlsson continue; 102c53d9e83SAnders Carlsson } 103c53d9e83SAnders Carlsson } 104c53d9e83SAnders Carlsson return E; 105c53d9e83SAnders Carlsson } 106c53d9e83SAnders Carlsson } 107c53d9e83SAnders Carlsson 10827da15baSAnders Carlsson /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 10927da15baSAnders Carlsson /// expr can be devirtualized. 110252a47f6SFariborz Jahanian static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 111252a47f6SFariborz Jahanian const Expr *Base, 112a7911fa3SAnders Carlsson const CXXMethodDecl *MD) { 113a7911fa3SAnders Carlsson 1141ae64c5aSAnders Carlsson // When building with -fapple-kext, all calls must go through the vtable since 1151ae64c5aSAnders Carlsson // the kernel linker can do runtime patching of vtables. 116*bbafb8a7SDavid Blaikie if (Context.getLangOpts().AppleKext) 117252a47f6SFariborz Jahanian return false; 118252a47f6SFariborz Jahanian 1191ae64c5aSAnders Carlsson // If the most derived class is marked final, we know that no subclass can 1201ae64c5aSAnders Carlsson // override this member function and so we can devirtualize it. For example: 1211ae64c5aSAnders Carlsson // 1221ae64c5aSAnders Carlsson // struct A { virtual void f(); } 1231ae64c5aSAnders Carlsson // struct B final : A { }; 1241ae64c5aSAnders Carlsson // 1251ae64c5aSAnders Carlsson // void f(B *b) { 1261ae64c5aSAnders Carlsson // b->f(); 1271ae64c5aSAnders Carlsson // } 1281ae64c5aSAnders Carlsson // 1291ae64c5aSAnders Carlsson const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base); 1301ae64c5aSAnders Carlsson if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 1311ae64c5aSAnders Carlsson return true; 1321ae64c5aSAnders Carlsson 13319588aa4SAnders Carlsson // If the member function is marked 'final', we know that it can't be 134b00c2144SAnders Carlsson // overridden and can therefore devirtualize it. 1351eb95961SAnders Carlsson if (MD->hasAttr<FinalAttr>()) 136a7911fa3SAnders Carlsson return true; 137a7911fa3SAnders Carlsson 13819588aa4SAnders Carlsson // Similarly, if the class itself is marked 'final' it can't be overridden 13919588aa4SAnders Carlsson // and we can therefore devirtualize the member function call. 1401eb95961SAnders Carlsson if (MD->getParent()->hasAttr<FinalAttr>()) 141b00c2144SAnders Carlsson return true; 142b00c2144SAnders Carlsson 143c53d9e83SAnders Carlsson Base = skipNoOpCastsAndParens(Base); 14427da15baSAnders Carlsson if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 14527da15baSAnders Carlsson if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 14627da15baSAnders Carlsson // This is a record decl. We know the type and can devirtualize it. 14727da15baSAnders Carlsson return VD->getType()->isRecordType(); 14827da15baSAnders Carlsson } 14927da15baSAnders Carlsson 15027da15baSAnders Carlsson return false; 15127da15baSAnders Carlsson } 15227da15baSAnders Carlsson 15327da15baSAnders Carlsson // We can always devirtualize calls on temporary object expressions. 154a682427eSEli Friedman if (isa<CXXConstructExpr>(Base)) 15527da15baSAnders Carlsson return true; 15627da15baSAnders Carlsson 15727da15baSAnders Carlsson // And calls on bound temporaries. 15827da15baSAnders Carlsson if (isa<CXXBindTemporaryExpr>(Base)) 15927da15baSAnders Carlsson return true; 16027da15baSAnders Carlsson 16127da15baSAnders Carlsson // Check if this is a call expr that returns a record type. 16227da15baSAnders Carlsson if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 16327da15baSAnders Carlsson return CE->getCallReturnType()->isRecordType(); 16427da15baSAnders Carlsson 16527da15baSAnders Carlsson // We can't devirtualize the call. 16627da15baSAnders Carlsson return false; 16727da15baSAnders Carlsson } 16827da15baSAnders Carlsson 16964225794SFrancois Pichet // Note: This function also emit constructor calls to support a MSVC 17064225794SFrancois Pichet // extensions allowing explicit constructor function call. 17127da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 17227da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 1732d2e8707SJohn McCall const Expr *callee = CE->getCallee()->IgnoreParens(); 1742d2e8707SJohn McCall 1752d2e8707SJohn McCall if (isa<BinaryOperator>(callee)) 17627da15baSAnders Carlsson return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 17727da15baSAnders Carlsson 1782d2e8707SJohn McCall const MemberExpr *ME = cast<MemberExpr>(callee); 17927da15baSAnders Carlsson const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 18027da15baSAnders Carlsson 18191bbb554SDevang Patel CGDebugInfo *DI = getDebugInfo(); 182401c916cSDevang Patel if (DI && CGM.getCodeGenOpts().LimitDebugInfo 183401c916cSDevang Patel && !isa<CallExpr>(ME->getBase())) { 18491bbb554SDevang Patel QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 18591bbb554SDevang Patel if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 18691bbb554SDevang Patel DI->getOrCreateRecordType(PTy->getPointeeType(), 18791bbb554SDevang Patel MD->getParent()->getLocation()); 18891bbb554SDevang Patel } 18991bbb554SDevang Patel } 19091bbb554SDevang Patel 19127da15baSAnders Carlsson if (MD->isStatic()) { 19227da15baSAnders Carlsson // The method is static, emit it as we would a regular call. 19327da15baSAnders Carlsson llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 19427da15baSAnders Carlsson return EmitCall(getContext().getPointerType(MD->getType()), Callee, 19527da15baSAnders Carlsson ReturnValue, CE->arg_begin(), CE->arg_end()); 19627da15baSAnders Carlsson } 19727da15baSAnders Carlsson 1980d635f53SJohn McCall // Compute the object pointer. 19927da15baSAnders Carlsson llvm::Value *This; 20027da15baSAnders Carlsson if (ME->isArrow()) 20127da15baSAnders Carlsson This = EmitScalarExpr(ME->getBase()); 202f93ac894SFariborz Jahanian else 203e26a872bSJohn McCall This = EmitLValue(ME->getBase()).getAddress(); 20427da15baSAnders Carlsson 2050d635f53SJohn McCall if (MD->isTrivial()) { 2060d635f53SJohn McCall if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 20764225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 20864225794SFrancois Pichet cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 20964225794SFrancois Pichet return RValue::get(0); 2100d635f53SJohn McCall 21122653bacSSebastian Redl if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 21222653bacSSebastian Redl // We don't like to generate the trivial copy/move assignment operator 21322653bacSSebastian Redl // when it isn't necessary; just produce the proper effect here. 21427da15baSAnders Carlsson llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 21527da15baSAnders Carlsson EmitAggregateCopy(This, RHS, CE->getType()); 21627da15baSAnders Carlsson return RValue::get(This); 21727da15baSAnders Carlsson } 21827da15baSAnders Carlsson 21964225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 22022653bacSSebastian Redl cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 22122653bacSSebastian Redl // Trivial move and copy ctor are the same. 22264225794SFrancois Pichet llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 22364225794SFrancois Pichet EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 22464225794SFrancois Pichet CE->arg_begin(), CE->arg_end()); 22564225794SFrancois Pichet return RValue::get(This); 22664225794SFrancois Pichet } 22764225794SFrancois Pichet llvm_unreachable("unknown trivial member function"); 22864225794SFrancois Pichet } 22964225794SFrancois Pichet 2300d635f53SJohn McCall // Compute the function type we're calling. 23164225794SFrancois Pichet const CGFunctionInfo *FInfo = 0; 23264225794SFrancois Pichet if (isa<CXXDestructorDecl>(MD)) 233a729c62bSJohn McCall FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), 23464225794SFrancois Pichet Dtor_Complete); 23564225794SFrancois Pichet else if (isa<CXXConstructorDecl>(MD)) 236a729c62bSJohn McCall FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration( 237a729c62bSJohn McCall cast<CXXConstructorDecl>(MD), 23864225794SFrancois Pichet Ctor_Complete); 23964225794SFrancois Pichet else 240a729c62bSJohn McCall FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD); 2410d635f53SJohn McCall 242a729c62bSJohn McCall llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 2430d635f53SJohn McCall 24427da15baSAnders Carlsson // C++ [class.virtual]p12: 24527da15baSAnders Carlsson // Explicit qualification with the scope operator (5.1) suppresses the 24627da15baSAnders Carlsson // virtual call mechanism. 24727da15baSAnders Carlsson // 24827da15baSAnders Carlsson // We also don't emit a virtual call if the base expression has a record type 24927da15baSAnders Carlsson // because then we know what the type is. 25047609b08SFariborz Jahanian bool UseVirtualCall; 25147609b08SFariborz Jahanian UseVirtualCall = MD->isVirtual() && !ME->hasQualifier() 252252a47f6SFariborz Jahanian && !canDevirtualizeMemberFunctionCalls(getContext(), 253252a47f6SFariborz Jahanian ME->getBase(), MD); 25427da15baSAnders Carlsson llvm::Value *Callee; 2550d635f53SJohn McCall if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 2560d635f53SJohn McCall if (UseVirtualCall) { 2570d635f53SJohn McCall Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 25827da15baSAnders Carlsson } else { 259*bbafb8a7SDavid Blaikie if (getContext().getLangOpts().AppleKext && 260265c325eSFariborz Jahanian MD->isVirtual() && 261265c325eSFariborz Jahanian ME->hasQualifier()) 2627f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 263265c325eSFariborz Jahanian else 2640d635f53SJohn McCall Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 26527da15baSAnders Carlsson } 26664225794SFrancois Pichet } else if (const CXXConstructorDecl *Ctor = 26764225794SFrancois Pichet dyn_cast<CXXConstructorDecl>(MD)) { 26864225794SFrancois Pichet Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 2690d635f53SJohn McCall } else if (UseVirtualCall) { 27027da15baSAnders Carlsson Callee = BuildVirtualCall(MD, This, Ty); 27127da15baSAnders Carlsson } else { 272*bbafb8a7SDavid Blaikie if (getContext().getLangOpts().AppleKext && 2739f9438b3SFariborz Jahanian MD->isVirtual() && 274252a47f6SFariborz Jahanian ME->hasQualifier()) 2757f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 276252a47f6SFariborz Jahanian else 27727da15baSAnders Carlsson Callee = CGM.GetAddrOfFunction(MD, Ty); 27827da15baSAnders Carlsson } 27927da15baSAnders Carlsson 280e36a6b3eSAnders Carlsson return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 28127da15baSAnders Carlsson CE->arg_begin(), CE->arg_end()); 28227da15baSAnders Carlsson } 28327da15baSAnders Carlsson 28427da15baSAnders Carlsson RValue 28527da15baSAnders Carlsson CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 28627da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 28727da15baSAnders Carlsson const BinaryOperator *BO = 28827da15baSAnders Carlsson cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 28927da15baSAnders Carlsson const Expr *BaseExpr = BO->getLHS(); 29027da15baSAnders Carlsson const Expr *MemFnExpr = BO->getRHS(); 29127da15baSAnders Carlsson 29227da15baSAnders Carlsson const MemberPointerType *MPT = 2930009fcc3SJohn McCall MemFnExpr->getType()->castAs<MemberPointerType>(); 294475999dcSJohn McCall 29527da15baSAnders Carlsson const FunctionProtoType *FPT = 2960009fcc3SJohn McCall MPT->getPointeeType()->castAs<FunctionProtoType>(); 29727da15baSAnders Carlsson const CXXRecordDecl *RD = 29827da15baSAnders Carlsson cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 29927da15baSAnders Carlsson 30027da15baSAnders Carlsson // Get the member function pointer. 301a1dee530SJohn McCall llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 30227da15baSAnders Carlsson 30327da15baSAnders Carlsson // Emit the 'this' pointer. 30427da15baSAnders Carlsson llvm::Value *This; 30527da15baSAnders Carlsson 306e302792bSJohn McCall if (BO->getOpcode() == BO_PtrMemI) 30727da15baSAnders Carlsson This = EmitScalarExpr(BaseExpr); 30827da15baSAnders Carlsson else 30927da15baSAnders Carlsson This = EmitLValue(BaseExpr).getAddress(); 31027da15baSAnders Carlsson 311475999dcSJohn McCall // Ask the ABI to load the callee. Note that This is modified. 