159486a2dSAnders Carlsson //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 259486a2dSAnders Carlsson // 359486a2dSAnders Carlsson // The LLVM Compiler Infrastructure 459486a2dSAnders Carlsson // 559486a2dSAnders Carlsson // This file is distributed under the University of Illinois Open Source 659486a2dSAnders Carlsson // License. See LICENSE.TXT for details. 759486a2dSAnders Carlsson // 859486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 959486a2dSAnders Carlsson // 1059486a2dSAnders Carlsson // This contains code dealing with code generation of C++ expressions 1159486a2dSAnders Carlsson // 1259486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 1359486a2dSAnders Carlsson 1459486a2dSAnders Carlsson #include "CodeGenFunction.h" 15fe883422SPeter Collingbourne #include "CGCUDARuntime.h" 165d865c32SJohn McCall #include "CGCXXABI.h" 1791bbb554SDevang Patel #include "CGDebugInfo.h" 183a02247dSChandler Carruth #include "CGObjCRuntime.h" 193a02247dSChandler Carruth #include "clang/Frontend/CodeGenOptions.h" 20ffd5551bSChandler Carruth #include "llvm/IR/Intrinsics.h" 21bbe277c4SAnders Carlsson #include "llvm/Support/CallSite.h" 22bbe277c4SAnders Carlsson 2359486a2dSAnders Carlsson using namespace clang; 2459486a2dSAnders Carlsson using namespace CodeGen; 2559486a2dSAnders Carlsson 2627da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27e30752c9SRichard Smith SourceLocation CallLoc, 2827da15baSAnders Carlsson llvm::Value *Callee, 2927da15baSAnders Carlsson ReturnValueSlot ReturnValue, 3027da15baSAnders Carlsson llvm::Value *This, 31ee6bc533STimur Iskhodzhanov llvm::Value *ImplicitParam, 32ee6bc533STimur Iskhodzhanov QualType ImplicitParamTy, 3327da15baSAnders Carlsson CallExpr::const_arg_iterator ArgBeg, 3427da15baSAnders Carlsson CallExpr::const_arg_iterator ArgEnd) { 3527da15baSAnders Carlsson assert(MD->isInstance() && 3627da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 3727da15baSAnders Carlsson 3869d0d262SRichard Smith // C++11 [class.mfct.non-static]p2: 3969d0d262SRichard Smith // If a non-static member function of a class X is called for an object that 4069d0d262SRichard Smith // is not of type X, or of a type derived from X, the behavior is undefined. 414d3110afSRichard Smith EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 424d3110afSRichard Smith : TCK_MemberCall, 434d3110afSRichard Smith CallLoc, This, getContext().getRecordType(MD->getParent())); 4469d0d262SRichard Smith 4527da15baSAnders Carlsson CallArgList Args; 4627da15baSAnders Carlsson 4727da15baSAnders Carlsson // Push the this ptr. 4843dca6a8SEli Friedman Args.add(RValue::get(This), MD->getThisType(getContext())); 4927da15baSAnders Carlsson 50ee6bc533STimur Iskhodzhanov // If there is an implicit parameter (e.g. VTT), emit it. 51ee6bc533STimur Iskhodzhanov if (ImplicitParam) { 52ee6bc533STimur Iskhodzhanov Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53e36a6b3eSAnders Carlsson } 54e36a6b3eSAnders Carlsson 55a729c62bSJohn McCall const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56a729c62bSJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57a729c62bSJohn McCall 58a729c62bSJohn McCall // And the rest of the call args. 5927da15baSAnders Carlsson EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 6027da15baSAnders Carlsson 618dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 62c50c27ccSRafael Espindola Callee, ReturnValue, Args, MD); 6327da15baSAnders Carlsson } 6427da15baSAnders Carlsson 653b33c4ecSRafael Espindola static CXXRecordDecl *getCXXRecord(const Expr *E) { 663b33c4ecSRafael Espindola QualType T = E->getType(); 673b33c4ecSRafael Espindola if (const PointerType *PTy = T->getAs<PointerType>()) 683b33c4ecSRafael Espindola T = PTy->getPointeeType(); 693b33c4ecSRafael Espindola const RecordType *Ty = T->castAs<RecordType>(); 703b33c4ecSRafael Espindola return cast<CXXRecordDecl>(Ty->getDecl()); 713b33c4ecSRafael Espindola } 723b33c4ecSRafael Espindola 7364225794SFrancois Pichet // Note: This function also emit constructor calls to support a MSVC 7464225794SFrancois Pichet // extensions allowing explicit constructor function call. 7527da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 7627da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 772d2e8707SJohn McCall const Expr *callee = CE->getCallee()->IgnoreParens(); 782d2e8707SJohn McCall 792d2e8707SJohn McCall if (isa<BinaryOperator>(callee)) 8027da15baSAnders Carlsson return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 8127da15baSAnders Carlsson 822d2e8707SJohn McCall const MemberExpr *ME = cast<MemberExpr>(callee); 8327da15baSAnders Carlsson const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 8427da15baSAnders Carlsson 8527da15baSAnders Carlsson if (MD->isStatic()) { 8627da15baSAnders Carlsson // The method is static, emit it as we would a regular call. 8727da15baSAnders Carlsson llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 8827da15baSAnders Carlsson return EmitCall(getContext().getPointerType(MD->getType()), Callee, 89*b453cd64SPeter Collingbourne CE->getLocStart(), ReturnValue, CE->arg_begin(), 90*b453cd64SPeter Collingbourne CE->arg_end()); 9127da15baSAnders Carlsson } 9227da15baSAnders Carlsson 930d635f53SJohn McCall // Compute the object pointer. 94ecbe2e97SRafael Espindola const Expr *Base = ME->getBase(); 95ecbe2e97SRafael Espindola bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 96ecbe2e97SRafael Espindola 973b33c4ecSRafael Espindola const CXXMethodDecl *DevirtualizedMethod = NULL; 987463ed7cSBenjamin Kramer if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 993b33c4ecSRafael Espindola const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 1003b33c4ecSRafael Espindola DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 1013b33c4ecSRafael Espindola assert(DevirtualizedMethod); 1023b33c4ecSRafael Espindola const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 1033b33c4ecSRafael Espindola const Expr *Inner = Base->ignoreParenBaseCasts(); 1043b33c4ecSRafael Espindola if (getCXXRecord(Inner) == DevirtualizedClass) 1053b33c4ecSRafael Espindola // If the class of the Inner expression is where the dynamic method 1063b33c4ecSRafael Espindola // is defined, build the this pointer from it. 1073b33c4ecSRafael Espindola Base = Inner; 1083b33c4ecSRafael Espindola else if (getCXXRecord(Base) != DevirtualizedClass) { 1093b33c4ecSRafael Espindola // If the method is defined in a class that is not the best dynamic 1103b33c4ecSRafael Espindola // one or the one of the full expression, we would have to build 1113b33c4ecSRafael Espindola // a derived-to-base cast to compute the correct this pointer, but 1123b33c4ecSRafael Espindola // we don't have support for that yet, so do a virtual call. 1133b33c4ecSRafael Espindola DevirtualizedMethod = NULL; 1143b33c4ecSRafael Espindola } 115b27564afSRafael Espindola // If the return types are not the same, this might be a case where more 116b27564afSRafael Espindola // code needs to run to compensate for it. For example, the derived 117b27564afSRafael Espindola // method might return a type that inherits form from the return 118b27564afSRafael Espindola // type of MD and has a prefix. 119b27564afSRafael Espindola // For now we just avoid devirtualizing these covariant cases. 120b27564afSRafael Espindola if (DevirtualizedMethod && 121b27564afSRafael Espindola DevirtualizedMethod->getResultType().getCanonicalType() != 122b27564afSRafael Espindola MD->getResultType().getCanonicalType()) 123debc71ceSRafael Espindola DevirtualizedMethod = NULL; 1243b33c4ecSRafael Espindola } 125ecbe2e97SRafael Espindola 12627da15baSAnders Carlsson llvm::Value *This; 12727da15baSAnders Carlsson if (ME->isArrow()) 1283b33c4ecSRafael Espindola This = EmitScalarExpr(Base); 129f93ac894SFariborz Jahanian else 1303b33c4ecSRafael Espindola This = EmitLValue(Base).getAddress(); 131ecbe2e97SRafael Espindola 13227da15baSAnders Carlsson 1330d635f53SJohn McCall if (MD->isTrivial()) { 1340d635f53SJohn McCall if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 13564225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 13664225794SFrancois Pichet cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 13764225794SFrancois Pichet return RValue::get(0); 1380d635f53SJohn McCall 13922653bacSSebastian Redl if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 14022653bacSSebastian Redl // We don't like to generate the trivial copy/move assignment operator 14122653bacSSebastian Redl // when it isn't necessary; just produce the proper effect here. 14227da15baSAnders Carlsson llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 1431ca66919SBenjamin Kramer EmitAggregateAssign(This, RHS, CE->getType()); 14427da15baSAnders Carlsson return RValue::get(This); 14527da15baSAnders Carlsson } 14627da15baSAnders Carlsson 14764225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 14822653bacSSebastian Redl cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 14922653bacSSebastian Redl // Trivial move and copy ctor are the same. 15064225794SFrancois Pichet llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 15164225794SFrancois Pichet EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 15264225794SFrancois Pichet CE->arg_begin(), CE->arg_end()); 15364225794SFrancois Pichet return RValue::get(This); 15464225794SFrancois Pichet } 15564225794SFrancois Pichet llvm_unreachable("unknown trivial member function"); 15664225794SFrancois Pichet } 15764225794SFrancois Pichet 1580d635f53SJohn McCall // Compute the function type we're calling. 159ade60977SEli Friedman const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 16064225794SFrancois Pichet const CGFunctionInfo *FInfo = 0; 161ade60977SEli Friedman if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 162ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 16364225794SFrancois Pichet Dtor_Complete); 164ade60977SEli Friedman else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 165ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 16664225794SFrancois Pichet Ctor_Complete); 16764225794SFrancois Pichet else 168ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 1690d635f53SJohn McCall 170e7de47efSReid Kleckner llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 1710d635f53SJohn McCall 17227da15baSAnders Carlsson // C++ [class.virtual]p12: 17327da15baSAnders Carlsson // Explicit qualification with the scope operator (5.1) suppresses the 17427da15baSAnders Carlsson // virtual call mechanism. 17527da15baSAnders Carlsson // 17627da15baSAnders Carlsson // We also don't emit a virtual call if the base expression has a record type 17727da15baSAnders Carlsson // because then we know what the type is. 1783b33c4ecSRafael Espindola bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 17919cee187SStephen Lin llvm::Value *Callee; 1809dc6eef7SStephen Lin 1810d635f53SJohn McCall if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 18219cee187SStephen Lin assert(CE->arg_begin() == CE->arg_end() && 1839dc6eef7SStephen Lin "Destructor shouldn't have explicit parameters"); 1849dc6eef7SStephen Lin assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 1859dc6eef7SStephen Lin if (UseVirtualCall) { 1869dc6eef7SStephen Lin CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 1879dc6eef7SStephen Lin CE->getExprLoc(), This); 18827da15baSAnders Carlsson } else { 1899c6890a7SRichard Smith if (getLangOpts().AppleKext && 190265c325eSFariborz Jahanian MD->isVirtual() && 191265c325eSFariborz Jahanian ME->hasQualifier()) 1927f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 1933b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 194e7de47efSReid Kleckner Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty); 19549e860b2SRafael Espindola else { 1963b33c4ecSRafael Espindola const CXXDestructorDecl *DDtor = 1973b33c4ecSRafael Espindola cast<CXXDestructorDecl>(DevirtualizedMethod); 19849e860b2SRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 19949e860b2SRafael Espindola } 2009dc6eef7SStephen Lin EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 2019dc6eef7SStephen Lin /*ImplicitParam=*/0, QualType(), 0, 0); 20227da15baSAnders Carlsson } 2039dc6eef7SStephen Lin return RValue::get(0); 2049dc6eef7SStephen Lin } 2059dc6eef7SStephen Lin 2069dc6eef7SStephen Lin if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 20764225794SFrancois Pichet Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 2080d635f53SJohn McCall } else if (UseVirtualCall) { 20988fd439aSTimur Iskhodzhanov Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty); 21027da15baSAnders Carlsson } else { 2119c6890a7SRichard Smith if (getLangOpts().AppleKext && 2129f9438b3SFariborz Jahanian MD->isVirtual() && 213252a47f6SFariborz Jahanian ME->hasQualifier()) 2147f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 2153b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 216727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(MD, Ty); 21749e860b2SRafael Espindola else { 2183b33c4ecSRafael Espindola Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 21949e860b2SRafael Espindola } 22027da15baSAnders Carlsson } 22127da15baSAnders Carlsson 22288fd439aSTimur Iskhodzhanov if (MD->isVirtual()) 22388fd439aSTimur Iskhodzhanov This = CGM.getCXXABI().adjustThisArgumentForVirtualCall(*this, MD, This); 22488fd439aSTimur Iskhodzhanov 225e30752c9SRichard Smith return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 226ee6bc533STimur Iskhodzhanov /*ImplicitParam=*/0, QualType(), 227ee6bc533STimur Iskhodzhanov CE->arg_begin(), CE->arg_end()); 22827da15baSAnders Carlsson } 22927da15baSAnders Carlsson 23027da15baSAnders Carlsson RValue 23127da15baSAnders Carlsson CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 23227da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 23327da15baSAnders Carlsson const BinaryOperator *BO = 23427da15baSAnders Carlsson cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 23527da15baSAnders Carlsson const Expr *BaseExpr = BO->getLHS(); 23627da15baSAnders Carlsson const Expr *MemFnExpr = BO->getRHS(); 23727da15baSAnders Carlsson 23827da15baSAnders Carlsson const MemberPointerType *MPT = 2390009fcc3SJohn McCall MemFnExpr->getType()->castAs<MemberPointerType>(); 240475999dcSJohn McCall 24127da15baSAnders Carlsson const FunctionProtoType *FPT = 2420009fcc3SJohn McCall MPT->getPointeeType()->castAs<FunctionProtoType>(); 24327da15baSAnders Carlsson const CXXRecordDecl *RD = 24427da15baSAnders Carlsson cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 24527da15baSAnders Carlsson 24627da15baSAnders Carlsson // Get the member function pointer. 