159486a2dSAnders Carlsson //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 259486a2dSAnders Carlsson // 359486a2dSAnders Carlsson // The LLVM Compiler Infrastructure 459486a2dSAnders Carlsson // 559486a2dSAnders Carlsson // This file is distributed under the University of Illinois Open Source 659486a2dSAnders Carlsson // License. See LICENSE.TXT for details. 759486a2dSAnders Carlsson // 859486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 959486a2dSAnders Carlsson // 1059486a2dSAnders Carlsson // This contains code dealing with code generation of C++ expressions 1159486a2dSAnders Carlsson // 1259486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 1359486a2dSAnders Carlsson 1459486a2dSAnders Carlsson #include "CodeGenFunction.h" 15fe883422SPeter Collingbourne #include "CGCUDARuntime.h" 165d865c32SJohn McCall #include "CGCXXABI.h" 1791bbb554SDevang Patel #include "CGDebugInfo.h" 183a02247dSChandler Carruth #include "CGObjCRuntime.h" 193a02247dSChandler Carruth #include "clang/Frontend/CodeGenOptions.h" 20ffd5551bSChandler Carruth #include "llvm/IR/Intrinsics.h" 21bbe277c4SAnders Carlsson #include "llvm/Support/CallSite.h" 22bbe277c4SAnders Carlsson 2359486a2dSAnders Carlsson using namespace clang; 2459486a2dSAnders Carlsson using namespace CodeGen; 2559486a2dSAnders Carlsson 2627da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27e30752c9SRichard Smith SourceLocation CallLoc, 2827da15baSAnders Carlsson llvm::Value *Callee, 2927da15baSAnders Carlsson ReturnValueSlot ReturnValue, 3027da15baSAnders Carlsson llvm::Value *This, 31ee6bc533STimur Iskhodzhanov llvm::Value *ImplicitParam, 32ee6bc533STimur Iskhodzhanov QualType ImplicitParamTy, 3327da15baSAnders Carlsson CallExpr::const_arg_iterator ArgBeg, 3427da15baSAnders Carlsson CallExpr::const_arg_iterator ArgEnd) { 3527da15baSAnders Carlsson assert(MD->isInstance() && 3627da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 3727da15baSAnders Carlsson 3869d0d262SRichard Smith // C++11 [class.mfct.non-static]p2: 3969d0d262SRichard Smith // If a non-static member function of a class X is called for an object that 4069d0d262SRichard Smith // is not of type X, or of a type derived from X, the behavior is undefined. 414d3110afSRichard Smith EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 424d3110afSRichard Smith : TCK_MemberCall, 434d3110afSRichard Smith CallLoc, This, getContext().getRecordType(MD->getParent())); 4469d0d262SRichard Smith 4527da15baSAnders Carlsson CallArgList Args; 4627da15baSAnders Carlsson 4727da15baSAnders Carlsson // Push the this ptr. 4843dca6a8SEli Friedman Args.add(RValue::get(This), MD->getThisType(getContext())); 4927da15baSAnders Carlsson 50ee6bc533STimur Iskhodzhanov // If there is an implicit parameter (e.g. VTT), emit it. 51ee6bc533STimur Iskhodzhanov if (ImplicitParam) { 52ee6bc533STimur Iskhodzhanov Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53e36a6b3eSAnders Carlsson } 54e36a6b3eSAnders Carlsson 55a729c62bSJohn McCall const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56a729c62bSJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57a729c62bSJohn McCall 58a729c62bSJohn McCall // And the rest of the call args. 5927da15baSAnders Carlsson EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 6027da15baSAnders Carlsson 618dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 62c50c27ccSRafael Espindola Callee, ReturnValue, Args, MD); 6327da15baSAnders Carlsson } 6427da15baSAnders Carlsson 65c53d9e83SAnders Carlsson // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 66c53d9e83SAnders Carlsson // quite what we want. 67c53d9e83SAnders Carlsson static const Expr *skipNoOpCastsAndParens(const Expr *E) { 68c53d9e83SAnders Carlsson while (true) { 69c53d9e83SAnders Carlsson if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 