312475999dcSJohn McCall llvm::Value *Callee = 313ad7c5c16SJohn McCall CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 31427da15baSAnders Carlsson 31527da15baSAnders Carlsson CallArgList Args; 31627da15baSAnders Carlsson 31727da15baSAnders Carlsson QualType ThisType = 31827da15baSAnders Carlsson getContext().getPointerType(getContext().getTagDeclType(RD)); 31927da15baSAnders Carlsson 32027da15baSAnders Carlsson // Push the this ptr. 32143dca6a8SEli Friedman Args.add(RValue::get(This), ThisType); 32227da15baSAnders Carlsson 32327da15baSAnders Carlsson // And the rest of the call args 32427da15baSAnders Carlsson EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 325a729c62bSJohn McCall return EmitCall(CGM.getTypes().arrangeFunctionCall(Args, FPT), Callee, 32699cc30c3STilmann Scheller ReturnValue, Args); 32727da15baSAnders Carlsson } 32827da15baSAnders Carlsson 32927da15baSAnders Carlsson RValue 33027da15baSAnders Carlsson CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 33127da15baSAnders Carlsson const CXXMethodDecl *MD, 33227da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 33327da15baSAnders Carlsson assert(MD->isInstance() && 33427da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 335e26a872bSJohn McCall LValue LV = EmitLValue(E->getArg(0)); 336e26a872bSJohn McCall llvm::Value *This = LV.getAddress(); 337e26a872bSJohn McCall 338146b8e9aSDouglas Gregor if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 339146b8e9aSDouglas Gregor MD->isTrivial()) { 34027da15baSAnders Carlsson llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 34127da15baSAnders Carlsson QualType Ty = E->getType(); 34227da15baSAnders Carlsson EmitAggregateCopy(This, Src, Ty); 34327da15baSAnders Carlsson return RValue::get(This); 34427da15baSAnders Carlsson } 34527da15baSAnders Carlsson 346c36783e8SAnders Carlsson llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 347e36a6b3eSAnders Carlsson return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 34827da15baSAnders Carlsson E->arg_begin() + 1, E->arg_end()); 34927da15baSAnders Carlsson } 35027da15baSAnders Carlsson 351fe883422SPeter Collingbourne RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 352fe883422SPeter Collingbourne ReturnValueSlot ReturnValue) { 353fe883422SPeter Collingbourne return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 354fe883422SPeter Collingbourne } 355fe883422SPeter Collingbourne 356fde961dbSEli Friedman static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 357fde961dbSEli Friedman llvm::Value *DestPtr, 358fde961dbSEli Friedman const CXXRecordDecl *Base) { 359fde961dbSEli Friedman if (Base->isEmpty()) 360fde961dbSEli Friedman return; 361fde961dbSEli Friedman 362fde961dbSEli Friedman DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 363fde961dbSEli Friedman 364fde961dbSEli Friedman const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 365fde961dbSEli Friedman CharUnits Size = Layout.getNonVirtualSize(); 366fde961dbSEli Friedman CharUnits Align = Layout.getNonVirtualAlign(); 367fde961dbSEli Friedman 368fde961dbSEli Friedman llvm::Value *SizeVal = CGF.CGM.getSize(Size); 369fde961dbSEli Friedman 370fde961dbSEli Friedman // If the type contains a pointer to data member we can't memset it to zero. 371fde961dbSEli Friedman // Instead, create a null constant and copy it to the destination. 372fde961dbSEli Friedman // TODO: there are other patterns besides zero that we can usefully memset, 373fde961dbSEli Friedman // like -1, which happens to be the pattern used by member-pointers. 374fde961dbSEli Friedman // TODO: isZeroInitializable can be over-conservative in the case where a 375fde961dbSEli Friedman // virtual base contains a member pointer. 376fde961dbSEli Friedman if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 377fde961dbSEli Friedman llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 378fde961dbSEli Friedman 379fde961dbSEli Friedman llvm::GlobalVariable *NullVariable = 380fde961dbSEli Friedman new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 381fde961dbSEli Friedman /*isConstant=*/true, 382fde961dbSEli Friedman llvm::GlobalVariable::PrivateLinkage, 383fde961dbSEli Friedman NullConstant, Twine()); 384fde961dbSEli Friedman NullVariable->setAlignment(Align.getQuantity()); 385fde961dbSEli Friedman llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 386fde961dbSEli Friedman 387fde961dbSEli Friedman // Get and call the appropriate llvm.memcpy overload. 388fde961dbSEli Friedman CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 389fde961dbSEli Friedman return; 390fde961dbSEli Friedman } 391fde961dbSEli Friedman 392fde961dbSEli Friedman // Otherwise, just memset the whole thing to zero. This is legal 393fde961dbSEli Friedman // because in LLVM, all default initializers (other than the ones we just 394fde961dbSEli Friedman // handled above) are guaranteed to have a bit pattern of all zeros. 395fde961dbSEli Friedman CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 396fde961dbSEli Friedman Align.getQuantity()); 397fde961dbSEli Friedman } 398fde961dbSEli Friedman 39927da15baSAnders Carlsson void 4007a626f63SJohn McCall CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 4017a626f63SJohn McCall AggValueSlot Dest) { 4027a626f63SJohn McCall assert(!Dest.isIgnored() && "Must have a destination!"); 40327da15baSAnders Carlsson const CXXConstructorDecl *CD = E->getConstructor(); 404630c76efSDouglas Gregor 405630c76efSDouglas Gregor // If we require zero initialization before (or instead of) calling the 406630c76efSDouglas Gregor // constructor, as can be the case with a non-user-provided default 40703535265SArgyrios Kyrtzidis // constructor, emit the zero initialization now, unless destination is 40803535265SArgyrios Kyrtzidis // already zeroed. 409fde961dbSEli Friedman if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 410fde961dbSEli Friedman switch (E->getConstructionKind()) { 411fde961dbSEli Friedman case CXXConstructExpr::CK_Delegating: 412fde961dbSEli Friedman assert(0 && "Delegating constructor should not need zeroing"); 413fde961dbSEli Friedman case CXXConstructExpr::CK_Complete: 4147a626f63SJohn McCall EmitNullInitialization(Dest.getAddr(), E->getType()); 415fde961dbSEli Friedman break; 416fde961dbSEli Friedman case CXXConstructExpr::CK_VirtualBase: 417fde961dbSEli Friedman case CXXConstructExpr::CK_NonVirtualBase: 418fde961dbSEli Friedman EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 419fde961dbSEli Friedman break; 420fde961dbSEli Friedman } 421fde961dbSEli Friedman } 422630c76efSDouglas Gregor 423630c76efSDouglas Gregor // If this is a call to a trivial default constructor, do nothing. 424630c76efSDouglas Gregor if (CD->isTrivial() && CD->isDefaultConstructor()) 42527da15baSAnders Carlsson return; 426630c76efSDouglas Gregor 4278ea46b66SJohn McCall // Elide the constructor if we're constructing from a temporary. 4288ea46b66SJohn McCall // The temporary check is required because Sema sets this on NRVO 4298ea46b66SJohn McCall // returns. 430*bbafb8a7SDavid Blaikie if (getContext().getLangOpts().ElideConstructors && E->isElidable()) { 4318ea46b66SJohn McCall assert(getContext().hasSameUnqualifiedType(E->getType(), 4328ea46b66SJohn McCall E->getArg(0)->getType())); 4337a626f63SJohn McCall if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 4347a626f63SJohn McCall EmitAggExpr(E->getArg(0), Dest); 43527da15baSAnders Carlsson return; 43627da15baSAnders Carlsson } 437222cf0efSDouglas Gregor } 438630c76efSDouglas Gregor 439f677a8e9SJohn McCall if (const ConstantArrayType *arrayType 440f677a8e9SJohn McCall = getContext().getAsConstantArrayType(E->getType())) { 441f677a8e9SJohn McCall EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 44227da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 443f677a8e9SJohn McCall } else { 444bceca20aSCameron Esfahani CXXCtorType Type = Ctor_Complete; 445271c3681SAlexis Hunt bool ForVirtualBase = false; 446271c3681SAlexis Hunt 447271c3681SAlexis Hunt switch (E->getConstructionKind()) { 448271c3681SAlexis Hunt case CXXConstructExpr::CK_Delegating: 44961bc1737SAlexis Hunt // We should be emitting a constructor; GlobalDecl will assert this 45061bc1737SAlexis Hunt Type = CurGD.getCtorType(); 451271c3681SAlexis Hunt break; 45261bc1737SAlexis Hunt 453271c3681SAlexis Hunt case CXXConstructExpr::CK_Complete: 454271c3681SAlexis Hunt Type = Ctor_Complete; 455271c3681SAlexis Hunt break; 456271c3681SAlexis Hunt 457271c3681SAlexis Hunt case CXXConstructExpr::CK_VirtualBase: 458271c3681SAlexis Hunt ForVirtualBase = true; 459271c3681SAlexis Hunt // fall-through 460271c3681SAlexis Hunt 461271c3681SAlexis Hunt case CXXConstructExpr::CK_NonVirtualBase: 462271c3681SAlexis Hunt Type = Ctor_Base; 463271c3681SAlexis Hunt } 464e11f9ce9SAnders Carlsson 46527da15baSAnders Carlsson // Call the constructor. 4667a626f63SJohn McCall EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 46727da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 46827da15baSAnders Carlsson } 469e11f9ce9SAnders Carlsson } 47027da15baSAnders Carlsson 471e988bdacSFariborz Jahanian void 472e988bdacSFariborz Jahanian CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 473e988bdacSFariborz Jahanian llvm::Value *Src, 47450198098SFariborz Jahanian const Expr *Exp) { 4755d413781SJohn McCall if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 476e988bdacSFariborz Jahanian Exp = E->getSubExpr(); 477e988bdacSFariborz Jahanian assert(isa<CXXConstructExpr>(Exp) && 478e988bdacSFariborz Jahanian "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 479e988bdacSFariborz Jahanian const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 480e988bdacSFariborz Jahanian const CXXConstructorDecl *CD = E->getConstructor(); 481e988bdacSFariborz Jahanian RunCleanupsScope Scope(*this); 482e988bdacSFariborz Jahanian 483e988bdacSFariborz Jahanian // If we require zero initialization before (or instead of) calling the 484e988bdacSFariborz Jahanian // constructor, as can be the case with a non-user-provided default 485e988bdacSFariborz Jahanian // constructor, emit the zero initialization now. 486e988bdacSFariborz Jahanian // FIXME. Do I still need this for a copy ctor synthesis? 487e988bdacSFariborz Jahanian if (E->requiresZeroInitialization()) 488e988bdacSFariborz Jahanian EmitNullInitialization(Dest, E->getType()); 489e988bdacSFariborz Jahanian 49099da11cfSChandler Carruth assert(!getContext().getAsConstantArrayType(E->getType()) 49199da11cfSChandler Carruth && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 492e988bdacSFariborz Jahanian EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 493e988bdacSFariborz Jahanian E->arg_begin(), E->arg_end()); 494e988bdacSFariborz Jahanian } 495e988bdacSFariborz Jahanian 4968ed55a54SJohn McCall static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 4978ed55a54SJohn McCall const CXXNewExpr *E) { 49821122cf6SAnders Carlsson if (!E->isArray()) 4993eb55cfeSKen Dyck return CharUnits::Zero(); 50021122cf6SAnders Carlsson 5017ec4b434SJohn McCall // No cookie is required if the operator new[] being used is the 5027ec4b434SJohn McCall // reserved placement operator new[]. 5037ec4b434SJohn McCall if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 5043eb55cfeSKen Dyck return CharUnits::Zero(); 505399f499fSAnders Carlsson 506284c48ffSJohn McCall return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 50759486a2dSAnders Carlsson } 50859486a2dSAnders Carlsson 509036f2f6bSJohn McCall static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 510036f2f6bSJohn McCall const CXXNewExpr *e, 511f862eb6aSSebastian Redl unsigned minElements, 512036f2f6bSJohn McCall llvm::Value *&numElements, 513036f2f6bSJohn McCall llvm::Value *&sizeWithoutCookie) { 514036f2f6bSJohn McCall QualType type = e->getAllocatedType(); 51559486a2dSAnders Carlsson 516036f2f6bSJohn McCall if (!e->isArray()) { 517036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 518036f2f6bSJohn McCall sizeWithoutCookie 519036f2f6bSJohn McCall = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 520036f2f6bSJohn McCall return sizeWithoutCookie; 52105fc5be3SDouglas Gregor } 52259486a2dSAnders Carlsson 523036f2f6bSJohn McCall // The width of size_t. 524036f2f6bSJohn McCall unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 525036f2f6bSJohn McCall 5268ed55a54SJohn McCall // Figure out the cookie size. 527036f2f6bSJohn McCall llvm::APInt cookieSize(sizeWidth, 528036f2f6bSJohn McCall CalculateCookiePadding(CGF, e).getQuantity()); 5298ed55a54SJohn McCall 53059486a2dSAnders Carlsson // Emit the array size expression. 