247a1dee530SJohn McCall llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 24827da15baSAnders Carlsson 24927da15baSAnders Carlsson // Emit the 'this' pointer. 25027da15baSAnders Carlsson llvm::Value *This; 25127da15baSAnders Carlsson 252e302792bSJohn McCall if (BO->getOpcode() == BO_PtrMemI) 25327da15baSAnders Carlsson This = EmitScalarExpr(BaseExpr); 25427da15baSAnders Carlsson else 25527da15baSAnders Carlsson This = EmitLValue(BaseExpr).getAddress(); 25627da15baSAnders Carlsson 257e30752c9SRichard Smith EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 258e30752c9SRichard Smith QualType(MPT->getClass(), 0)); 25969d0d262SRichard Smith 260475999dcSJohn McCall // Ask the ABI to load the callee. Note that This is modified. 261475999dcSJohn McCall llvm::Value *Callee = 262ad7c5c16SJohn McCall CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 26327da15baSAnders Carlsson 26427da15baSAnders Carlsson CallArgList Args; 26527da15baSAnders Carlsson 26627da15baSAnders Carlsson QualType ThisType = 26727da15baSAnders Carlsson getContext().getPointerType(getContext().getTagDeclType(RD)); 26827da15baSAnders Carlsson 26927da15baSAnders Carlsson // Push the this ptr. 27043dca6a8SEli Friedman Args.add(RValue::get(This), ThisType); 27127da15baSAnders Carlsson 2728dda7b27SJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 2738dda7b27SJohn McCall 27427da15baSAnders Carlsson // And the rest of the call args 27527da15baSAnders Carlsson EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 2765fa40c3bSNick Lewycky return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 2775fa40c3bSNick Lewycky Callee, ReturnValue, Args); 27827da15baSAnders Carlsson } 27927da15baSAnders Carlsson 28027da15baSAnders Carlsson RValue 28127da15baSAnders Carlsson CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 28227da15baSAnders Carlsson const CXXMethodDecl *MD, 28327da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 28427da15baSAnders Carlsson assert(MD->isInstance() && 28527da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 286e26a872bSJohn McCall LValue LV = EmitLValue(E->getArg(0)); 287e26a872bSJohn McCall llvm::Value *This = LV.getAddress(); 288e26a872bSJohn McCall 289146b8e9aSDouglas Gregor if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 290146b8e9aSDouglas Gregor MD->isTrivial()) { 29127da15baSAnders Carlsson llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 29227da15baSAnders Carlsson QualType Ty = E->getType(); 2931ca66919SBenjamin Kramer EmitAggregateAssign(This, Src, Ty); 29427da15baSAnders Carlsson return RValue::get(This); 29527da15baSAnders Carlsson } 29627da15baSAnders Carlsson 297c36783e8SAnders Carlsson llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 298e30752c9SRichard Smith return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 299ee6bc533STimur Iskhodzhanov /*ImplicitParam=*/0, QualType(), 300ee6bc533STimur Iskhodzhanov E->arg_begin() + 1, E->arg_end()); 30127da15baSAnders Carlsson } 30227da15baSAnders Carlsson 303fe883422SPeter Collingbourne RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 304fe883422SPeter Collingbourne ReturnValueSlot ReturnValue) { 305fe883422SPeter Collingbourne return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 306fe883422SPeter Collingbourne } 307fe883422SPeter Collingbourne 308fde961dbSEli Friedman static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 309fde961dbSEli Friedman llvm::Value *DestPtr, 310fde961dbSEli Friedman const CXXRecordDecl *Base) { 311fde961dbSEli Friedman if (Base->isEmpty()) 312fde961dbSEli Friedman return; 313fde961dbSEli Friedman 314fde961dbSEli Friedman DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 315fde961dbSEli Friedman 316fde961dbSEli Friedman const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 317fde961dbSEli Friedman CharUnits Size = Layout.getNonVirtualSize(); 318fde961dbSEli Friedman CharUnits Align = Layout.getNonVirtualAlign(); 319fde961dbSEli Friedman 320fde961dbSEli Friedman llvm::Value *SizeVal = CGF.CGM.getSize(Size); 321fde961dbSEli Friedman 322fde961dbSEli Friedman // If the type contains a pointer to data member we can't memset it to zero. 323fde961dbSEli Friedman // Instead, create a null constant and copy it to the destination. 324fde961dbSEli Friedman // TODO: there are other patterns besides zero that we can usefully memset, 325fde961dbSEli Friedman // like -1, which happens to be the pattern used by member-pointers. 326fde961dbSEli Friedman // TODO: isZeroInitializable can be over-conservative in the case where a 327fde961dbSEli Friedman // virtual base contains a member pointer. 328fde961dbSEli Friedman if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 329fde961dbSEli Friedman llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 330fde961dbSEli Friedman 331fde961dbSEli Friedman llvm::GlobalVariable *NullVariable = 332fde961dbSEli Friedman new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 333fde961dbSEli Friedman /*isConstant=*/true, 334fde961dbSEli Friedman llvm::GlobalVariable::PrivateLinkage, 335fde961dbSEli Friedman NullConstant, Twine()); 336fde961dbSEli Friedman NullVariable->setAlignment(Align.getQuantity()); 337fde961dbSEli Friedman llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 338fde961dbSEli Friedman 339fde961dbSEli Friedman // Get and call the appropriate llvm.memcpy overload. 340fde961dbSEli Friedman CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 341fde961dbSEli Friedman return; 342fde961dbSEli Friedman } 343fde961dbSEli Friedman 344fde961dbSEli Friedman // Otherwise, just memset the whole thing to zero. This is legal 345fde961dbSEli Friedman // because in LLVM, all default initializers (other than the ones we just 346fde961dbSEli Friedman // handled above) are guaranteed to have a bit pattern of all zeros. 347fde961dbSEli Friedman CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 348fde961dbSEli Friedman Align.getQuantity()); 349fde961dbSEli Friedman } 350fde961dbSEli Friedman 35127da15baSAnders Carlsson void 3527a626f63SJohn McCall CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 3537a626f63SJohn McCall AggValueSlot Dest) { 3547a626f63SJohn McCall assert(!Dest.isIgnored() && "Must have a destination!"); 35527da15baSAnders Carlsson const CXXConstructorDecl *CD = E->getConstructor(); 356630c76efSDouglas Gregor 357630c76efSDouglas Gregor // If we require zero initialization before (or instead of) calling the 358630c76efSDouglas Gregor // constructor, as can be the case with a non-user-provided default 35903535265SArgyrios Kyrtzidis // constructor, emit the zero initialization now, unless destination is 36003535265SArgyrios Kyrtzidis // already zeroed. 361fde961dbSEli Friedman if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 362fde961dbSEli Friedman switch (E->getConstructionKind()) { 363fde961dbSEli Friedman case CXXConstructExpr::CK_Delegating: 364fde961dbSEli Friedman case CXXConstructExpr::CK_Complete: 3657a626f63SJohn McCall EmitNullInitialization(Dest.getAddr(), E->getType()); 366fde961dbSEli Friedman break; 367fde961dbSEli Friedman case CXXConstructExpr::CK_VirtualBase: 368fde961dbSEli Friedman case CXXConstructExpr::CK_NonVirtualBase: 369fde961dbSEli Friedman EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 370fde961dbSEli Friedman break; 371fde961dbSEli Friedman } 372fde961dbSEli Friedman } 373630c76efSDouglas Gregor 374630c76efSDouglas Gregor // If this is a call to a trivial default constructor, do nothing. 375630c76efSDouglas Gregor if (CD->isTrivial() && CD->isDefaultConstructor()) 37627da15baSAnders Carlsson return; 377630c76efSDouglas Gregor 3788ea46b66SJohn McCall // Elide the constructor if we're constructing from a temporary. 3798ea46b66SJohn McCall // The temporary check is required because Sema sets this on NRVO 3808ea46b66SJohn McCall // returns. 3819c6890a7SRichard Smith if (getLangOpts().ElideConstructors && E->isElidable()) { 3828ea46b66SJohn McCall assert(getContext().hasSameUnqualifiedType(E->getType(), 3838ea46b66SJohn McCall E->getArg(0)->getType())); 3847a626f63SJohn McCall if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 3857a626f63SJohn McCall EmitAggExpr(E->getArg(0), Dest); 38627da15baSAnders Carlsson return; 38727da15baSAnders Carlsson } 388222cf0efSDouglas Gregor } 389630c76efSDouglas Gregor 390f677a8e9SJohn McCall if (const ConstantArrayType *arrayType 391f677a8e9SJohn McCall = getContext().getAsConstantArrayType(E->getType())) { 392f677a8e9SJohn McCall EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 39327da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 394f677a8e9SJohn McCall } else { 395bceca20aSCameron Esfahani CXXCtorType Type = Ctor_Complete; 396271c3681SAlexis Hunt bool ForVirtualBase = false; 39761535005SDouglas Gregor bool Delegating = false; 398271c3681SAlexis Hunt 399271c3681SAlexis Hunt switch (E->getConstructionKind()) { 400271c3681SAlexis Hunt case CXXConstructExpr::CK_Delegating: 40161bc1737SAlexis Hunt // We should be emitting a constructor; GlobalDecl will assert this 40261bc1737SAlexis Hunt Type = CurGD.getCtorType(); 40361535005SDouglas Gregor Delegating = true; 404271c3681SAlexis Hunt break; 40561bc1737SAlexis Hunt 406271c3681SAlexis Hunt case CXXConstructExpr::CK_Complete: 407271c3681SAlexis Hunt Type = Ctor_Complete; 408271c3681SAlexis Hunt break; 409271c3681SAlexis Hunt 410271c3681SAlexis Hunt case CXXConstructExpr::CK_VirtualBase: 411271c3681SAlexis Hunt ForVirtualBase = true; 412271c3681SAlexis Hunt // fall-through 413271c3681SAlexis Hunt 414271c3681SAlexis Hunt case CXXConstructExpr::CK_NonVirtualBase: 415271c3681SAlexis Hunt Type = Ctor_Base; 416271c3681SAlexis Hunt } 417e11f9ce9SAnders Carlsson 41827da15baSAnders Carlsson // Call the constructor. 41961535005SDouglas Gregor EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 42027da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 42127da15baSAnders Carlsson } 422e11f9ce9SAnders Carlsson } 42327da15baSAnders Carlsson 424e988bdacSFariborz Jahanian void 425e988bdacSFariborz Jahanian CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 426e988bdacSFariborz Jahanian llvm::Value *Src, 42750198098SFariborz Jahanian const Expr *Exp) { 4285d413781SJohn McCall if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 429e988bdacSFariborz Jahanian Exp = E->getSubExpr(); 430e988bdacSFariborz Jahanian assert(isa<CXXConstructExpr>(Exp) && 431e988bdacSFariborz Jahanian "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 432e988bdacSFariborz Jahanian const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 433e988bdacSFariborz Jahanian const CXXConstructorDecl *CD = E->getConstructor(); 434e988bdacSFariborz Jahanian RunCleanupsScope Scope(*this); 435e988bdacSFariborz Jahanian 436e988bdacSFariborz Jahanian // If we require zero initialization before (or instead of) calling the 437e988bdacSFariborz Jahanian // constructor, as can be the case with a non-user-provided default 438e988bdacSFariborz Jahanian // constructor, emit the zero initialization now. 439e988bdacSFariborz Jahanian // FIXME. Do I still need this for a copy ctor synthesis? 440e988bdacSFariborz Jahanian if (E->requiresZeroInitialization()) 441e988bdacSFariborz Jahanian EmitNullInitialization(Dest, E->getType()); 442e988bdacSFariborz Jahanian 44399da11cfSChandler Carruth assert(!getContext().getAsConstantArrayType(E->getType()) 44499da11cfSChandler Carruth && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 4455fa40c3bSNick Lewycky EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end()); 446e988bdacSFariborz Jahanian } 447e988bdacSFariborz Jahanian 4488ed55a54SJohn McCall static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 4498ed55a54SJohn McCall const CXXNewExpr *E) { 45021122cf6SAnders Carlsson if (!E->isArray()) 4513eb55cfeSKen Dyck return CharUnits::Zero(); 45221122cf6SAnders Carlsson 4537ec4b434SJohn McCall // No cookie is required if the operator new[] being used is the 4547ec4b434SJohn McCall // reserved placement operator new[]. 