159486a2dSAnders Carlsson //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 259486a2dSAnders Carlsson // 359486a2dSAnders Carlsson // The LLVM Compiler Infrastructure 459486a2dSAnders Carlsson // 559486a2dSAnders Carlsson // This file is distributed under the University of Illinois Open Source 659486a2dSAnders Carlsson // License. See LICENSE.TXT for details. 759486a2dSAnders Carlsson // 859486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 959486a2dSAnders Carlsson // 1059486a2dSAnders Carlsson // This contains code dealing with code generation of C++ expressions 1159486a2dSAnders Carlsson // 1259486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 1359486a2dSAnders Carlsson 1459486a2dSAnders Carlsson #include "CodeGenFunction.h" 15fe883422SPeter Collingbourne #include "CGCUDARuntime.h" 165d865c32SJohn McCall #include "CGCXXABI.h" 1791bbb554SDevang Patel #include "CGDebugInfo.h" 183a02247dSChandler Carruth #include "CGObjCRuntime.h" 193a02247dSChandler Carruth #include "clang/Frontend/CodeGenOptions.h" 20ffd5551bSChandler Carruth #include "llvm/IR/Intrinsics.h" 21bbe277c4SAnders Carlsson #include "llvm/Support/CallSite.h" 22bbe277c4SAnders Carlsson 2359486a2dSAnders Carlsson using namespace clang; 2459486a2dSAnders Carlsson using namespace CodeGen; 2559486a2dSAnders Carlsson 2627da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27e30752c9SRichard Smith SourceLocation CallLoc, 2827da15baSAnders Carlsson llvm::Value *Callee, 2927da15baSAnders Carlsson ReturnValueSlot ReturnValue, 3027da15baSAnders Carlsson llvm::Value *This, 31ee6bc533STimur Iskhodzhanov llvm::Value *ImplicitParam, 32ee6bc533STimur Iskhodzhanov QualType ImplicitParamTy, 3327da15baSAnders Carlsson CallExpr::const_arg_iterator ArgBeg, 3427da15baSAnders Carlsson CallExpr::const_arg_iterator ArgEnd) { 3527da15baSAnders Carlsson assert(MD->isInstance() && 3627da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 3727da15baSAnders Carlsson 3869d0d262SRichard Smith // C++11 [class.mfct.non-static]p2: 3969d0d262SRichard Smith // If a non-static member function of a class X is called for an object that 4069d0d262SRichard Smith // is not of type X, or of a type derived from X, the behavior is undefined. 414d3110afSRichard Smith EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 424d3110afSRichard Smith : TCK_MemberCall, 434d3110afSRichard Smith CallLoc, This, getContext().getRecordType(MD->getParent())); 4469d0d262SRichard Smith 4527da15baSAnders Carlsson CallArgList Args; 4627da15baSAnders Carlsson 4727da15baSAnders Carlsson // Push the this ptr. 4843dca6a8SEli Friedman Args.add(RValue::get(This), MD->getThisType(getContext())); 4927da15baSAnders Carlsson 50ee6bc533STimur Iskhodzhanov // If there is an implicit parameter (e.g. VTT), emit it. 51ee6bc533STimur Iskhodzhanov if (ImplicitParam) { 52ee6bc533STimur Iskhodzhanov Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53e36a6b3eSAnders Carlsson } 54e36a6b3eSAnders Carlsson 55a729c62bSJohn McCall const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56a729c62bSJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57a729c62bSJohn McCall 58a729c62bSJohn McCall // And the rest of the call args. 5927da15baSAnders Carlsson EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 6027da15baSAnders Carlsson 618dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 62c50c27ccSRafael Espindola Callee, ReturnValue, Args, MD); 6327da15baSAnders Carlsson } 6427da15baSAnders Carlsson 65c53d9e83SAnders Carlsson // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 66c53d9e83SAnders Carlsson // quite what we want. 67c53d9e83SAnders Carlsson static const Expr *skipNoOpCastsAndParens(const Expr *E) { 68c53d9e83SAnders Carlsson while (true) { 69c53d9e83SAnders Carlsson if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 70c53d9e83SAnders Carlsson E = PE->getSubExpr(); 71c53d9e83SAnders Carlsson continue; 72c53d9e83SAnders Carlsson } 73c53d9e83SAnders Carlsson 74c53d9e83SAnders Carlsson if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 75c53d9e83SAnders Carlsson if (CE->getCastKind() == CK_NoOp) { 76c53d9e83SAnders Carlsson E = CE->getSubExpr(); 77c53d9e83SAnders Carlsson continue; 78c53d9e83SAnders Carlsson } 79c53d9e83SAnders Carlsson } 80c53d9e83SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 81c53d9e83SAnders Carlsson if (UO->getOpcode() == UO_Extension) { 82c53d9e83SAnders Carlsson E = UO->getSubExpr(); 83c53d9e83SAnders Carlsson continue; 84c53d9e83SAnders Carlsson } 85c53d9e83SAnders Carlsson } 86c53d9e83SAnders Carlsson return E; 87c53d9e83SAnders Carlsson } 88c53d9e83SAnders Carlsson } 89c53d9e83SAnders Carlsson 9027da15baSAnders Carlsson /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 9127da15baSAnders Carlsson /// expr can be devirtualized. 92252a47f6SFariborz Jahanian static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 93252a47f6SFariborz Jahanian const Expr *Base, 94a7911fa3SAnders Carlsson const CXXMethodDecl *MD) { 95a7911fa3SAnders Carlsson 961ae64c5aSAnders Carlsson // When building with -fapple-kext, all calls must go through the vtable since 971ae64c5aSAnders Carlsson // the kernel linker can do runtime patching of vtables. 98bbafb8a7SDavid Blaikie if (Context.getLangOpts().AppleKext) 99252a47f6SFariborz Jahanian return false; 100252a47f6SFariborz Jahanian 1011ae64c5aSAnders Carlsson // If the most derived class is marked final, we know that no subclass can 1021ae64c5aSAnders Carlsson // override this member function and so we can devirtualize it. For example: 1031ae64c5aSAnders Carlsson // 1041ae64c5aSAnders Carlsson // struct A { virtual void f(); } 1051ae64c5aSAnders Carlsson // struct B final : A { }; 1061ae64c5aSAnders Carlsson // 1071ae64c5aSAnders Carlsson // void f(B *b) { 1081ae64c5aSAnders Carlsson // b->f(); 1091ae64c5aSAnders Carlsson // } 1101ae64c5aSAnders Carlsson // 111b7f5a9c5SRafael Espindola const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 1121ae64c5aSAnders Carlsson if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 1131ae64c5aSAnders Carlsson return true; 1141ae64c5aSAnders Carlsson 11519588aa4SAnders Carlsson // If the member function is marked 'final', we know that it can't be 116b00c2144SAnders Carlsson // overridden and can therefore devirtualize it. 1171eb95961SAnders Carlsson if (MD->hasAttr<FinalAttr>()) 118a7911fa3SAnders Carlsson return true; 119a7911fa3SAnders Carlsson 12019588aa4SAnders Carlsson // Similarly, if the class itself is marked 'final' it can't be overridden 12119588aa4SAnders Carlsson // and we can therefore devirtualize the member function call. 1221eb95961SAnders Carlsson if (MD->getParent()->hasAttr<FinalAttr>()) 123b00c2144SAnders Carlsson return true; 124b00c2144SAnders Carlsson 125c53d9e83SAnders Carlsson Base = skipNoOpCastsAndParens(Base); 12627da15baSAnders Carlsson if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 12727da15baSAnders Carlsson if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 12827da15baSAnders Carlsson // This is a record decl. We know the type and can devirtualize it. 12927da15baSAnders Carlsson return VD->getType()->isRecordType(); 13027da15baSAnders Carlsson } 13127da15baSAnders Carlsson 13227da15baSAnders Carlsson return false; 13327da15baSAnders Carlsson } 13427da15baSAnders Carlsson 13548c15319SRichard Smith // We can devirtualize calls on an object accessed by a class member access 13648c15319SRichard Smith // expression, since by C++11 [basic.life]p6 we know that it can't refer to 13748c15319SRichard Smith // a derived class object constructed in the same location. 13848c15319SRichard Smith if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 13948c15319SRichard Smith if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 14048c15319SRichard Smith return VD->getType()->isRecordType(); 14148c15319SRichard Smith 14227da15baSAnders Carlsson // We can always devirtualize calls on temporary object expressions. 143a682427eSEli Friedman if (isa<CXXConstructExpr>(Base)) 14427da15baSAnders Carlsson return true; 14527da15baSAnders Carlsson 14627da15baSAnders Carlsson // And calls on bound temporaries. 14727da15baSAnders Carlsson if (isa<CXXBindTemporaryExpr>(Base)) 14827da15baSAnders Carlsson return true; 14927da15baSAnders Carlsson 15027da15baSAnders Carlsson // Check if this is a call expr that returns a record type. 15127da15baSAnders Carlsson if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 15227da15baSAnders Carlsson return CE->getCallReturnType()->isRecordType(); 15327da15baSAnders Carlsson 15427da15baSAnders Carlsson // We can't devirtualize the call. 15527da15baSAnders Carlsson return false; 15627da15baSAnders Carlsson } 15727da15baSAnders Carlsson 1583b33c4ecSRafael Espindola static CXXRecordDecl *getCXXRecord(const Expr *E) { 1593b33c4ecSRafael Espindola QualType T = E->getType(); 1603b33c4ecSRafael Espindola if (const PointerType *PTy = T->getAs<PointerType>()) 1613b33c4ecSRafael Espindola T = PTy->getPointeeType(); 1623b33c4ecSRafael Espindola const RecordType *Ty = T->castAs<RecordType>(); 1633b33c4ecSRafael Espindola return cast<CXXRecordDecl>(Ty->getDecl()); 1643b33c4ecSRafael Espindola } 1653b33c4ecSRafael Espindola 16664225794SFrancois Pichet // Note: This function also emit constructor calls to support a MSVC 16764225794SFrancois Pichet // extensions allowing explicit constructor function call. 16827da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 16927da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 1702d2e8707SJohn McCall const Expr *callee = CE->getCallee()->IgnoreParens(); 1712d2e8707SJohn McCall 1722d2e8707SJohn McCall if (isa<BinaryOperator>(callee)) 17327da15baSAnders Carlsson return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 17427da15baSAnders Carlsson 1752d2e8707SJohn McCall const MemberExpr *ME = cast<MemberExpr>(callee); 17627da15baSAnders Carlsson const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 17727da15baSAnders Carlsson 17891bbb554SDevang Patel CGDebugInfo *DI = getDebugInfo(); 179b0eea8b5SDouglas Gregor if (DI && 180b0eea8b5SDouglas Gregor CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::LimitedDebugInfo && 181b0eea8b5SDouglas Gregor !isa<CallExpr>(ME->getBase())) { 18291bbb554SDevang Patel QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 18391bbb554SDevang Patel if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 18491bbb554SDevang Patel DI->getOrCreateRecordType(PTy->getPointeeType(), 18591bbb554SDevang Patel MD->getParent()->getLocation()); 18691bbb554SDevang Patel } 18791bbb554SDevang Patel } 18891bbb554SDevang Patel 18927da15baSAnders Carlsson if (MD->isStatic()) { 19027da15baSAnders Carlsson // The method is static, emit it as we would a regular call. 19127da15baSAnders Carlsson llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 19227da15baSAnders Carlsson return EmitCall(getContext().getPointerType(MD->getType()), Callee, 19327da15baSAnders Carlsson ReturnValue, CE->arg_begin(), CE->arg_end()); 19427da15baSAnders Carlsson } 19527da15baSAnders Carlsson 1960d635f53SJohn McCall // Compute the object pointer. 197ecbe2e97SRafael Espindola const Expr *Base = ME->getBase(); 198ecbe2e97SRafael Espindola bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 199ecbe2e97SRafael Espindola 2003b33c4ecSRafael Espindola const CXXMethodDecl *DevirtualizedMethod = NULL; 2013b33c4ecSRafael Espindola if (CanUseVirtualCall && 2023b33c4ecSRafael Espindola canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 2033b33c4ecSRafael Espindola const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 2043b33c4ecSRafael Espindola DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 2053b33c4ecSRafael Espindola assert(DevirtualizedMethod); 2063b33c4ecSRafael Espindola const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 2073b33c4ecSRafael Espindola const Expr *Inner = Base->ignoreParenBaseCasts(); 2083b33c4ecSRafael Espindola if (getCXXRecord(Inner) == DevirtualizedClass) 2093b33c4ecSRafael Espindola // If the class of the Inner expression is where the dynamic method 2103b33c4ecSRafael Espindola // is defined, build the this pointer from it. 2113b33c4ecSRafael Espindola Base = Inner; 2123b33c4ecSRafael Espindola else if (getCXXRecord(Base) != DevirtualizedClass) { 2133b33c4ecSRafael Espindola // If the method is defined in a class that is not the best dynamic 2143b33c4ecSRafael Espindola // one or the one of the full expression, we would have to build 2153b33c4ecSRafael Espindola // a derived-to-base cast to compute the correct this pointer, but 2163b33c4ecSRafael Espindola // we don't have support for that yet, so do a virtual call. 2173b33c4ecSRafael Espindola DevirtualizedMethod = NULL; 2183b33c4ecSRafael Espindola } 219b27564afSRafael Espindola // If the return types are not the same, this might be a case where more 220b27564afSRafael Espindola // code needs to run to compensate for it. For example, the derived 221b27564afSRafael Espindola // method might return a type that inherits form from the return 222b27564afSRafael Espindola // type of MD and has a prefix. 223b27564afSRafael Espindola // For now we just avoid devirtualizing these covariant cases. 