5317648fb46SArgyrios Kyrtzidis // We multiply the size of all dimensions for NumElements. 5327648fb46SArgyrios Kyrtzidis // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 533036f2f6bSJohn McCall numElements = CGF.EmitScalarExpr(e->getArraySize()); 534036f2f6bSJohn McCall assert(isa<llvm::IntegerType>(numElements->getType())); 5358ed55a54SJohn McCall 536036f2f6bSJohn McCall // The number of elements can be have an arbitrary integer type; 537036f2f6bSJohn McCall // essentially, we need to multiply it by a constant factor, add a 538036f2f6bSJohn McCall // cookie size, and verify that the result is representable as a 539036f2f6bSJohn McCall // size_t. That's just a gloss, though, and it's wrong in one 540036f2f6bSJohn McCall // important way: if the count is negative, it's an error even if 541036f2f6bSJohn McCall // the cookie size would bring the total size >= 0. 5426ab2fa8fSDouglas Gregor bool isSigned 5436ab2fa8fSDouglas Gregor = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 5442192fe50SChris Lattner llvm::IntegerType *numElementsType 545036f2f6bSJohn McCall = cast<llvm::IntegerType>(numElements->getType()); 546036f2f6bSJohn McCall unsigned numElementsWidth = numElementsType->getBitWidth(); 547036f2f6bSJohn McCall 548036f2f6bSJohn McCall // Compute the constant factor. 549036f2f6bSJohn McCall llvm::APInt arraySizeMultiplier(sizeWidth, 1); 5507648fb46SArgyrios Kyrtzidis while (const ConstantArrayType *CAT 551036f2f6bSJohn McCall = CGF.getContext().getAsConstantArrayType(type)) { 552036f2f6bSJohn McCall type = CAT->getElementType(); 553036f2f6bSJohn McCall arraySizeMultiplier *= CAT->getSize(); 5547648fb46SArgyrios Kyrtzidis } 55559486a2dSAnders Carlsson 556036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 557036f2f6bSJohn McCall llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 558036f2f6bSJohn McCall typeSizeMultiplier *= arraySizeMultiplier; 559036f2f6bSJohn McCall 560036f2f6bSJohn McCall // This will be a size_t. 561036f2f6bSJohn McCall llvm::Value *size; 56232ac583dSChris Lattner 56332ac583dSChris Lattner // If someone is doing 'new int[42]' there is no need to do a dynamic check. 56432ac583dSChris Lattner // Don't bloat the -O0 code. 565036f2f6bSJohn McCall if (llvm::ConstantInt *numElementsC = 566036f2f6bSJohn McCall dyn_cast<llvm::ConstantInt>(numElements)) { 567036f2f6bSJohn McCall const llvm::APInt &count = numElementsC->getValue(); 56832ac583dSChris Lattner 569036f2f6bSJohn McCall bool hasAnyOverflow = false; 57032ac583dSChris Lattner 571036f2f6bSJohn McCall // If 'count' was a negative number, it's an overflow. 572036f2f6bSJohn McCall if (isSigned && count.isNegative()) 573036f2f6bSJohn McCall hasAnyOverflow = true; 5748ed55a54SJohn McCall 575036f2f6bSJohn McCall // We want to do all this arithmetic in size_t. If numElements is 576036f2f6bSJohn McCall // wider than that, check whether it's already too big, and if so, 577036f2f6bSJohn McCall // overflow. 578036f2f6bSJohn McCall else if (numElementsWidth > sizeWidth && 579036f2f6bSJohn McCall numElementsWidth - sizeWidth > count.countLeadingZeros()) 580036f2f6bSJohn McCall hasAnyOverflow = true; 581036f2f6bSJohn McCall 582036f2f6bSJohn McCall // Okay, compute a count at the right width. 583036f2f6bSJohn McCall llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 584036f2f6bSJohn McCall 585f862eb6aSSebastian Redl // If there is a brace-initializer, we cannot allocate fewer elements than 586f862eb6aSSebastian Redl // there are initializers. If we do, that's treated like an overflow. 587f862eb6aSSebastian Redl if (adjustedCount.ult(minElements)) 588f862eb6aSSebastian Redl hasAnyOverflow = true; 589f862eb6aSSebastian Redl 590036f2f6bSJohn McCall // Scale numElements by that. This might overflow, but we don't 591036f2f6bSJohn McCall // care because it only overflows if allocationSize does, too, and 592036f2f6bSJohn McCall // if that overflows then we shouldn't use this. 593036f2f6bSJohn McCall numElements = llvm::ConstantInt::get(CGF.SizeTy, 594036f2f6bSJohn McCall adjustedCount * arraySizeMultiplier); 595036f2f6bSJohn McCall 596036f2f6bSJohn McCall // Compute the size before cookie, and track whether it overflowed. 597036f2f6bSJohn McCall bool overflow; 598036f2f6bSJohn McCall llvm::APInt allocationSize 599036f2f6bSJohn McCall = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 600036f2f6bSJohn McCall hasAnyOverflow |= overflow; 601036f2f6bSJohn McCall 602036f2f6bSJohn McCall // Add in the cookie, and check whether it's overflowed. 603036f2f6bSJohn McCall if (cookieSize != 0) { 604036f2f6bSJohn McCall // Save the current size without a cookie. This shouldn't be 605036f2f6bSJohn McCall // used if there was overflow. 606036f2f6bSJohn McCall sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 607036f2f6bSJohn McCall 608036f2f6bSJohn McCall allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 609036f2f6bSJohn McCall hasAnyOverflow |= overflow; 6108ed55a54SJohn McCall } 6118ed55a54SJohn McCall 612036f2f6bSJohn McCall // On overflow, produce a -1 so operator new will fail. 613036f2f6bSJohn McCall if (hasAnyOverflow) { 614036f2f6bSJohn McCall size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 61532ac583dSChris Lattner } else { 616036f2f6bSJohn McCall size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 61732ac583dSChris Lattner } 61832ac583dSChris Lattner 619036f2f6bSJohn McCall // Otherwise, we might need to use the overflow intrinsics. 6208ed55a54SJohn McCall } else { 621f862eb6aSSebastian Redl // There are up to five conditions we need to test for: 622036f2f6bSJohn McCall // 1) if isSigned, we need to check whether numElements is negative; 623036f2f6bSJohn McCall // 2) if numElementsWidth > sizeWidth, we need to check whether 624036f2f6bSJohn McCall // numElements is larger than something representable in size_t; 625f862eb6aSSebastian Redl // 3) if minElements > 0, we need to check whether numElements is smaller 626f862eb6aSSebastian Redl // than that. 627f862eb6aSSebastian Redl // 4) we need to compute 628036f2f6bSJohn McCall // sizeWithoutCookie := numElements * typeSizeMultiplier 629036f2f6bSJohn McCall // and check whether it overflows; and 630f862eb6aSSebastian Redl // 5) if we need a cookie, we need to compute 631036f2f6bSJohn McCall // size := sizeWithoutCookie + cookieSize 632036f2f6bSJohn McCall // and check whether it overflows. 6338ed55a54SJohn McCall 634036f2f6bSJohn McCall llvm::Value *hasOverflow = 0; 6358ed55a54SJohn McCall 636036f2f6bSJohn McCall // If numElementsWidth > sizeWidth, then one way or another, we're 637036f2f6bSJohn McCall // going to have to do a comparison for (2), and this happens to 638036f2f6bSJohn McCall // take care of (1), too. 639036f2f6bSJohn McCall if (numElementsWidth > sizeWidth) { 640036f2f6bSJohn McCall llvm::APInt threshold(numElementsWidth, 1); 641036f2f6bSJohn McCall threshold <<= sizeWidth; 6428ed55a54SJohn McCall 643036f2f6bSJohn McCall llvm::Value *thresholdV 644036f2f6bSJohn McCall = llvm::ConstantInt::get(numElementsType, threshold); 645036f2f6bSJohn McCall 646036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 647036f2f6bSJohn McCall numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 648036f2f6bSJohn McCall 649036f2f6bSJohn McCall // Otherwise, if we're signed, we want to sext up to size_t. 650036f2f6bSJohn McCall } else if (isSigned) { 651036f2f6bSJohn McCall if (numElementsWidth < sizeWidth) 652036f2f6bSJohn McCall numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 653036f2f6bSJohn McCall 654036f2f6bSJohn McCall // If there's a non-1 type size multiplier, then we can do the 655036f2f6bSJohn McCall // signedness check at the same time as we do the multiply 656036f2f6bSJohn McCall // because a negative number times anything will cause an 657f862eb6aSSebastian Redl // unsigned overflow. Otherwise, we have to do it here. But at least 658f862eb6aSSebastian Redl // in this case, we can subsume the >= minElements check. 659036f2f6bSJohn McCall if (typeSizeMultiplier == 1) 660036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 661f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 662036f2f6bSJohn McCall 663036f2f6bSJohn McCall // Otherwise, zext up to size_t if necessary. 664036f2f6bSJohn McCall } else if (numElementsWidth < sizeWidth) { 665036f2f6bSJohn McCall numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 666036f2f6bSJohn McCall } 667036f2f6bSJohn McCall 668036f2f6bSJohn McCall assert(numElements->getType() == CGF.SizeTy); 669036f2f6bSJohn McCall 670f862eb6aSSebastian Redl if (minElements) { 671f862eb6aSSebastian Redl // Don't allow allocation of fewer elements than we have initializers. 672f862eb6aSSebastian Redl if (!hasOverflow) { 673f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateICmpULT(numElements, 674f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 675f862eb6aSSebastian Redl } else if (numElementsWidth > sizeWidth) { 676f862eb6aSSebastian Redl // The other existing overflow subsumes this check. 677f862eb6aSSebastian Redl // We do an unsigned comparison, since any signed value < -1 is 678f862eb6aSSebastian Redl // taken care of either above or below. 679f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateOr(hasOverflow, 680f862eb6aSSebastian Redl CGF.Builder.CreateICmpULT(numElements, 681f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements))); 682f862eb6aSSebastian Redl } 683f862eb6aSSebastian Redl } 684f862eb6aSSebastian Redl 685036f2f6bSJohn McCall size = numElements; 686036f2f6bSJohn McCall 687036f2f6bSJohn McCall // Multiply by the type size if necessary. This multiplier 688036f2f6bSJohn McCall // includes all the factors for nested arrays. 6898ed55a54SJohn McCall // 690036f2f6bSJohn McCall // This step also causes numElements to be scaled up by the 691036f2f6bSJohn McCall // nested-array factor if necessary. Overflow on this computation 692036f2f6bSJohn McCall // can be ignored because the result shouldn't be used if 693036f2f6bSJohn McCall // allocation fails. 694036f2f6bSJohn McCall if (typeSizeMultiplier != 1) { 695036f2f6bSJohn McCall llvm::Value *umul_with_overflow 6968d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 6978ed55a54SJohn McCall 698036f2f6bSJohn McCall llvm::Value *tsmV = 699036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 700036f2f6bSJohn McCall llvm::Value *result = 701036f2f6bSJohn McCall CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 7028ed55a54SJohn McCall 703036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 704036f2f6bSJohn McCall if (hasOverflow) 705036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 7068ed55a54SJohn McCall else 707036f2f6bSJohn McCall hasOverflow = overflowed; 70859486a2dSAnders Carlsson 709036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 710036f2f6bSJohn McCall 711036f2f6bSJohn McCall // Also scale up numElements by the array size multiplier. 712036f2f6bSJohn McCall if (arraySizeMultiplier != 1) { 713036f2f6bSJohn McCall // If the base element type size is 1, then we can re-use the 714036f2f6bSJohn McCall // multiply we just did. 715036f2f6bSJohn McCall if (typeSize.isOne()) { 716036f2f6bSJohn McCall assert(arraySizeMultiplier == typeSizeMultiplier); 717036f2f6bSJohn McCall numElements = size; 718036f2f6bSJohn McCall 719036f2f6bSJohn McCall // Otherwise we need a separate multiply. 720036f2f6bSJohn McCall } else { 721036f2f6bSJohn McCall llvm::Value *asmV = 722036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 723036f2f6bSJohn McCall numElements = CGF.Builder.CreateMul(numElements, asmV); 724036f2f6bSJohn McCall } 725036f2f6bSJohn McCall } 726036f2f6bSJohn McCall } else { 727036f2f6bSJohn McCall // numElements doesn't need to be scaled. 