4557ec4b434SJohn McCall if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 4563eb55cfeSKen Dyck return CharUnits::Zero(); 457399f499fSAnders Carlsson 458284c48ffSJohn McCall return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 45959486a2dSAnders Carlsson } 46059486a2dSAnders Carlsson 461036f2f6bSJohn McCall static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 462036f2f6bSJohn McCall const CXXNewExpr *e, 463f862eb6aSSebastian Redl unsigned minElements, 464036f2f6bSJohn McCall llvm::Value *&numElements, 465036f2f6bSJohn McCall llvm::Value *&sizeWithoutCookie) { 466036f2f6bSJohn McCall QualType type = e->getAllocatedType(); 46759486a2dSAnders Carlsson 468036f2f6bSJohn McCall if (!e->isArray()) { 469036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 470036f2f6bSJohn McCall sizeWithoutCookie 471036f2f6bSJohn McCall = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 472036f2f6bSJohn McCall return sizeWithoutCookie; 47305fc5be3SDouglas Gregor } 47459486a2dSAnders Carlsson 475036f2f6bSJohn McCall // The width of size_t. 476036f2f6bSJohn McCall unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 477036f2f6bSJohn McCall 4788ed55a54SJohn McCall // Figure out the cookie size. 479036f2f6bSJohn McCall llvm::APInt cookieSize(sizeWidth, 480036f2f6bSJohn McCall CalculateCookiePadding(CGF, e).getQuantity()); 4818ed55a54SJohn McCall 48259486a2dSAnders Carlsson // Emit the array size expression. 4837648fb46SArgyrios Kyrtzidis // We multiply the size of all dimensions for NumElements. 4847648fb46SArgyrios Kyrtzidis // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 485036f2f6bSJohn McCall numElements = CGF.EmitScalarExpr(e->getArraySize()); 486036f2f6bSJohn McCall assert(isa<llvm::IntegerType>(numElements->getType())); 4878ed55a54SJohn McCall 488036f2f6bSJohn McCall // The number of elements can be have an arbitrary integer type; 489036f2f6bSJohn McCall // essentially, we need to multiply it by a constant factor, add a 490036f2f6bSJohn McCall // cookie size, and verify that the result is representable as a 491036f2f6bSJohn McCall // size_t. That's just a gloss, though, and it's wrong in one 492036f2f6bSJohn McCall // important way: if the count is negative, it's an error even if 493036f2f6bSJohn McCall // the cookie size would bring the total size >= 0. 4946ab2fa8fSDouglas Gregor bool isSigned 4956ab2fa8fSDouglas Gregor = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 4962192fe50SChris Lattner llvm::IntegerType *numElementsType 497036f2f6bSJohn McCall = cast<llvm::IntegerType>(numElements->getType()); 498036f2f6bSJohn McCall unsigned numElementsWidth = numElementsType->getBitWidth(); 499036f2f6bSJohn McCall 500036f2f6bSJohn McCall // Compute the constant factor. 501036f2f6bSJohn McCall llvm::APInt arraySizeMultiplier(sizeWidth, 1); 5027648fb46SArgyrios Kyrtzidis while (const ConstantArrayType *CAT 503036f2f6bSJohn McCall = CGF.getContext().getAsConstantArrayType(type)) { 504036f2f6bSJohn McCall type = CAT->getElementType(); 505036f2f6bSJohn McCall arraySizeMultiplier *= CAT->getSize(); 5067648fb46SArgyrios Kyrtzidis } 50759486a2dSAnders Carlsson 508036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 509036f2f6bSJohn McCall llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 510036f2f6bSJohn McCall typeSizeMultiplier *= arraySizeMultiplier; 511036f2f6bSJohn McCall 512036f2f6bSJohn McCall // This will be a size_t. 513036f2f6bSJohn McCall llvm::Value *size; 51432ac583dSChris Lattner 51532ac583dSChris Lattner // If someone is doing 'new int[42]' there is no need to do a dynamic check. 51632ac583dSChris Lattner // Don't bloat the -O0 code. 517036f2f6bSJohn McCall if (llvm::ConstantInt *numElementsC = 518036f2f6bSJohn McCall dyn_cast<llvm::ConstantInt>(numElements)) { 519036f2f6bSJohn McCall const llvm::APInt &count = numElementsC->getValue(); 52032ac583dSChris Lattner 521036f2f6bSJohn McCall bool hasAnyOverflow = false; 52232ac583dSChris Lattner 523036f2f6bSJohn McCall // If 'count' was a negative number, it's an overflow. 524036f2f6bSJohn McCall if (isSigned && count.isNegative()) 525036f2f6bSJohn McCall hasAnyOverflow = true; 5268ed55a54SJohn McCall 527036f2f6bSJohn McCall // We want to do all this arithmetic in size_t. If numElements is 528036f2f6bSJohn McCall // wider than that, check whether it's already too big, and if so, 529036f2f6bSJohn McCall // overflow. 530036f2f6bSJohn McCall else if (numElementsWidth > sizeWidth && 531036f2f6bSJohn McCall numElementsWidth - sizeWidth > count.countLeadingZeros()) 532036f2f6bSJohn McCall hasAnyOverflow = true; 533036f2f6bSJohn McCall 534036f2f6bSJohn McCall // Okay, compute a count at the right width. 535036f2f6bSJohn McCall llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 536036f2f6bSJohn McCall 537f862eb6aSSebastian Redl // If there is a brace-initializer, we cannot allocate fewer elements than 538f862eb6aSSebastian Redl // there are initializers. If we do, that's treated like an overflow. 539f862eb6aSSebastian Redl if (adjustedCount.ult(minElements)) 540f862eb6aSSebastian Redl hasAnyOverflow = true; 541f862eb6aSSebastian Redl 542036f2f6bSJohn McCall // Scale numElements by that. This might overflow, but we don't 543036f2f6bSJohn McCall // care because it only overflows if allocationSize does, too, and 544036f2f6bSJohn McCall // if that overflows then we shouldn't use this. 545036f2f6bSJohn McCall numElements = llvm::ConstantInt::get(CGF.SizeTy, 546036f2f6bSJohn McCall adjustedCount * arraySizeMultiplier); 547036f2f6bSJohn McCall 548036f2f6bSJohn McCall // Compute the size before cookie, and track whether it overflowed. 549036f2f6bSJohn McCall bool overflow; 550036f2f6bSJohn McCall llvm::APInt allocationSize 551036f2f6bSJohn McCall = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 552036f2f6bSJohn McCall hasAnyOverflow |= overflow; 553036f2f6bSJohn McCall 554036f2f6bSJohn McCall // Add in the cookie, and check whether it's overflowed. 555036f2f6bSJohn McCall if (cookieSize != 0) { 556036f2f6bSJohn McCall // Save the current size without a cookie. This shouldn't be 557036f2f6bSJohn McCall // used if there was overflow. 558036f2f6bSJohn McCall sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 559036f2f6bSJohn McCall 560036f2f6bSJohn McCall allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 561036f2f6bSJohn McCall hasAnyOverflow |= overflow; 5628ed55a54SJohn McCall } 5638ed55a54SJohn McCall 564036f2f6bSJohn McCall // On overflow, produce a -1 so operator new will fail. 565036f2f6bSJohn McCall if (hasAnyOverflow) { 566036f2f6bSJohn McCall size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 56732ac583dSChris Lattner } else { 568036f2f6bSJohn McCall size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 56932ac583dSChris Lattner } 57032ac583dSChris Lattner 571036f2f6bSJohn McCall // Otherwise, we might need to use the overflow intrinsics. 5728ed55a54SJohn McCall } else { 573f862eb6aSSebastian Redl // There are up to five conditions we need to test for: 574036f2f6bSJohn McCall // 1) if isSigned, we need to check whether numElements is negative; 575036f2f6bSJohn McCall // 2) if numElementsWidth > sizeWidth, we need to check whether 576036f2f6bSJohn McCall // numElements is larger than something representable in size_t; 577f862eb6aSSebastian Redl // 3) if minElements > 0, we need to check whether numElements is smaller 578f862eb6aSSebastian Redl // than that. 579f862eb6aSSebastian Redl // 4) we need to compute 580036f2f6bSJohn McCall // sizeWithoutCookie := numElements * typeSizeMultiplier 581036f2f6bSJohn McCall // and check whether it overflows; and 582f862eb6aSSebastian Redl // 5) if we need a cookie, we need to compute 583036f2f6bSJohn McCall // size := sizeWithoutCookie + cookieSize 584036f2f6bSJohn McCall // and check whether it overflows. 5858ed55a54SJohn McCall 586036f2f6bSJohn McCall llvm::Value *hasOverflow = 0; 5878ed55a54SJohn McCall 588036f2f6bSJohn McCall // If numElementsWidth > sizeWidth, then one way or another, we're 589036f2f6bSJohn McCall // going to have to do a comparison for (2), and this happens to 590036f2f6bSJohn McCall // take care of (1), too. 591036f2f6bSJohn McCall if (numElementsWidth > sizeWidth) { 592036f2f6bSJohn McCall llvm::APInt threshold(numElementsWidth, 1); 593036f2f6bSJohn McCall threshold <<= sizeWidth; 5948ed55a54SJohn McCall 595036f2f6bSJohn McCall llvm::Value *thresholdV 596036f2f6bSJohn McCall = llvm::ConstantInt::get(numElementsType, threshold); 597036f2f6bSJohn McCall 598036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 599036f2f6bSJohn McCall numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 600036f2f6bSJohn McCall 601036f2f6bSJohn McCall // Otherwise, if we're signed, we want to sext up to size_t. 602036f2f6bSJohn McCall } else if (isSigned) { 603036f2f6bSJohn McCall if (numElementsWidth < sizeWidth) 604036f2f6bSJohn McCall numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 605036f2f6bSJohn McCall 606036f2f6bSJohn McCall // If there's a non-1 type size multiplier, then we can do the 607036f2f6bSJohn McCall // signedness check at the same time as we do the multiply 608036f2f6bSJohn McCall // because a negative number times anything will cause an 609f862eb6aSSebastian Redl // unsigned overflow. Otherwise, we have to do it here. But at least 610f862eb6aSSebastian Redl // in this case, we can subsume the >= minElements check. 611036f2f6bSJohn McCall if (typeSizeMultiplier == 1) 612036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 613f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 614036f2f6bSJohn McCall 615036f2f6bSJohn McCall // Otherwise, zext up to size_t if necessary. 616036f2f6bSJohn McCall } else if (numElementsWidth < sizeWidth) { 617036f2f6bSJohn McCall numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 618036f2f6bSJohn McCall } 619036f2f6bSJohn McCall 620036f2f6bSJohn McCall assert(numElements->getType() == CGF.SizeTy); 621036f2f6bSJohn McCall 622f862eb6aSSebastian Redl if (minElements) { 623f862eb6aSSebastian Redl // Don't allow allocation of fewer elements than we have initializers. 624f862eb6aSSebastian Redl if (!hasOverflow) { 625f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateICmpULT(numElements, 626f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 627f862eb6aSSebastian Redl } else if (numElementsWidth > sizeWidth) { 628f862eb6aSSebastian Redl // The other existing overflow subsumes this check. 629f862eb6aSSebastian Redl // We do an unsigned comparison, since any signed value < -1 is 630f862eb6aSSebastian Redl // taken care of either above or below. 631f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateOr(hasOverflow, 632f862eb6aSSebastian Redl CGF.Builder.CreateICmpULT(numElements, 633f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements))); 634f862eb6aSSebastian Redl } 635f862eb6aSSebastian Redl } 636f862eb6aSSebastian Redl 637036f2f6bSJohn McCall size = numElements; 638036f2f6bSJohn McCall 639036f2f6bSJohn McCall // Multiply by the type size if necessary. This multiplier 640036f2f6bSJohn McCall // includes all the factors for nested arrays. 6418ed55a54SJohn McCall // 642036f2f6bSJohn McCall // This step also causes numElements to be scaled up by the 643036f2f6bSJohn McCall // nested-array factor if necessary. Overflow on this computation 644036f2f6bSJohn McCall // can be ignored because the result shouldn't be used if 645036f2f6bSJohn McCall // allocation fails. 646036f2f6bSJohn McCall if (typeSizeMultiplier != 1) { 647036f2f6bSJohn McCall llvm::Value *umul_with_overflow 6488d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 6498ed55a54SJohn McCall 650036f2f6bSJohn McCall llvm::Value *tsmV = 651036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 652036f2f6bSJohn McCall llvm::Value *result = 653036f2f6bSJohn McCall CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 6548ed55a54SJohn McCall 655036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 656036f2f6bSJohn McCall if (hasOverflow) 657036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 6588ed55a54SJohn McCall else 659036f2f6bSJohn McCall hasOverflow = overflowed; 66059486a2dSAnders Carlsson 661036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 662036f2f6bSJohn McCall 663036f2f6bSJohn McCall // Also scale up numElements by the array size multiplier. 664036f2f6bSJohn McCall if (arraySizeMultiplier != 1) { 665036f2f6bSJohn McCall // If the base element type size is 1, then we can re-use the 666036f2f6bSJohn McCall // multiply we just did. 667036f2f6bSJohn McCall if (typeSize.isOne()) { 668036f2f6bSJohn McCall assert(arraySizeMultiplier == typeSizeMultiplier); 669036f2f6bSJohn McCall numElements = size; 670036f2f6bSJohn McCall 671036f2f6bSJohn McCall // Otherwise we need a separate multiply. 