70c53d9e83SAnders Carlsson E = PE->getSubExpr(); 71c53d9e83SAnders Carlsson continue; 72c53d9e83SAnders Carlsson } 73c53d9e83SAnders Carlsson 74c53d9e83SAnders Carlsson if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 75c53d9e83SAnders Carlsson if (CE->getCastKind() == CK_NoOp) { 76c53d9e83SAnders Carlsson E = CE->getSubExpr(); 77c53d9e83SAnders Carlsson continue; 78c53d9e83SAnders Carlsson } 79c53d9e83SAnders Carlsson } 80c53d9e83SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 81c53d9e83SAnders Carlsson if (UO->getOpcode() == UO_Extension) { 82c53d9e83SAnders Carlsson E = UO->getSubExpr(); 83c53d9e83SAnders Carlsson continue; 84c53d9e83SAnders Carlsson } 85c53d9e83SAnders Carlsson } 86c53d9e83SAnders Carlsson return E; 87c53d9e83SAnders Carlsson } 88c53d9e83SAnders Carlsson } 89c53d9e83SAnders Carlsson 9027da15baSAnders Carlsson /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 9127da15baSAnders Carlsson /// expr can be devirtualized. 92252a47f6SFariborz Jahanian static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 93252a47f6SFariborz Jahanian const Expr *Base, 94a7911fa3SAnders Carlsson const CXXMethodDecl *MD) { 95a7911fa3SAnders Carlsson 961ae64c5aSAnders Carlsson // When building with -fapple-kext, all calls must go through the vtable since 971ae64c5aSAnders Carlsson // the kernel linker can do runtime patching of vtables. 98bbafb8a7SDavid Blaikie if (Context.getLangOpts().AppleKext) 99252a47f6SFariborz Jahanian return false; 100252a47f6SFariborz Jahanian 1011ae64c5aSAnders Carlsson // If the most derived class is marked final, we know that no subclass can 1021ae64c5aSAnders Carlsson // override this member function and so we can devirtualize it. For example: 1031ae64c5aSAnders Carlsson // 1041ae64c5aSAnders Carlsson // struct A { virtual void f(); } 1051ae64c5aSAnders Carlsson // struct B final : A { }; 1061ae64c5aSAnders Carlsson // 1071ae64c5aSAnders Carlsson // void f(B *b) { 1081ae64c5aSAnders Carlsson // b->f(); 1091ae64c5aSAnders Carlsson // } 1101ae64c5aSAnders Carlsson // 111b7f5a9c5SRafael Espindola const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 1121ae64c5aSAnders Carlsson if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 1131ae64c5aSAnders Carlsson return true; 1141ae64c5aSAnders Carlsson 11519588aa4SAnders Carlsson // If the member function is marked 'final', we know that it can't be 116b00c2144SAnders Carlsson // overridden and can therefore devirtualize it. 1171eb95961SAnders Carlsson if (MD->hasAttr<FinalAttr>()) 118a7911fa3SAnders Carlsson return true; 119a7911fa3SAnders Carlsson 12019588aa4SAnders Carlsson // Similarly, if the class itself is marked 'final' it can't be overridden 12119588aa4SAnders Carlsson // and we can therefore devirtualize the member function call. 1221eb95961SAnders Carlsson if (MD->getParent()->hasAttr<FinalAttr>()) 123b00c2144SAnders Carlsson return true; 124b00c2144SAnders Carlsson 125c53d9e83SAnders Carlsson Base = skipNoOpCastsAndParens(Base); 12627da15baSAnders Carlsson if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 12727da15baSAnders Carlsson if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 12827da15baSAnders Carlsson // This is a record decl. We know the type and can devirtualize it. 12927da15baSAnders Carlsson return VD->getType()->isRecordType(); 13027da15baSAnders Carlsson } 13127da15baSAnders Carlsson 13227da15baSAnders Carlsson return false; 13327da15baSAnders Carlsson } 13427da15baSAnders Carlsson 13548c15319SRichard Smith // We can devirtualize calls on an object accessed by a class member access 13648c15319SRichard Smith // expression, since by C++11 [basic.life]p6 we know that it can't refer to 13748c15319SRichard Smith // a derived class object constructed in the same location. 