728036f2f6bSJohn McCall assert(arraySizeMultiplier == 1); 729036f2f6bSJohn McCall } 730036f2f6bSJohn McCall 731036f2f6bSJohn McCall // Add in the cookie size if necessary. 732036f2f6bSJohn McCall if (cookieSize != 0) { 733036f2f6bSJohn McCall sizeWithoutCookie = size; 734036f2f6bSJohn McCall 735036f2f6bSJohn McCall llvm::Value *uadd_with_overflow 7368d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 737036f2f6bSJohn McCall 738036f2f6bSJohn McCall llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 739036f2f6bSJohn McCall llvm::Value *result = 740036f2f6bSJohn McCall CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 741036f2f6bSJohn McCall 742036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 743036f2f6bSJohn McCall if (hasOverflow) 744036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 745036f2f6bSJohn McCall else 746036f2f6bSJohn McCall hasOverflow = overflowed; 747036f2f6bSJohn McCall 748036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 749036f2f6bSJohn McCall } 750036f2f6bSJohn McCall 751036f2f6bSJohn McCall // If we had any possibility of dynamic overflow, make a select to 752036f2f6bSJohn McCall // overwrite 'size' with an all-ones value, which should cause 753036f2f6bSJohn McCall // operator new to throw. 754036f2f6bSJohn McCall if (hasOverflow) 755036f2f6bSJohn McCall size = CGF.Builder.CreateSelect(hasOverflow, 756036f2f6bSJohn McCall llvm::Constant::getAllOnesValue(CGF.SizeTy), 757036f2f6bSJohn McCall size); 758036f2f6bSJohn McCall } 759036f2f6bSJohn McCall 760036f2f6bSJohn McCall if (cookieSize == 0) 761036f2f6bSJohn McCall sizeWithoutCookie = size; 762036f2f6bSJohn McCall else 763036f2f6bSJohn McCall assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 764036f2f6bSJohn McCall 765036f2f6bSJohn McCall return size; 76659486a2dSAnders Carlsson } 76759486a2dSAnders Carlsson 768f862eb6aSSebastian Redl static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 769f862eb6aSSebastian Redl QualType AllocType, llvm::Value *NewPtr) { 770d5202e09SFariborz Jahanian 77138cd36dbSEli Friedman CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 772d5202e09SFariborz Jahanian if (!CGF.hasAggregateLLVMType(AllocType)) 77338cd36dbSEli Friedman CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 774a0544d6fSEli Friedman Alignment), 7751553b190SJohn McCall false); 776d5202e09SFariborz Jahanian else if (AllocType->isAnyComplexType()) 777d5202e09SFariborz Jahanian CGF.EmitComplexExprIntoAddr(Init, NewPtr, 778d5202e09SFariborz Jahanian AllocType.isVolatileQualified()); 7797a626f63SJohn McCall else { 7807a626f63SJohn McCall AggValueSlot Slot 781c1d85b93SEli Friedman = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 7828d6fc958SJohn McCall AggValueSlot::IsDestructed, 78346759f4fSJohn McCall AggValueSlot::DoesNotNeedGCBarriers, 78446759f4fSJohn McCall AggValueSlot::IsNotAliased); 7857a626f63SJohn McCall CGF.EmitAggExpr(Init, Slot); 786d026dc49SSebastian Redl 787d026dc49SSebastian Redl CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init); 7887a626f63SJohn McCall } 789d5202e09SFariborz Jahanian } 790d5202e09SFariborz Jahanian 791d5202e09SFariborz Jahanian void 792d5202e09SFariborz Jahanian CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 79399210dc9SJohn McCall QualType elementType, 79499210dc9SJohn McCall llvm::Value *beginPtr, 79599210dc9SJohn McCall llvm::Value *numElements) { 7966047f07eSSebastian Redl if (!E->hasInitializer()) 7976047f07eSSebastian Redl return; // We have a POD type. 798b66b08efSFariborz Jahanian 799f862eb6aSSebastian Redl llvm::Value *explicitPtr = beginPtr; 80099210dc9SJohn McCall // Find the end of the array, hoisted out of the loop. 80199210dc9SJohn McCall llvm::Value *endPtr = 80299210dc9SJohn McCall Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 803d5202e09SFariborz Jahanian 804f862eb6aSSebastian Redl unsigned initializerElements = 0; 805f862eb6aSSebastian Redl 806f862eb6aSSebastian Redl const Expr *Init = E->getInitializer(); 807f62290a1SChad Rosier llvm::AllocaInst *endOfInit = 0; 808f62290a1SChad Rosier QualType::DestructionKind dtorKind = elementType.isDestructedType(); 809f62290a1SChad Rosier EHScopeStack::stable_iterator cleanup; 810f62290a1SChad Rosier llvm::Instruction *cleanupDominator = 0; 811f862eb6aSSebastian Redl // If the initializer is an initializer list, first do the explicit elements. 812f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 813f862eb6aSSebastian Redl initializerElements = ILE->getNumInits(); 814f62290a1SChad Rosier 815f62290a1SChad Rosier // Enter a partial-destruction cleanup if necessary. 816f62290a1SChad Rosier if (needsEHCleanup(dtorKind)) { 817f62290a1SChad Rosier // In principle we could tell the cleanup where we are more 818f62290a1SChad Rosier // directly, but the control flow can get so varied here that it 819f62290a1SChad Rosier // would actually be quite complex. Therefore we go through an 820f62290a1SChad Rosier // alloca. 821f62290a1SChad Rosier endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 822f62290a1SChad Rosier cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 823f62290a1SChad Rosier pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 824f62290a1SChad Rosier getDestroyer(dtorKind)); 825f62290a1SChad Rosier cleanup = EHStack.stable_begin(); 826f62290a1SChad Rosier } 827f62290a1SChad Rosier 828f862eb6aSSebastian Redl for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 829f62290a1SChad Rosier // Tell the cleanup that it needs to destroy up to this 830f62290a1SChad Rosier // element. TODO: some of these stores can be trivially 831f62290a1SChad Rosier // observed to be unnecessary. 832f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 833f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 834f862eb6aSSebastian Redl explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 835f862eb6aSSebastian Redl } 836f862eb6aSSebastian Redl 837f862eb6aSSebastian Redl // The remaining elements are filled with the array filler expression. 838f862eb6aSSebastian Redl Init = ILE->getArrayFiller(); 839f862eb6aSSebastian Redl } 840f862eb6aSSebastian Redl 84199210dc9SJohn McCall // Create the continuation block. 84299210dc9SJohn McCall llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 843d5202e09SFariborz Jahanian 844f862eb6aSSebastian Redl // If the number of elements isn't constant, we have to now check if there is 845f862eb6aSSebastian Redl // anything left to initialize. 846f862eb6aSSebastian Redl if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 847f862eb6aSSebastian Redl // If all elements have already been initialized, skip the whole loop. 848f62290a1SChad Rosier if (constNum->getZExtValue() <= initializerElements) { 849f62290a1SChad Rosier // If there was a cleanup, deactivate it. 850f62290a1SChad Rosier if (cleanupDominator) 851f62290a1SChad Rosier DeactivateCleanupBlock(cleanup, cleanupDominator);; 852f62290a1SChad Rosier return; 853f62290a1SChad Rosier } 854f862eb6aSSebastian Redl } else { 85599210dc9SJohn McCall llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 856f862eb6aSSebastian Redl llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 85799210dc9SJohn McCall "array.isempty"); 85899210dc9SJohn McCall Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 85999210dc9SJohn McCall EmitBlock(nonEmptyBB); 86099210dc9SJohn McCall } 861d5202e09SFariborz Jahanian 86299210dc9SJohn McCall // Enter the loop. 86399210dc9SJohn McCall llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 86499210dc9SJohn McCall llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 865d5202e09SFariborz Jahanian 86699210dc9SJohn McCall EmitBlock(loopBB); 867d5202e09SFariborz Jahanian 86899210dc9SJohn McCall // Set up the current-element phi. 86999210dc9SJohn McCall llvm::PHINode *curPtr = 870f862eb6aSSebastian Redl Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 871f862eb6aSSebastian Redl curPtr->addIncoming(explicitPtr, entryBB); 872d5202e09SFariborz Jahanian 873f62290a1SChad Rosier // Store the new cleanup position for irregular cleanups. 874f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 875f62290a1SChad Rosier 87699210dc9SJohn McCall // Enter a partial-destruction cleanup if necessary. 877f62290a1SChad Rosier if (!cleanupDominator && needsEHCleanup(dtorKind)) { 87899210dc9SJohn McCall pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 87999210dc9SJohn McCall getDestroyer(dtorKind)); 88099210dc9SJohn McCall cleanup = EHStack.stable_begin(); 881f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 88299210dc9SJohn McCall } 883d5202e09SFariborz Jahanian 88499210dc9SJohn McCall // Emit the initializer into this element. 885f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 886d5202e09SFariborz Jahanian 88799210dc9SJohn McCall // Leave the cleanup if we entered one. 888de6a86b4SEli Friedman if (cleanupDominator) { 889f4beacd0SJohn McCall DeactivateCleanupBlock(cleanup, cleanupDominator); 890f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 891f4beacd0SJohn McCall } 892d5202e09SFariborz Jahanian 89399210dc9SJohn McCall // Advance to the next element. 89499210dc9SJohn McCall llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 89599210dc9SJohn McCall 89699210dc9SJohn McCall // Check whether we've gotten to the end of the array and, if so, 89799210dc9SJohn McCall // exit the loop. 89899210dc9SJohn McCall llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 89999210dc9SJohn McCall Builder.CreateCondBr(isEnd, contBB, loopBB); 90099210dc9SJohn McCall curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 90199210dc9SJohn McCall 90299210dc9SJohn McCall EmitBlock(contBB); 903d5202e09SFariborz Jahanian } 904d5202e09SFariborz Jahanian 90505fc5be3SDouglas Gregor static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 90605fc5be3SDouglas Gregor llvm::Value *NewPtr, llvm::Value *Size) { 907ad7c5c16SJohn McCall CGF.EmitCastToVoidPtr(NewPtr); 908705ba07eSKen Dyck CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 909acc6b4e2SBenjamin Kramer CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 910705ba07eSKen Dyck Alignment.getQuantity(), false); 91105fc5be3SDouglas Gregor } 91205fc5be3SDouglas Gregor 91359486a2dSAnders Carlsson static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 91499210dc9SJohn McCall QualType ElementType, 91559486a2dSAnders Carlsson llvm::Value *NewPtr, 91605fc5be3SDouglas Gregor llvm::Value *NumElements, 91705fc5be3SDouglas Gregor llvm::Value *AllocSizeWithoutCookie) { 9186047f07eSSebastian Redl const Expr *Init = E->getInitializer(); 9193a202f60SAnders Carlsson if (E->isArray()) { 9206047f07eSSebastian Redl if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 9216047f07eSSebastian Redl CXXConstructorDecl *Ctor = CCE->getConstructor(); 92205fc5be3SDouglas Gregor bool RequiresZeroInitialization = false; 923d153103cSDouglas Gregor if (Ctor->isTrivial()) { 92405fc5be3SDouglas Gregor // If new expression did not specify value-initialization, then there 92505fc5be3SDouglas Gregor // is no initialization. 9266047f07eSSebastian Redl if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 92705fc5be3SDouglas Gregor return; 92805fc5be3SDouglas Gregor 92999210dc9SJohn McCall if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 93005fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 93105fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 93299210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 9333a202f60SAnders Carlsson return; 9343a202f60SAnders Carlsson } 93505fc5be3SDouglas Gregor 93605fc5be3SDouglas Gregor RequiresZeroInitialization = true; 93705fc5be3SDouglas Gregor } 93805fc5be3SDouglas Gregor 93905fc5be3SDouglas Gregor CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 9406047f07eSSebastian Redl CCE->arg_begin(), CCE->arg_end(), 94105fc5be3SDouglas Gregor RequiresZeroInitialization); 94205fc5be3SDouglas Gregor return; 9436047f07eSSebastian Redl } else if (Init && isa<ImplicitValueInitExpr>(Init) && 944de6a86b4SEli Friedman CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 94505fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 94605fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 94799210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 94805fc5be3SDouglas Gregor return; 9496047f07eSSebastian Redl } 95099210dc9SJohn McCall CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 951d5202e09SFariborz Jahanian return; 952d040e6b2SAnders Carlsson } 95359486a2dSAnders Carlsson 9546047f07eSSebastian Redl if (!Init) 955b66b08efSFariborz Jahanian return; 95659486a2dSAnders Carlsson 957f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 95859486a2dSAnders Carlsson } 95959486a2dSAnders Carlsson 960824c2f53SJohn McCall namespace { 961824c2f53SJohn McCall /// A cleanup to call the given 'operator delete' function upon 962824c2f53SJohn McCall /// abnormal exit from a new expression. 