224b27564afSRafael Espindola if (DevirtualizedMethod && 225b27564afSRafael Espindola DevirtualizedMethod->getResultType().getCanonicalType() != 226b27564afSRafael Espindola MD->getResultType().getCanonicalType()) 227debc71ceSRafael Espindola DevirtualizedMethod = NULL; 2283b33c4ecSRafael Espindola } 229ecbe2e97SRafael Espindola 23027da15baSAnders Carlsson llvm::Value *This; 23127da15baSAnders Carlsson if (ME->isArrow()) 2323b33c4ecSRafael Espindola This = EmitScalarExpr(Base); 233f93ac894SFariborz Jahanian else 2343b33c4ecSRafael Espindola This = EmitLValue(Base).getAddress(); 235ecbe2e97SRafael Espindola 23627da15baSAnders Carlsson 2370d635f53SJohn McCall if (MD->isTrivial()) { 2380d635f53SJohn McCall if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 23964225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 24064225794SFrancois Pichet cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 24164225794SFrancois Pichet return RValue::get(0); 2420d635f53SJohn McCall 24322653bacSSebastian Redl if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 24422653bacSSebastian Redl // We don't like to generate the trivial copy/move assignment operator 24522653bacSSebastian Redl // when it isn't necessary; just produce the proper effect here. 24627da15baSAnders Carlsson llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 2471ca66919SBenjamin Kramer EmitAggregateAssign(This, RHS, CE->getType()); 24827da15baSAnders Carlsson return RValue::get(This); 24927da15baSAnders Carlsson } 25027da15baSAnders Carlsson 25164225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 25222653bacSSebastian Redl cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 25322653bacSSebastian Redl // Trivial move and copy ctor are the same. 25464225794SFrancois Pichet llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 25564225794SFrancois Pichet EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 25664225794SFrancois Pichet CE->arg_begin(), CE->arg_end()); 25764225794SFrancois Pichet return RValue::get(This); 25864225794SFrancois Pichet } 25964225794SFrancois Pichet llvm_unreachable("unknown trivial member function"); 26064225794SFrancois Pichet } 26164225794SFrancois Pichet 2620d635f53SJohn McCall // Compute the function type we're calling. 263ade60977SEli Friedman const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 26464225794SFrancois Pichet const CGFunctionInfo *FInfo = 0; 265ade60977SEli Friedman if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 266ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 26764225794SFrancois Pichet Dtor_Complete); 268ade60977SEli Friedman else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 269ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 27064225794SFrancois Pichet Ctor_Complete); 27164225794SFrancois Pichet else 272ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 2730d635f53SJohn McCall 274a729c62bSJohn McCall llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 2750d635f53SJohn McCall 27627da15baSAnders Carlsson // C++ [class.virtual]p12: 27727da15baSAnders Carlsson // Explicit qualification with the scope operator (5.1) suppresses the 27827da15baSAnders Carlsson // virtual call mechanism. 27927da15baSAnders Carlsson // 28027da15baSAnders Carlsson // We also don't emit a virtual call if the base expression has a record type 28127da15baSAnders Carlsson // because then we know what the type is. 2823b33c4ecSRafael Espindola bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 28319cee187SStephen Lin llvm::Value *Callee; 284*9dc6eef7SStephen Lin 2850d635f53SJohn McCall if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 28619cee187SStephen Lin assert(CE->arg_begin() == CE->arg_end() && 287*9dc6eef7SStephen Lin "Destructor shouldn't have explicit parameters"); 288*9dc6eef7SStephen Lin assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 289*9dc6eef7SStephen Lin if (UseVirtualCall) { 290*9dc6eef7SStephen Lin CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 291*9dc6eef7SStephen Lin CE->getExprLoc(), This); 29227da15baSAnders Carlsson } else { 2939c6890a7SRichard Smith if (getLangOpts().AppleKext && 294265c325eSFariborz Jahanian MD->isVirtual() && 295265c325eSFariborz Jahanian ME->hasQualifier()) 2967f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 2973b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 298727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 29949e860b2SRafael Espindola else { 3003b33c4ecSRafael Espindola const CXXDestructorDecl *DDtor = 3013b33c4ecSRafael Espindola cast<CXXDestructorDecl>(DevirtualizedMethod); 30249e860b2SRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 30349e860b2SRafael Espindola } 304*9dc6eef7SStephen Lin EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 305*9dc6eef7SStephen Lin /*ImplicitParam=*/0, QualType(), 0, 0); 30627da15baSAnders Carlsson } 307*9dc6eef7SStephen Lin return RValue::get(0); 308*9dc6eef7SStephen Lin } 309*9dc6eef7SStephen Lin 310*9dc6eef7SStephen Lin if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 31164225794SFrancois Pichet Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 3120d635f53SJohn McCall } else if (UseVirtualCall) { 31327da15baSAnders Carlsson Callee = BuildVirtualCall(MD, This, Ty); 31427da15baSAnders Carlsson } else { 3159c6890a7SRichard Smith if (getLangOpts().AppleKext && 3169f9438b3SFariborz Jahanian MD->isVirtual() && 317252a47f6SFariborz Jahanian ME->hasQualifier()) 3187f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 3193b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 320727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(MD, Ty); 32149e860b2SRafael Espindola else { 3223b33c4ecSRafael Espindola Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 32349e860b2SRafael Espindola } 32427da15baSAnders Carlsson } 32527da15baSAnders Carlsson 326e30752c9SRichard Smith return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 327ee6bc533STimur Iskhodzhanov /*ImplicitParam=*/0, QualType(), 328ee6bc533STimur Iskhodzhanov CE->arg_begin(), CE->arg_end()); 32927da15baSAnders Carlsson } 33027da15baSAnders Carlsson 33127da15baSAnders Carlsson RValue 33227da15baSAnders Carlsson CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 33327da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 33427da15baSAnders Carlsson const BinaryOperator *BO = 33527da15baSAnders Carlsson cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 33627da15baSAnders Carlsson const Expr *BaseExpr = BO->getLHS(); 33727da15baSAnders Carlsson const Expr *MemFnExpr = BO->getRHS(); 33827da15baSAnders Carlsson 33927da15baSAnders Carlsson const MemberPointerType *MPT = 3400009fcc3SJohn McCall MemFnExpr->getType()->castAs<MemberPointerType>(); 341475999dcSJohn McCall 34227da15baSAnders Carlsson const FunctionProtoType *FPT = 3430009fcc3SJohn McCall MPT->getPointeeType()->castAs<FunctionProtoType>(); 34427da15baSAnders Carlsson const CXXRecordDecl *RD = 34527da15baSAnders Carlsson cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 34627da15baSAnders Carlsson 34727da15baSAnders Carlsson // Get the member function pointer. 348a1dee530SJohn McCall llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 34927da15baSAnders Carlsson 35027da15baSAnders Carlsson // Emit the 'this' pointer. 35127da15baSAnders Carlsson llvm::Value *This; 35227da15baSAnders Carlsson 353e302792bSJohn McCall if (BO->getOpcode() == BO_PtrMemI) 35427da15baSAnders Carlsson This = EmitScalarExpr(BaseExpr); 35527da15baSAnders Carlsson else 35627da15baSAnders Carlsson This = EmitLValue(BaseExpr).getAddress(); 35727da15baSAnders Carlsson 358e30752c9SRichard Smith EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 359e30752c9SRichard Smith QualType(MPT->getClass(), 0)); 36069d0d262SRichard Smith 361475999dcSJohn McCall // Ask the ABI to load the callee. Note that This is modified. 362475999dcSJohn McCall llvm::Value *Callee = 363ad7c5c16SJohn McCall CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 36427da15baSAnders Carlsson 36527da15baSAnders Carlsson CallArgList Args; 36627da15baSAnders Carlsson 36727da15baSAnders Carlsson QualType ThisType = 36827da15baSAnders Carlsson getContext().getPointerType(getContext().getTagDeclType(RD)); 36927da15baSAnders Carlsson 37027da15baSAnders Carlsson // Push the this ptr. 37143dca6a8SEli Friedman Args.add(RValue::get(This), ThisType); 37227da15baSAnders Carlsson 3738dda7b27SJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 3748dda7b27SJohn McCall 37527da15baSAnders Carlsson // And the rest of the call args 37627da15baSAnders Carlsson EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 3778dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 37899cc30c3STilmann Scheller ReturnValue, Args); 37927da15baSAnders Carlsson } 38027da15baSAnders Carlsson 38127da15baSAnders Carlsson RValue 38227da15baSAnders Carlsson CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 38327da15baSAnders Carlsson const CXXMethodDecl *MD, 38427da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 38527da15baSAnders Carlsson assert(MD->isInstance() && 38627da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 387e26a872bSJohn McCall LValue LV = EmitLValue(E->getArg(0)); 388e26a872bSJohn McCall llvm::Value *This = LV.getAddress(); 389e26a872bSJohn McCall 390146b8e9aSDouglas Gregor if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 391146b8e9aSDouglas Gregor MD->isTrivial()) { 39227da15baSAnders Carlsson llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 39327da15baSAnders Carlsson QualType Ty = E->getType(); 3941ca66919SBenjamin Kramer EmitAggregateAssign(This, Src, Ty); 39527da15baSAnders Carlsson return RValue::get(This); 39627da15baSAnders Carlsson } 39727da15baSAnders Carlsson 398c36783e8SAnders Carlsson llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 399e30752c9SRichard Smith return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 400ee6bc533STimur Iskhodzhanov /*ImplicitParam=*/0, QualType(), 401ee6bc533STimur Iskhodzhanov E->arg_begin() + 1, E->arg_end()); 40227da15baSAnders Carlsson } 40327da15baSAnders Carlsson 404fe883422SPeter Collingbourne RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 405fe883422SPeter Collingbourne ReturnValueSlot ReturnValue) { 406fe883422SPeter Collingbourne return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 407fe883422SPeter Collingbourne } 408fe883422SPeter Collingbourne 409fde961dbSEli Friedman static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 410fde961dbSEli Friedman llvm::Value *DestPtr, 411fde961dbSEli Friedman const CXXRecordDecl *Base) { 412fde961dbSEli Friedman if (Base->isEmpty()) 413fde961dbSEli Friedman return; 414fde961dbSEli Friedman 415fde961dbSEli Friedman DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 416fde961dbSEli Friedman 417fde961dbSEli Friedman const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 418fde961dbSEli Friedman CharUnits Size = Layout.getNonVirtualSize(); 419fde961dbSEli Friedman CharUnits Align = Layout.getNonVirtualAlign(); 420fde961dbSEli Friedman 421fde961dbSEli Friedman llvm::Value *SizeVal = CGF.CGM.getSize(Size); 422fde961dbSEli Friedman 423fde961dbSEli Friedman // If the type contains a pointer to data member we can't memset it to zero. 424fde961dbSEli Friedman // Instead, create a null constant and copy it to the destination. 425fde961dbSEli Friedman // TODO: there are other patterns besides zero that we can usefully memset, 426fde961dbSEli Friedman // like -1, which happens to be the pattern used by member-pointers. 427fde961dbSEli Friedman // TODO: isZeroInitializable can be over-conservative in the case where a 428fde961dbSEli Friedman // virtual base contains a member pointer. 429fde961dbSEli Friedman if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 430fde961dbSEli Friedman llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 431fde961dbSEli Friedman 432fde961dbSEli Friedman llvm::GlobalVariable *NullVariable = 433fde961dbSEli Friedman new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 434fde961dbSEli Friedman /*isConstant=*/true, 435fde961dbSEli Friedman llvm::GlobalVariable::PrivateLinkage, 436fde961dbSEli Friedman NullConstant, Twine()); 437fde961dbSEli Friedman NullVariable->setAlignment(Align.getQuantity()); 438fde961dbSEli Friedman llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 439fde961dbSEli Friedman 440fde961dbSEli Friedman // Get and call the appropriate llvm.memcpy overload. 441fde961dbSEli Friedman CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 442fde961dbSEli Friedman return; 443fde961dbSEli Friedman } 444fde961dbSEli Friedman 445fde961dbSEli Friedman // Otherwise, just memset the whole thing to zero. This is legal 446fde961dbSEli Friedman // because in LLVM, all default initializers (other than the ones we just 447fde961dbSEli Friedman // handled above) are guaranteed to have a bit pattern of all zeros. 448fde961dbSEli Friedman CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 449fde961dbSEli Friedman Align.getQuantity()); 450fde961dbSEli Friedman } 451fde961dbSEli Friedman 45227da15baSAnders Carlsson void 4537a626f63SJohn McCall CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 4547a626f63SJohn McCall AggValueSlot Dest) { 4557a626f63SJohn McCall assert(!Dest.isIgnored() && "Must have a destination!"); 45627da15baSAnders Carlsson const CXXConstructorDecl *CD = E->getConstructor(); 457630c76efSDouglas Gregor 458630c76efSDouglas Gregor // If we require zero initialization before (or instead of) calling the 459630c76efSDouglas Gregor // constructor, as can be the case with a non-user-provided default 46003535265SArgyrios Kyrtzidis // constructor, emit the zero initialization now, unless destination is 46103535265SArgyrios Kyrtzidis // already zeroed. 462fde961dbSEli Friedman if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 463fde961dbSEli Friedman switch (E->getConstructionKind()) { 464fde961dbSEli Friedman case CXXConstructExpr::CK_Delegating: 465fde961dbSEli Friedman case CXXConstructExpr::CK_Complete: 4667a626f63SJohn McCall EmitNullInitialization(Dest.getAddr(), E->getType()); 467fde961dbSEli Friedman break; 468fde961dbSEli Friedman case CXXConstructExpr::CK_VirtualBase: 469fde961dbSEli Friedman case CXXConstructExpr::CK_NonVirtualBase: 470fde961dbSEli Friedman EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 471fde961dbSEli Friedman break; 472fde961dbSEli Friedman } 473fde961dbSEli Friedman } 474630c76efSDouglas Gregor 475630c76efSDouglas Gregor // If this is a call to a trivial default constructor, do nothing. 