13848c15319SRichard Smith if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 13948c15319SRichard Smith if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 14048c15319SRichard Smith return VD->getType()->isRecordType(); 14148c15319SRichard Smith 14227da15baSAnders Carlsson // We can always devirtualize calls on temporary object expressions. 143a682427eSEli Friedman if (isa<CXXConstructExpr>(Base)) 14427da15baSAnders Carlsson return true; 14527da15baSAnders Carlsson 14627da15baSAnders Carlsson // And calls on bound temporaries. 14727da15baSAnders Carlsson if (isa<CXXBindTemporaryExpr>(Base)) 14827da15baSAnders Carlsson return true; 14927da15baSAnders Carlsson 15027da15baSAnders Carlsson // Check if this is a call expr that returns a record type. 15127da15baSAnders Carlsson if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 15227da15baSAnders Carlsson return CE->getCallReturnType()->isRecordType(); 15327da15baSAnders Carlsson 15427da15baSAnders Carlsson // We can't devirtualize the call. 15527da15baSAnders Carlsson return false; 15627da15baSAnders Carlsson } 15727da15baSAnders Carlsson 1583b33c4ecSRafael Espindola static CXXRecordDecl *getCXXRecord(const Expr *E) { 1593b33c4ecSRafael Espindola QualType T = E->getType(); 1603b33c4ecSRafael Espindola if (const PointerType *PTy = T->getAs<PointerType>()) 1613b33c4ecSRafael Espindola T = PTy->getPointeeType(); 1623b33c4ecSRafael Espindola const RecordType *Ty = T->castAs<RecordType>(); 1633b33c4ecSRafael Espindola return cast<CXXRecordDecl>(Ty->getDecl()); 1643b33c4ecSRafael Espindola } 1653b33c4ecSRafael Espindola 16664225794SFrancois Pichet // Note: This function also emit constructor calls to support a MSVC 16764225794SFrancois Pichet // extensions allowing explicit constructor function call. 16827da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 16927da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 1702d2e8707SJohn McCall const Expr *callee = CE->getCallee()->IgnoreParens(); 1712d2e8707SJohn McCall 1722d2e8707SJohn McCall if (isa<BinaryOperator>(callee)) 17327da15baSAnders Carlsson return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 17427da15baSAnders Carlsson 1752d2e8707SJohn McCall const MemberExpr *ME = cast<MemberExpr>(callee); 17627da15baSAnders Carlsson const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 17727da15baSAnders Carlsson 17891bbb554SDevang Patel CGDebugInfo *DI = getDebugInfo(); 179b0eea8b5SDouglas Gregor if (DI && 180b0eea8b5SDouglas Gregor CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::LimitedDebugInfo && 181b0eea8b5SDouglas Gregor !isa<CallExpr>(ME->getBase())) { 18291bbb554SDevang Patel QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 18391bbb554SDevang Patel if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 18491bbb554SDevang Patel DI->getOrCreateRecordType(PTy->getPointeeType(), 18591bbb554SDevang Patel MD->getParent()->getLocation()); 18691bbb554SDevang Patel } 18791bbb554SDevang Patel } 18891bbb554SDevang Patel 18927da15baSAnders Carlsson if (MD->isStatic()) { 19027da15baSAnders Carlsson // The method is static, emit it as we would a regular call. 19127da15baSAnders Carlsson llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 19227da15baSAnders Carlsson return EmitCall(getContext().getPointerType(MD->getType()), Callee, 19327da15baSAnders Carlsson ReturnValue, CE->arg_begin(), CE->arg_end()); 19427da15baSAnders Carlsson } 19527da15baSAnders Carlsson 1960d635f53SJohn McCall // Compute the object pointer. 