963824c2f53SJohn McCall class CallDeleteDuringNew : public EHScopeStack::Cleanup { 964824c2f53SJohn McCall size_t NumPlacementArgs; 965824c2f53SJohn McCall const FunctionDecl *OperatorDelete; 966824c2f53SJohn McCall llvm::Value *Ptr; 967824c2f53SJohn McCall llvm::Value *AllocSize; 968824c2f53SJohn McCall 969824c2f53SJohn McCall RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 970824c2f53SJohn McCall 971824c2f53SJohn McCall public: 972824c2f53SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 973824c2f53SJohn McCall return NumPlacementArgs * sizeof(RValue); 974824c2f53SJohn McCall } 975824c2f53SJohn McCall 976824c2f53SJohn McCall CallDeleteDuringNew(size_t NumPlacementArgs, 977824c2f53SJohn McCall const FunctionDecl *OperatorDelete, 978824c2f53SJohn McCall llvm::Value *Ptr, 979824c2f53SJohn McCall llvm::Value *AllocSize) 980824c2f53SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 981824c2f53SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 982824c2f53SJohn McCall 983824c2f53SJohn McCall void setPlacementArg(unsigned I, RValue Arg) { 984824c2f53SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 985824c2f53SJohn McCall getPlacementArgs()[I] = Arg; 986824c2f53SJohn McCall } 987824c2f53SJohn McCall 98830317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 989824c2f53SJohn McCall const FunctionProtoType *FPT 990824c2f53SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 991824c2f53SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 992d441b1e6SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 993824c2f53SJohn McCall 994824c2f53SJohn McCall CallArgList DeleteArgs; 995824c2f53SJohn McCall 996824c2f53SJohn McCall // The first argument is always a void*. 997824c2f53SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 99843dca6a8SEli Friedman DeleteArgs.add(RValue::get(Ptr), *AI++); 999824c2f53SJohn McCall 1000824c2f53SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 1001824c2f53SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) 100243dca6a8SEli Friedman DeleteArgs.add(RValue::get(AllocSize), *AI++); 1003824c2f53SJohn McCall 1004824c2f53SJohn McCall // Pass the rest of the arguments, which must match exactly. 1005824c2f53SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) 100643dca6a8SEli Friedman DeleteArgs.add(getPlacementArgs()[I], *AI++); 1007824c2f53SJohn McCall 1008824c2f53SJohn McCall // Call 'operator delete'. 1009a729c62bSJohn McCall CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT), 1010824c2f53SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 1011824c2f53SJohn McCall ReturnValueSlot(), DeleteArgs, OperatorDelete); 1012824c2f53SJohn McCall } 1013824c2f53SJohn McCall }; 10147f9c92a9SJohn McCall 10157f9c92a9SJohn McCall /// A cleanup to call the given 'operator delete' function upon 10167f9c92a9SJohn McCall /// abnormal exit from a new expression when the new expression is 10177f9c92a9SJohn McCall /// conditional. 10187f9c92a9SJohn McCall class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 10197f9c92a9SJohn McCall size_t NumPlacementArgs; 10207f9c92a9SJohn McCall const FunctionDecl *OperatorDelete; 1021cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr; 1022cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize; 10237f9c92a9SJohn McCall 1024cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type *getPlacementArgs() { 1025cb5f77f0SJohn McCall return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 10267f9c92a9SJohn McCall } 10277f9c92a9SJohn McCall 10287f9c92a9SJohn McCall public: 10297f9c92a9SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1030cb5f77f0SJohn McCall return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 10317f9c92a9SJohn McCall } 10327f9c92a9SJohn McCall 10337f9c92a9SJohn McCall CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 10347f9c92a9SJohn McCall const FunctionDecl *OperatorDelete, 1035cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr, 1036cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize) 10377f9c92a9SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 10387f9c92a9SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 10397f9c92a9SJohn McCall 1040cb5f77f0SJohn McCall void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 10417f9c92a9SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 10427f9c92a9SJohn McCall getPlacementArgs()[I] = Arg; 10437f9c92a9SJohn McCall } 10447f9c92a9SJohn McCall 104530317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 10467f9c92a9SJohn McCall const FunctionProtoType *FPT 10477f9c92a9SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 10487f9c92a9SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 10497f9c92a9SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 10507f9c92a9SJohn McCall 10517f9c92a9SJohn McCall CallArgList DeleteArgs; 10527f9c92a9SJohn McCall 10537f9c92a9SJohn McCall // The first argument is always a void*. 10547f9c92a9SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 105543dca6a8SEli Friedman DeleteArgs.add(Ptr.restore(CGF), *AI++); 10567f9c92a9SJohn McCall 10577f9c92a9SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 10587f9c92a9SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1059cb5f77f0SJohn McCall RValue RV = AllocSize.restore(CGF); 106043dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 10617f9c92a9SJohn McCall } 10627f9c92a9SJohn McCall 10637f9c92a9SJohn McCall // Pass the rest of the arguments, which must match exactly. 10647f9c92a9SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1065cb5f77f0SJohn McCall RValue RV = getPlacementArgs()[I].restore(CGF); 106643dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 10677f9c92a9SJohn McCall } 10687f9c92a9SJohn McCall 10697f9c92a9SJohn McCall // Call 'operator delete'. 1070a729c62bSJohn McCall CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT), 10717f9c92a9SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 10727f9c92a9SJohn McCall ReturnValueSlot(), DeleteArgs, OperatorDelete); 10737f9c92a9SJohn McCall } 10747f9c92a9SJohn McCall }; 10757f9c92a9SJohn McCall } 10767f9c92a9SJohn McCall 10777f9c92a9SJohn McCall /// Enter a cleanup to call 'operator delete' if the initializer in a 10787f9c92a9SJohn McCall /// new-expression throws. 10797f9c92a9SJohn McCall static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 10807f9c92a9SJohn McCall const CXXNewExpr *E, 10817f9c92a9SJohn McCall llvm::Value *NewPtr, 10827f9c92a9SJohn McCall llvm::Value *AllocSize, 10837f9c92a9SJohn McCall const CallArgList &NewArgs) { 10847f9c92a9SJohn McCall // If we're not inside a conditional branch, then the cleanup will 10857f9c92a9SJohn McCall // dominate and we can do the easier (and more efficient) thing. 10867f9c92a9SJohn McCall if (!CGF.isInConditionalBranch()) { 10877f9c92a9SJohn McCall CallDeleteDuringNew *Cleanup = CGF.EHStack 10887f9c92a9SJohn McCall .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 10897f9c92a9SJohn McCall E->getNumPlacementArgs(), 10907f9c92a9SJohn McCall E->getOperatorDelete(), 10917f9c92a9SJohn McCall NewPtr, AllocSize); 10927f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1093f4258eb4SEli Friedman Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 10947f9c92a9SJohn McCall 10957f9c92a9SJohn McCall return; 10967f9c92a9SJohn McCall } 10977f9c92a9SJohn McCall 10987f9c92a9SJohn McCall // Otherwise, we need to save all this stuff. 1099cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedNewPtr = 1100cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1101cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedAllocSize = 1102cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 11037f9c92a9SJohn McCall 11047f9c92a9SJohn McCall CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1105f4beacd0SJohn McCall .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 11067f9c92a9SJohn McCall E->getNumPlacementArgs(), 11077f9c92a9SJohn McCall E->getOperatorDelete(), 11087f9c92a9SJohn McCall SavedNewPtr, 11097f9c92a9SJohn McCall SavedAllocSize); 11107f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1111cb5f77f0SJohn McCall Cleanup->setPlacementArg(I, 1112f4258eb4SEli Friedman DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 11137f9c92a9SJohn McCall 1114f4beacd0SJohn McCall CGF.initFullExprCleanup(); 1115824c2f53SJohn McCall } 1116824c2f53SJohn McCall 111759486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 111875f9498aSJohn McCall // The element type being allocated. 111975f9498aSJohn McCall QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 11208ed55a54SJohn McCall 112175f9498aSJohn McCall // 1. Build a call to the allocation function. 112275f9498aSJohn McCall FunctionDecl *allocator = E->getOperatorNew(); 112375f9498aSJohn McCall const FunctionProtoType *allocatorType = 112475f9498aSJohn McCall allocator->getType()->castAs<FunctionProtoType>(); 112559486a2dSAnders Carlsson 112675f9498aSJohn McCall CallArgList allocatorArgs; 112759486a2dSAnders Carlsson 112859486a2dSAnders Carlsson // The allocation size is the first argument. 112975f9498aSJohn McCall QualType sizeType = getContext().getSizeType(); 113059486a2dSAnders Carlsson 1131f862eb6aSSebastian Redl // If there is a brace-initializer, cannot allocate fewer elements than inits. 1132f862eb6aSSebastian Redl unsigned minElements = 0; 1133f862eb6aSSebastian Redl if (E->isArray() && E->hasInitializer()) { 1134f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1135f862eb6aSSebastian Redl minElements = ILE->getNumInits(); 1136f862eb6aSSebastian Redl } 1137f862eb6aSSebastian Redl 113875f9498aSJohn McCall llvm::Value *numElements = 0; 113975f9498aSJohn McCall llvm::Value *allocSizeWithoutCookie = 0; 114075f9498aSJohn McCall llvm::Value *allocSize = 1141f862eb6aSSebastian Redl EmitCXXNewAllocSize(*this, E, minElements, numElements, 1142f862eb6aSSebastian Redl allocSizeWithoutCookie); 114359486a2dSAnders Carlsson 114443dca6a8SEli Friedman allocatorArgs.add(RValue::get(allocSize), sizeType); 114559486a2dSAnders Carlsson 114659486a2dSAnders Carlsson // Emit the rest of the arguments. 114759486a2dSAnders Carlsson // FIXME: Ideally, this should just use EmitCallArgs. 114875f9498aSJohn McCall CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 114959486a2dSAnders Carlsson 115059486a2dSAnders Carlsson // First, use the types from the function type. 115159486a2dSAnders Carlsson // We start at 1 here because the first argument (the allocation size) 115259486a2dSAnders Carlsson // has already been emitted. 115375f9498aSJohn McCall for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 115475f9498aSJohn McCall ++i, ++placementArg) { 115575f9498aSJohn McCall QualType argType = allocatorType->getArgType(i); 115659486a2dSAnders Carlsson 115775f9498aSJohn McCall assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 115875f9498aSJohn McCall placementArg->getType()) && 115959486a2dSAnders Carlsson "type mismatch in call argument!"); 116059486a2dSAnders Carlsson 116132ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, argType); 116259486a2dSAnders Carlsson } 116359486a2dSAnders Carlsson 116459486a2dSAnders Carlsson // Either we've emitted all the call args, or we have a call to a 116559486a2dSAnders Carlsson // variadic function. 116675f9498aSJohn McCall assert((placementArg == E->placement_arg_end() || 116775f9498aSJohn McCall allocatorType->isVariadic()) && 116875f9498aSJohn McCall "Extra arguments to non-variadic function!"); 116959486a2dSAnders Carlsson 117059486a2dSAnders Carlsson // If we still have any arguments, emit them using the type of the argument. 