672036f2f6bSJohn McCall } else { 673036f2f6bSJohn McCall llvm::Value *asmV = 674036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 675036f2f6bSJohn McCall numElements = CGF.Builder.CreateMul(numElements, asmV); 676036f2f6bSJohn McCall } 677036f2f6bSJohn McCall } 678036f2f6bSJohn McCall } else { 679036f2f6bSJohn McCall // numElements doesn't need to be scaled. 680036f2f6bSJohn McCall assert(arraySizeMultiplier == 1); 681036f2f6bSJohn McCall } 682036f2f6bSJohn McCall 683036f2f6bSJohn McCall // Add in the cookie size if necessary. 684036f2f6bSJohn McCall if (cookieSize != 0) { 685036f2f6bSJohn McCall sizeWithoutCookie = size; 686036f2f6bSJohn McCall 687036f2f6bSJohn McCall llvm::Value *uadd_with_overflow 6888d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 689036f2f6bSJohn McCall 690036f2f6bSJohn McCall llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 691036f2f6bSJohn McCall llvm::Value *result = 692036f2f6bSJohn McCall CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 693036f2f6bSJohn McCall 694036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 695036f2f6bSJohn McCall if (hasOverflow) 696036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 697036f2f6bSJohn McCall else 698036f2f6bSJohn McCall hasOverflow = overflowed; 699036f2f6bSJohn McCall 700036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 701036f2f6bSJohn McCall } 702036f2f6bSJohn McCall 703036f2f6bSJohn McCall // If we had any possibility of dynamic overflow, make a select to 704036f2f6bSJohn McCall // overwrite 'size' with an all-ones value, which should cause 705036f2f6bSJohn McCall // operator new to throw. 706036f2f6bSJohn McCall if (hasOverflow) 707036f2f6bSJohn McCall size = CGF.Builder.CreateSelect(hasOverflow, 708036f2f6bSJohn McCall llvm::Constant::getAllOnesValue(CGF.SizeTy), 709036f2f6bSJohn McCall size); 710036f2f6bSJohn McCall } 711036f2f6bSJohn McCall 712036f2f6bSJohn McCall if (cookieSize == 0) 713036f2f6bSJohn McCall sizeWithoutCookie = size; 714036f2f6bSJohn McCall else 715036f2f6bSJohn McCall assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 716036f2f6bSJohn McCall 717036f2f6bSJohn McCall return size; 71859486a2dSAnders Carlsson } 71959486a2dSAnders Carlsson 720f862eb6aSSebastian Redl static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 721f862eb6aSSebastian Redl QualType AllocType, llvm::Value *NewPtr) { 722d5202e09SFariborz Jahanian 72338cd36dbSEli Friedman CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 72447fb9508SJohn McCall switch (CGF.getEvaluationKind(AllocType)) { 72547fb9508SJohn McCall case TEK_Scalar: 72638cd36dbSEli Friedman CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 727a0544d6fSEli Friedman Alignment), 7281553b190SJohn McCall false); 72947fb9508SJohn McCall return; 73047fb9508SJohn McCall case TEK_Complex: 73147fb9508SJohn McCall CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 73247fb9508SJohn McCall Alignment), 73347fb9508SJohn McCall /*isInit*/ true); 73447fb9508SJohn McCall return; 73547fb9508SJohn McCall case TEK_Aggregate: { 7367a626f63SJohn McCall AggValueSlot Slot 737c1d85b93SEli Friedman = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 7388d6fc958SJohn McCall AggValueSlot::IsDestructed, 73946759f4fSJohn McCall AggValueSlot::DoesNotNeedGCBarriers, 740615ed1a3SChad Rosier AggValueSlot::IsNotAliased); 7417a626f63SJohn McCall CGF.EmitAggExpr(Init, Slot); 74247fb9508SJohn McCall return; 7437a626f63SJohn McCall } 744d5202e09SFariborz Jahanian } 74547fb9508SJohn McCall llvm_unreachable("bad evaluation kind"); 74647fb9508SJohn McCall } 747d5202e09SFariborz Jahanian 748d5202e09SFariborz Jahanian void 749d5202e09SFariborz Jahanian CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 75099210dc9SJohn McCall QualType elementType, 75199210dc9SJohn McCall llvm::Value *beginPtr, 75299210dc9SJohn McCall llvm::Value *numElements) { 7536047f07eSSebastian Redl if (!E->hasInitializer()) 7546047f07eSSebastian Redl return; // We have a POD type. 755b66b08efSFariborz Jahanian 756f862eb6aSSebastian Redl llvm::Value *explicitPtr = beginPtr; 75799210dc9SJohn McCall // Find the end of the array, hoisted out of the loop. 75899210dc9SJohn McCall llvm::Value *endPtr = 75999210dc9SJohn McCall Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 760d5202e09SFariborz Jahanian 761f862eb6aSSebastian Redl unsigned initializerElements = 0; 762f862eb6aSSebastian Redl 763f862eb6aSSebastian Redl const Expr *Init = E->getInitializer(); 764f62290a1SChad Rosier llvm::AllocaInst *endOfInit = 0; 765f62290a1SChad Rosier QualType::DestructionKind dtorKind = elementType.isDestructedType(); 766f62290a1SChad Rosier EHScopeStack::stable_iterator cleanup; 767f62290a1SChad Rosier llvm::Instruction *cleanupDominator = 0; 768f862eb6aSSebastian Redl // If the initializer is an initializer list, first do the explicit elements. 769f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 770f862eb6aSSebastian Redl initializerElements = ILE->getNumInits(); 771f62290a1SChad Rosier 772f62290a1SChad Rosier // Enter a partial-destruction cleanup if necessary. 773f62290a1SChad Rosier if (needsEHCleanup(dtorKind)) { 774f62290a1SChad Rosier // In principle we could tell the cleanup where we are more 775f62290a1SChad Rosier // directly, but the control flow can get so varied here that it 776f62290a1SChad Rosier // would actually be quite complex. Therefore we go through an 777f62290a1SChad Rosier // alloca. 778f62290a1SChad Rosier endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 779f62290a1SChad Rosier cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 780f62290a1SChad Rosier pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 781f62290a1SChad Rosier getDestroyer(dtorKind)); 782f62290a1SChad Rosier cleanup = EHStack.stable_begin(); 783f62290a1SChad Rosier } 784f62290a1SChad Rosier 785f862eb6aSSebastian Redl for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 786f62290a1SChad Rosier // Tell the cleanup that it needs to destroy up to this 787f62290a1SChad Rosier // element. TODO: some of these stores can be trivially 788f62290a1SChad Rosier // observed to be unnecessary. 789f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 790f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 791f862eb6aSSebastian Redl explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 792f862eb6aSSebastian Redl } 793f862eb6aSSebastian Redl 794f862eb6aSSebastian Redl // The remaining elements are filled with the array filler expression. 795f862eb6aSSebastian Redl Init = ILE->getArrayFiller(); 796f862eb6aSSebastian Redl } 797f862eb6aSSebastian Redl 79899210dc9SJohn McCall // Create the continuation block. 79999210dc9SJohn McCall llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 800d5202e09SFariborz Jahanian 801f862eb6aSSebastian Redl // If the number of elements isn't constant, we have to now check if there is 802f862eb6aSSebastian Redl // anything left to initialize. 803f862eb6aSSebastian Redl if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 804f862eb6aSSebastian Redl // If all elements have already been initialized, skip the whole loop. 805f62290a1SChad Rosier if (constNum->getZExtValue() <= initializerElements) { 806f62290a1SChad Rosier // If there was a cleanup, deactivate it. 807f62290a1SChad Rosier if (cleanupDominator) 80876bb5cabSDmitri Gribenko DeactivateCleanupBlock(cleanup, cleanupDominator); 809f62290a1SChad Rosier return; 810f62290a1SChad Rosier } 811f862eb6aSSebastian Redl } else { 81299210dc9SJohn McCall llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 813f862eb6aSSebastian Redl llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 81499210dc9SJohn McCall "array.isempty"); 81599210dc9SJohn McCall Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 81699210dc9SJohn McCall EmitBlock(nonEmptyBB); 81799210dc9SJohn McCall } 818d5202e09SFariborz Jahanian 81999210dc9SJohn McCall // Enter the loop. 82099210dc9SJohn McCall llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 82199210dc9SJohn McCall llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 822d5202e09SFariborz Jahanian 82399210dc9SJohn McCall EmitBlock(loopBB); 824d5202e09SFariborz Jahanian 82599210dc9SJohn McCall // Set up the current-element phi. 82699210dc9SJohn McCall llvm::PHINode *curPtr = 827f862eb6aSSebastian Redl Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 828f862eb6aSSebastian Redl curPtr->addIncoming(explicitPtr, entryBB); 829d5202e09SFariborz Jahanian 830f62290a1SChad Rosier // Store the new cleanup position for irregular cleanups. 831f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 832f62290a1SChad Rosier 83399210dc9SJohn McCall // Enter a partial-destruction cleanup if necessary. 834f62290a1SChad Rosier if (!cleanupDominator && needsEHCleanup(dtorKind)) { 83599210dc9SJohn McCall pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 83699210dc9SJohn McCall getDestroyer(dtorKind)); 83799210dc9SJohn McCall cleanup = EHStack.stable_begin(); 838f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 83999210dc9SJohn McCall } 840d5202e09SFariborz Jahanian 84199210dc9SJohn McCall // Emit the initializer into this element. 842f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 843d5202e09SFariborz Jahanian 84499210dc9SJohn McCall // Leave the cleanup if we entered one. 845de6a86b4SEli Friedman if (cleanupDominator) { 846f4beacd0SJohn McCall DeactivateCleanupBlock(cleanup, cleanupDominator); 847f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 848f4beacd0SJohn McCall } 849d5202e09SFariborz Jahanian 85099210dc9SJohn McCall // Advance to the next element. 85199210dc9SJohn McCall llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 85299210dc9SJohn McCall 85399210dc9SJohn McCall // Check whether we've gotten to the end of the array and, if so, 85499210dc9SJohn McCall // exit the loop. 85599210dc9SJohn McCall llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 85699210dc9SJohn McCall Builder.CreateCondBr(isEnd, contBB, loopBB); 85799210dc9SJohn McCall curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 85899210dc9SJohn McCall 85999210dc9SJohn McCall EmitBlock(contBB); 860d5202e09SFariborz Jahanian } 861d5202e09SFariborz Jahanian 86205fc5be3SDouglas Gregor static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 86305fc5be3SDouglas Gregor llvm::Value *NewPtr, llvm::Value *Size) { 864ad7c5c16SJohn McCall CGF.EmitCastToVoidPtr(NewPtr); 865705ba07eSKen Dyck CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 866acc6b4e2SBenjamin Kramer CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 867705ba07eSKen Dyck Alignment.getQuantity(), false); 86805fc5be3SDouglas Gregor } 86905fc5be3SDouglas Gregor 87059486a2dSAnders Carlsson static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 87199210dc9SJohn McCall QualType ElementType, 87259486a2dSAnders Carlsson llvm::Value *NewPtr, 87305fc5be3SDouglas Gregor llvm::Value *NumElements, 87405fc5be3SDouglas Gregor llvm::Value *AllocSizeWithoutCookie) { 8756047f07eSSebastian Redl const Expr *Init = E->getInitializer(); 8763a202f60SAnders Carlsson if (E->isArray()) { 8776047f07eSSebastian Redl if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 8786047f07eSSebastian Redl CXXConstructorDecl *Ctor = CCE->getConstructor(); 879d153103cSDouglas Gregor if (Ctor->isTrivial()) { 88005fc5be3SDouglas Gregor // If new expression did not specify value-initialization, then there 88105fc5be3SDouglas Gregor // is no initialization. 8826047f07eSSebastian Redl if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 88305fc5be3SDouglas Gregor return; 88405fc5be3SDouglas Gregor 88599210dc9SJohn McCall if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 88605fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 88705fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 88899210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 8893a202f60SAnders Carlsson return; 8903a202f60SAnders Carlsson } 89105fc5be3SDouglas Gregor } 89205fc5be3SDouglas Gregor 89305fc5be3SDouglas Gregor CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 8946047f07eSSebastian Redl CCE->arg_begin(), CCE->arg_end(), 89548ddcf2cSEli Friedman CCE->requiresZeroInitialization()); 89605fc5be3SDouglas Gregor return; 8976047f07eSSebastian Redl } else if (Init && isa<ImplicitValueInitExpr>(Init) && 898de6a86b4SEli Friedman CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 89905fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 90005fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 90199210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 90205fc5be3SDouglas Gregor return; 9036047f07eSSebastian Redl } 90499210dc9SJohn McCall CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 905d5202e09SFariborz Jahanian return; 906d040e6b2SAnders Carlsson } 90759486a2dSAnders Carlsson 9086047f07eSSebastian Redl if (!Init) 909b66b08efSFariborz Jahanian return; 91059486a2dSAnders Carlsson 911f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 91259486a2dSAnders Carlsson } 91359486a2dSAnders Carlsson 9148d0dc31dSRichard Smith /// Emit a call to an operator new or operator delete function, as implicitly 9158d0dc31dSRichard Smith /// created by new-expressions and delete-expressions. 