476630c76efSDouglas Gregor if (CD->isTrivial() && CD->isDefaultConstructor()) 47727da15baSAnders Carlsson return; 478630c76efSDouglas Gregor 4798ea46b66SJohn McCall // Elide the constructor if we're constructing from a temporary. 4808ea46b66SJohn McCall // The temporary check is required because Sema sets this on NRVO 4818ea46b66SJohn McCall // returns. 4829c6890a7SRichard Smith if (getLangOpts().ElideConstructors && E->isElidable()) { 4838ea46b66SJohn McCall assert(getContext().hasSameUnqualifiedType(E->getType(), 4848ea46b66SJohn McCall E->getArg(0)->getType())); 4857a626f63SJohn McCall if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 4867a626f63SJohn McCall EmitAggExpr(E->getArg(0), Dest); 48727da15baSAnders Carlsson return; 48827da15baSAnders Carlsson } 489222cf0efSDouglas Gregor } 490630c76efSDouglas Gregor 491f677a8e9SJohn McCall if (const ConstantArrayType *arrayType 492f677a8e9SJohn McCall = getContext().getAsConstantArrayType(E->getType())) { 493f677a8e9SJohn McCall EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 49427da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 495f677a8e9SJohn McCall } else { 496bceca20aSCameron Esfahani CXXCtorType Type = Ctor_Complete; 497271c3681SAlexis Hunt bool ForVirtualBase = false; 49861535005SDouglas Gregor bool Delegating = false; 499271c3681SAlexis Hunt 500271c3681SAlexis Hunt switch (E->getConstructionKind()) { 501271c3681SAlexis Hunt case CXXConstructExpr::CK_Delegating: 50261bc1737SAlexis Hunt // We should be emitting a constructor; GlobalDecl will assert this 50361bc1737SAlexis Hunt Type = CurGD.getCtorType(); 50461535005SDouglas Gregor Delegating = true; 505271c3681SAlexis Hunt break; 50661bc1737SAlexis Hunt 507271c3681SAlexis Hunt case CXXConstructExpr::CK_Complete: 508271c3681SAlexis Hunt Type = Ctor_Complete; 509271c3681SAlexis Hunt break; 510271c3681SAlexis Hunt 511271c3681SAlexis Hunt case CXXConstructExpr::CK_VirtualBase: 512271c3681SAlexis Hunt ForVirtualBase = true; 513271c3681SAlexis Hunt // fall-through 514271c3681SAlexis Hunt 515271c3681SAlexis Hunt case CXXConstructExpr::CK_NonVirtualBase: 516271c3681SAlexis Hunt Type = Ctor_Base; 517271c3681SAlexis Hunt } 518e11f9ce9SAnders Carlsson 51927da15baSAnders Carlsson // Call the constructor. 52061535005SDouglas Gregor EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 52127da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 52227da15baSAnders Carlsson } 523e11f9ce9SAnders Carlsson } 52427da15baSAnders Carlsson 525e988bdacSFariborz Jahanian void 526e988bdacSFariborz Jahanian CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 527e988bdacSFariborz Jahanian llvm::Value *Src, 52850198098SFariborz Jahanian const Expr *Exp) { 5295d413781SJohn McCall if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 530e988bdacSFariborz Jahanian Exp = E->getSubExpr(); 531e988bdacSFariborz Jahanian assert(isa<CXXConstructExpr>(Exp) && 532e988bdacSFariborz Jahanian "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 533e988bdacSFariborz Jahanian const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 534e988bdacSFariborz Jahanian const CXXConstructorDecl *CD = E->getConstructor(); 535e988bdacSFariborz Jahanian RunCleanupsScope Scope(*this); 536e988bdacSFariborz Jahanian 537e988bdacSFariborz Jahanian // If we require zero initialization before (or instead of) calling the 538e988bdacSFariborz Jahanian // constructor, as can be the case with a non-user-provided default 539e988bdacSFariborz Jahanian // constructor, emit the zero initialization now. 540e988bdacSFariborz Jahanian // FIXME. Do I still need this for a copy ctor synthesis? 541e988bdacSFariborz Jahanian if (E->requiresZeroInitialization()) 542e988bdacSFariborz Jahanian EmitNullInitialization(Dest, E->getType()); 543e988bdacSFariborz Jahanian 54499da11cfSChandler Carruth assert(!getContext().getAsConstantArrayType(E->getType()) 54599da11cfSChandler Carruth && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 546e988bdacSFariborz Jahanian EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 547e988bdacSFariborz Jahanian E->arg_begin(), E->arg_end()); 548e988bdacSFariborz Jahanian } 549e988bdacSFariborz Jahanian 5508ed55a54SJohn McCall static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 5518ed55a54SJohn McCall const CXXNewExpr *E) { 55221122cf6SAnders Carlsson if (!E->isArray()) 5533eb55cfeSKen Dyck return CharUnits::Zero(); 55421122cf6SAnders Carlsson 5557ec4b434SJohn McCall // No cookie is required if the operator new[] being used is the 5567ec4b434SJohn McCall // reserved placement operator new[]. 5577ec4b434SJohn McCall if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 5583eb55cfeSKen Dyck return CharUnits::Zero(); 559399f499fSAnders Carlsson 560284c48ffSJohn McCall return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 56159486a2dSAnders Carlsson } 56259486a2dSAnders Carlsson 563036f2f6bSJohn McCall static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 564036f2f6bSJohn McCall const CXXNewExpr *e, 565f862eb6aSSebastian Redl unsigned minElements, 566036f2f6bSJohn McCall llvm::Value *&numElements, 567036f2f6bSJohn McCall llvm::Value *&sizeWithoutCookie) { 568036f2f6bSJohn McCall QualType type = e->getAllocatedType(); 56959486a2dSAnders Carlsson 570036f2f6bSJohn McCall if (!e->isArray()) { 571036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 572036f2f6bSJohn McCall sizeWithoutCookie 573036f2f6bSJohn McCall = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 574036f2f6bSJohn McCall return sizeWithoutCookie; 57505fc5be3SDouglas Gregor } 57659486a2dSAnders Carlsson 577036f2f6bSJohn McCall // The width of size_t. 578036f2f6bSJohn McCall unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 579036f2f6bSJohn McCall 5808ed55a54SJohn McCall // Figure out the cookie size. 581036f2f6bSJohn McCall llvm::APInt cookieSize(sizeWidth, 582036f2f6bSJohn McCall CalculateCookiePadding(CGF, e).getQuantity()); 5838ed55a54SJohn McCall 58459486a2dSAnders Carlsson // Emit the array size expression. 5857648fb46SArgyrios Kyrtzidis // We multiply the size of all dimensions for NumElements. 5867648fb46SArgyrios Kyrtzidis // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 587036f2f6bSJohn McCall numElements = CGF.EmitScalarExpr(e->getArraySize()); 588036f2f6bSJohn McCall assert(isa<llvm::IntegerType>(numElements->getType())); 5898ed55a54SJohn McCall 590036f2f6bSJohn McCall // The number of elements can be have an arbitrary integer type; 591036f2f6bSJohn McCall // essentially, we need to multiply it by a constant factor, add a 592036f2f6bSJohn McCall // cookie size, and verify that the result is representable as a 593036f2f6bSJohn McCall // size_t. That's just a gloss, though, and it's wrong in one 594036f2f6bSJohn McCall // important way: if the count is negative, it's an error even if 595036f2f6bSJohn McCall // the cookie size would bring the total size >= 0. 5966ab2fa8fSDouglas Gregor bool isSigned 5976ab2fa8fSDouglas Gregor = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 5982192fe50SChris Lattner llvm::IntegerType *numElementsType 599036f2f6bSJohn McCall = cast<llvm::IntegerType>(numElements->getType()); 600036f2f6bSJohn McCall unsigned numElementsWidth = numElementsType->getBitWidth(); 601036f2f6bSJohn McCall 602036f2f6bSJohn McCall // Compute the constant factor. 603036f2f6bSJohn McCall llvm::APInt arraySizeMultiplier(sizeWidth, 1); 6047648fb46SArgyrios Kyrtzidis while (const ConstantArrayType *CAT 605036f2f6bSJohn McCall = CGF.getContext().getAsConstantArrayType(type)) { 606036f2f6bSJohn McCall type = CAT->getElementType(); 607036f2f6bSJohn McCall arraySizeMultiplier *= CAT->getSize(); 6087648fb46SArgyrios Kyrtzidis } 60959486a2dSAnders Carlsson 610036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 611036f2f6bSJohn McCall llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 612036f2f6bSJohn McCall typeSizeMultiplier *= arraySizeMultiplier; 613036f2f6bSJohn McCall 614036f2f6bSJohn McCall // This will be a size_t. 615036f2f6bSJohn McCall llvm::Value *size; 61632ac583dSChris Lattner 61732ac583dSChris Lattner // If someone is doing 'new int[42]' there is no need to do a dynamic check. 61832ac583dSChris Lattner // Don't bloat the -O0 code. 619036f2f6bSJohn McCall if (llvm::ConstantInt *numElementsC = 620036f2f6bSJohn McCall dyn_cast<llvm::ConstantInt>(numElements)) { 621036f2f6bSJohn McCall const llvm::APInt &count = numElementsC->getValue(); 62232ac583dSChris Lattner 623036f2f6bSJohn McCall bool hasAnyOverflow = false; 62432ac583dSChris Lattner 625036f2f6bSJohn McCall // If 'count' was a negative number, it's an overflow. 626036f2f6bSJohn McCall if (isSigned && count.isNegative()) 627036f2f6bSJohn McCall hasAnyOverflow = true; 6288ed55a54SJohn McCall 629036f2f6bSJohn McCall // We want to do all this arithmetic in size_t. If numElements is 630036f2f6bSJohn McCall // wider than that, check whether it's already too big, and if so, 631036f2f6bSJohn McCall // overflow. 632036f2f6bSJohn McCall else if (numElementsWidth > sizeWidth && 633036f2f6bSJohn McCall numElementsWidth - sizeWidth > count.countLeadingZeros()) 634036f2f6bSJohn McCall hasAnyOverflow = true; 635036f2f6bSJohn McCall 636036f2f6bSJohn McCall // Okay, compute a count at the right width. 637036f2f6bSJohn McCall llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 638036f2f6bSJohn McCall 639f862eb6aSSebastian Redl // If there is a brace-initializer, we cannot allocate fewer elements than 640f862eb6aSSebastian Redl // there are initializers. If we do, that's treated like an overflow. 641f862eb6aSSebastian Redl if (adjustedCount.ult(minElements)) 642f862eb6aSSebastian Redl hasAnyOverflow = true; 643f862eb6aSSebastian Redl 644036f2f6bSJohn McCall // Scale numElements by that. This might overflow, but we don't 645036f2f6bSJohn McCall // care because it only overflows if allocationSize does, too, and 646036f2f6bSJohn McCall // if that overflows then we shouldn't use this. 647036f2f6bSJohn McCall numElements = llvm::ConstantInt::get(CGF.SizeTy, 648036f2f6bSJohn McCall adjustedCount * arraySizeMultiplier); 649036f2f6bSJohn McCall 650036f2f6bSJohn McCall // Compute the size before cookie, and track whether it overflowed. 651036f2f6bSJohn McCall bool overflow; 652036f2f6bSJohn McCall llvm::APInt allocationSize 653036f2f6bSJohn McCall = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 654036f2f6bSJohn McCall hasAnyOverflow |= overflow; 655036f2f6bSJohn McCall 656036f2f6bSJohn McCall // Add in the cookie, and check whether it's overflowed. 657036f2f6bSJohn McCall if (cookieSize != 0) { 658036f2f6bSJohn McCall // Save the current size without a cookie. This shouldn't be 659036f2f6bSJohn McCall // used if there was overflow. 660036f2f6bSJohn McCall sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 661036f2f6bSJohn McCall 662036f2f6bSJohn McCall allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 663036f2f6bSJohn McCall hasAnyOverflow |= overflow; 6648ed55a54SJohn McCall } 6658ed55a54SJohn McCall 666036f2f6bSJohn McCall // On overflow, produce a -1 so operator new will fail. 667036f2f6bSJohn McCall if (hasAnyOverflow) { 668036f2f6bSJohn McCall size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 66932ac583dSChris Lattner } else { 670036f2f6bSJohn McCall size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 67132ac583dSChris Lattner } 67232ac583dSChris Lattner 673036f2f6bSJohn McCall // Otherwise, we might need to use the overflow intrinsics. 6748ed55a54SJohn McCall } else { 675f862eb6aSSebastian Redl // There are up to five conditions we need to test for: 676036f2f6bSJohn McCall // 1) if isSigned, we need to check whether numElements is negative; 677036f2f6bSJohn McCall // 2) if numElementsWidth > sizeWidth, we need to check whether 678036f2f6bSJohn McCall // numElements is larger than something representable in size_t; 679f862eb6aSSebastian Redl // 3) if minElements > 0, we need to check whether numElements is smaller 680f862eb6aSSebastian Redl // than that. 681f862eb6aSSebastian Redl // 4) we need to compute 682036f2f6bSJohn McCall // sizeWithoutCookie := numElements * typeSizeMultiplier 683036f2f6bSJohn McCall // and check whether it overflows; and 684f862eb6aSSebastian Redl // 5) if we need a cookie, we need to compute 685036f2f6bSJohn McCall // size := sizeWithoutCookie + cookieSize 686036f2f6bSJohn McCall // and check whether it overflows. 6878ed55a54SJohn McCall 688036f2f6bSJohn McCall llvm::Value *hasOverflow = 0; 6898ed55a54SJohn McCall 690036f2f6bSJohn McCall // If numElementsWidth > sizeWidth, then one way or another, we're 691036f2f6bSJohn McCall // going to have to do a comparison for (2), and this happens to 692036f2f6bSJohn McCall // take care of (1), too. 693036f2f6bSJohn McCall if (numElementsWidth > sizeWidth) { 694036f2f6bSJohn McCall llvm::APInt threshold(numElementsWidth, 1); 695036f2f6bSJohn McCall threshold <<= sizeWidth; 6968ed55a54SJohn McCall 697036f2f6bSJohn McCall llvm::Value *thresholdV 698036f2f6bSJohn McCall = llvm::ConstantInt::get(numElementsType, threshold); 699036f2f6bSJohn McCall 700036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 701036f2f6bSJohn McCall numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 702036f2f6bSJohn McCall 703036f2f6bSJohn McCall // Otherwise, if we're signed, we want to sext up to size_t. 704036f2f6bSJohn McCall } else if (isSigned) { 705036f2f6bSJohn McCall if (numElementsWidth < sizeWidth) 706036f2f6bSJohn McCall numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 707036f2f6bSJohn McCall 708036f2f6bSJohn McCall // If there's a non-1 type size multiplier, then we can do the 709036f2f6bSJohn McCall // signedness check at the same time as we do the multiply 710036f2f6bSJohn McCall // because a negative number times anything will cause an 711f862eb6aSSebastian Redl // unsigned overflow. Otherwise, we have to do it here. But at least 712f862eb6aSSebastian Redl // in this case, we can subsume the >= minElements check. 