117175f9498aSJohn McCall for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 117275f9498aSJohn McCall placementArg != placementArgsEnd; ++placementArg) { 117332ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 117459486a2dSAnders Carlsson } 117559486a2dSAnders Carlsson 11767ec4b434SJohn McCall // Emit the allocation call. If the allocator is a global placement 11777ec4b434SJohn McCall // operator, just "inline" it directly. 11787ec4b434SJohn McCall RValue RV; 11797ec4b434SJohn McCall if (allocator->isReservedGlobalPlacementOperator()) { 11807ec4b434SJohn McCall assert(allocatorArgs.size() == 2); 11817ec4b434SJohn McCall RV = allocatorArgs[1].RV; 11827ec4b434SJohn McCall // TODO: kill any unnecessary computations done for the size 11837ec4b434SJohn McCall // argument. 11847ec4b434SJohn McCall } else { 1185a729c62bSJohn McCall RV = EmitCall(CGM.getTypes().arrangeFunctionCall(allocatorArgs, 1186a729c62bSJohn McCall allocatorType), 118775f9498aSJohn McCall CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 118875f9498aSJohn McCall allocatorArgs, allocator); 11897ec4b434SJohn McCall } 119059486a2dSAnders Carlsson 119175f9498aSJohn McCall // Emit a null check on the allocation result if the allocation 119275f9498aSJohn McCall // function is allowed to return null (because it has a non-throwing 119375f9498aSJohn McCall // exception spec; for this part, we inline 119475f9498aSJohn McCall // CXXNewExpr::shouldNullCheckAllocation()) and we have an 119575f9498aSJohn McCall // interesting initializer. 119631ad754cSSebastian Redl bool nullCheck = allocatorType->isNothrow(getContext()) && 11976047f07eSSebastian Redl (!allocType.isPODType(getContext()) || E->hasInitializer()); 119859486a2dSAnders Carlsson 119975f9498aSJohn McCall llvm::BasicBlock *nullCheckBB = 0; 120075f9498aSJohn McCall llvm::BasicBlock *contBB = 0; 120159486a2dSAnders Carlsson 120275f9498aSJohn McCall llvm::Value *allocation = RV.getScalarVal(); 120375f9498aSJohn McCall unsigned AS = 120475f9498aSJohn McCall cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 120559486a2dSAnders Carlsson 1206f7dcf320SJohn McCall // The null-check means that the initializer is conditionally 1207f7dcf320SJohn McCall // evaluated. 1208f7dcf320SJohn McCall ConditionalEvaluation conditional(*this); 1209f7dcf320SJohn McCall 121075f9498aSJohn McCall if (nullCheck) { 1211f7dcf320SJohn McCall conditional.begin(*this); 121275f9498aSJohn McCall 121375f9498aSJohn McCall nullCheckBB = Builder.GetInsertBlock(); 121475f9498aSJohn McCall llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 121575f9498aSJohn McCall contBB = createBasicBlock("new.cont"); 121675f9498aSJohn McCall 121775f9498aSJohn McCall llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 121875f9498aSJohn McCall Builder.CreateCondBr(isNull, contBB, notNullBB); 121975f9498aSJohn McCall EmitBlock(notNullBB); 122059486a2dSAnders Carlsson } 122159486a2dSAnders Carlsson 1222824c2f53SJohn McCall // If there's an operator delete, enter a cleanup to call it if an 1223824c2f53SJohn McCall // exception is thrown. 122475f9498aSJohn McCall EHScopeStack::stable_iterator operatorDeleteCleanup; 1225f4beacd0SJohn McCall llvm::Instruction *cleanupDominator = 0; 12267ec4b434SJohn McCall if (E->getOperatorDelete() && 12277ec4b434SJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 122875f9498aSJohn McCall EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 122975f9498aSJohn McCall operatorDeleteCleanup = EHStack.stable_begin(); 1230f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 1231824c2f53SJohn McCall } 1232824c2f53SJohn McCall 1233cf9b1f65SEli Friedman assert((allocSize == allocSizeWithoutCookie) == 1234cf9b1f65SEli Friedman CalculateCookiePadding(*this, E).isZero()); 1235cf9b1f65SEli Friedman if (allocSize != allocSizeWithoutCookie) { 1236cf9b1f65SEli Friedman assert(E->isArray()); 1237cf9b1f65SEli Friedman allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1238cf9b1f65SEli Friedman numElements, 1239cf9b1f65SEli Friedman E, allocType); 1240cf9b1f65SEli Friedman } 1241cf9b1f65SEli Friedman 12422192fe50SChris Lattner llvm::Type *elementPtrTy 124375f9498aSJohn McCall = ConvertTypeForMem(allocType)->getPointerTo(AS); 124475f9498aSJohn McCall llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1245824c2f53SJohn McCall 124699210dc9SJohn McCall EmitNewInitializer(*this, E, allocType, result, numElements, 124799210dc9SJohn McCall allocSizeWithoutCookie); 12488ed55a54SJohn McCall if (E->isArray()) { 12498ed55a54SJohn McCall // NewPtr is a pointer to the base element type. If we're 12508ed55a54SJohn McCall // allocating an array of arrays, we'll need to cast back to the 12518ed55a54SJohn McCall // array pointer type. 12522192fe50SChris Lattner llvm::Type *resultType = ConvertTypeForMem(E->getType()); 125375f9498aSJohn McCall if (result->getType() != resultType) 125475f9498aSJohn McCall result = Builder.CreateBitCast(result, resultType); 125547b4629bSFariborz Jahanian } 125659486a2dSAnders Carlsson 1257824c2f53SJohn McCall // Deactivate the 'operator delete' cleanup if we finished 1258824c2f53SJohn McCall // initialization. 1259f4beacd0SJohn McCall if (operatorDeleteCleanup.isValid()) { 1260f4beacd0SJohn McCall DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1261f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 1262f4beacd0SJohn McCall } 1263824c2f53SJohn McCall 126475f9498aSJohn McCall if (nullCheck) { 1265f7dcf320SJohn McCall conditional.end(*this); 1266f7dcf320SJohn McCall 126775f9498aSJohn McCall llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 126875f9498aSJohn McCall EmitBlock(contBB); 126959486a2dSAnders Carlsson 127020c0f02cSJay Foad llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 127175f9498aSJohn McCall PHI->addIncoming(result, notNullBB); 127275f9498aSJohn McCall PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 127375f9498aSJohn McCall nullCheckBB); 127459486a2dSAnders Carlsson 127575f9498aSJohn McCall result = PHI; 127659486a2dSAnders Carlsson } 127759486a2dSAnders Carlsson 127875f9498aSJohn McCall return result; 127959486a2dSAnders Carlsson } 128059486a2dSAnders Carlsson 128159486a2dSAnders Carlsson void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 128259486a2dSAnders Carlsson llvm::Value *Ptr, 128359486a2dSAnders Carlsson QualType DeleteTy) { 12848ed55a54SJohn McCall assert(DeleteFD->getOverloadedOperator() == OO_Delete); 12858ed55a54SJohn McCall 128659486a2dSAnders Carlsson const FunctionProtoType *DeleteFTy = 128759486a2dSAnders Carlsson DeleteFD->getType()->getAs<FunctionProtoType>(); 128859486a2dSAnders Carlsson 128959486a2dSAnders Carlsson CallArgList DeleteArgs; 129059486a2dSAnders Carlsson 129121122cf6SAnders Carlsson // Check if we need to pass the size to the delete operator. 129221122cf6SAnders Carlsson llvm::Value *Size = 0; 129321122cf6SAnders Carlsson QualType SizeTy; 129421122cf6SAnders Carlsson if (DeleteFTy->getNumArgs() == 2) { 129521122cf6SAnders Carlsson SizeTy = DeleteFTy->getArgType(1); 12967df3cbebSKen Dyck CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 12977df3cbebSKen Dyck Size = llvm::ConstantInt::get(ConvertType(SizeTy), 12987df3cbebSKen Dyck DeleteTypeSize.getQuantity()); 129921122cf6SAnders Carlsson } 130021122cf6SAnders Carlsson 130159486a2dSAnders Carlsson QualType ArgTy = DeleteFTy->getArgType(0); 130259486a2dSAnders Carlsson llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 130343dca6a8SEli Friedman DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 130459486a2dSAnders Carlsson 130521122cf6SAnders Carlsson if (Size) 130643dca6a8SEli Friedman DeleteArgs.add(RValue::get(Size), SizeTy); 130759486a2dSAnders Carlsson 130859486a2dSAnders Carlsson // Emit the call to delete. 1309a729c62bSJohn McCall EmitCall(CGM.getTypes().arrangeFunctionCall(DeleteArgs, DeleteFTy), 131061a401caSAnders Carlsson CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 131159486a2dSAnders Carlsson DeleteArgs, DeleteFD); 131259486a2dSAnders Carlsson } 131359486a2dSAnders Carlsson 13148ed55a54SJohn McCall namespace { 13158ed55a54SJohn McCall /// Calls the given 'operator delete' on a single object. 13168ed55a54SJohn McCall struct CallObjectDelete : EHScopeStack::Cleanup { 13178ed55a54SJohn McCall llvm::Value *Ptr; 13188ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 13198ed55a54SJohn McCall QualType ElementType; 13208ed55a54SJohn McCall 13218ed55a54SJohn McCall CallObjectDelete(llvm::Value *Ptr, 13228ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13238ed55a54SJohn McCall QualType ElementType) 13248ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 13258ed55a54SJohn McCall 132630317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 13278ed55a54SJohn McCall CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 13288ed55a54SJohn McCall } 13298ed55a54SJohn McCall }; 13308ed55a54SJohn McCall } 13318ed55a54SJohn McCall 13328ed55a54SJohn McCall /// Emit the code for deleting a single object. 13338ed55a54SJohn McCall static void EmitObjectDelete(CodeGenFunction &CGF, 13348ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13358ed55a54SJohn McCall llvm::Value *Ptr, 13361c2e20d7SDouglas Gregor QualType ElementType, 13371c2e20d7SDouglas Gregor bool UseGlobalDelete) { 13388ed55a54SJohn McCall // Find the destructor for the type, if applicable. If the 13398ed55a54SJohn McCall // destructor is virtual, we'll just emit the vcall and return. 13408ed55a54SJohn McCall const CXXDestructorDecl *Dtor = 0; 13418ed55a54SJohn McCall if (const RecordType *RT = ElementType->getAs<RecordType>()) { 13428ed55a54SJohn McCall CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1343b23533dbSEli Friedman if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 13448ed55a54SJohn McCall Dtor = RD->getDestructor(); 13458ed55a54SJohn McCall 13468ed55a54SJohn McCall if (Dtor->isVirtual()) { 13471c2e20d7SDouglas Gregor if (UseGlobalDelete) { 13481c2e20d7SDouglas Gregor // If we're supposed to call the global delete, make sure we do so 13491c2e20d7SDouglas Gregor // even if the destructor throws. 13501c2e20d7SDouglas Gregor CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 13511c2e20d7SDouglas Gregor Ptr, OperatorDelete, 13521c2e20d7SDouglas Gregor ElementType); 13531c2e20d7SDouglas Gregor } 13541c2e20d7SDouglas Gregor 13552192fe50SChris Lattner llvm::Type *Ty = 1356a729c62bSJohn McCall CGF.getTypes().GetFunctionType( 1357a729c62bSJohn McCall CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete)); 13588ed55a54SJohn McCall 13598ed55a54SJohn McCall llvm::Value *Callee 13601c2e20d7SDouglas Gregor = CGF.BuildVirtualCall(Dtor, 13611c2e20d7SDouglas Gregor UseGlobalDelete? Dtor_Complete : Dtor_Deleting, 13621c2e20d7SDouglas Gregor Ptr, Ty); 13638ed55a54SJohn McCall CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 13648ed55a54SJohn McCall 0, 0); 13658ed55a54SJohn McCall 13661c2e20d7SDouglas Gregor if (UseGlobalDelete) { 13671c2e20d7SDouglas Gregor CGF.PopCleanupBlock(); 13681c2e20d7SDouglas Gregor } 13691c2e20d7SDouglas Gregor 13708ed55a54SJohn McCall return; 13718ed55a54SJohn McCall } 13728ed55a54SJohn McCall } 13738ed55a54SJohn McCall } 13748ed55a54SJohn McCall 13758ed55a54SJohn McCall // Make sure that we call delete even if the dtor throws. 1376e4df6c8dSJohn McCall // This doesn't have to a conditional cleanup because we're going 1377e4df6c8dSJohn McCall // to pop it off in a second. 13788ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 13798ed55a54SJohn McCall Ptr, OperatorDelete, ElementType); 13808ed55a54SJohn McCall 13818ed55a54SJohn McCall if (Dtor) 13828ed55a54SJohn McCall CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 13838ed55a54SJohn McCall /*ForVirtualBase=*/false, Ptr); 1384*bbafb8a7SDavid Blaikie else if (CGF.getLangOpts().ObjCAutoRefCount && 138531168b07SJohn McCall ElementType->isObjCLifetimeType()) { 138631168b07SJohn McCall switch (ElementType.getObjCLifetime()) { 138731168b07SJohn McCall case Qualifiers::OCL_None: 138831168b07SJohn McCall case Qualifiers::OCL_ExplicitNone: 138931168b07SJohn McCall case Qualifiers::OCL_Autoreleasing: 139031168b07SJohn McCall break; 139131168b07SJohn McCall 139231168b07SJohn McCall case Qualifiers::OCL_Strong: { 139331168b07SJohn McCall // Load the pointer value. 