9168d0dc31dSRichard Smith static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 9178d0dc31dSRichard Smith const FunctionDecl *Callee, 9188d0dc31dSRichard Smith const FunctionProtoType *CalleeType, 9198d0dc31dSRichard Smith const CallArgList &Args) { 9208d0dc31dSRichard Smith llvm::Instruction *CallOrInvoke; 9211235a8daSRichard Smith llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 9228d0dc31dSRichard Smith RValue RV = 9238d0dc31dSRichard Smith CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType), 9241235a8daSRichard Smith CalleeAddr, ReturnValueSlot(), Args, 9258d0dc31dSRichard Smith Callee, &CallOrInvoke); 9268d0dc31dSRichard Smith 9278d0dc31dSRichard Smith /// C++1y [expr.new]p10: 9288d0dc31dSRichard Smith /// [In a new-expression,] an implementation is allowed to omit a call 9298d0dc31dSRichard Smith /// to a replaceable global allocation function. 9308d0dc31dSRichard Smith /// 9318d0dc31dSRichard Smith /// We model such elidable calls with the 'builtin' attribute. 9321235a8daSRichard Smith llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 9331235a8daSRichard Smith if (Callee->isReplaceableGlobalAllocationFunction() && 9341235a8daSRichard Smith Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 9358d0dc31dSRichard Smith // FIXME: Add addAttribute to CallSite. 9368d0dc31dSRichard Smith if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 9378d0dc31dSRichard Smith CI->addAttribute(llvm::AttributeSet::FunctionIndex, 9388d0dc31dSRichard Smith llvm::Attribute::Builtin); 9398d0dc31dSRichard Smith else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 9408d0dc31dSRichard Smith II->addAttribute(llvm::AttributeSet::FunctionIndex, 9418d0dc31dSRichard Smith llvm::Attribute::Builtin); 9428d0dc31dSRichard Smith else 9438d0dc31dSRichard Smith llvm_unreachable("unexpected kind of call instruction"); 9448d0dc31dSRichard Smith } 9458d0dc31dSRichard Smith 9468d0dc31dSRichard Smith return RV; 9478d0dc31dSRichard Smith } 9488d0dc31dSRichard Smith 949824c2f53SJohn McCall namespace { 950824c2f53SJohn McCall /// A cleanup to call the given 'operator delete' function upon 951824c2f53SJohn McCall /// abnormal exit from a new expression. 952824c2f53SJohn McCall class CallDeleteDuringNew : public EHScopeStack::Cleanup { 953824c2f53SJohn McCall size_t NumPlacementArgs; 954824c2f53SJohn McCall const FunctionDecl *OperatorDelete; 955824c2f53SJohn McCall llvm::Value *Ptr; 956824c2f53SJohn McCall llvm::Value *AllocSize; 957824c2f53SJohn McCall 958824c2f53SJohn McCall RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 959824c2f53SJohn McCall 960824c2f53SJohn McCall public: 961824c2f53SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 962824c2f53SJohn McCall return NumPlacementArgs * sizeof(RValue); 963824c2f53SJohn McCall } 964824c2f53SJohn McCall 965824c2f53SJohn McCall CallDeleteDuringNew(size_t NumPlacementArgs, 966824c2f53SJohn McCall const FunctionDecl *OperatorDelete, 967824c2f53SJohn McCall llvm::Value *Ptr, 968824c2f53SJohn McCall llvm::Value *AllocSize) 969824c2f53SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 970824c2f53SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 971824c2f53SJohn McCall 972824c2f53SJohn McCall void setPlacementArg(unsigned I, RValue Arg) { 973824c2f53SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 974824c2f53SJohn McCall getPlacementArgs()[I] = Arg; 975824c2f53SJohn McCall } 976824c2f53SJohn McCall 97730317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 978824c2f53SJohn McCall const FunctionProtoType *FPT 979824c2f53SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 980824c2f53SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 981d441b1e6SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 982824c2f53SJohn McCall 983824c2f53SJohn McCall CallArgList DeleteArgs; 984824c2f53SJohn McCall 985824c2f53SJohn McCall // The first argument is always a void*. 986824c2f53SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 98743dca6a8SEli Friedman DeleteArgs.add(RValue::get(Ptr), *AI++); 988824c2f53SJohn McCall 989824c2f53SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 990824c2f53SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) 99143dca6a8SEli Friedman DeleteArgs.add(RValue::get(AllocSize), *AI++); 992824c2f53SJohn McCall 993824c2f53SJohn McCall // Pass the rest of the arguments, which must match exactly. 994824c2f53SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) 99543dca6a8SEli Friedman DeleteArgs.add(getPlacementArgs()[I], *AI++); 996824c2f53SJohn McCall 997824c2f53SJohn McCall // Call 'operator delete'. 9988d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 999824c2f53SJohn McCall } 1000824c2f53SJohn McCall }; 10017f9c92a9SJohn McCall 10027f9c92a9SJohn McCall /// A cleanup to call the given 'operator delete' function upon 10037f9c92a9SJohn McCall /// abnormal exit from a new expression when the new expression is 10047f9c92a9SJohn McCall /// conditional. 10057f9c92a9SJohn McCall class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 10067f9c92a9SJohn McCall size_t NumPlacementArgs; 10077f9c92a9SJohn McCall const FunctionDecl *OperatorDelete; 1008cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr; 1009cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize; 10107f9c92a9SJohn McCall 1011cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type *getPlacementArgs() { 1012cb5f77f0SJohn McCall return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 10137f9c92a9SJohn McCall } 10147f9c92a9SJohn McCall 10157f9c92a9SJohn McCall public: 10167f9c92a9SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1017cb5f77f0SJohn McCall return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 10187f9c92a9SJohn McCall } 10197f9c92a9SJohn McCall 10207f9c92a9SJohn McCall CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 10217f9c92a9SJohn McCall const FunctionDecl *OperatorDelete, 1022cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr, 1023cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize) 10247f9c92a9SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 10257f9c92a9SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 10267f9c92a9SJohn McCall 1027cb5f77f0SJohn McCall void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 10287f9c92a9SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 10297f9c92a9SJohn McCall getPlacementArgs()[I] = Arg; 10307f9c92a9SJohn McCall } 10317f9c92a9SJohn McCall 103230317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 10337f9c92a9SJohn McCall const FunctionProtoType *FPT 10347f9c92a9SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 10357f9c92a9SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 10367f9c92a9SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 10377f9c92a9SJohn McCall 10387f9c92a9SJohn McCall CallArgList DeleteArgs; 10397f9c92a9SJohn McCall 10407f9c92a9SJohn McCall // The first argument is always a void*. 10417f9c92a9SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 104243dca6a8SEli Friedman DeleteArgs.add(Ptr.restore(CGF), *AI++); 10437f9c92a9SJohn McCall 10447f9c92a9SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 10457f9c92a9SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1046cb5f77f0SJohn McCall RValue RV = AllocSize.restore(CGF); 104743dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 10487f9c92a9SJohn McCall } 10497f9c92a9SJohn McCall 10507f9c92a9SJohn McCall // Pass the rest of the arguments, which must match exactly. 10517f9c92a9SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1052cb5f77f0SJohn McCall RValue RV = getPlacementArgs()[I].restore(CGF); 105343dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 10547f9c92a9SJohn McCall } 10557f9c92a9SJohn McCall 10567f9c92a9SJohn McCall // Call 'operator delete'. 10578d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 10587f9c92a9SJohn McCall } 10597f9c92a9SJohn McCall }; 10607f9c92a9SJohn McCall } 10617f9c92a9SJohn McCall 10627f9c92a9SJohn McCall /// Enter a cleanup to call 'operator delete' if the initializer in a 10637f9c92a9SJohn McCall /// new-expression throws. 10647f9c92a9SJohn McCall static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 10657f9c92a9SJohn McCall const CXXNewExpr *E, 10667f9c92a9SJohn McCall llvm::Value *NewPtr, 10677f9c92a9SJohn McCall llvm::Value *AllocSize, 10687f9c92a9SJohn McCall const CallArgList &NewArgs) { 10697f9c92a9SJohn McCall // If we're not inside a conditional branch, then the cleanup will 10707f9c92a9SJohn McCall // dominate and we can do the easier (and more efficient) thing. 10717f9c92a9SJohn McCall if (!CGF.isInConditionalBranch()) { 10727f9c92a9SJohn McCall CallDeleteDuringNew *Cleanup = CGF.EHStack 10737f9c92a9SJohn McCall .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 10747f9c92a9SJohn McCall E->getNumPlacementArgs(), 10757f9c92a9SJohn McCall E->getOperatorDelete(), 10767f9c92a9SJohn McCall NewPtr, AllocSize); 10777f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1078f4258eb4SEli Friedman Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 10797f9c92a9SJohn McCall 10807f9c92a9SJohn McCall return; 10817f9c92a9SJohn McCall } 10827f9c92a9SJohn McCall 10837f9c92a9SJohn McCall // Otherwise, we need to save all this stuff. 1084cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedNewPtr = 1085cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1086cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedAllocSize = 1087cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 10887f9c92a9SJohn McCall 10897f9c92a9SJohn McCall CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1090f4beacd0SJohn McCall .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 10917f9c92a9SJohn McCall E->getNumPlacementArgs(), 10927f9c92a9SJohn McCall E->getOperatorDelete(), 10937f9c92a9SJohn McCall SavedNewPtr, 10947f9c92a9SJohn McCall SavedAllocSize); 10957f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1096cb5f77f0SJohn McCall Cleanup->setPlacementArg(I, 1097f4258eb4SEli Friedman DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 10987f9c92a9SJohn McCall 1099f4beacd0SJohn McCall CGF.initFullExprCleanup(); 1100824c2f53SJohn McCall } 1101824c2f53SJohn McCall 110259486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 110375f9498aSJohn McCall // The element type being allocated. 110475f9498aSJohn McCall QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 11058ed55a54SJohn McCall 110675f9498aSJohn McCall // 1. Build a call to the allocation function. 110775f9498aSJohn McCall FunctionDecl *allocator = E->getOperatorNew(); 110875f9498aSJohn McCall const FunctionProtoType *allocatorType = 110975f9498aSJohn McCall allocator->getType()->castAs<FunctionProtoType>(); 111059486a2dSAnders Carlsson 111175f9498aSJohn McCall CallArgList allocatorArgs; 111259486a2dSAnders Carlsson 111359486a2dSAnders Carlsson // The allocation size is the first argument. 111475f9498aSJohn McCall QualType sizeType = getContext().getSizeType(); 111559486a2dSAnders Carlsson 1116f862eb6aSSebastian Redl // If there is a brace-initializer, cannot allocate fewer elements than inits. 1117f862eb6aSSebastian Redl unsigned minElements = 0; 1118f862eb6aSSebastian Redl if (E->isArray() && E->hasInitializer()) { 1119f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1120f862eb6aSSebastian Redl minElements = ILE->getNumInits(); 1121f862eb6aSSebastian Redl } 1122f862eb6aSSebastian Redl 112375f9498aSJohn McCall llvm::Value *numElements = 0; 112475f9498aSJohn McCall llvm::Value *allocSizeWithoutCookie = 0; 112575f9498aSJohn McCall llvm::Value *allocSize = 1126f862eb6aSSebastian Redl EmitCXXNewAllocSize(*this, E, minElements, numElements, 1127f862eb6aSSebastian Redl allocSizeWithoutCookie); 112859486a2dSAnders Carlsson 112943dca6a8SEli Friedman allocatorArgs.add(RValue::get(allocSize), sizeType); 113059486a2dSAnders Carlsson 113159486a2dSAnders Carlsson // Emit the rest of the arguments. 113259486a2dSAnders Carlsson // FIXME: Ideally, this should just use EmitCallArgs. 113375f9498aSJohn McCall CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 113459486a2dSAnders Carlsson 113559486a2dSAnders Carlsson // First, use the types from the function type. 113659486a2dSAnders Carlsson // We start at 1 here because the first argument (the allocation size) 113759486a2dSAnders Carlsson // has already been emitted. 113875f9498aSJohn McCall for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 113975f9498aSJohn McCall ++i, ++placementArg) { 114075f9498aSJohn McCall QualType argType = allocatorType->getArgType(i); 114159486a2dSAnders Carlsson 114275f9498aSJohn McCall assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 114375f9498aSJohn McCall placementArg->getType()) && 114459486a2dSAnders Carlsson "type mismatch in call argument!"); 114559486a2dSAnders Carlsson 114632ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, argType); 114759486a2dSAnders Carlsson } 114859486a2dSAnders Carlsson 114959486a2dSAnders Carlsson // Either we've emitted all the call args, or we have a call to a 115059486a2dSAnders Carlsson // variadic function. 