713036f2f6bSJohn McCall if (typeSizeMultiplier == 1) 714036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 715f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 716036f2f6bSJohn McCall 717036f2f6bSJohn McCall // Otherwise, zext up to size_t if necessary. 718036f2f6bSJohn McCall } else if (numElementsWidth < sizeWidth) { 719036f2f6bSJohn McCall numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 720036f2f6bSJohn McCall } 721036f2f6bSJohn McCall 722036f2f6bSJohn McCall assert(numElements->getType() == CGF.SizeTy); 723036f2f6bSJohn McCall 724f862eb6aSSebastian Redl if (minElements) { 725f862eb6aSSebastian Redl // Don't allow allocation of fewer elements than we have initializers. 726f862eb6aSSebastian Redl if (!hasOverflow) { 727f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateICmpULT(numElements, 728f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 729f862eb6aSSebastian Redl } else if (numElementsWidth > sizeWidth) { 730f862eb6aSSebastian Redl // The other existing overflow subsumes this check. 731f862eb6aSSebastian Redl // We do an unsigned comparison, since any signed value < -1 is 732f862eb6aSSebastian Redl // taken care of either above or below. 733f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateOr(hasOverflow, 734f862eb6aSSebastian Redl CGF.Builder.CreateICmpULT(numElements, 735f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements))); 736f862eb6aSSebastian Redl } 737f862eb6aSSebastian Redl } 738f862eb6aSSebastian Redl 739036f2f6bSJohn McCall size = numElements; 740036f2f6bSJohn McCall 741036f2f6bSJohn McCall // Multiply by the type size if necessary. This multiplier 742036f2f6bSJohn McCall // includes all the factors for nested arrays. 7438ed55a54SJohn McCall // 744036f2f6bSJohn McCall // This step also causes numElements to be scaled up by the 745036f2f6bSJohn McCall // nested-array factor if necessary. Overflow on this computation 746036f2f6bSJohn McCall // can be ignored because the result shouldn't be used if 747036f2f6bSJohn McCall // allocation fails. 748036f2f6bSJohn McCall if (typeSizeMultiplier != 1) { 749036f2f6bSJohn McCall llvm::Value *umul_with_overflow 7508d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 7518ed55a54SJohn McCall 752036f2f6bSJohn McCall llvm::Value *tsmV = 753036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 754036f2f6bSJohn McCall llvm::Value *result = 755036f2f6bSJohn McCall CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 7568ed55a54SJohn McCall 757036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 758036f2f6bSJohn McCall if (hasOverflow) 759036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 7608ed55a54SJohn McCall else 761036f2f6bSJohn McCall hasOverflow = overflowed; 76259486a2dSAnders Carlsson 763036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 764036f2f6bSJohn McCall 765036f2f6bSJohn McCall // Also scale up numElements by the array size multiplier. 766036f2f6bSJohn McCall if (arraySizeMultiplier != 1) { 767036f2f6bSJohn McCall // If the base element type size is 1, then we can re-use the 768036f2f6bSJohn McCall // multiply we just did. 769036f2f6bSJohn McCall if (typeSize.isOne()) { 770036f2f6bSJohn McCall assert(arraySizeMultiplier == typeSizeMultiplier); 771036f2f6bSJohn McCall numElements = size; 772036f2f6bSJohn McCall 773036f2f6bSJohn McCall // Otherwise we need a separate multiply. 774036f2f6bSJohn McCall } else { 775036f2f6bSJohn McCall llvm::Value *asmV = 776036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 777036f2f6bSJohn McCall numElements = CGF.Builder.CreateMul(numElements, asmV); 778036f2f6bSJohn McCall } 779036f2f6bSJohn McCall } 780036f2f6bSJohn McCall } else { 781036f2f6bSJohn McCall // numElements doesn't need to be scaled. 782036f2f6bSJohn McCall assert(arraySizeMultiplier == 1); 783036f2f6bSJohn McCall } 784036f2f6bSJohn McCall 785036f2f6bSJohn McCall // Add in the cookie size if necessary. 786036f2f6bSJohn McCall if (cookieSize != 0) { 787036f2f6bSJohn McCall sizeWithoutCookie = size; 788036f2f6bSJohn McCall 789036f2f6bSJohn McCall llvm::Value *uadd_with_overflow 7908d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 791036f2f6bSJohn McCall 792036f2f6bSJohn McCall llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 793036f2f6bSJohn McCall llvm::Value *result = 794036f2f6bSJohn McCall CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 795036f2f6bSJohn McCall 796036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 797036f2f6bSJohn McCall if (hasOverflow) 798036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 799036f2f6bSJohn McCall else 800036f2f6bSJohn McCall hasOverflow = overflowed; 801036f2f6bSJohn McCall 802036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 803036f2f6bSJohn McCall } 804036f2f6bSJohn McCall 805036f2f6bSJohn McCall // If we had any possibility of dynamic overflow, make a select to 806036f2f6bSJohn McCall // overwrite 'size' with an all-ones value, which should cause 807036f2f6bSJohn McCall // operator new to throw. 808036f2f6bSJohn McCall if (hasOverflow) 809036f2f6bSJohn McCall size = CGF.Builder.CreateSelect(hasOverflow, 810036f2f6bSJohn McCall llvm::Constant::getAllOnesValue(CGF.SizeTy), 811036f2f6bSJohn McCall size); 812036f2f6bSJohn McCall } 813036f2f6bSJohn McCall 814036f2f6bSJohn McCall if (cookieSize == 0) 815036f2f6bSJohn McCall sizeWithoutCookie = size; 816036f2f6bSJohn McCall else 817036f2f6bSJohn McCall assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 818036f2f6bSJohn McCall 819036f2f6bSJohn McCall return size; 82059486a2dSAnders Carlsson } 82159486a2dSAnders Carlsson 822f862eb6aSSebastian Redl static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 823f862eb6aSSebastian Redl QualType AllocType, llvm::Value *NewPtr) { 824d5202e09SFariborz Jahanian 82538cd36dbSEli Friedman CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 82647fb9508SJohn McCall switch (CGF.getEvaluationKind(AllocType)) { 82747fb9508SJohn McCall case TEK_Scalar: 82838cd36dbSEli Friedman CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 829a0544d6fSEli Friedman Alignment), 8301553b190SJohn McCall false); 83147fb9508SJohn McCall return; 83247fb9508SJohn McCall case TEK_Complex: 83347fb9508SJohn McCall CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 83447fb9508SJohn McCall Alignment), 83547fb9508SJohn McCall /*isInit*/ true); 83647fb9508SJohn McCall return; 83747fb9508SJohn McCall case TEK_Aggregate: { 8387a626f63SJohn McCall AggValueSlot Slot 839c1d85b93SEli Friedman = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 8408d6fc958SJohn McCall AggValueSlot::IsDestructed, 84146759f4fSJohn McCall AggValueSlot::DoesNotNeedGCBarriers, 842615ed1a3SChad Rosier AggValueSlot::IsNotAliased); 8437a626f63SJohn McCall CGF.EmitAggExpr(Init, Slot); 84447fb9508SJohn McCall return; 8457a626f63SJohn McCall } 846d5202e09SFariborz Jahanian } 84747fb9508SJohn McCall llvm_unreachable("bad evaluation kind"); 84847fb9508SJohn McCall } 849d5202e09SFariborz Jahanian 850d5202e09SFariborz Jahanian void 851d5202e09SFariborz Jahanian CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 85299210dc9SJohn McCall QualType elementType, 85399210dc9SJohn McCall llvm::Value *beginPtr, 85499210dc9SJohn McCall llvm::Value *numElements) { 8556047f07eSSebastian Redl if (!E->hasInitializer()) 8566047f07eSSebastian Redl return; // We have a POD type. 857b66b08efSFariborz Jahanian 858f862eb6aSSebastian Redl llvm::Value *explicitPtr = beginPtr; 85999210dc9SJohn McCall // Find the end of the array, hoisted out of the loop. 86099210dc9SJohn McCall llvm::Value *endPtr = 86199210dc9SJohn McCall Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 862d5202e09SFariborz Jahanian 863f862eb6aSSebastian Redl unsigned initializerElements = 0; 864f862eb6aSSebastian Redl 865f862eb6aSSebastian Redl const Expr *Init = E->getInitializer(); 866f62290a1SChad Rosier llvm::AllocaInst *endOfInit = 0; 867f62290a1SChad Rosier QualType::DestructionKind dtorKind = elementType.isDestructedType(); 868f62290a1SChad Rosier EHScopeStack::stable_iterator cleanup; 869f62290a1SChad Rosier llvm::Instruction *cleanupDominator = 0; 870f862eb6aSSebastian Redl // If the initializer is an initializer list, first do the explicit elements. 871f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 872f862eb6aSSebastian Redl initializerElements = ILE->getNumInits(); 873f62290a1SChad Rosier 874f62290a1SChad Rosier // Enter a partial-destruction cleanup if necessary. 875f62290a1SChad Rosier if (needsEHCleanup(dtorKind)) { 876f62290a1SChad Rosier // In principle we could tell the cleanup where we are more 877f62290a1SChad Rosier // directly, but the control flow can get so varied here that it 878f62290a1SChad Rosier // would actually be quite complex. Therefore we go through an 879f62290a1SChad Rosier // alloca. 880f62290a1SChad Rosier endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 881f62290a1SChad Rosier cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 882f62290a1SChad Rosier pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 883f62290a1SChad Rosier getDestroyer(dtorKind)); 884f62290a1SChad Rosier cleanup = EHStack.stable_begin(); 885f62290a1SChad Rosier } 886f62290a1SChad Rosier 887f862eb6aSSebastian Redl for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 888f62290a1SChad Rosier // Tell the cleanup that it needs to destroy up to this 889f62290a1SChad Rosier // element. TODO: some of these stores can be trivially 890f62290a1SChad Rosier // observed to be unnecessary. 891f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 892f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 893f862eb6aSSebastian Redl explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 894f862eb6aSSebastian Redl } 895f862eb6aSSebastian Redl 896f862eb6aSSebastian Redl // The remaining elements are filled with the array filler expression. 897f862eb6aSSebastian Redl Init = ILE->getArrayFiller(); 898f862eb6aSSebastian Redl } 899f862eb6aSSebastian Redl 90099210dc9SJohn McCall // Create the continuation block. 90199210dc9SJohn McCall llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 902d5202e09SFariborz Jahanian 903f862eb6aSSebastian Redl // If the number of elements isn't constant, we have to now check if there is 904f862eb6aSSebastian Redl // anything left to initialize. 905f862eb6aSSebastian Redl if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 906f862eb6aSSebastian Redl // If all elements have already been initialized, skip the whole loop. 907f62290a1SChad Rosier if (constNum->getZExtValue() <= initializerElements) { 908f62290a1SChad Rosier // If there was a cleanup, deactivate it. 909f62290a1SChad Rosier if (cleanupDominator) 91076bb5cabSDmitri Gribenko DeactivateCleanupBlock(cleanup, cleanupDominator); 911f62290a1SChad Rosier return; 912f62290a1SChad Rosier } 913f862eb6aSSebastian Redl } else { 91499210dc9SJohn McCall llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 915f862eb6aSSebastian Redl llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 91699210dc9SJohn McCall "array.isempty"); 91799210dc9SJohn McCall Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 91899210dc9SJohn McCall EmitBlock(nonEmptyBB); 91999210dc9SJohn McCall } 920d5202e09SFariborz Jahanian 92199210dc9SJohn McCall // Enter the loop. 92299210dc9SJohn McCall llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 92399210dc9SJohn McCall llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 924d5202e09SFariborz Jahanian 92599210dc9SJohn McCall EmitBlock(loopBB); 926d5202e09SFariborz Jahanian 92799210dc9SJohn McCall // Set up the current-element phi. 92899210dc9SJohn McCall llvm::PHINode *curPtr = 929f862eb6aSSebastian Redl Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 930f862eb6aSSebastian Redl curPtr->addIncoming(explicitPtr, entryBB); 931d5202e09SFariborz Jahanian 932f62290a1SChad Rosier // Store the new cleanup position for irregular cleanups. 933f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 934f62290a1SChad Rosier 93599210dc9SJohn McCall // Enter a partial-destruction cleanup if necessary. 936f62290a1SChad Rosier if (!cleanupDominator && needsEHCleanup(dtorKind)) { 93799210dc9SJohn McCall pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 93899210dc9SJohn McCall getDestroyer(dtorKind)); 93999210dc9SJohn McCall cleanup = EHStack.stable_begin(); 940f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 94199210dc9SJohn McCall } 942d5202e09SFariborz Jahanian 94399210dc9SJohn McCall // Emit the initializer into this element. 944f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 945d5202e09SFariborz Jahanian 94699210dc9SJohn McCall // Leave the cleanup if we entered one. 947de6a86b4SEli Friedman if (cleanupDominator) { 948f4beacd0SJohn McCall DeactivateCleanupBlock(cleanup, cleanupDominator); 949f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 950f4beacd0SJohn McCall } 951d5202e09SFariborz Jahanian 95299210dc9SJohn McCall // Advance to the next element. 