139431168b07SJohn McCall llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 139531168b07SJohn McCall ElementType.isVolatileQualified()); 139631168b07SJohn McCall 139731168b07SJohn McCall CGF.EmitARCRelease(PtrValue, /*precise*/ true); 139831168b07SJohn McCall break; 139931168b07SJohn McCall } 140031168b07SJohn McCall 140131168b07SJohn McCall case Qualifiers::OCL_Weak: 140231168b07SJohn McCall CGF.EmitARCDestroyWeak(Ptr); 140331168b07SJohn McCall break; 140431168b07SJohn McCall } 140531168b07SJohn McCall } 14068ed55a54SJohn McCall 14078ed55a54SJohn McCall CGF.PopCleanupBlock(); 14088ed55a54SJohn McCall } 14098ed55a54SJohn McCall 14108ed55a54SJohn McCall namespace { 14118ed55a54SJohn McCall /// Calls the given 'operator delete' on an array of objects. 14128ed55a54SJohn McCall struct CallArrayDelete : EHScopeStack::Cleanup { 14138ed55a54SJohn McCall llvm::Value *Ptr; 14148ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 14158ed55a54SJohn McCall llvm::Value *NumElements; 14168ed55a54SJohn McCall QualType ElementType; 14178ed55a54SJohn McCall CharUnits CookieSize; 14188ed55a54SJohn McCall 14198ed55a54SJohn McCall CallArrayDelete(llvm::Value *Ptr, 14208ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 14218ed55a54SJohn McCall llvm::Value *NumElements, 14228ed55a54SJohn McCall QualType ElementType, 14238ed55a54SJohn McCall CharUnits CookieSize) 14248ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 14258ed55a54SJohn McCall ElementType(ElementType), CookieSize(CookieSize) {} 14268ed55a54SJohn McCall 142730317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 14288ed55a54SJohn McCall const FunctionProtoType *DeleteFTy = 14298ed55a54SJohn McCall OperatorDelete->getType()->getAs<FunctionProtoType>(); 14308ed55a54SJohn McCall assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 14318ed55a54SJohn McCall 14328ed55a54SJohn McCall CallArgList Args; 14338ed55a54SJohn McCall 14348ed55a54SJohn McCall // Pass the pointer as the first argument. 14358ed55a54SJohn McCall QualType VoidPtrTy = DeleteFTy->getArgType(0); 14368ed55a54SJohn McCall llvm::Value *DeletePtr 14378ed55a54SJohn McCall = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 143843dca6a8SEli Friedman Args.add(RValue::get(DeletePtr), VoidPtrTy); 14398ed55a54SJohn McCall 14408ed55a54SJohn McCall // Pass the original requested size as the second argument. 14418ed55a54SJohn McCall if (DeleteFTy->getNumArgs() == 2) { 14428ed55a54SJohn McCall QualType size_t = DeleteFTy->getArgType(1); 14432192fe50SChris Lattner llvm::IntegerType *SizeTy 14448ed55a54SJohn McCall = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 14458ed55a54SJohn McCall 14468ed55a54SJohn McCall CharUnits ElementTypeSize = 14478ed55a54SJohn McCall CGF.CGM.getContext().getTypeSizeInChars(ElementType); 14488ed55a54SJohn McCall 14498ed55a54SJohn McCall // The size of an element, multiplied by the number of elements. 14508ed55a54SJohn McCall llvm::Value *Size 14518ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 14528ed55a54SJohn McCall Size = CGF.Builder.CreateMul(Size, NumElements); 14538ed55a54SJohn McCall 14548ed55a54SJohn McCall // Plus the size of the cookie if applicable. 14558ed55a54SJohn McCall if (!CookieSize.isZero()) { 14568ed55a54SJohn McCall llvm::Value *CookieSizeV 14578ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 14588ed55a54SJohn McCall Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 14598ed55a54SJohn McCall } 14608ed55a54SJohn McCall 146143dca6a8SEli Friedman Args.add(RValue::get(Size), size_t); 14628ed55a54SJohn McCall } 14638ed55a54SJohn McCall 14648ed55a54SJohn McCall // Emit the call to delete. 1465a729c62bSJohn McCall CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Args, DeleteFTy), 14668ed55a54SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 14678ed55a54SJohn McCall ReturnValueSlot(), Args, OperatorDelete); 14688ed55a54SJohn McCall } 14698ed55a54SJohn McCall }; 14708ed55a54SJohn McCall } 14718ed55a54SJohn McCall 14728ed55a54SJohn McCall /// Emit the code for deleting an array of objects. 14738ed55a54SJohn McCall static void EmitArrayDelete(CodeGenFunction &CGF, 1474284c48ffSJohn McCall const CXXDeleteExpr *E, 1475ca2c56f2SJohn McCall llvm::Value *deletedPtr, 1476ca2c56f2SJohn McCall QualType elementType) { 1477ca2c56f2SJohn McCall llvm::Value *numElements = 0; 1478ca2c56f2SJohn McCall llvm::Value *allocatedPtr = 0; 1479ca2c56f2SJohn McCall CharUnits cookieSize; 1480ca2c56f2SJohn McCall CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1481ca2c56f2SJohn McCall numElements, allocatedPtr, cookieSize); 14828ed55a54SJohn McCall 1483ca2c56f2SJohn McCall assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 14848ed55a54SJohn McCall 14858ed55a54SJohn McCall // Make sure that we call delete even if one of the dtors throws. 1486ca2c56f2SJohn McCall const FunctionDecl *operatorDelete = E->getOperatorDelete(); 14878ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1488ca2c56f2SJohn McCall allocatedPtr, operatorDelete, 1489ca2c56f2SJohn McCall numElements, elementType, 1490ca2c56f2SJohn McCall cookieSize); 14918ed55a54SJohn McCall 1492ca2c56f2SJohn McCall // Destroy the elements. 1493ca2c56f2SJohn McCall if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1494ca2c56f2SJohn McCall assert(numElements && "no element count for a type with a destructor!"); 149531168b07SJohn McCall 1496ca2c56f2SJohn McCall llvm::Value *arrayEnd = 1497ca2c56f2SJohn McCall CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 149897eab0a2SJohn McCall 149997eab0a2SJohn McCall // Note that it is legal to allocate a zero-length array, and we 150097eab0a2SJohn McCall // can never fold the check away because the length should always 150197eab0a2SJohn McCall // come from a cookie. 1502ca2c56f2SJohn McCall CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1503ca2c56f2SJohn McCall CGF.getDestroyer(dtorKind), 150497eab0a2SJohn McCall /*checkZeroLength*/ true, 1505ca2c56f2SJohn McCall CGF.needsEHCleanup(dtorKind)); 15068ed55a54SJohn McCall } 15078ed55a54SJohn McCall 1508ca2c56f2SJohn McCall // Pop the cleanup block. 15098ed55a54SJohn McCall CGF.PopCleanupBlock(); 15108ed55a54SJohn McCall } 15118ed55a54SJohn McCall 151259486a2dSAnders Carlsson void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 151359486a2dSAnders Carlsson 151459486a2dSAnders Carlsson // Get at the argument before we performed the implicit conversion 151559486a2dSAnders Carlsson // to void*. 151659486a2dSAnders Carlsson const Expr *Arg = E->getArgument(); 151759486a2dSAnders Carlsson while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) { 1518e302792bSJohn McCall if (ICE->getCastKind() != CK_UserDefinedConversion && 151959486a2dSAnders Carlsson ICE->getType()->isVoidPointerType()) 152059486a2dSAnders Carlsson Arg = ICE->getSubExpr(); 152159486a2dSAnders Carlsson else 152259486a2dSAnders Carlsson break; 152359486a2dSAnders Carlsson } 152459486a2dSAnders Carlsson 152559486a2dSAnders Carlsson llvm::Value *Ptr = EmitScalarExpr(Arg); 152659486a2dSAnders Carlsson 152759486a2dSAnders Carlsson // Null check the pointer. 152859486a2dSAnders Carlsson llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 152959486a2dSAnders Carlsson llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 153059486a2dSAnders Carlsson 153198981b10SAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 153259486a2dSAnders Carlsson 153359486a2dSAnders Carlsson Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 153459486a2dSAnders Carlsson EmitBlock(DeleteNotNull); 153559486a2dSAnders Carlsson 15368ed55a54SJohn McCall // We might be deleting a pointer to array. If so, GEP down to the 15378ed55a54SJohn McCall // first non-array element. 15388ed55a54SJohn McCall // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 15398ed55a54SJohn McCall QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 15408ed55a54SJohn McCall if (DeleteTy->isConstantArrayType()) { 15418ed55a54SJohn McCall llvm::Value *Zero = Builder.getInt32(0); 15420e62c1ccSChris Lattner SmallVector<llvm::Value*,8> GEP; 154359486a2dSAnders Carlsson 15448ed55a54SJohn McCall GEP.push_back(Zero); // point at the outermost array 15458ed55a54SJohn McCall 15468ed55a54SJohn McCall // For each layer of array type we're pointing at: 15478ed55a54SJohn McCall while (const ConstantArrayType *Arr 15488ed55a54SJohn McCall = getContext().getAsConstantArrayType(DeleteTy)) { 15498ed55a54SJohn McCall // 1. Unpeel the array type. 15508ed55a54SJohn McCall DeleteTy = Arr->getElementType(); 15518ed55a54SJohn McCall 15528ed55a54SJohn McCall // 2. GEP to the first element of the array. 15538ed55a54SJohn McCall GEP.push_back(Zero); 15548ed55a54SJohn McCall } 15558ed55a54SJohn McCall 1556040dd82fSJay Foad Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 15578ed55a54SJohn McCall } 15588ed55a54SJohn McCall 155904f36218SDouglas Gregor assert(ConvertTypeForMem(DeleteTy) == 156004f36218SDouglas Gregor cast<llvm::PointerType>(Ptr->getType())->getElementType()); 15618ed55a54SJohn McCall 156259486a2dSAnders Carlsson if (E->isArrayForm()) { 1563284c48ffSJohn McCall EmitArrayDelete(*this, E, Ptr, DeleteTy); 15648ed55a54SJohn McCall } else { 15651c2e20d7SDouglas Gregor EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 15661c2e20d7SDouglas Gregor E->isGlobalDelete()); 156759486a2dSAnders Carlsson } 156859486a2dSAnders Carlsson 156959486a2dSAnders Carlsson EmitBlock(DeleteEnd); 157059486a2dSAnders Carlsson } 157159486a2dSAnders Carlsson 15720c63350bSAnders Carlsson static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 15730c63350bSAnders Carlsson // void __cxa_bad_typeid(); 1574ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 15750c63350bSAnders Carlsson 15760c63350bSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 15770c63350bSAnders Carlsson } 15780c63350bSAnders Carlsson 15790c63350bSAnders Carlsson static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1580bbe277c4SAnders Carlsson llvm::Value *Fn = getBadTypeidFn(CGF); 15815bd375a6SJay Foad CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 15820c63350bSAnders Carlsson CGF.Builder.CreateUnreachable(); 15830c63350bSAnders Carlsson } 15840c63350bSAnders Carlsson 1585940f02d2SAnders Carlsson static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1586940f02d2SAnders Carlsson const Expr *E, 15872192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy) { 1588940f02d2SAnders Carlsson // Get the vtable pointer. 1589940f02d2SAnders Carlsson llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1590940f02d2SAnders Carlsson 1591940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1592940f02d2SAnders Carlsson // If the glvalue expression is obtained by applying the unary * operator to 1593940f02d2SAnders Carlsson // a pointer and the pointer is a null pointer value, the typeid expression 1594940f02d2SAnders Carlsson // throws the std::bad_typeid exception. 1595940f02d2SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1596940f02d2SAnders Carlsson if (UO->getOpcode() == UO_Deref) { 1597940f02d2SAnders Carlsson llvm::BasicBlock *BadTypeidBlock = 1598940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.bad_typeid"); 1599940f02d2SAnders Carlsson llvm::BasicBlock *EndBlock = 1600940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.end"); 1601940f02d2SAnders Carlsson 1602940f02d2SAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1603940f02d2SAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1604940f02d2SAnders Carlsson 1605940f02d2SAnders Carlsson CGF.EmitBlock(BadTypeidBlock); 1606940f02d2SAnders Carlsson EmitBadTypeidCall(CGF); 1607940f02d2SAnders Carlsson CGF.EmitBlock(EndBlock); 1608940f02d2SAnders Carlsson } 1609940f02d2SAnders Carlsson } 1610940f02d2SAnders Carlsson 1611940f02d2SAnders Carlsson llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1612940f02d2SAnders Carlsson StdTypeInfoPtrTy->getPointerTo()); 1613940f02d2SAnders Carlsson 1614940f02d2SAnders Carlsson // Load the type info. 1615940f02d2SAnders Carlsson Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1616940f02d2SAnders Carlsson return CGF.Builder.CreateLoad(Value); 1617940f02d2SAnders Carlsson } 1618940f02d2SAnders Carlsson 161959486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 16202192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy = 1621940f02d2SAnders Carlsson ConvertType(E->getType())->getPointerTo(); 1622fd7dfeb7SAnders Carlsson 16233f4336cbSAnders Carlsson if (E->isTypeOperand()) { 16243f4336cbSAnders Carlsson llvm::Constant *TypeInfo = 16253f4336cbSAnders Carlsson CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1626940f02d2SAnders Carlsson return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 16273f4336cbSAnders Carlsson } 1628fd7dfeb7SAnders Carlsson 1629940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1630940f02d2SAnders Carlsson // When typeid is applied to a glvalue expression whose type is a 1631940f02d2SAnders Carlsson // polymorphic class type, the result refers to a std::type_info object 1632940f02d2SAnders Carlsson // representing the type of the most derived object (that is, the dynamic 1633940f02d2SAnders Carlsson // type) to which the glvalue refers. 