115175f9498aSJohn McCall assert((placementArg == E->placement_arg_end() || 115275f9498aSJohn McCall allocatorType->isVariadic()) && 115375f9498aSJohn McCall "Extra arguments to non-variadic function!"); 115459486a2dSAnders Carlsson 115559486a2dSAnders Carlsson // If we still have any arguments, emit them using the type of the argument. 115675f9498aSJohn McCall for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 115775f9498aSJohn McCall placementArg != placementArgsEnd; ++placementArg) { 115832ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 115959486a2dSAnders Carlsson } 116059486a2dSAnders Carlsson 11617ec4b434SJohn McCall // Emit the allocation call. If the allocator is a global placement 11627ec4b434SJohn McCall // operator, just "inline" it directly. 11637ec4b434SJohn McCall RValue RV; 11647ec4b434SJohn McCall if (allocator->isReservedGlobalPlacementOperator()) { 11657ec4b434SJohn McCall assert(allocatorArgs.size() == 2); 11667ec4b434SJohn McCall RV = allocatorArgs[1].RV; 11677ec4b434SJohn McCall // TODO: kill any unnecessary computations done for the size 11687ec4b434SJohn McCall // argument. 11697ec4b434SJohn McCall } else { 11708d0dc31dSRichard Smith RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 11717ec4b434SJohn McCall } 117259486a2dSAnders Carlsson 117375f9498aSJohn McCall // Emit a null check on the allocation result if the allocation 117475f9498aSJohn McCall // function is allowed to return null (because it has a non-throwing 117575f9498aSJohn McCall // exception spec; for this part, we inline 117675f9498aSJohn McCall // CXXNewExpr::shouldNullCheckAllocation()) and we have an 117775f9498aSJohn McCall // interesting initializer. 117831ad754cSSebastian Redl bool nullCheck = allocatorType->isNothrow(getContext()) && 11796047f07eSSebastian Redl (!allocType.isPODType(getContext()) || E->hasInitializer()); 118059486a2dSAnders Carlsson 118175f9498aSJohn McCall llvm::BasicBlock *nullCheckBB = 0; 118275f9498aSJohn McCall llvm::BasicBlock *contBB = 0; 118359486a2dSAnders Carlsson 118475f9498aSJohn McCall llvm::Value *allocation = RV.getScalarVal(); 1185ea2fea2aSMicah Villmow unsigned AS = allocation->getType()->getPointerAddressSpace(); 118659486a2dSAnders Carlsson 1187f7dcf320SJohn McCall // The null-check means that the initializer is conditionally 1188f7dcf320SJohn McCall // evaluated. 1189f7dcf320SJohn McCall ConditionalEvaluation conditional(*this); 1190f7dcf320SJohn McCall 119175f9498aSJohn McCall if (nullCheck) { 1192f7dcf320SJohn McCall conditional.begin(*this); 119375f9498aSJohn McCall 119475f9498aSJohn McCall nullCheckBB = Builder.GetInsertBlock(); 119575f9498aSJohn McCall llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 119675f9498aSJohn McCall contBB = createBasicBlock("new.cont"); 119775f9498aSJohn McCall 119875f9498aSJohn McCall llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 119975f9498aSJohn McCall Builder.CreateCondBr(isNull, contBB, notNullBB); 120075f9498aSJohn McCall EmitBlock(notNullBB); 120159486a2dSAnders Carlsson } 120259486a2dSAnders Carlsson 1203824c2f53SJohn McCall // If there's an operator delete, enter a cleanup to call it if an 1204824c2f53SJohn McCall // exception is thrown. 120575f9498aSJohn McCall EHScopeStack::stable_iterator operatorDeleteCleanup; 1206f4beacd0SJohn McCall llvm::Instruction *cleanupDominator = 0; 12077ec4b434SJohn McCall if (E->getOperatorDelete() && 12087ec4b434SJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 120975f9498aSJohn McCall EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 121075f9498aSJohn McCall operatorDeleteCleanup = EHStack.stable_begin(); 1211f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 1212824c2f53SJohn McCall } 1213824c2f53SJohn McCall 1214cf9b1f65SEli Friedman assert((allocSize == allocSizeWithoutCookie) == 1215cf9b1f65SEli Friedman CalculateCookiePadding(*this, E).isZero()); 1216cf9b1f65SEli Friedman if (allocSize != allocSizeWithoutCookie) { 1217cf9b1f65SEli Friedman assert(E->isArray()); 1218cf9b1f65SEli Friedman allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1219cf9b1f65SEli Friedman numElements, 1220cf9b1f65SEli Friedman E, allocType); 1221cf9b1f65SEli Friedman } 1222cf9b1f65SEli Friedman 12232192fe50SChris Lattner llvm::Type *elementPtrTy 122475f9498aSJohn McCall = ConvertTypeForMem(allocType)->getPointerTo(AS); 122575f9498aSJohn McCall llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1226824c2f53SJohn McCall 122799210dc9SJohn McCall EmitNewInitializer(*this, E, allocType, result, numElements, 122899210dc9SJohn McCall allocSizeWithoutCookie); 12298ed55a54SJohn McCall if (E->isArray()) { 12308ed55a54SJohn McCall // NewPtr is a pointer to the base element type. If we're 12318ed55a54SJohn McCall // allocating an array of arrays, we'll need to cast back to the 12328ed55a54SJohn McCall // array pointer type. 12332192fe50SChris Lattner llvm::Type *resultType = ConvertTypeForMem(E->getType()); 123475f9498aSJohn McCall if (result->getType() != resultType) 123575f9498aSJohn McCall result = Builder.CreateBitCast(result, resultType); 123647b4629bSFariborz Jahanian } 123759486a2dSAnders Carlsson 1238824c2f53SJohn McCall // Deactivate the 'operator delete' cleanup if we finished 1239824c2f53SJohn McCall // initialization. 1240f4beacd0SJohn McCall if (operatorDeleteCleanup.isValid()) { 1241f4beacd0SJohn McCall DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1242f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 1243f4beacd0SJohn McCall } 1244824c2f53SJohn McCall 124575f9498aSJohn McCall if (nullCheck) { 1246f7dcf320SJohn McCall conditional.end(*this); 1247f7dcf320SJohn McCall 124875f9498aSJohn McCall llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 124975f9498aSJohn McCall EmitBlock(contBB); 125059486a2dSAnders Carlsson 125120c0f02cSJay Foad llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 125275f9498aSJohn McCall PHI->addIncoming(result, notNullBB); 125375f9498aSJohn McCall PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 125475f9498aSJohn McCall nullCheckBB); 125559486a2dSAnders Carlsson 125675f9498aSJohn McCall result = PHI; 125759486a2dSAnders Carlsson } 125859486a2dSAnders Carlsson 125975f9498aSJohn McCall return result; 126059486a2dSAnders Carlsson } 126159486a2dSAnders Carlsson 126259486a2dSAnders Carlsson void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 126359486a2dSAnders Carlsson llvm::Value *Ptr, 126459486a2dSAnders Carlsson QualType DeleteTy) { 12658ed55a54SJohn McCall assert(DeleteFD->getOverloadedOperator() == OO_Delete); 12668ed55a54SJohn McCall 126759486a2dSAnders Carlsson const FunctionProtoType *DeleteFTy = 126859486a2dSAnders Carlsson DeleteFD->getType()->getAs<FunctionProtoType>(); 126959486a2dSAnders Carlsson 127059486a2dSAnders Carlsson CallArgList DeleteArgs; 127159486a2dSAnders Carlsson 127221122cf6SAnders Carlsson // Check if we need to pass the size to the delete operator. 127321122cf6SAnders Carlsson llvm::Value *Size = 0; 127421122cf6SAnders Carlsson QualType SizeTy; 127521122cf6SAnders Carlsson if (DeleteFTy->getNumArgs() == 2) { 127621122cf6SAnders Carlsson SizeTy = DeleteFTy->getArgType(1); 12777df3cbebSKen Dyck CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 12787df3cbebSKen Dyck Size = llvm::ConstantInt::get(ConvertType(SizeTy), 12797df3cbebSKen Dyck DeleteTypeSize.getQuantity()); 128021122cf6SAnders Carlsson } 128121122cf6SAnders Carlsson 128259486a2dSAnders Carlsson QualType ArgTy = DeleteFTy->getArgType(0); 128359486a2dSAnders Carlsson llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 128443dca6a8SEli Friedman DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 128559486a2dSAnders Carlsson 128621122cf6SAnders Carlsson if (Size) 128743dca6a8SEli Friedman DeleteArgs.add(RValue::get(Size), SizeTy); 128859486a2dSAnders Carlsson 128959486a2dSAnders Carlsson // Emit the call to delete. 12908d0dc31dSRichard Smith EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 129159486a2dSAnders Carlsson } 129259486a2dSAnders Carlsson 12938ed55a54SJohn McCall namespace { 12948ed55a54SJohn McCall /// Calls the given 'operator delete' on a single object. 12958ed55a54SJohn McCall struct CallObjectDelete : EHScopeStack::Cleanup { 12968ed55a54SJohn McCall llvm::Value *Ptr; 12978ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 12988ed55a54SJohn McCall QualType ElementType; 12998ed55a54SJohn McCall 13008ed55a54SJohn McCall CallObjectDelete(llvm::Value *Ptr, 13018ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13028ed55a54SJohn McCall QualType ElementType) 13038ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 13048ed55a54SJohn McCall 130530317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 13068ed55a54SJohn McCall CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 13078ed55a54SJohn McCall } 13088ed55a54SJohn McCall }; 13098ed55a54SJohn McCall } 13108ed55a54SJohn McCall 13118ed55a54SJohn McCall /// Emit the code for deleting a single object. 13128ed55a54SJohn McCall static void EmitObjectDelete(CodeGenFunction &CGF, 13138ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13148ed55a54SJohn McCall llvm::Value *Ptr, 13151c2e20d7SDouglas Gregor QualType ElementType, 13161c2e20d7SDouglas Gregor bool UseGlobalDelete) { 13178ed55a54SJohn McCall // Find the destructor for the type, if applicable. If the 13188ed55a54SJohn McCall // destructor is virtual, we'll just emit the vcall and return. 13198ed55a54SJohn McCall const CXXDestructorDecl *Dtor = 0; 13208ed55a54SJohn McCall if (const RecordType *RT = ElementType->getAs<RecordType>()) { 13218ed55a54SJohn McCall CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1322b23533dbSEli Friedman if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 13238ed55a54SJohn McCall Dtor = RD->getDestructor(); 13248ed55a54SJohn McCall 13258ed55a54SJohn McCall if (Dtor->isVirtual()) { 13261c2e20d7SDouglas Gregor if (UseGlobalDelete) { 13271c2e20d7SDouglas Gregor // If we're supposed to call the global delete, make sure we do so 13281c2e20d7SDouglas Gregor // even if the destructor throws. 132982fb8920SJohn McCall 133082fb8920SJohn McCall // Derive the complete-object pointer, which is what we need 133182fb8920SJohn McCall // to pass to the deallocation function. 133282fb8920SJohn McCall llvm::Value *completePtr = 133382fb8920SJohn McCall CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 133482fb8920SJohn McCall 13351c2e20d7SDouglas Gregor CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 133682fb8920SJohn McCall completePtr, OperatorDelete, 13371c2e20d7SDouglas Gregor ElementType); 13381c2e20d7SDouglas Gregor } 13391c2e20d7SDouglas Gregor 1340e30752c9SRichard Smith // FIXME: Provide a source location here. 1341d619711cSTimur Iskhodzhanov CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1342d619711cSTimur Iskhodzhanov CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 13439dc6eef7SStephen Lin SourceLocation(), Ptr); 13448ed55a54SJohn McCall 13451c2e20d7SDouglas Gregor if (UseGlobalDelete) { 13461c2e20d7SDouglas Gregor CGF.PopCleanupBlock(); 13471c2e20d7SDouglas Gregor } 13481c2e20d7SDouglas Gregor 13498ed55a54SJohn McCall return; 13508ed55a54SJohn McCall } 13518ed55a54SJohn McCall } 13528ed55a54SJohn McCall } 13538ed55a54SJohn McCall 13548ed55a54SJohn McCall // Make sure that we call delete even if the dtor throws. 1355e4df6c8dSJohn McCall // This doesn't have to a conditional cleanup because we're going 1356e4df6c8dSJohn McCall // to pop it off in a second. 13578ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 13588ed55a54SJohn McCall Ptr, OperatorDelete, ElementType); 13598ed55a54SJohn McCall 13608ed55a54SJohn McCall if (Dtor) 13618ed55a54SJohn McCall CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 136261535005SDouglas Gregor /*ForVirtualBase=*/false, 136361535005SDouglas Gregor /*Delegating=*/false, 136461535005SDouglas Gregor Ptr); 1365bbafb8a7SDavid Blaikie else if (CGF.getLangOpts().ObjCAutoRefCount && 136631168b07SJohn McCall ElementType->isObjCLifetimeType()) { 136731168b07SJohn McCall switch (ElementType.getObjCLifetime()) { 136831168b07SJohn McCall case Qualifiers::OCL_None: 136931168b07SJohn McCall case Qualifiers::OCL_ExplicitNone: 137031168b07SJohn McCall case Qualifiers::OCL_Autoreleasing: 137131168b07SJohn McCall break; 137231168b07SJohn McCall 137331168b07SJohn McCall case Qualifiers::OCL_Strong: { 137431168b07SJohn McCall // Load the pointer value. 137531168b07SJohn McCall llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 137631168b07SJohn McCall ElementType.isVolatileQualified()); 137731168b07SJohn McCall 1378cdda29c9SJohn McCall CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 137931168b07SJohn McCall break; 138031168b07SJohn McCall } 138131168b07SJohn McCall 138231168b07SJohn McCall case Qualifiers::OCL_Weak: 138331168b07SJohn McCall CGF.EmitARCDestroyWeak(Ptr); 138431168b07SJohn McCall break; 138531168b07SJohn McCall } 138631168b07SJohn McCall } 13878ed55a54SJohn McCall 13888ed55a54SJohn McCall CGF.PopCleanupBlock(); 13898ed55a54SJohn McCall } 13908ed55a54SJohn McCall 13918ed55a54SJohn McCall namespace { 13928ed55a54SJohn McCall /// Calls the given 'operator delete' on an array of objects. 