95399210dc9SJohn McCall llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 95499210dc9SJohn McCall 95599210dc9SJohn McCall // Check whether we've gotten to the end of the array and, if so, 95699210dc9SJohn McCall // exit the loop. 95799210dc9SJohn McCall llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 95899210dc9SJohn McCall Builder.CreateCondBr(isEnd, contBB, loopBB); 95999210dc9SJohn McCall curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 96099210dc9SJohn McCall 96199210dc9SJohn McCall EmitBlock(contBB); 962d5202e09SFariborz Jahanian } 963d5202e09SFariborz Jahanian 96405fc5be3SDouglas Gregor static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 96505fc5be3SDouglas Gregor llvm::Value *NewPtr, llvm::Value *Size) { 966ad7c5c16SJohn McCall CGF.EmitCastToVoidPtr(NewPtr); 967705ba07eSKen Dyck CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 968acc6b4e2SBenjamin Kramer CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 969705ba07eSKen Dyck Alignment.getQuantity(), false); 97005fc5be3SDouglas Gregor } 97105fc5be3SDouglas Gregor 97259486a2dSAnders Carlsson static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 97399210dc9SJohn McCall QualType ElementType, 97459486a2dSAnders Carlsson llvm::Value *NewPtr, 97505fc5be3SDouglas Gregor llvm::Value *NumElements, 97605fc5be3SDouglas Gregor llvm::Value *AllocSizeWithoutCookie) { 9776047f07eSSebastian Redl const Expr *Init = E->getInitializer(); 9783a202f60SAnders Carlsson if (E->isArray()) { 9796047f07eSSebastian Redl if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 9806047f07eSSebastian Redl CXXConstructorDecl *Ctor = CCE->getConstructor(); 981d153103cSDouglas Gregor if (Ctor->isTrivial()) { 98205fc5be3SDouglas Gregor // If new expression did not specify value-initialization, then there 98305fc5be3SDouglas Gregor // is no initialization. 9846047f07eSSebastian Redl if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 98505fc5be3SDouglas Gregor return; 98605fc5be3SDouglas Gregor 98799210dc9SJohn McCall if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 98805fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 98905fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 99099210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 9913a202f60SAnders Carlsson return; 9923a202f60SAnders Carlsson } 99305fc5be3SDouglas Gregor } 99405fc5be3SDouglas Gregor 99505fc5be3SDouglas Gregor CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 9966047f07eSSebastian Redl CCE->arg_begin(), CCE->arg_end(), 99748ddcf2cSEli Friedman CCE->requiresZeroInitialization()); 99805fc5be3SDouglas Gregor return; 9996047f07eSSebastian Redl } else if (Init && isa<ImplicitValueInitExpr>(Init) && 1000de6a86b4SEli Friedman CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 100105fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 100205fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 100399210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 100405fc5be3SDouglas Gregor return; 10056047f07eSSebastian Redl } 100699210dc9SJohn McCall CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 1007d5202e09SFariborz Jahanian return; 1008d040e6b2SAnders Carlsson } 100959486a2dSAnders Carlsson 10106047f07eSSebastian Redl if (!Init) 1011b66b08efSFariborz Jahanian return; 101259486a2dSAnders Carlsson 1013f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 101459486a2dSAnders Carlsson } 101559486a2dSAnders Carlsson 1016824c2f53SJohn McCall namespace { 1017824c2f53SJohn McCall /// A cleanup to call the given 'operator delete' function upon 1018824c2f53SJohn McCall /// abnormal exit from a new expression. 1019824c2f53SJohn McCall class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1020824c2f53SJohn McCall size_t NumPlacementArgs; 1021824c2f53SJohn McCall const FunctionDecl *OperatorDelete; 1022824c2f53SJohn McCall llvm::Value *Ptr; 1023824c2f53SJohn McCall llvm::Value *AllocSize; 1024824c2f53SJohn McCall 1025824c2f53SJohn McCall RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1026824c2f53SJohn McCall 1027824c2f53SJohn McCall public: 1028824c2f53SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1029824c2f53SJohn McCall return NumPlacementArgs * sizeof(RValue); 1030824c2f53SJohn McCall } 1031824c2f53SJohn McCall 1032824c2f53SJohn McCall CallDeleteDuringNew(size_t NumPlacementArgs, 1033824c2f53SJohn McCall const FunctionDecl *OperatorDelete, 1034824c2f53SJohn McCall llvm::Value *Ptr, 1035824c2f53SJohn McCall llvm::Value *AllocSize) 1036824c2f53SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1037824c2f53SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 1038824c2f53SJohn McCall 1039824c2f53SJohn McCall void setPlacementArg(unsigned I, RValue Arg) { 1040824c2f53SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 1041824c2f53SJohn McCall getPlacementArgs()[I] = Arg; 1042824c2f53SJohn McCall } 1043824c2f53SJohn McCall 104430317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 1045824c2f53SJohn McCall const FunctionProtoType *FPT 1046824c2f53SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1047824c2f53SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1048d441b1e6SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1049824c2f53SJohn McCall 1050824c2f53SJohn McCall CallArgList DeleteArgs; 1051824c2f53SJohn McCall 1052824c2f53SJohn McCall // The first argument is always a void*. 1053824c2f53SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 105443dca6a8SEli Friedman DeleteArgs.add(RValue::get(Ptr), *AI++); 1055824c2f53SJohn McCall 1056824c2f53SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 1057824c2f53SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) 105843dca6a8SEli Friedman DeleteArgs.add(RValue::get(AllocSize), *AI++); 1059824c2f53SJohn McCall 1060824c2f53SJohn McCall // Pass the rest of the arguments, which must match exactly. 1061824c2f53SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) 106243dca6a8SEli Friedman DeleteArgs.add(getPlacementArgs()[I], *AI++); 1063824c2f53SJohn McCall 1064824c2f53SJohn McCall // Call 'operator delete'. 10658dda7b27SJohn McCall CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1066824c2f53SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 1067824c2f53SJohn McCall ReturnValueSlot(), DeleteArgs, OperatorDelete); 1068824c2f53SJohn McCall } 1069824c2f53SJohn McCall }; 10707f9c92a9SJohn McCall 10717f9c92a9SJohn McCall /// A cleanup to call the given 'operator delete' function upon 10727f9c92a9SJohn McCall /// abnormal exit from a new expression when the new expression is 10737f9c92a9SJohn McCall /// conditional. 10747f9c92a9SJohn McCall class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 10757f9c92a9SJohn McCall size_t NumPlacementArgs; 10767f9c92a9SJohn McCall const FunctionDecl *OperatorDelete; 1077cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr; 1078cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize; 10797f9c92a9SJohn McCall 1080cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type *getPlacementArgs() { 1081cb5f77f0SJohn McCall return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 10827f9c92a9SJohn McCall } 10837f9c92a9SJohn McCall 10847f9c92a9SJohn McCall public: 10857f9c92a9SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1086cb5f77f0SJohn McCall return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 10877f9c92a9SJohn McCall } 10887f9c92a9SJohn McCall 10897f9c92a9SJohn McCall CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 10907f9c92a9SJohn McCall const FunctionDecl *OperatorDelete, 1091cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr, 1092cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize) 10937f9c92a9SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 10947f9c92a9SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 10957f9c92a9SJohn McCall 1096cb5f77f0SJohn McCall void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 10977f9c92a9SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 10987f9c92a9SJohn McCall getPlacementArgs()[I] = Arg; 10997f9c92a9SJohn McCall } 11007f9c92a9SJohn McCall 110130317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 11027f9c92a9SJohn McCall const FunctionProtoType *FPT 11037f9c92a9SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 11047f9c92a9SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 11057f9c92a9SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 11067f9c92a9SJohn McCall 11077f9c92a9SJohn McCall CallArgList DeleteArgs; 11087f9c92a9SJohn McCall 11097f9c92a9SJohn McCall // The first argument is always a void*. 11107f9c92a9SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 111143dca6a8SEli Friedman DeleteArgs.add(Ptr.restore(CGF), *AI++); 11127f9c92a9SJohn McCall 11137f9c92a9SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 11147f9c92a9SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1115cb5f77f0SJohn McCall RValue RV = AllocSize.restore(CGF); 111643dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 11177f9c92a9SJohn McCall } 11187f9c92a9SJohn McCall 11197f9c92a9SJohn McCall // Pass the rest of the arguments, which must match exactly. 11207f9c92a9SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1121cb5f77f0SJohn McCall RValue RV = getPlacementArgs()[I].restore(CGF); 112243dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 11237f9c92a9SJohn McCall } 11247f9c92a9SJohn McCall 11257f9c92a9SJohn McCall // Call 'operator delete'. 11268dda7b27SJohn McCall CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 11277f9c92a9SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 11287f9c92a9SJohn McCall ReturnValueSlot(), DeleteArgs, OperatorDelete); 11297f9c92a9SJohn McCall } 11307f9c92a9SJohn McCall }; 11317f9c92a9SJohn McCall } 11327f9c92a9SJohn McCall 11337f9c92a9SJohn McCall /// Enter a cleanup to call 'operator delete' if the initializer in a 11347f9c92a9SJohn McCall /// new-expression throws. 11357f9c92a9SJohn McCall static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 11367f9c92a9SJohn McCall const CXXNewExpr *E, 11377f9c92a9SJohn McCall llvm::Value *NewPtr, 11387f9c92a9SJohn McCall llvm::Value *AllocSize, 11397f9c92a9SJohn McCall const CallArgList &NewArgs) { 11407f9c92a9SJohn McCall // If we're not inside a conditional branch, then the cleanup will 11417f9c92a9SJohn McCall // dominate and we can do the easier (and more efficient) thing. 11427f9c92a9SJohn McCall if (!CGF.isInConditionalBranch()) { 11437f9c92a9SJohn McCall CallDeleteDuringNew *Cleanup = CGF.EHStack 11447f9c92a9SJohn McCall .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 11457f9c92a9SJohn McCall E->getNumPlacementArgs(), 11467f9c92a9SJohn McCall E->getOperatorDelete(), 11477f9c92a9SJohn McCall NewPtr, AllocSize); 11487f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1149f4258eb4SEli Friedman Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 11507f9c92a9SJohn McCall 11517f9c92a9SJohn McCall return; 11527f9c92a9SJohn McCall } 11537f9c92a9SJohn McCall 11547f9c92a9SJohn McCall // Otherwise, we need to save all this stuff. 1155cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedNewPtr = 1156cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1157cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedAllocSize = 1158cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 11597f9c92a9SJohn McCall 11607f9c92a9SJohn McCall CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1161f4beacd0SJohn McCall .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 11627f9c92a9SJohn McCall E->getNumPlacementArgs(), 11637f9c92a9SJohn McCall E->getOperatorDelete(), 11647f9c92a9SJohn McCall SavedNewPtr, 11657f9c92a9SJohn McCall SavedAllocSize); 11667f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1167cb5f77f0SJohn McCall Cleanup->setPlacementArg(I, 1168f4258eb4SEli Friedman DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 11697f9c92a9SJohn McCall 1170f4beacd0SJohn McCall CGF.initFullExprCleanup(); 1171824c2f53SJohn McCall } 1172824c2f53SJohn McCall 117359486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 117475f9498aSJohn McCall // The element type being allocated. 117575f9498aSJohn McCall QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 11768ed55a54SJohn McCall 117775f9498aSJohn McCall // 1. Build a call to the allocation function. 117875f9498aSJohn McCall FunctionDecl *allocator = E->getOperatorNew(); 117975f9498aSJohn McCall const FunctionProtoType *allocatorType = 118075f9498aSJohn McCall allocator->getType()->castAs<FunctionProtoType>(); 118159486a2dSAnders Carlsson 118275f9498aSJohn McCall CallArgList allocatorArgs; 118359486a2dSAnders Carlsson 118459486a2dSAnders Carlsson // The allocation size is the first argument. 118575f9498aSJohn McCall QualType sizeType = getContext().getSizeType(); 118659486a2dSAnders Carlsson 1187f862eb6aSSebastian Redl // If there is a brace-initializer, cannot allocate fewer elements than inits. 1188f862eb6aSSebastian Redl unsigned minElements = 0; 1189f862eb6aSSebastian Redl if (E->isArray() && E->hasInitializer()) { 1190f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1191f862eb6aSSebastian Redl minElements = ILE->getNumInits(); 1192f862eb6aSSebastian Redl } 1193f862eb6aSSebastian Redl 119475f9498aSJohn McCall llvm::Value *numElements = 0; 119575f9498aSJohn McCall llvm::Value *allocSizeWithoutCookie = 0; 119675f9498aSJohn McCall llvm::Value *allocSize = 1197f862eb6aSSebastian Redl EmitCXXNewAllocSize(*this, E, minElements, numElements, 1198f862eb6aSSebastian Redl allocSizeWithoutCookie); 119959486a2dSAnders Carlsson 120043dca6a8SEli Friedman allocatorArgs.add(RValue::get(allocSize), sizeType); 120159486a2dSAnders Carlsson 120259486a2dSAnders Carlsson // Emit the rest of the arguments. 120359486a2dSAnders Carlsson // FIXME: Ideally, this should just use EmitCallArgs. 