1634940f02d2SAnders Carlsson if (E->getExprOperand()->isGLValue()) { 1635940f02d2SAnders Carlsson if (const RecordType *RT = 1636940f02d2SAnders Carlsson E->getExprOperand()->getType()->getAs<RecordType>()) { 163759486a2dSAnders Carlsson const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1638940f02d2SAnders Carlsson if (RD->isPolymorphic()) 1639940f02d2SAnders Carlsson return EmitTypeidFromVTable(*this, E->getExprOperand(), 1640940f02d2SAnders Carlsson StdTypeInfoPtrTy); 164159486a2dSAnders Carlsson } 164259486a2dSAnders Carlsson } 1643940f02d2SAnders Carlsson 1644940f02d2SAnders Carlsson QualType OperandTy = E->getExprOperand()->getType(); 1645940f02d2SAnders Carlsson return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1646940f02d2SAnders Carlsson StdTypeInfoPtrTy); 164759486a2dSAnders Carlsson } 164859486a2dSAnders Carlsson 1649882d790fSAnders Carlsson static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1650882d790fSAnders Carlsson // void *__dynamic_cast(const void *sub, 1651882d790fSAnders Carlsson // const abi::__class_type_info *src, 1652882d790fSAnders Carlsson // const abi::__class_type_info *dst, 1653882d790fSAnders Carlsson // std::ptrdiff_t src2dst_offset); 1654882d790fSAnders Carlsson 1655ece0409aSChris Lattner llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1656a5f58b05SChris Lattner llvm::Type *PtrDiffTy = 1657882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1658882d790fSAnders Carlsson 1659a5f58b05SChris Lattner llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1660882d790fSAnders Carlsson 16612192fe50SChris Lattner llvm::FunctionType *FTy = 1662882d790fSAnders Carlsson llvm::FunctionType::get(Int8PtrTy, Args, false); 1663882d790fSAnders Carlsson 1664882d790fSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1665882d790fSAnders Carlsson } 1666882d790fSAnders Carlsson 1667882d790fSAnders Carlsson static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1668882d790fSAnders Carlsson // void __cxa_bad_cast(); 1669ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1670882d790fSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1671882d790fSAnders Carlsson } 1672882d790fSAnders Carlsson 1673c1c9971cSAnders Carlsson static void EmitBadCastCall(CodeGenFunction &CGF) { 1674bbe277c4SAnders Carlsson llvm::Value *Fn = getBadCastFn(CGF); 16755bd375a6SJay Foad CGF.EmitCallOrInvoke(Fn).setDoesNotReturn(); 1676c1c9971cSAnders Carlsson CGF.Builder.CreateUnreachable(); 1677c1c9971cSAnders Carlsson } 1678c1c9971cSAnders Carlsson 1679882d790fSAnders Carlsson static llvm::Value * 1680882d790fSAnders Carlsson EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1681882d790fSAnders Carlsson QualType SrcTy, QualType DestTy, 1682882d790fSAnders Carlsson llvm::BasicBlock *CastEnd) { 16832192fe50SChris Lattner llvm::Type *PtrDiffLTy = 1684882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 16852192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1686882d790fSAnders Carlsson 1687882d790fSAnders Carlsson if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1688882d790fSAnders Carlsson if (PTy->getPointeeType()->isVoidType()) { 1689882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p7: 1690882d790fSAnders Carlsson // If T is "pointer to cv void," then the result is a pointer to the 1691882d790fSAnders Carlsson // most derived object pointed to by v. 1692882d790fSAnders Carlsson 1693882d790fSAnders Carlsson // Get the vtable pointer. 1694882d790fSAnders Carlsson llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1695882d790fSAnders Carlsson 1696882d790fSAnders Carlsson // Get the offset-to-top from the vtable. 1697882d790fSAnders Carlsson llvm::Value *OffsetToTop = 1698882d790fSAnders Carlsson CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1699882d790fSAnders Carlsson OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1700882d790fSAnders Carlsson 1701882d790fSAnders Carlsson // Finally, add the offset to the pointer. 1702882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1703882d790fSAnders Carlsson Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1704882d790fSAnders Carlsson 1705882d790fSAnders Carlsson return CGF.Builder.CreateBitCast(Value, DestLTy); 1706882d790fSAnders Carlsson } 1707882d790fSAnders Carlsson } 1708882d790fSAnders Carlsson 1709882d790fSAnders Carlsson QualType SrcRecordTy; 1710882d790fSAnders Carlsson QualType DestRecordTy; 1711882d790fSAnders Carlsson 1712882d790fSAnders Carlsson if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1713882d790fSAnders Carlsson SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1714882d790fSAnders Carlsson DestRecordTy = DestPTy->getPointeeType(); 1715882d790fSAnders Carlsson } else { 1716882d790fSAnders Carlsson SrcRecordTy = SrcTy; 1717882d790fSAnders Carlsson DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1718882d790fSAnders Carlsson } 1719882d790fSAnders Carlsson 1720882d790fSAnders Carlsson assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1721882d790fSAnders Carlsson assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1722882d790fSAnders Carlsson 1723882d790fSAnders Carlsson llvm::Value *SrcRTTI = 1724882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1725882d790fSAnders Carlsson llvm::Value *DestRTTI = 1726882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1727882d790fSAnders Carlsson 1728882d790fSAnders Carlsson // FIXME: Actually compute a hint here. 1729882d790fSAnders Carlsson llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1730882d790fSAnders Carlsson 1731882d790fSAnders Carlsson // Emit the call to __dynamic_cast. 1732882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1733882d790fSAnders Carlsson Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1734882d790fSAnders Carlsson SrcRTTI, DestRTTI, OffsetHint); 1735882d790fSAnders Carlsson Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1736882d790fSAnders Carlsson 1737882d790fSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1738882d790fSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1739882d790fSAnders Carlsson if (DestTy->isReferenceType()) { 1740882d790fSAnders Carlsson llvm::BasicBlock *BadCastBlock = 1741882d790fSAnders Carlsson CGF.createBasicBlock("dynamic_cast.bad_cast"); 1742882d790fSAnders Carlsson 1743882d790fSAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1744882d790fSAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1745882d790fSAnders Carlsson 1746882d790fSAnders Carlsson CGF.EmitBlock(BadCastBlock); 1747c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1748882d790fSAnders Carlsson } 1749882d790fSAnders Carlsson 1750882d790fSAnders Carlsson return Value; 1751882d790fSAnders Carlsson } 1752882d790fSAnders Carlsson 1753c1c9971cSAnders Carlsson static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1754c1c9971cSAnders Carlsson QualType DestTy) { 17552192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1756c1c9971cSAnders Carlsson if (DestTy->isPointerType()) 1757c1c9971cSAnders Carlsson return llvm::Constant::getNullValue(DestLTy); 1758c1c9971cSAnders Carlsson 1759c1c9971cSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1760c1c9971cSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1761c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1762c1c9971cSAnders Carlsson 1763c1c9971cSAnders Carlsson CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1764c1c9971cSAnders Carlsson return llvm::UndefValue::get(DestLTy); 1765c1c9971cSAnders Carlsson } 1766c1c9971cSAnders Carlsson 1767882d790fSAnders Carlsson llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 176859486a2dSAnders Carlsson const CXXDynamicCastExpr *DCE) { 17693f4336cbSAnders Carlsson QualType DestTy = DCE->getTypeAsWritten(); 17703f4336cbSAnders Carlsson 1771c1c9971cSAnders Carlsson if (DCE->isAlwaysNull()) 1772c1c9971cSAnders Carlsson return EmitDynamicCastToNull(*this, DestTy); 1773c1c9971cSAnders Carlsson 1774c1c9971cSAnders Carlsson QualType SrcTy = DCE->getSubExpr()->getType(); 1775c1c9971cSAnders Carlsson 1776882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p4: 1777882d790fSAnders Carlsson // If the value of v is a null pointer value in the pointer case, the result 1778882d790fSAnders Carlsson // is the null pointer value of type T. 1779882d790fSAnders Carlsson bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 178059486a2dSAnders Carlsson 1781882d790fSAnders Carlsson llvm::BasicBlock *CastNull = 0; 1782882d790fSAnders Carlsson llvm::BasicBlock *CastNotNull = 0; 1783882d790fSAnders Carlsson llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1784fa8b4955SDouglas Gregor 1785882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1786882d790fSAnders Carlsson CastNull = createBasicBlock("dynamic_cast.null"); 1787882d790fSAnders Carlsson CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1788882d790fSAnders Carlsson 1789882d790fSAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Value); 1790882d790fSAnders Carlsson Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1791882d790fSAnders Carlsson EmitBlock(CastNotNull); 179259486a2dSAnders Carlsson } 179359486a2dSAnders Carlsson 1794882d790fSAnders Carlsson Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 17953f4336cbSAnders Carlsson 1796882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1797882d790fSAnders Carlsson EmitBranch(CastEnd); 179859486a2dSAnders Carlsson 1799882d790fSAnders Carlsson EmitBlock(CastNull); 1800882d790fSAnders Carlsson EmitBranch(CastEnd); 180159486a2dSAnders Carlsson } 180259486a2dSAnders Carlsson 1803882d790fSAnders Carlsson EmitBlock(CastEnd); 180459486a2dSAnders Carlsson 1805882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1806882d790fSAnders Carlsson llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1807882d790fSAnders Carlsson PHI->addIncoming(Value, CastNotNull); 1808882d790fSAnders Carlsson PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 180959486a2dSAnders Carlsson 1810882d790fSAnders Carlsson Value = PHI; 181159486a2dSAnders Carlsson } 181259486a2dSAnders Carlsson 1813882d790fSAnders Carlsson return Value; 181459486a2dSAnders Carlsson } 1815c370a7eeSEli Friedman 1816c370a7eeSEli Friedman void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 18178631f3e8SEli Friedman RunCleanupsScope Scope(*this); 18188631f3e8SEli Friedman 1819c370a7eeSEli Friedman CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1820c370a7eeSEli Friedman for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1821c370a7eeSEli Friedman e = E->capture_init_end(); 1822c370a7eeSEli Friedman i != e; ++i, ++CurField) { 1823c370a7eeSEli Friedman // Emit initialization 1824c370a7eeSEli Friedman LValue LV = EmitLValueForFieldInitialization(Slot.getAddr(), *CurField, 0); 18255f1a04ffSEli Friedman ArrayRef<VarDecl *> ArrayIndexes; 18265f1a04ffSEli Friedman if (CurField->getType()->isArrayType()) 18275f1a04ffSEli Friedman ArrayIndexes = E->getCaptureInitIndexVars(i); 18285f1a04ffSEli Friedman EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1829c370a7eeSEli Friedman } 1830c370a7eeSEli Friedman } 1831