13938ed55a54SJohn McCall struct CallArrayDelete : EHScopeStack::Cleanup { 13948ed55a54SJohn McCall llvm::Value *Ptr; 13958ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 13968ed55a54SJohn McCall llvm::Value *NumElements; 13978ed55a54SJohn McCall QualType ElementType; 13988ed55a54SJohn McCall CharUnits CookieSize; 13998ed55a54SJohn McCall 14008ed55a54SJohn McCall CallArrayDelete(llvm::Value *Ptr, 14018ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 14028ed55a54SJohn McCall llvm::Value *NumElements, 14038ed55a54SJohn McCall QualType ElementType, 14048ed55a54SJohn McCall CharUnits CookieSize) 14058ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 14068ed55a54SJohn McCall ElementType(ElementType), CookieSize(CookieSize) {} 14078ed55a54SJohn McCall 140830317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 14098ed55a54SJohn McCall const FunctionProtoType *DeleteFTy = 14108ed55a54SJohn McCall OperatorDelete->getType()->getAs<FunctionProtoType>(); 14118ed55a54SJohn McCall assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 14128ed55a54SJohn McCall 14138ed55a54SJohn McCall CallArgList Args; 14148ed55a54SJohn McCall 14158ed55a54SJohn McCall // Pass the pointer as the first argument. 14168ed55a54SJohn McCall QualType VoidPtrTy = DeleteFTy->getArgType(0); 14178ed55a54SJohn McCall llvm::Value *DeletePtr 14188ed55a54SJohn McCall = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 141943dca6a8SEli Friedman Args.add(RValue::get(DeletePtr), VoidPtrTy); 14208ed55a54SJohn McCall 14218ed55a54SJohn McCall // Pass the original requested size as the second argument. 14228ed55a54SJohn McCall if (DeleteFTy->getNumArgs() == 2) { 14238ed55a54SJohn McCall QualType size_t = DeleteFTy->getArgType(1); 14242192fe50SChris Lattner llvm::IntegerType *SizeTy 14258ed55a54SJohn McCall = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 14268ed55a54SJohn McCall 14278ed55a54SJohn McCall CharUnits ElementTypeSize = 14288ed55a54SJohn McCall CGF.CGM.getContext().getTypeSizeInChars(ElementType); 14298ed55a54SJohn McCall 14308ed55a54SJohn McCall // The size of an element, multiplied by the number of elements. 14318ed55a54SJohn McCall llvm::Value *Size 14328ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 14338ed55a54SJohn McCall Size = CGF.Builder.CreateMul(Size, NumElements); 14348ed55a54SJohn McCall 14358ed55a54SJohn McCall // Plus the size of the cookie if applicable. 14368ed55a54SJohn McCall if (!CookieSize.isZero()) { 14378ed55a54SJohn McCall llvm::Value *CookieSizeV 14388ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 14398ed55a54SJohn McCall Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 14408ed55a54SJohn McCall } 14418ed55a54SJohn McCall 144243dca6a8SEli Friedman Args.add(RValue::get(Size), size_t); 14438ed55a54SJohn McCall } 14448ed55a54SJohn McCall 14458ed55a54SJohn McCall // Emit the call to delete. 14468d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 14478ed55a54SJohn McCall } 14488ed55a54SJohn McCall }; 14498ed55a54SJohn McCall } 14508ed55a54SJohn McCall 14518ed55a54SJohn McCall /// Emit the code for deleting an array of objects. 14528ed55a54SJohn McCall static void EmitArrayDelete(CodeGenFunction &CGF, 1453284c48ffSJohn McCall const CXXDeleteExpr *E, 1454ca2c56f2SJohn McCall llvm::Value *deletedPtr, 1455ca2c56f2SJohn McCall QualType elementType) { 1456ca2c56f2SJohn McCall llvm::Value *numElements = 0; 1457ca2c56f2SJohn McCall llvm::Value *allocatedPtr = 0; 1458ca2c56f2SJohn McCall CharUnits cookieSize; 1459ca2c56f2SJohn McCall CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1460ca2c56f2SJohn McCall numElements, allocatedPtr, cookieSize); 14618ed55a54SJohn McCall 1462ca2c56f2SJohn McCall assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 14638ed55a54SJohn McCall 14648ed55a54SJohn McCall // Make sure that we call delete even if one of the dtors throws. 1465ca2c56f2SJohn McCall const FunctionDecl *operatorDelete = E->getOperatorDelete(); 14668ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1467ca2c56f2SJohn McCall allocatedPtr, operatorDelete, 1468ca2c56f2SJohn McCall numElements, elementType, 1469ca2c56f2SJohn McCall cookieSize); 14708ed55a54SJohn McCall 1471ca2c56f2SJohn McCall // Destroy the elements. 1472ca2c56f2SJohn McCall if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1473ca2c56f2SJohn McCall assert(numElements && "no element count for a type with a destructor!"); 147431168b07SJohn McCall 1475ca2c56f2SJohn McCall llvm::Value *arrayEnd = 1476ca2c56f2SJohn McCall CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 147797eab0a2SJohn McCall 147897eab0a2SJohn McCall // Note that it is legal to allocate a zero-length array, and we 147997eab0a2SJohn McCall // can never fold the check away because the length should always 148097eab0a2SJohn McCall // come from a cookie. 1481ca2c56f2SJohn McCall CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1482ca2c56f2SJohn McCall CGF.getDestroyer(dtorKind), 148397eab0a2SJohn McCall /*checkZeroLength*/ true, 1484ca2c56f2SJohn McCall CGF.needsEHCleanup(dtorKind)); 14858ed55a54SJohn McCall } 14868ed55a54SJohn McCall 1487ca2c56f2SJohn McCall // Pop the cleanup block. 14888ed55a54SJohn McCall CGF.PopCleanupBlock(); 14898ed55a54SJohn McCall } 14908ed55a54SJohn McCall 149159486a2dSAnders Carlsson void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 149259486a2dSAnders Carlsson const Expr *Arg = E->getArgument(); 149359486a2dSAnders Carlsson llvm::Value *Ptr = EmitScalarExpr(Arg); 149459486a2dSAnders Carlsson 149559486a2dSAnders Carlsson // Null check the pointer. 149659486a2dSAnders Carlsson llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 149759486a2dSAnders Carlsson llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 149859486a2dSAnders Carlsson 149998981b10SAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 150059486a2dSAnders Carlsson 150159486a2dSAnders Carlsson Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 150259486a2dSAnders Carlsson EmitBlock(DeleteNotNull); 150359486a2dSAnders Carlsson 15048ed55a54SJohn McCall // We might be deleting a pointer to array. If so, GEP down to the 15058ed55a54SJohn McCall // first non-array element. 15068ed55a54SJohn McCall // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 15078ed55a54SJohn McCall QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 15088ed55a54SJohn McCall if (DeleteTy->isConstantArrayType()) { 15098ed55a54SJohn McCall llvm::Value *Zero = Builder.getInt32(0); 15100e62c1ccSChris Lattner SmallVector<llvm::Value*,8> GEP; 151159486a2dSAnders Carlsson 15128ed55a54SJohn McCall GEP.push_back(Zero); // point at the outermost array 15138ed55a54SJohn McCall 15148ed55a54SJohn McCall // For each layer of array type we're pointing at: 15158ed55a54SJohn McCall while (const ConstantArrayType *Arr 15168ed55a54SJohn McCall = getContext().getAsConstantArrayType(DeleteTy)) { 15178ed55a54SJohn McCall // 1. Unpeel the array type. 15188ed55a54SJohn McCall DeleteTy = Arr->getElementType(); 15198ed55a54SJohn McCall 15208ed55a54SJohn McCall // 2. GEP to the first element of the array. 15218ed55a54SJohn McCall GEP.push_back(Zero); 15228ed55a54SJohn McCall } 15238ed55a54SJohn McCall 1524040dd82fSJay Foad Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 15258ed55a54SJohn McCall } 15268ed55a54SJohn McCall 152704f36218SDouglas Gregor assert(ConvertTypeForMem(DeleteTy) == 152804f36218SDouglas Gregor cast<llvm::PointerType>(Ptr->getType())->getElementType()); 15298ed55a54SJohn McCall 153059486a2dSAnders Carlsson if (E->isArrayForm()) { 1531284c48ffSJohn McCall EmitArrayDelete(*this, E, Ptr, DeleteTy); 15328ed55a54SJohn McCall } else { 15331c2e20d7SDouglas Gregor EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 15341c2e20d7SDouglas Gregor E->isGlobalDelete()); 153559486a2dSAnders Carlsson } 153659486a2dSAnders Carlsson 153759486a2dSAnders Carlsson EmitBlock(DeleteEnd); 153859486a2dSAnders Carlsson } 153959486a2dSAnders Carlsson 15400c63350bSAnders Carlsson static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 15410c63350bSAnders Carlsson // void __cxa_bad_typeid(); 1542ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 15430c63350bSAnders Carlsson 15440c63350bSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 15450c63350bSAnders Carlsson } 15460c63350bSAnders Carlsson 15470c63350bSAnders Carlsson static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1548bbe277c4SAnders Carlsson llvm::Value *Fn = getBadTypeidFn(CGF); 1549882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 15500c63350bSAnders Carlsson CGF.Builder.CreateUnreachable(); 15510c63350bSAnders Carlsson } 15520c63350bSAnders Carlsson 1553940f02d2SAnders Carlsson static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1554940f02d2SAnders Carlsson const Expr *E, 15552192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy) { 1556940f02d2SAnders Carlsson // Get the vtable pointer. 1557940f02d2SAnders Carlsson llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1558940f02d2SAnders Carlsson 1559940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1560940f02d2SAnders Carlsson // If the glvalue expression is obtained by applying the unary * operator to 1561940f02d2SAnders Carlsson // a pointer and the pointer is a null pointer value, the typeid expression 1562940f02d2SAnders Carlsson // throws the std::bad_typeid exception. 1563940f02d2SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1564940f02d2SAnders Carlsson if (UO->getOpcode() == UO_Deref) { 1565940f02d2SAnders Carlsson llvm::BasicBlock *BadTypeidBlock = 1566940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.bad_typeid"); 1567940f02d2SAnders Carlsson llvm::BasicBlock *EndBlock = 1568940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.end"); 1569940f02d2SAnders Carlsson 1570940f02d2SAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1571940f02d2SAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1572940f02d2SAnders Carlsson 1573940f02d2SAnders Carlsson CGF.EmitBlock(BadTypeidBlock); 1574940f02d2SAnders Carlsson EmitBadTypeidCall(CGF); 1575940f02d2SAnders Carlsson CGF.EmitBlock(EndBlock); 1576940f02d2SAnders Carlsson } 1577940f02d2SAnders Carlsson } 1578940f02d2SAnders Carlsson 1579940f02d2SAnders Carlsson llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1580940f02d2SAnders Carlsson StdTypeInfoPtrTy->getPointerTo()); 1581940f02d2SAnders Carlsson 1582940f02d2SAnders Carlsson // Load the type info. 1583940f02d2SAnders Carlsson Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1584940f02d2SAnders Carlsson return CGF.Builder.CreateLoad(Value); 1585940f02d2SAnders Carlsson } 1586940f02d2SAnders Carlsson 158759486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 15882192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy = 1589940f02d2SAnders Carlsson ConvertType(E->getType())->getPointerTo(); 1590fd7dfeb7SAnders Carlsson 15913f4336cbSAnders Carlsson if (E->isTypeOperand()) { 15923f4336cbSAnders Carlsson llvm::Constant *TypeInfo = 1593143c55eaSDavid Majnemer CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1594940f02d2SAnders Carlsson return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 15953f4336cbSAnders Carlsson } 1596fd7dfeb7SAnders Carlsson 1597940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1598940f02d2SAnders Carlsson // When typeid is applied to a glvalue expression whose type is a 1599940f02d2SAnders Carlsson // polymorphic class type, the result refers to a std::type_info object 1600940f02d2SAnders Carlsson // representing the type of the most derived object (that is, the dynamic 1601940f02d2SAnders Carlsson // type) to which the glvalue refers. 1602ef8bf436SRichard Smith if (E->isPotentiallyEvaluated()) 1603940f02d2SAnders Carlsson return EmitTypeidFromVTable(*this, E->getExprOperand(), 1604940f02d2SAnders Carlsson StdTypeInfoPtrTy); 1605940f02d2SAnders Carlsson 1606940f02d2SAnders Carlsson QualType OperandTy = E->getExprOperand()->getType(); 1607940f02d2SAnders Carlsson return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1608940f02d2SAnders Carlsson StdTypeInfoPtrTy); 160959486a2dSAnders Carlsson } 161059486a2dSAnders Carlsson 1611882d790fSAnders Carlsson static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1612882d790fSAnders Carlsson // void *__dynamic_cast(const void *sub, 1613882d790fSAnders Carlsson // const abi::__class_type_info *src, 1614882d790fSAnders Carlsson // const abi::__class_type_info *dst, 1615882d790fSAnders Carlsson // std::ptrdiff_t src2dst_offset); 1616882d790fSAnders Carlsson 1617ece0409aSChris Lattner llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1618a5f58b05SChris Lattner llvm::Type *PtrDiffTy = 1619882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1620882d790fSAnders Carlsson 1621a5f58b05SChris Lattner llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1622882d790fSAnders Carlsson 1623b5206330SBenjamin Kramer llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); 1624882d790fSAnders Carlsson 1625b5206330SBenjamin Kramer // Mark the function as nounwind readonly. 