197ecbe2e97SRafael Espindola const Expr *Base = ME->getBase(); 198ecbe2e97SRafael Espindola bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 199ecbe2e97SRafael Espindola 2003b33c4ecSRafael Espindola const CXXMethodDecl *DevirtualizedMethod = NULL; 2013b33c4ecSRafael Espindola if (CanUseVirtualCall && 2023b33c4ecSRafael Espindola canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 2033b33c4ecSRafael Espindola const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 2043b33c4ecSRafael Espindola DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 2053b33c4ecSRafael Espindola assert(DevirtualizedMethod); 2063b33c4ecSRafael Espindola const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 2073b33c4ecSRafael Espindola const Expr *Inner = Base->ignoreParenBaseCasts(); 2083b33c4ecSRafael Espindola if (getCXXRecord(Inner) == DevirtualizedClass) 2093b33c4ecSRafael Espindola // If the class of the Inner expression is where the dynamic method 2103b33c4ecSRafael Espindola // is defined, build the this pointer from it. 2113b33c4ecSRafael Espindola Base = Inner; 2123b33c4ecSRafael Espindola else if (getCXXRecord(Base) != DevirtualizedClass) { 2133b33c4ecSRafael Espindola // If the method is defined in a class that is not the best dynamic 2143b33c4ecSRafael Espindola // one or the one of the full expression, we would have to build 2153b33c4ecSRafael Espindola // a derived-to-base cast to compute the correct this pointer, but 2163b33c4ecSRafael Espindola // we don't have support for that yet, so do a virtual call. 2173b33c4ecSRafael Espindola DevirtualizedMethod = NULL; 2183b33c4ecSRafael Espindola } 219b27564afSRafael Espindola // If the return types are not the same, this might be a case where more 220b27564afSRafael Espindola // code needs to run to compensate for it. For example, the derived 221b27564afSRafael Espindola // method might return a type that inherits form from the return 222b27564afSRafael Espindola // type of MD and has a prefix. 223b27564afSRafael Espindola // For now we just avoid devirtualizing these covariant cases. 224b27564afSRafael Espindola if (DevirtualizedMethod && 225b27564afSRafael Espindola DevirtualizedMethod->getResultType().getCanonicalType() != 226b27564afSRafael Espindola MD->getResultType().getCanonicalType()) 227debc71ceSRafael Espindola DevirtualizedMethod = NULL; 2283b33c4ecSRafael Espindola } 229ecbe2e97SRafael Espindola 23027da15baSAnders Carlsson llvm::Value *This; 23127da15baSAnders Carlsson if (ME->isArrow()) 2323b33c4ecSRafael Espindola This = EmitScalarExpr(Base); 233f93ac894SFariborz Jahanian else 2343b33c4ecSRafael Espindola This = EmitLValue(Base).getAddress(); 235ecbe2e97SRafael Espindola 23627da15baSAnders Carlsson 2370d635f53SJohn McCall if (MD->isTrivial()) { 2380d635f53SJohn McCall if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 23964225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 24064225794SFrancois Pichet cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 24164225794SFrancois Pichet return RValue::get(0); 2420d635f53SJohn McCall 24322653bacSSebastian Redl if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 24422653bacSSebastian Redl // We don't like to generate the trivial copy/move assignment operator 24522653bacSSebastian Redl // when it isn't necessary; just produce the proper effect here. 24627da15baSAnders Carlsson llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 2471ca66919SBenjamin Kramer EmitAggregateAssign(This, RHS, CE->getType()); 24827da15baSAnders Carlsson return RValue::get(This); 24927da15baSAnders Carlsson } 25027da15baSAnders Carlsson 25164225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 25222653bacSSebastian Redl cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 25322653bacSSebastian Redl // Trivial move and copy ctor are the same. 25464225794SFrancois Pichet llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 25564225794SFrancois Pichet EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 25664225794SFrancois Pichet CE->arg_begin(), CE->arg_end()); 25764225794SFrancois Pichet return RValue::get(This); 25864225794SFrancois Pichet } 25964225794SFrancois Pichet llvm_unreachable("unknown trivial member function"); 26064225794SFrancois Pichet } 26164225794SFrancois Pichet 2620d635f53SJohn McCall // Compute the function type we're calling. 