120475f9498aSJohn McCall CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 120559486a2dSAnders Carlsson 120659486a2dSAnders Carlsson // First, use the types from the function type. 120759486a2dSAnders Carlsson // We start at 1 here because the first argument (the allocation size) 120859486a2dSAnders Carlsson // has already been emitted. 120975f9498aSJohn McCall for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 121075f9498aSJohn McCall ++i, ++placementArg) { 121175f9498aSJohn McCall QualType argType = allocatorType->getArgType(i); 121259486a2dSAnders Carlsson 121375f9498aSJohn McCall assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 121475f9498aSJohn McCall placementArg->getType()) && 121559486a2dSAnders Carlsson "type mismatch in call argument!"); 121659486a2dSAnders Carlsson 121732ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, argType); 121859486a2dSAnders Carlsson } 121959486a2dSAnders Carlsson 122059486a2dSAnders Carlsson // Either we've emitted all the call args, or we have a call to a 122159486a2dSAnders Carlsson // variadic function. 122275f9498aSJohn McCall assert((placementArg == E->placement_arg_end() || 122375f9498aSJohn McCall allocatorType->isVariadic()) && 122475f9498aSJohn McCall "Extra arguments to non-variadic function!"); 122559486a2dSAnders Carlsson 122659486a2dSAnders Carlsson // If we still have any arguments, emit them using the type of the argument. 122775f9498aSJohn McCall for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 122875f9498aSJohn McCall placementArg != placementArgsEnd; ++placementArg) { 122932ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 123059486a2dSAnders Carlsson } 123159486a2dSAnders Carlsson 12327ec4b434SJohn McCall // Emit the allocation call. If the allocator is a global placement 12337ec4b434SJohn McCall // operator, just "inline" it directly. 12347ec4b434SJohn McCall RValue RV; 12357ec4b434SJohn McCall if (allocator->isReservedGlobalPlacementOperator()) { 12367ec4b434SJohn McCall assert(allocatorArgs.size() == 2); 12377ec4b434SJohn McCall RV = allocatorArgs[1].RV; 12387ec4b434SJohn McCall // TODO: kill any unnecessary computations done for the size 12397ec4b434SJohn McCall // argument. 12407ec4b434SJohn McCall } else { 12418dda7b27SJohn McCall RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs, 1242a729c62bSJohn McCall allocatorType), 124375f9498aSJohn McCall CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 124475f9498aSJohn McCall allocatorArgs, allocator); 12457ec4b434SJohn McCall } 124659486a2dSAnders Carlsson 124775f9498aSJohn McCall // Emit a null check on the allocation result if the allocation 124875f9498aSJohn McCall // function is allowed to return null (because it has a non-throwing 124975f9498aSJohn McCall // exception spec; for this part, we inline 125075f9498aSJohn McCall // CXXNewExpr::shouldNullCheckAllocation()) and we have an 125175f9498aSJohn McCall // interesting initializer. 125231ad754cSSebastian Redl bool nullCheck = allocatorType->isNothrow(getContext()) && 12536047f07eSSebastian Redl (!allocType.isPODType(getContext()) || E->hasInitializer()); 125459486a2dSAnders Carlsson 125575f9498aSJohn McCall llvm::BasicBlock *nullCheckBB = 0; 125675f9498aSJohn McCall llvm::BasicBlock *contBB = 0; 125759486a2dSAnders Carlsson 125875f9498aSJohn McCall llvm::Value *allocation = RV.getScalarVal(); 1259ea2fea2aSMicah Villmow unsigned AS = allocation->getType()->getPointerAddressSpace(); 126059486a2dSAnders Carlsson 1261f7dcf320SJohn McCall // The null-check means that the initializer is conditionally 1262f7dcf320SJohn McCall // evaluated. 1263f7dcf320SJohn McCall ConditionalEvaluation conditional(*this); 1264f7dcf320SJohn McCall 126575f9498aSJohn McCall if (nullCheck) { 1266f7dcf320SJohn McCall conditional.begin(*this); 126775f9498aSJohn McCall 126875f9498aSJohn McCall nullCheckBB = Builder.GetInsertBlock(); 126975f9498aSJohn McCall llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 127075f9498aSJohn McCall contBB = createBasicBlock("new.cont"); 127175f9498aSJohn McCall 127275f9498aSJohn McCall llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 127375f9498aSJohn McCall Builder.CreateCondBr(isNull, contBB, notNullBB); 127475f9498aSJohn McCall EmitBlock(notNullBB); 127559486a2dSAnders Carlsson } 127659486a2dSAnders Carlsson 1277824c2f53SJohn McCall // If there's an operator delete, enter a cleanup to call it if an 1278824c2f53SJohn McCall // exception is thrown. 127975f9498aSJohn McCall EHScopeStack::stable_iterator operatorDeleteCleanup; 1280f4beacd0SJohn McCall llvm::Instruction *cleanupDominator = 0; 12817ec4b434SJohn McCall if (E->getOperatorDelete() && 12827ec4b434SJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 128375f9498aSJohn McCall EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 128475f9498aSJohn McCall operatorDeleteCleanup = EHStack.stable_begin(); 1285f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 1286824c2f53SJohn McCall } 1287824c2f53SJohn McCall 1288cf9b1f65SEli Friedman assert((allocSize == allocSizeWithoutCookie) == 1289cf9b1f65SEli Friedman CalculateCookiePadding(*this, E).isZero()); 1290cf9b1f65SEli Friedman if (allocSize != allocSizeWithoutCookie) { 1291cf9b1f65SEli Friedman assert(E->isArray()); 1292cf9b1f65SEli Friedman allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1293cf9b1f65SEli Friedman numElements, 1294cf9b1f65SEli Friedman E, allocType); 1295cf9b1f65SEli Friedman } 1296cf9b1f65SEli Friedman 12972192fe50SChris Lattner llvm::Type *elementPtrTy 129875f9498aSJohn McCall = ConvertTypeForMem(allocType)->getPointerTo(AS); 129975f9498aSJohn McCall llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1300824c2f53SJohn McCall 130199210dc9SJohn McCall EmitNewInitializer(*this, E, allocType, result, numElements, 130299210dc9SJohn McCall allocSizeWithoutCookie); 13038ed55a54SJohn McCall if (E->isArray()) { 13048ed55a54SJohn McCall // NewPtr is a pointer to the base element type. If we're 13058ed55a54SJohn McCall // allocating an array of arrays, we'll need to cast back to the 13068ed55a54SJohn McCall // array pointer type. 13072192fe50SChris Lattner llvm::Type *resultType = ConvertTypeForMem(E->getType()); 130875f9498aSJohn McCall if (result->getType() != resultType) 130975f9498aSJohn McCall result = Builder.CreateBitCast(result, resultType); 131047b4629bSFariborz Jahanian } 131159486a2dSAnders Carlsson 1312824c2f53SJohn McCall // Deactivate the 'operator delete' cleanup if we finished 1313824c2f53SJohn McCall // initialization. 1314f4beacd0SJohn McCall if (operatorDeleteCleanup.isValid()) { 1315f4beacd0SJohn McCall DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1316f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 1317f4beacd0SJohn McCall } 1318824c2f53SJohn McCall 131975f9498aSJohn McCall if (nullCheck) { 1320f7dcf320SJohn McCall conditional.end(*this); 1321f7dcf320SJohn McCall 132275f9498aSJohn McCall llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 132375f9498aSJohn McCall EmitBlock(contBB); 132459486a2dSAnders Carlsson 132520c0f02cSJay Foad llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 132675f9498aSJohn McCall PHI->addIncoming(result, notNullBB); 132775f9498aSJohn McCall PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 132875f9498aSJohn McCall nullCheckBB); 132959486a2dSAnders Carlsson 133075f9498aSJohn McCall result = PHI; 133159486a2dSAnders Carlsson } 133259486a2dSAnders Carlsson 133375f9498aSJohn McCall return result; 133459486a2dSAnders Carlsson } 133559486a2dSAnders Carlsson 133659486a2dSAnders Carlsson void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 133759486a2dSAnders Carlsson llvm::Value *Ptr, 133859486a2dSAnders Carlsson QualType DeleteTy) { 13398ed55a54SJohn McCall assert(DeleteFD->getOverloadedOperator() == OO_Delete); 13408ed55a54SJohn McCall 134159486a2dSAnders Carlsson const FunctionProtoType *DeleteFTy = 134259486a2dSAnders Carlsson DeleteFD->getType()->getAs<FunctionProtoType>(); 134359486a2dSAnders Carlsson 134459486a2dSAnders Carlsson CallArgList DeleteArgs; 134559486a2dSAnders Carlsson 134621122cf6SAnders Carlsson // Check if we need to pass the size to the delete operator. 134721122cf6SAnders Carlsson llvm::Value *Size = 0; 134821122cf6SAnders Carlsson QualType SizeTy; 134921122cf6SAnders Carlsson if (DeleteFTy->getNumArgs() == 2) { 135021122cf6SAnders Carlsson SizeTy = DeleteFTy->getArgType(1); 13517df3cbebSKen Dyck CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 13527df3cbebSKen Dyck Size = llvm::ConstantInt::get(ConvertType(SizeTy), 13537df3cbebSKen Dyck DeleteTypeSize.getQuantity()); 135421122cf6SAnders Carlsson } 135521122cf6SAnders Carlsson 135659486a2dSAnders Carlsson QualType ArgTy = DeleteFTy->getArgType(0); 135759486a2dSAnders Carlsson llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 135843dca6a8SEli Friedman DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 135959486a2dSAnders Carlsson 136021122cf6SAnders Carlsson if (Size) 136143dca6a8SEli Friedman DeleteArgs.add(RValue::get(Size), SizeTy); 136259486a2dSAnders Carlsson 136359486a2dSAnders Carlsson // Emit the call to delete. 13648dda7b27SJohn McCall EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy), 136561a401caSAnders Carlsson CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 136659486a2dSAnders Carlsson DeleteArgs, DeleteFD); 136759486a2dSAnders Carlsson } 136859486a2dSAnders Carlsson 13698ed55a54SJohn McCall namespace { 13708ed55a54SJohn McCall /// Calls the given 'operator delete' on a single object. 13718ed55a54SJohn McCall struct CallObjectDelete : EHScopeStack::Cleanup { 13728ed55a54SJohn McCall llvm::Value *Ptr; 13738ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 13748ed55a54SJohn McCall QualType ElementType; 13758ed55a54SJohn McCall 13768ed55a54SJohn McCall CallObjectDelete(llvm::Value *Ptr, 13778ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13788ed55a54SJohn McCall QualType ElementType) 13798ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 13808ed55a54SJohn McCall 138130317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 13828ed55a54SJohn McCall CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 13838ed55a54SJohn McCall } 13848ed55a54SJohn McCall }; 13858ed55a54SJohn McCall } 13868ed55a54SJohn McCall 13878ed55a54SJohn McCall /// Emit the code for deleting a single object. 13888ed55a54SJohn McCall static void EmitObjectDelete(CodeGenFunction &CGF, 13898ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13908ed55a54SJohn McCall llvm::Value *Ptr, 13911c2e20d7SDouglas Gregor QualType ElementType, 13921c2e20d7SDouglas Gregor bool UseGlobalDelete) { 13938ed55a54SJohn McCall // Find the destructor for the type, if applicable. If the 13948ed55a54SJohn McCall // destructor is virtual, we'll just emit the vcall and return. 13958ed55a54SJohn McCall const CXXDestructorDecl *Dtor = 0; 13968ed55a54SJohn McCall if (const RecordType *RT = ElementType->getAs<RecordType>()) { 13978ed55a54SJohn McCall CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1398b23533dbSEli Friedman if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 13998ed55a54SJohn McCall Dtor = RD->getDestructor(); 14008ed55a54SJohn McCall 14018ed55a54SJohn McCall if (Dtor->isVirtual()) { 14021c2e20d7SDouglas Gregor if (UseGlobalDelete) { 14031c2e20d7SDouglas Gregor // If we're supposed to call the global delete, make sure we do so 14041c2e20d7SDouglas Gregor // even if the destructor throws. 140582fb8920SJohn McCall 140682fb8920SJohn McCall // Derive the complete-object pointer, which is what we need 140782fb8920SJohn McCall // to pass to the deallocation function. 140882fb8920SJohn McCall llvm::Value *completePtr = 140982fb8920SJohn McCall CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 141082fb8920SJohn McCall 14111c2e20d7SDouglas Gregor CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 141282fb8920SJohn McCall completePtr, OperatorDelete, 14131c2e20d7SDouglas Gregor ElementType); 14141c2e20d7SDouglas Gregor } 14151c2e20d7SDouglas Gregor 1416e30752c9SRichard Smith // FIXME: Provide a source location here. 1417d619711cSTimur Iskhodzhanov CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1418d619711cSTimur Iskhodzhanov CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 1419*9dc6eef7SStephen Lin SourceLocation(), Ptr); 14208ed55a54SJohn McCall 14211c2e20d7SDouglas Gregor if (UseGlobalDelete) { 14221c2e20d7SDouglas Gregor CGF.PopCleanupBlock(); 14231c2e20d7SDouglas Gregor } 14241c2e20d7SDouglas Gregor 14258ed55a54SJohn McCall return; 14268ed55a54SJohn McCall } 14278ed55a54SJohn McCall } 14288ed55a54SJohn McCall } 14298ed55a54SJohn McCall 14308ed55a54SJohn McCall // Make sure that we call delete even if the dtor throws. 1431e4df6c8dSJohn McCall // This doesn't have to a conditional cleanup because we're going 1432e4df6c8dSJohn McCall // to pop it off in a second. 14338ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 14348ed55a54SJohn McCall Ptr, OperatorDelete, ElementType); 14358ed55a54SJohn McCall 14368ed55a54SJohn McCall if (Dtor) 14378ed55a54SJohn McCall CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 143861535005SDouglas Gregor /*ForVirtualBase=*/false, 143961535005SDouglas Gregor /*Delegating=*/false, 144061535005SDouglas Gregor Ptr); 1441bbafb8a7SDavid Blaikie else if (CGF.getLangOpts().ObjCAutoRefCount && 144231168b07SJohn McCall ElementType->isObjCLifetimeType()) { 144331168b07SJohn McCall switch (ElementType.getObjCLifetime()) { 144431168b07SJohn McCall case Qualifiers::OCL_None: 144531168b07SJohn McCall case Qualifiers::OCL_ExplicitNone: 144631168b07SJohn McCall case Qualifiers::OCL_Autoreleasing: 144731168b07SJohn McCall break; 144831168b07SJohn McCall 144931168b07SJohn McCall case Qualifiers::OCL_Strong: { 145031168b07SJohn McCall // Load the pointer value. 