1626b5206330SBenjamin Kramer llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, 1627b5206330SBenjamin Kramer llvm::Attribute::ReadOnly }; 1628b5206330SBenjamin Kramer llvm::AttributeSet Attrs = llvm::AttributeSet::get( 1629b5206330SBenjamin Kramer CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); 1630b5206330SBenjamin Kramer 1631b5206330SBenjamin Kramer return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); 1632882d790fSAnders Carlsson } 1633882d790fSAnders Carlsson 1634882d790fSAnders Carlsson static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1635882d790fSAnders Carlsson // void __cxa_bad_cast(); 1636ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1637882d790fSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1638882d790fSAnders Carlsson } 1639882d790fSAnders Carlsson 1640c1c9971cSAnders Carlsson static void EmitBadCastCall(CodeGenFunction &CGF) { 1641bbe277c4SAnders Carlsson llvm::Value *Fn = getBadCastFn(CGF); 1642882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1643c1c9971cSAnders Carlsson CGF.Builder.CreateUnreachable(); 1644c1c9971cSAnders Carlsson } 1645c1c9971cSAnders Carlsson 1646d9c8455aSBenjamin Kramer /// \brief Compute the src2dst_offset hint as described in the 1647d9c8455aSBenjamin Kramer /// Itanium C++ ABI [2.9.7] 1648d9c8455aSBenjamin Kramer static CharUnits computeOffsetHint(ASTContext &Context, 1649d9c8455aSBenjamin Kramer const CXXRecordDecl *Src, 1650d9c8455aSBenjamin Kramer const CXXRecordDecl *Dst) { 1651d9c8455aSBenjamin Kramer CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1652d9c8455aSBenjamin Kramer /*DetectVirtual=*/false); 1653d9c8455aSBenjamin Kramer 1654d9c8455aSBenjamin Kramer // If Dst is not derived from Src we can skip the whole computation below and 1655d9c8455aSBenjamin Kramer // return that Src is not a public base of Dst. Record all inheritance paths. 1656d9c8455aSBenjamin Kramer if (!Dst->isDerivedFrom(Src, Paths)) 1657d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1658d9c8455aSBenjamin Kramer 1659d9c8455aSBenjamin Kramer unsigned NumPublicPaths = 0; 1660d9c8455aSBenjamin Kramer CharUnits Offset; 1661d9c8455aSBenjamin Kramer 1662d9c8455aSBenjamin Kramer // Now walk all possible inheritance paths. 1663d9c8455aSBenjamin Kramer for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); 1664d9c8455aSBenjamin Kramer I != E; ++I) { 1665d9c8455aSBenjamin Kramer if (I->Access != AS_public) // Ignore non-public inheritance. 1666d9c8455aSBenjamin Kramer continue; 1667d9c8455aSBenjamin Kramer 1668d9c8455aSBenjamin Kramer ++NumPublicPaths; 1669d9c8455aSBenjamin Kramer 1670d9c8455aSBenjamin Kramer for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 1671d9c8455aSBenjamin Kramer // If the path contains a virtual base class we can't give any hint. 1672d9c8455aSBenjamin Kramer // -1: no hint. 1673d9c8455aSBenjamin Kramer if (J->Base->isVirtual()) 1674d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-1ULL); 1675d9c8455aSBenjamin Kramer 1676d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) // Won't use offsets, skip computation. 1677d9c8455aSBenjamin Kramer continue; 1678d9c8455aSBenjamin Kramer 1679d9c8455aSBenjamin Kramer // Accumulate the base class offsets. 1680d9c8455aSBenjamin Kramer const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); 1681d9c8455aSBenjamin Kramer Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); 1682d9c8455aSBenjamin Kramer } 1683d9c8455aSBenjamin Kramer } 1684d9c8455aSBenjamin Kramer 1685d9c8455aSBenjamin Kramer // -2: Src is not a public base of Dst. 1686d9c8455aSBenjamin Kramer if (NumPublicPaths == 0) 1687d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1688d9c8455aSBenjamin Kramer 1689d9c8455aSBenjamin Kramer // -3: Src is a multiple public base type but never a virtual base type. 1690d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) 1691d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-3ULL); 1692d9c8455aSBenjamin Kramer 1693d9c8455aSBenjamin Kramer // Otherwise, the Src type is a unique public nonvirtual base type of Dst. 1694d9c8455aSBenjamin Kramer // Return the offset of Src from the origin of Dst. 1695d9c8455aSBenjamin Kramer return Offset; 1696d9c8455aSBenjamin Kramer } 1697d9c8455aSBenjamin Kramer 1698882d790fSAnders Carlsson static llvm::Value * 1699882d790fSAnders Carlsson EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1700882d790fSAnders Carlsson QualType SrcTy, QualType DestTy, 1701882d790fSAnders Carlsson llvm::BasicBlock *CastEnd) { 17022192fe50SChris Lattner llvm::Type *PtrDiffLTy = 1703882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 17042192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1705882d790fSAnders Carlsson 1706882d790fSAnders Carlsson if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1707882d790fSAnders Carlsson if (PTy->getPointeeType()->isVoidType()) { 1708882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p7: 1709882d790fSAnders Carlsson // If T is "pointer to cv void," then the result is a pointer to the 1710882d790fSAnders Carlsson // most derived object pointed to by v. 1711882d790fSAnders Carlsson 1712882d790fSAnders Carlsson // Get the vtable pointer. 1713882d790fSAnders Carlsson llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1714882d790fSAnders Carlsson 1715882d790fSAnders Carlsson // Get the offset-to-top from the vtable. 1716882d790fSAnders Carlsson llvm::Value *OffsetToTop = 1717882d790fSAnders Carlsson CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1718882d790fSAnders Carlsson OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1719882d790fSAnders Carlsson 1720882d790fSAnders Carlsson // Finally, add the offset to the pointer. 1721882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1722882d790fSAnders Carlsson Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1723882d790fSAnders Carlsson 1724882d790fSAnders Carlsson return CGF.Builder.CreateBitCast(Value, DestLTy); 1725882d790fSAnders Carlsson } 1726882d790fSAnders Carlsson } 1727882d790fSAnders Carlsson 1728882d790fSAnders Carlsson QualType SrcRecordTy; 1729882d790fSAnders Carlsson QualType DestRecordTy; 1730882d790fSAnders Carlsson 1731882d790fSAnders Carlsson if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1732882d790fSAnders Carlsson SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1733882d790fSAnders Carlsson DestRecordTy = DestPTy->getPointeeType(); 1734882d790fSAnders Carlsson } else { 1735882d790fSAnders Carlsson SrcRecordTy = SrcTy; 1736882d790fSAnders Carlsson DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1737882d790fSAnders Carlsson } 1738882d790fSAnders Carlsson 1739882d790fSAnders Carlsson assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1740882d790fSAnders Carlsson assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1741882d790fSAnders Carlsson 1742882d790fSAnders Carlsson llvm::Value *SrcRTTI = 1743882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1744882d790fSAnders Carlsson llvm::Value *DestRTTI = 1745882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1746882d790fSAnders Carlsson 1747d9c8455aSBenjamin Kramer // Compute the offset hint. 1748d9c8455aSBenjamin Kramer const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1749d9c8455aSBenjamin Kramer const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); 1750d9c8455aSBenjamin Kramer llvm::Value *OffsetHint = 1751d9c8455aSBenjamin Kramer llvm::ConstantInt::get(PtrDiffLTy, 1752d9c8455aSBenjamin Kramer computeOffsetHint(CGF.getContext(), SrcDecl, 1753d9c8455aSBenjamin Kramer DestDecl).getQuantity()); 1754882d790fSAnders Carlsson 1755882d790fSAnders Carlsson // Emit the call to __dynamic_cast. 1756882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1757882987f3SJohn McCall 1758882987f3SJohn McCall llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; 1759882987f3SJohn McCall Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); 1760882d790fSAnders Carlsson Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1761882d790fSAnders Carlsson 1762882d790fSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1763882d790fSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1764882d790fSAnders Carlsson if (DestTy->isReferenceType()) { 1765882d790fSAnders Carlsson llvm::BasicBlock *BadCastBlock = 1766882d790fSAnders Carlsson CGF.createBasicBlock("dynamic_cast.bad_cast"); 1767882d790fSAnders Carlsson 1768882d790fSAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1769882d790fSAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1770882d790fSAnders Carlsson 1771882d790fSAnders Carlsson CGF.EmitBlock(BadCastBlock); 1772c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1773882d790fSAnders Carlsson } 1774882d790fSAnders Carlsson 1775882d790fSAnders Carlsson return Value; 1776882d790fSAnders Carlsson } 1777882d790fSAnders Carlsson 1778c1c9971cSAnders Carlsson static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1779c1c9971cSAnders Carlsson QualType DestTy) { 17802192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1781c1c9971cSAnders Carlsson if (DestTy->isPointerType()) 1782c1c9971cSAnders Carlsson return llvm::Constant::getNullValue(DestLTy); 1783c1c9971cSAnders Carlsson 1784c1c9971cSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1785c1c9971cSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1786c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1787c1c9971cSAnders Carlsson 1788c1c9971cSAnders Carlsson CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1789c1c9971cSAnders Carlsson return llvm::UndefValue::get(DestLTy); 1790c1c9971cSAnders Carlsson } 1791c1c9971cSAnders Carlsson 1792882d790fSAnders Carlsson llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 179359486a2dSAnders Carlsson const CXXDynamicCastExpr *DCE) { 17943f4336cbSAnders Carlsson QualType DestTy = DCE->getTypeAsWritten(); 17953f4336cbSAnders Carlsson 1796c1c9971cSAnders Carlsson if (DCE->isAlwaysNull()) 1797c1c9971cSAnders Carlsson return EmitDynamicCastToNull(*this, DestTy); 1798c1c9971cSAnders Carlsson 1799c1c9971cSAnders Carlsson QualType SrcTy = DCE->getSubExpr()->getType(); 1800c1c9971cSAnders Carlsson 1801882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p4: 1802882d790fSAnders Carlsson // If the value of v is a null pointer value in the pointer case, the result 1803882d790fSAnders Carlsson // is the null pointer value of type T. 1804882d790fSAnders Carlsson bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 180559486a2dSAnders Carlsson 1806882d790fSAnders Carlsson llvm::BasicBlock *CastNull = 0; 1807882d790fSAnders Carlsson llvm::BasicBlock *CastNotNull = 0; 1808882d790fSAnders Carlsson llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1809fa8b4955SDouglas Gregor 1810882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1811882d790fSAnders Carlsson CastNull = createBasicBlock("dynamic_cast.null"); 1812882d790fSAnders Carlsson CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1813882d790fSAnders Carlsson 1814882d790fSAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Value); 1815882d790fSAnders Carlsson Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1816882d790fSAnders Carlsson EmitBlock(CastNotNull); 181759486a2dSAnders Carlsson } 181859486a2dSAnders Carlsson 1819882d790fSAnders Carlsson Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 18203f4336cbSAnders Carlsson 1821882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1822882d790fSAnders Carlsson EmitBranch(CastEnd); 182359486a2dSAnders Carlsson 1824882d790fSAnders Carlsson EmitBlock(CastNull); 1825882d790fSAnders Carlsson EmitBranch(CastEnd); 182659486a2dSAnders Carlsson } 182759486a2dSAnders Carlsson 1828882d790fSAnders Carlsson EmitBlock(CastEnd); 182959486a2dSAnders Carlsson 1830882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1831882d790fSAnders Carlsson llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1832882d790fSAnders Carlsson PHI->addIncoming(Value, CastNotNull); 1833882d790fSAnders Carlsson PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 183459486a2dSAnders Carlsson 1835882d790fSAnders Carlsson Value = PHI; 183659486a2dSAnders Carlsson } 183759486a2dSAnders Carlsson 1838882d790fSAnders Carlsson return Value; 183959486a2dSAnders Carlsson } 1840c370a7eeSEli Friedman 1841c370a7eeSEli Friedman void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 18428631f3e8SEli Friedman RunCleanupsScope Scope(*this); 18437f1ff600SEli Friedman LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 18447f1ff600SEli Friedman Slot.getAlignment()); 18458631f3e8SEli Friedman 1846c370a7eeSEli Friedman CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1847c370a7eeSEli Friedman for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1848c370a7eeSEli Friedman e = E->capture_init_end(); 1849c370a7eeSEli Friedman i != e; ++i, ++CurField) { 1850c370a7eeSEli Friedman // Emit initialization 18517f1ff600SEli Friedman 185240ed2973SDavid Blaikie LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 18535f1a04ffSEli Friedman ArrayRef<VarDecl *> ArrayIndexes; 18545f1a04ffSEli Friedman if (CurField->getType()->isArrayType()) 18555f1a04ffSEli Friedman ArrayIndexes = E->getCaptureInitIndexVars(i); 185640ed2973SDavid Blaikie EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1857c370a7eeSEli Friedman } 1858c370a7eeSEli Friedman } 1859