263ade60977SEli Friedman const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 26464225794SFrancois Pichet const CGFunctionInfo *FInfo = 0; 265ade60977SEli Friedman if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 266ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 26764225794SFrancois Pichet Dtor_Complete); 268ade60977SEli Friedman else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 269ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 27064225794SFrancois Pichet Ctor_Complete); 27164225794SFrancois Pichet else 272ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 2730d635f53SJohn McCall 274a729c62bSJohn McCall llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo); 2750d635f53SJohn McCall 27627da15baSAnders Carlsson // C++ [class.virtual]p12: 27727da15baSAnders Carlsson // Explicit qualification with the scope operator (5.1) suppresses the 27827da15baSAnders Carlsson // virtual call mechanism. 27927da15baSAnders Carlsson // 28027da15baSAnders Carlsson // We also don't emit a virtual call if the base expression has a record type 28127da15baSAnders Carlsson // because then we know what the type is. 2823b33c4ecSRafael Espindola bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 28349e860b2SRafael Espindola 28427da15baSAnders Carlsson llvm::Value *Callee; 2850d635f53SJohn McCall if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 2860d635f53SJohn McCall if (UseVirtualCall) { 287d619711cSTimur Iskhodzhanov assert(CE->arg_begin() == CE->arg_end() && 288d619711cSTimur Iskhodzhanov "Virtual destructor shouldn't have explicit parameters"); 289d619711cSTimur Iskhodzhanov return CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, 290d619711cSTimur Iskhodzhanov Dtor_Complete, 291d619711cSTimur Iskhodzhanov CE->getExprLoc(), 292d619711cSTimur Iskhodzhanov ReturnValue, This); 29327da15baSAnders Carlsson } else { 2949c6890a7SRichard Smith if (getLangOpts().AppleKext && 295265c325eSFariborz Jahanian MD->isVirtual() && 296265c325eSFariborz Jahanian ME->hasQualifier()) 2977f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 2983b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 299727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 30049e860b2SRafael Espindola else { 3013b33c4ecSRafael Espindola const CXXDestructorDecl *DDtor = 3023b33c4ecSRafael Espindola cast<CXXDestructorDecl>(DevirtualizedMethod); 30349e860b2SRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 30449e860b2SRafael Espindola } 30527da15baSAnders Carlsson } 30664225794SFrancois Pichet } else if (const CXXConstructorDecl *Ctor = 30764225794SFrancois Pichet dyn_cast<CXXConstructorDecl>(MD)) { 30864225794SFrancois Pichet Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 3090d635f53SJohn McCall } else if (UseVirtualCall) { 31027da15baSAnders Carlsson Callee = BuildVirtualCall(MD, This, Ty); 31127da15baSAnders Carlsson } else { 3129c6890a7SRichard Smith if (getLangOpts().AppleKext && 3139f9438b3SFariborz Jahanian MD->isVirtual() && 314252a47f6SFariborz Jahanian ME->hasQualifier()) 3157f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 3163b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 317727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(MD, Ty); 31849e860b2SRafael Espindola else { 3193b33c4ecSRafael Espindola Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 32049e860b2SRafael Espindola } 32127da15baSAnders Carlsson } 32227da15baSAnders Carlsson 323e30752c9SRichard Smith return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 324ee6bc533STimur Iskhodzhanov /*ImplicitParam=*/0, QualType(), 325ee6bc533STimur