145131168b07SJohn McCall llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 145231168b07SJohn McCall ElementType.isVolatileQualified()); 145331168b07SJohn McCall 1454cdda29c9SJohn McCall CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 145531168b07SJohn McCall break; 145631168b07SJohn McCall } 145731168b07SJohn McCall 145831168b07SJohn McCall case Qualifiers::OCL_Weak: 145931168b07SJohn McCall CGF.EmitARCDestroyWeak(Ptr); 146031168b07SJohn McCall break; 146131168b07SJohn McCall } 146231168b07SJohn McCall } 14638ed55a54SJohn McCall 14648ed55a54SJohn McCall CGF.PopCleanupBlock(); 14658ed55a54SJohn McCall } 14668ed55a54SJohn McCall 14678ed55a54SJohn McCall namespace { 14688ed55a54SJohn McCall /// Calls the given 'operator delete' on an array of objects. 14698ed55a54SJohn McCall struct CallArrayDelete : EHScopeStack::Cleanup { 14708ed55a54SJohn McCall llvm::Value *Ptr; 14718ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 14728ed55a54SJohn McCall llvm::Value *NumElements; 14738ed55a54SJohn McCall QualType ElementType; 14748ed55a54SJohn McCall CharUnits CookieSize; 14758ed55a54SJohn McCall 14768ed55a54SJohn McCall CallArrayDelete(llvm::Value *Ptr, 14778ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 14788ed55a54SJohn McCall llvm::Value *NumElements, 14798ed55a54SJohn McCall QualType ElementType, 14808ed55a54SJohn McCall CharUnits CookieSize) 14818ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 14828ed55a54SJohn McCall ElementType(ElementType), CookieSize(CookieSize) {} 14838ed55a54SJohn McCall 148430317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 14858ed55a54SJohn McCall const FunctionProtoType *DeleteFTy = 14868ed55a54SJohn McCall OperatorDelete->getType()->getAs<FunctionProtoType>(); 14878ed55a54SJohn McCall assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 14888ed55a54SJohn McCall 14898ed55a54SJohn McCall CallArgList Args; 14908ed55a54SJohn McCall 14918ed55a54SJohn McCall // Pass the pointer as the first argument. 14928ed55a54SJohn McCall QualType VoidPtrTy = DeleteFTy->getArgType(0); 14938ed55a54SJohn McCall llvm::Value *DeletePtr 14948ed55a54SJohn McCall = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 149543dca6a8SEli Friedman Args.add(RValue::get(DeletePtr), VoidPtrTy); 14968ed55a54SJohn McCall 14978ed55a54SJohn McCall // Pass the original requested size as the second argument. 14988ed55a54SJohn McCall if (DeleteFTy->getNumArgs() == 2) { 14998ed55a54SJohn McCall QualType size_t = DeleteFTy->getArgType(1); 15002192fe50SChris Lattner llvm::IntegerType *SizeTy 15018ed55a54SJohn McCall = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 15028ed55a54SJohn McCall 15038ed55a54SJohn McCall CharUnits ElementTypeSize = 15048ed55a54SJohn McCall CGF.CGM.getContext().getTypeSizeInChars(ElementType); 15058ed55a54SJohn McCall 15068ed55a54SJohn McCall // The size of an element, multiplied by the number of elements. 15078ed55a54SJohn McCall llvm::Value *Size 15088ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 15098ed55a54SJohn McCall Size = CGF.Builder.CreateMul(Size, NumElements); 15108ed55a54SJohn McCall 15118ed55a54SJohn McCall // Plus the size of the cookie if applicable. 15128ed55a54SJohn McCall if (!CookieSize.isZero()) { 15138ed55a54SJohn McCall llvm::Value *CookieSizeV 15148ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 15158ed55a54SJohn McCall Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 15168ed55a54SJohn McCall } 15178ed55a54SJohn McCall 151843dca6a8SEli Friedman Args.add(RValue::get(Size), size_t); 15198ed55a54SJohn McCall } 15208ed55a54SJohn McCall 15218ed55a54SJohn McCall // Emit the call to delete. 15228dda7b27SJohn McCall CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy), 15238ed55a54SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 15248ed55a54SJohn McCall ReturnValueSlot(), Args, OperatorDelete); 15258ed55a54SJohn McCall } 15268ed55a54SJohn McCall }; 15278ed55a54SJohn McCall } 15288ed55a54SJohn McCall 15298ed55a54SJohn McCall /// Emit the code for deleting an array of objects. 15308ed55a54SJohn McCall static void EmitArrayDelete(CodeGenFunction &CGF, 1531284c48ffSJohn McCall const CXXDeleteExpr *E, 1532ca2c56f2SJohn McCall llvm::Value *deletedPtr, 1533ca2c56f2SJohn McCall QualType elementType) { 1534ca2c56f2SJohn McCall llvm::Value *numElements = 0; 1535ca2c56f2SJohn McCall llvm::Value *allocatedPtr = 0; 1536ca2c56f2SJohn McCall CharUnits cookieSize; 1537ca2c56f2SJohn McCall CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1538ca2c56f2SJohn McCall numElements, allocatedPtr, cookieSize); 15398ed55a54SJohn McCall 1540ca2c56f2SJohn McCall assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 15418ed55a54SJohn McCall 15428ed55a54SJohn McCall // Make sure that we call delete even if one of the dtors throws. 1543ca2c56f2SJohn McCall const FunctionDecl *operatorDelete = E->getOperatorDelete(); 15448ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1545ca2c56f2SJohn McCall allocatedPtr, operatorDelete, 1546ca2c56f2SJohn McCall numElements, elementType, 1547ca2c56f2SJohn McCall cookieSize); 15488ed55a54SJohn McCall 1549ca2c56f2SJohn McCall // Destroy the elements. 1550ca2c56f2SJohn McCall if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1551ca2c56f2SJohn McCall assert(numElements && "no element count for a type with a destructor!"); 155231168b07SJohn McCall 1553ca2c56f2SJohn McCall llvm::Value *arrayEnd = 1554ca2c56f2SJohn McCall CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 155597eab0a2SJohn McCall 155697eab0a2SJohn McCall // Note that it is legal to allocate a zero-length array, and we 155797eab0a2SJohn McCall // can never fold the check away because the length should always 155897eab0a2SJohn McCall // come from a cookie. 1559ca2c56f2SJohn McCall CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1560ca2c56f2SJohn McCall CGF.getDestroyer(dtorKind), 156197eab0a2SJohn McCall /*checkZeroLength*/ true, 1562ca2c56f2SJohn McCall CGF.needsEHCleanup(dtorKind)); 15638ed55a54SJohn McCall } 15648ed55a54SJohn McCall 1565ca2c56f2SJohn McCall // Pop the cleanup block. 15668ed55a54SJohn McCall CGF.PopCleanupBlock(); 15678ed55a54SJohn McCall } 15688ed55a54SJohn McCall 156959486a2dSAnders Carlsson void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 157059486a2dSAnders Carlsson const Expr *Arg = E->getArgument(); 157159486a2dSAnders Carlsson llvm::Value *Ptr = EmitScalarExpr(Arg); 157259486a2dSAnders Carlsson 157359486a2dSAnders Carlsson // Null check the pointer. 157459486a2dSAnders Carlsson llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 157559486a2dSAnders Carlsson llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 157659486a2dSAnders Carlsson 157798981b10SAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 157859486a2dSAnders Carlsson 157959486a2dSAnders Carlsson Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 158059486a2dSAnders Carlsson EmitBlock(DeleteNotNull); 158159486a2dSAnders Carlsson 15828ed55a54SJohn McCall // We might be deleting a pointer to array. If so, GEP down to the 15838ed55a54SJohn McCall // first non-array element. 15848ed55a54SJohn McCall // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 15858ed55a54SJohn McCall QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 15868ed55a54SJohn McCall if (DeleteTy->isConstantArrayType()) { 15878ed55a54SJohn McCall llvm::Value *Zero = Builder.getInt32(0); 15880e62c1ccSChris Lattner SmallVector<llvm::Value*,8> GEP; 158959486a2dSAnders Carlsson 15908ed55a54SJohn McCall GEP.push_back(Zero); // point at the outermost array 15918ed55a54SJohn McCall 15928ed55a54SJohn McCall // For each layer of array type we're pointing at: 15938ed55a54SJohn McCall while (const ConstantArrayType *Arr 15948ed55a54SJohn McCall = getContext().getAsConstantArrayType(DeleteTy)) { 15958ed55a54SJohn McCall // 1. Unpeel the array type. 15968ed55a54SJohn McCall DeleteTy = Arr->getElementType(); 15978ed55a54SJohn McCall 15988ed55a54SJohn McCall // 2. GEP to the first element of the array. 15998ed55a54SJohn McCall GEP.push_back(Zero); 16008ed55a54SJohn McCall } 16018ed55a54SJohn McCall 1602040dd82fSJay Foad Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 16038ed55a54SJohn McCall } 16048ed55a54SJohn McCall 160504f36218SDouglas Gregor assert(ConvertTypeForMem(DeleteTy) == 160604f36218SDouglas Gregor cast<llvm::PointerType>(Ptr->getType())->getElementType()); 16078ed55a54SJohn McCall 160859486a2dSAnders Carlsson if (E->isArrayForm()) { 1609284c48ffSJohn McCall EmitArrayDelete(*this, E, Ptr, DeleteTy); 16108ed55a54SJohn McCall } else { 16111c2e20d7SDouglas Gregor EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 16121c2e20d7SDouglas Gregor E->isGlobalDelete()); 161359486a2dSAnders Carlsson } 161459486a2dSAnders Carlsson 161559486a2dSAnders Carlsson EmitBlock(DeleteEnd); 161659486a2dSAnders Carlsson } 161759486a2dSAnders Carlsson 16180c63350bSAnders Carlsson static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 16190c63350bSAnders Carlsson // void __cxa_bad_typeid(); 1620ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 16210c63350bSAnders Carlsson 16220c63350bSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 16230c63350bSAnders Carlsson } 16240c63350bSAnders Carlsson 16250c63350bSAnders Carlsson static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1626bbe277c4SAnders Carlsson llvm::Value *Fn = getBadTypeidFn(CGF); 1627882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 16280c63350bSAnders Carlsson CGF.Builder.CreateUnreachable(); 16290c63350bSAnders Carlsson } 16300c63350bSAnders Carlsson 1631940f02d2SAnders Carlsson static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1632940f02d2SAnders Carlsson const Expr *E, 16332192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy) { 1634940f02d2SAnders Carlsson // Get the vtable pointer. 1635940f02d2SAnders Carlsson llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1636940f02d2SAnders Carlsson 1637940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1638940f02d2SAnders Carlsson // If the glvalue expression is obtained by applying the unary * operator to 1639940f02d2SAnders Carlsson // a pointer and the pointer is a null pointer value, the typeid expression 1640940f02d2SAnders Carlsson // throws the std::bad_typeid exception. 1641940f02d2SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1642940f02d2SAnders Carlsson if (UO->getOpcode() == UO_Deref) { 1643940f02d2SAnders Carlsson llvm::BasicBlock *BadTypeidBlock = 1644940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.bad_typeid"); 1645940f02d2SAnders Carlsson llvm::BasicBlock *EndBlock = 1646940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.end"); 1647940f02d2SAnders Carlsson 1648940f02d2SAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1649940f02d2SAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1650940f02d2SAnders Carlsson 1651940f02d2SAnders Carlsson CGF.EmitBlock(BadTypeidBlock); 1652940f02d2SAnders Carlsson EmitBadTypeidCall(CGF); 1653940f02d2SAnders Carlsson CGF.EmitBlock(EndBlock); 1654940f02d2SAnders Carlsson } 1655940f02d2SAnders Carlsson } 1656940f02d2SAnders Carlsson 1657940f02d2SAnders Carlsson llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1658940f02d2SAnders Carlsson StdTypeInfoPtrTy->getPointerTo()); 1659940f02d2SAnders Carlsson 1660940f02d2SAnders Carlsson // Load the type info. 1661940f02d2SAnders Carlsson Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1662940f02d2SAnders Carlsson return CGF.Builder.CreateLoad(Value); 1663940f02d2SAnders Carlsson } 1664940f02d2SAnders Carlsson 166559486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 16662192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy = 1667940f02d2SAnders Carlsson ConvertType(E->getType())->getPointerTo(); 1668fd7dfeb7SAnders Carlsson 16693f4336cbSAnders Carlsson if (E->isTypeOperand()) { 16703f4336cbSAnders Carlsson llvm::Constant *TypeInfo = 16713f4336cbSAnders Carlsson CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1672940f02d2SAnders Carlsson return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 16733f4336cbSAnders Carlsson } 1674fd7dfeb7SAnders Carlsson 1675940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1676940f02d2SAnders Carlsson // When typeid is applied to a glvalue expression whose type is a 1677940f02d2SAnders Carlsson // polymorphic class type, the result refers to a std::type_info object 1678940f02d2SAnders Carlsson // representing the type of the most derived object (that is, the dynamic 1679940f02d2SAnders Carlsson // type) to which the glvalue refers. 1680ef8bf436SRichard Smith if (E->isPotentiallyEvaluated()) 1681940f02d2SAnders Carlsson return EmitTypeidFromVTable(*this, E->getExprOperand(), 1682940f02d2SAnders Carlsson StdTypeInfoPtrTy); 1683940f02d2SAnders Carlsson 1684940f02d2SAnders Carlsson QualType OperandTy = E->getExprOperand()->getType(); 1685940f02d2SAnders Carlsson return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1686940f02d2SAnders Carlsson StdTypeInfoPtrTy); 168759486a2dSAnders Carlsson } 168859486a2dSAnders Carlsson 1689882d790fSAnders Carlsson static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1690882d790fSAnders Carlsson // void *__dynamic_cast(const void *sub, 1691882d790fSAnders Carlsson // const abi::__class_type_info *src, 1692882d790fSAnders Carlsson // const abi::__class_type_info *dst, 1693882d790fSAnders Carlsson // std::ptrdiff_t src2dst_offset); 1694882d790fSAnders Carlsson 1695ece0409aSChris Lattner llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1696a5f58b05SChris Lattner llvm::Type *PtrDiffTy = 1697882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1698882d790fSAnders Carlsson 1699a5f58b05SChris Lattner llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1700882d790fSAnders Carlsson 1701b5206330SBenjamin Kramer llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); 1702882d790fSAnders Carlsson 1703b5206330SBenjamin Kramer // Mark the function as nounwind readonly. 1704b5206330SBenjamin Kramer llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, 1705b5206330SBenjamin Kramer llvm::Attribute::ReadOnly }; 1706b5206330SBenjamin Kramer llvm::AttributeSet Attrs = llvm::AttributeSet::get( 1707b5206330SBenjamin Kramer CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); 1708b5206330SBenjamin Kramer 1709b5206330SBenjamin Kramer return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); 1710882d790fSAnders Carlsson } 1711882d790fSAnders Carlsson 1712882d790fSAnders Carlsson static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1713882d790fSAnders Carlsson // void __cxa_bad_cast(); 1714ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1715882d790fSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1716882d790fSAnders Carlsson } 1717882d790fSAnders Carlsson 1718c1c9971cSAnders Carlsson static void EmitBadCastCall(CodeGenFunction &CGF) { 1719bbe277c4SAnders Carlsson llvm::Value *Fn = getBadCastFn(CGF); 1720882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1721c1c9971cSAnders Carlsson CGF.Builder.CreateUnreachable(); 1722c1c9971cSAnders Carlsson } 1723c1c9971cSAnders Carlsson 1724d9c8455aSBenjamin Kramer /// \brief Compute the src2dst_offset hint as described in the 1725d9c8455aSBenjamin Kramer /// Itanium C++ ABI [2.9.7] 1726d9c8455aSBenjamin Kramer static CharUnits computeOffsetHint(ASTContext &Context, 1727d9c8455aSBenjamin Kramer const CXXRecordDecl *Src, 1728d9c8455aSBenjamin Kramer const CXXRecordDecl *Dst) { 1729d9c8455aSBenjamin Kramer CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1730d9c8455aSBenjamin Kramer /*DetectVirtual=*/false); 1731d9c8455aSBenjamin Kramer 1732d9c8455aSBenjamin Kramer // If Dst is not derived from Src we can skip the whole computation below and 1733d9c8455aSBenjamin Kramer // return that Src is not a public base of Dst. Record all inheritance paths. 1734d9c8455aSBenjamin Kramer if (!Dst->isDerivedFrom(Src, Paths)) 1735d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1736d9c8455aSBenjamin Kramer 1737d9c8455aSBenjamin Kramer unsigned NumPublicPaths = 0; 1738d9c8455aSBenjamin Kramer CharUnits Offset; 1739d9c8455aSBenjamin Kramer 1740d9c8455aSBenjamin Kramer // Now walk all possible inheritance paths. 1741d9c8455aSBenjamin Kramer for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); 1742d9c8455aSBenjamin Kramer I != E; ++I) { 1743d9c8455aSBenjamin Kramer if (I->Access != AS_public) // Ignore non-public inheritance. 1744d9c8455aSBenjamin Kramer continue; 1745d9c8455aSBenjamin Kramer 1746d9c8455aSBenjamin Kramer ++NumPublicPaths; 1747d9c8455aSBenjamin Kramer 1748d9c8455aSBenjamin Kramer for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 1749d9c8455aSBenjamin Kramer // If the path contains a virtual base class we can't give any hint. 1750d9c8455aSBenjamin Kramer // -1: no hint. 1751d9c8455aSBenjamin Kramer if (J->Base->isVirtual()) 1752d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-1ULL); 1753d9c8455aSBenjamin Kramer 1754d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) // Won't use offsets, skip computation. 1755d9c8455aSBenjamin Kramer continue; 1756d9c8455aSBenjamin Kramer 1757d9c8455aSBenjamin Kramer // Accumulate the base class offsets. 1758d9c8455aSBenjamin Kramer const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); 1759d9c8455aSBenjamin Kramer Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); 1760d9c8455aSBenjamin Kramer } 1761d9c8455aSBenjamin Kramer } 1762d9c8455aSBenjamin Kramer 1763d9c8455aSBenjamin Kramer // -2: Src is not a public base of Dst. 1764d9c8455aSBenjamin Kramer if (NumPublicPaths == 0) 1765d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1766d9c8455aSBenjamin Kramer 1767d9c8455aSBenjamin Kramer // -3: Src is a multiple public base type but never a virtual base type. 1768d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) 1769d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-3ULL); 1770d9c8455aSBenjamin Kramer 1771d9c8455aSBenjamin Kramer // Otherwise, the Src type is a unique public nonvirtual base type of Dst. 1772d9c8455aSBenjamin Kramer // Return the offset of Src from the origin of Dst. 1773d9c8455aSBenjamin Kramer return Offset; 1774d9c8455aSBenjamin Kramer } 1775d9c8455aSBenjamin Kramer 1776882d790fSAnders Carlsson static llvm::Value * 1777882d790fSAnders Carlsson EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1778882d790fSAnders Carlsson QualType SrcTy, QualType DestTy, 1779882d790fSAnders Carlsson llvm::BasicBlock *CastEnd) { 17802192fe50SChris Lattner llvm::Type *PtrDiffLTy = 1781882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 17822192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1783882d790fSAnders Carlsson 1784882d790fSAnders Carlsson if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1785882d790fSAnders Carlsson if (PTy->getPointeeType()->isVoidType()) { 1786882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p7: 1787882d790fSAnders Carlsson // If T is "pointer to cv void," then the result is a pointer to the 1788882d790fSAnders Carlsson // most derived object pointed to by v. 1789882d790fSAnders Carlsson 1790882d790fSAnders Carlsson // Get the vtable pointer. 1791882d790fSAnders Carlsson llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1792882d790fSAnders Carlsson 1793882d790fSAnders Carlsson // Get the offset-to-top from the vtable. 1794882d790fSAnders Carlsson llvm::Value *OffsetToTop = 1795882d790fSAnders Carlsson CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1796882d790fSAnders Carlsson OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1797882d790fSAnders Carlsson 1798882d790fSAnders Carlsson // Finally, add the offset to the pointer. 1799882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1800882d790fSAnders Carlsson Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1801882d790fSAnders Carlsson 1802882d790fSAnders Carlsson return CGF.Builder.CreateBitCast(Value, DestLTy); 1803882d790fSAnders Carlsson } 1804882d790fSAnders Carlsson } 1805882d790fSAnders Carlsson 1806882d790fSAnders Carlsson QualType SrcRecordTy; 1807882d790fSAnders Carlsson QualType DestRecordTy; 1808882d790fSAnders Carlsson 1809882d790fSAnders Carlsson if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1810882d790fSAnders Carlsson SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1811882d790fSAnders Carlsson DestRecordTy = DestPTy->getPointeeType(); 1812882d790fSAnders Carlsson } else { 1813882d790fSAnders Carlsson SrcRecordTy = SrcTy; 1814882d790fSAnders Carlsson DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1815882d790fSAnders Carlsson } 1816882d790fSAnders Carlsson 1817882d790fSAnders Carlsson assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1818882d790fSAnders Carlsson assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1819882d790fSAnders Carlsson 1820882d790fSAnders Carlsson llvm::Value *SrcRTTI = 1821882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1822882d790fSAnders Carlsson llvm::Value *DestRTTI = 1823882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1824882d790fSAnders Carlsson 1825d9c8455aSBenjamin Kramer // Compute the offset hint. 1826d9c8455aSBenjamin Kramer const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1827d9c8455aSBenjamin Kramer const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); 1828d9c8455aSBenjamin Kramer llvm::Value *OffsetHint = 1829d9c8455aSBenjamin Kramer llvm::ConstantInt::get(PtrDiffLTy, 1830d9c8455aSBenjamin Kramer computeOffsetHint(CGF.getContext(), SrcDecl, 1831d9c8455aSBenjamin Kramer DestDecl).getQuantity()); 1832882d790fSAnders Carlsson 1833882d790fSAnders Carlsson // Emit the call to __dynamic_cast. 1834882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1835882987f3SJohn McCall 1836882987f3SJohn McCall llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; 1837882987f3SJohn McCall Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); 1838882d790fSAnders Carlsson Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1839882d790fSAnders Carlsson 1840882d790fSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1841882d790fSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1842882d790fSAnders Carlsson if (DestTy->isReferenceType()) { 1843882d790fSAnders Carlsson llvm::BasicBlock *BadCastBlock = 1844882d790fSAnders Carlsson CGF.createBasicBlock("dynamic_cast.bad_cast"); 1845882d790fSAnders Carlsson 1846882d790fSAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1847882d790fSAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1848882d790fSAnders Carlsson 1849882d790fSAnders Carlsson CGF.EmitBlock(BadCastBlock); 1850c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1851882d790fSAnders Carlsson } 1852882d790fSAnders Carlsson 1853882d790fSAnders Carlsson return Value; 1854882d790fSAnders Carlsson } 1855882d790fSAnders Carlsson 1856c1c9971cSAnders Carlsson static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1857c1c9971cSAnders Carlsson QualType DestTy) { 18582192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1859c1c9971cSAnders Carlsson if (DestTy->isPointerType()) 1860c1c9971cSAnders Carlsson return llvm::Constant::getNullValue(DestLTy); 1861c1c9971cSAnders Carlsson 1862c1c9971cSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1863c1c9971cSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1864c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1865c1c9971cSAnders Carlsson 1866c1c9971cSAnders Carlsson CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1867c1c9971cSAnders Carlsson return llvm::UndefValue::get(DestLTy); 1868c1c9971cSAnders Carlsson } 1869c1c9971cSAnders Carlsson 1870882d790fSAnders Carlsson llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 187159486a2dSAnders Carlsson const CXXDynamicCastExpr *DCE) { 18723f4336cbSAnders Carlsson QualType DestTy = DCE->getTypeAsWritten(); 18733f4336cbSAnders Carlsson 1874c1c9971cSAnders Carlsson if (DCE->isAlwaysNull()) 1875c1c9971cSAnders Carlsson return EmitDynamicCastToNull(*this, DestTy); 1876c1c9971cSAnders Carlsson 1877c1c9971cSAnders Carlsson QualType SrcTy = DCE->getSubExpr()->getType(); 1878c1c9971cSAnders Carlsson 1879882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p4: 1880882d790fSAnders Carlsson // If the value of v is a null pointer value in the pointer case, the result 1881882d790fSAnders Carlsson // is the null pointer value of type T. 1882882d790fSAnders Carlsson bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 188359486a2dSAnders Carlsson 1884882d790fSAnders Carlsson llvm::BasicBlock *CastNull = 0; 1885882d790fSAnders Carlsson llvm::BasicBlock *CastNotNull = 0; 1886882d790fSAnders Carlsson llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1887fa8b4955SDouglas Gregor 1888882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1889882d790fSAnders Carlsson CastNull = createBasicBlock("dynamic_cast.null"); 1890882d790fSAnders Carlsson CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1891882d790fSAnders Carlsson 1892882d790fSAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Value); 1893882d790fSAnders Carlsson Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1894882d790fSAnders Carlsson EmitBlock(CastNotNull); 189559486a2dSAnders Carlsson } 189659486a2dSAnders Carlsson 1897882d790fSAnders Carlsson Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 18983f4336cbSAnders Carlsson 1899882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1900882d790fSAnders Carlsson EmitBranch(CastEnd); 190159486a2dSAnders Carlsson 1902882d790fSAnders Carlsson EmitBlock(CastNull); 1903882d790fSAnders Carlsson EmitBranch(CastEnd); 190459486a2dSAnders Carlsson } 190559486a2dSAnders Carlsson 1906882d790fSAnders Carlsson EmitBlock(CastEnd); 190759486a2dSAnders Carlsson 1908882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1909882d790fSAnders Carlsson llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1910882d790fSAnders Carlsson PHI->addIncoming(Value, CastNotNull); 1911882d790fSAnders Carlsson PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 191259486a2dSAnders Carlsson 1913882d790fSAnders Carlsson Value = PHI; 191459486a2dSAnders Carlsson } 191559486a2dSAnders Carlsson 1916882d790fSAnders Carlsson return Value; 191759486a2dSAnders Carlsson } 1918c370a7eeSEli Friedman 1919c370a7eeSEli Friedman void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 19208631f3e8SEli Friedman RunCleanupsScope Scope(*this); 19217f1ff600SEli Friedman LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 19227f1ff600SEli Friedman Slot.getAlignment()); 19238631f3e8SEli Friedman 1924c370a7eeSEli Friedman CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1925c370a7eeSEli Friedman for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1926c370a7eeSEli Friedman e = E->capture_init_end(); 1927c370a7eeSEli Friedman i != e; ++i, ++CurField) { 1928c370a7eeSEli Friedman // Emit initialization 19297f1ff600SEli Friedman 193040ed2973SDavid Blaikie LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 19315f1a04ffSEli Friedman ArrayRef<VarDecl *> ArrayIndexes; 19325f1a04ffSEli Friedman if (CurField->getType()->isArrayType()) 19335f1a04ffSEli Friedman ArrayIndexes = E->getCaptureInitIndexVars(i); 193440ed2973SDavid Blaikie EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1935c370a7eeSEli Friedman } 1936c370a7eeSEli Friedman } 1937