Iskhodzhanov CE->arg_begin(), CE->arg_end()); 32627da15baSAnders Carlsson } 32727da15baSAnders Carlsson 32827da15baSAnders Carlsson RValue 32927da15baSAnders Carlsson CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 33027da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 33127da15baSAnders Carlsson const BinaryOperator *BO = 33227da15baSAnders Carlsson cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 33327da15baSAnders Carlsson const Expr *BaseExpr = BO->getLHS(); 33427da15baSAnders Carlsson const Expr *MemFnExpr = BO->getRHS(); 33527da15baSAnders Carlsson 33627da15baSAnders Carlsson const MemberPointerType *MPT = 3370009fcc3SJohn McCall MemFnExpr->getType()->castAs<MemberPointerType>(); 338475999dcSJohn McCall 33927da15baSAnders Carlsson const FunctionProtoType *FPT = 3400009fcc3SJohn McCall MPT->getPointeeType()->castAs<FunctionProtoType>(); 34127da15baSAnders Carlsson const CXXRecordDecl *RD = 34227da15baSAnders Carlsson cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 34327da15baSAnders Carlsson 34427da15baSAnders Carlsson // Get the member function pointer. 345a1dee530SJohn McCall llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 34627da15baSAnders Carlsson 34727da15baSAnders Carlsson // Emit the 'this' pointer. 34827da15baSAnders Carlsson llvm::Value *This; 34927da15baSAnders Carlsson 350e302792bSJohn McCall if (BO->getOpcode() == BO_PtrMemI) 35127da15baSAnders Carlsson This = EmitScalarExpr(BaseExpr); 35227da15baSAnders Carlsson else 35327da15baSAnders Carlsson This = EmitLValue(BaseExpr).getAddress(); 35427da15baSAnders Carlsson 355e30752c9SRichard Smith EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 356e30752c9SRichard Smith QualType(MPT->getClass(), 0)); 35769d0d262SRichard Smith 358475999dcSJohn McCall // Ask the ABI to load the callee. Note that This is modified. 359475999dcSJohn McCall llvm::Value *Callee = 360ad7c5c16SJohn McCall CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 36127da15baSAnders Carlsson 36227da15baSAnders Carlsson CallArgList Args; 36327da15baSAnders Carlsson 36427da15baSAnders Carlsson QualType ThisType = 36527da15baSAnders Carlsson getContext().getPointerType(getContext().getTagDeclType(RD)); 36627da15baSAnders Carlsson 36727da15baSAnders Carlsson // Push the this ptr. 36843dca6a8SEli Friedman Args.add(RValue::get(This), ThisType); 36927da15baSAnders Carlsson 3708dda7b27SJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 3718dda7b27SJohn McCall 37227da15baSAnders Carlsson // And the rest of the call args 37327da15baSAnders Carlsson EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 3748dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 37599cc30c3STilmann Scheller ReturnValue, Args); 37627da15baSAnders Carlsson } 37727da15baSAnders Carlsson 37827da15baSAnders Carlsson RValue 37927da15baSAnders Carlsson CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 38027da15baSAnders Carlsson const CXXMethodDecl *MD, 38127da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 38227da15baSAnders Carlsson assert(MD->isInstance() && 38327da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 384e26a872bSJohn McCall LValue LV = EmitLValue(E->getArg(0)); 385e26a872bSJohn McCall llvm::Value *This = LV.getAddress(); 386e26a872bSJohn McCall 387146b8e9aSDouglas Gregor if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 388146b8e9aSDouglas Gregor MD->isTrivial()) { 38927da15baSAnders Carlsson llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 39027da15baSAnders Carlsson QualType Ty = E->getType(); 3911ca66919SBenjamin Kramer EmitAggregateAssign(This, Src, Ty); 39227da15baSAnders Carlsson return RValue::get(This); 39327da15baSAnders Carlsson } 39427da15baSAnders Carlsson 395c36783e8SAnders Carlsson llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 396e30752c9SRichard Smith return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 397ee6bc533STimur Iskhodzhanov /*ImplicitParam=*/0, QualType(), 398ee6bc533STimur Iskhodzhanov E->arg_begin() + 1, E->arg_end()); 39927da15baSAnders Carlsson } 40027da15baSAnders Carlsson 401fe883422SPeter Collingbourne RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 402fe883422SPeter Collingbourne ReturnValueSlot ReturnValue) { 403fe883422SPeter Collingbourne return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 404fe883422SPeter Collingbourne } 405fe883422SPeter Collingbourne 406fde961dbSEli Friedman static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 407fde961dbSEli Friedman llvm::Value *DestPtr, 408fde961dbSEli Friedman const CXXRecordDecl *Base) { 409fde961dbSEli Friedman if (Base->isEmpty()) 410fde961dbSEli Friedman return; 411fde961dbSEli Friedman 412fde961dbSEli Friedman DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 413fde961dbSEli Friedman 414fde961dbSEli Friedman const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 415fde961dbSEli Friedman CharUnits Size = Layout.getNonVirtualSize(); 416fde961dbSEli Friedman CharUnits Align = Layout.getNonVirtualAlign(); 417fde961dbSEli Friedman 418fde961dbSEli Friedman llvm::Value *SizeVal = CGF.CGM.getSize(Size); 419fde961dbSEli Friedman 420fde961dbSEli Friedman // If the type contains a pointer to data member we can't memset it to zero. 421fde961dbSEli Friedman // Instead, create a null constant and copy it to the destination. 422fde961dbSEli Friedman // TODO: there are other patterns besides zero that we can usefully memset, 423fde961dbSEli Friedman // like -1, which happens to be the pattern used by member-pointers. 424fde961dbSEli Friedman // TODO: isZeroInitializable can be over-conservative in the case where a 425fde961dbSEli Friedman // virtual base contains a member pointer. 426fde961dbSEli Friedman if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 427fde961dbSEli Friedman llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 428fde961dbSEli Friedman 429fde961dbSEli Friedman llvm::GlobalVariable *NullVariable = 430fde961dbSEli Friedman new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 431fde961dbSEli Friedman /*isConstant=*/true, 432fde961dbSEli Friedman llvm::GlobalVariable::PrivateLinkage, 433fde961dbSEli Friedman NullConstant, Twine()); 434fde961dbSEli Friedman NullVariable->setAlignment(Align.getQuantity()); 435fde961dbSEli Friedman llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 436fde961dbSEli Friedman 437fde961dbSEli Friedman // Get and call the appropriate llvm.memcpy overload. 438fde961dbSEli Friedman CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 439fde961dbSEli Friedman return; 440fde961dbSEli Friedman } 441fde961dbSEli Friedman 442fde961dbSEli Friedman // Otherwise, just memset the whole thing to zero. This is legal 443fde961dbSEli Friedman // because in LLVM, all default initializers (other than the ones we just 444fde961dbSEli Friedman // handled above) are guaranteed to have a bit pattern of all zeros. 445fde961dbSEli Friedman CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 446fde961dbSEli Friedman Align.getQuantity()); 447fde961dbSEli Friedman } 448fde961dbSEli Friedman 44927da15baSAnders Carlsson void 4507a626f63SJohn McCall CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 4517a626f63SJohn McCall AggValueSlot Dest) { 4527a626f63SJohn McCall assert(!Dest.isIgnored() && "Must have a destination!"); 45327da15baSAnders Carlsson const CXXConstructorDecl *CD = E->getConstructor(); 454630c76efSDouglas Gregor 455630c76efSDouglas Gregor // If we require zero initialization before (or instead of) calling the 456630c76efSDouglas Gregor // constructor, as can be the case with a non-user-provided default 45703535265SArgyrios Kyrtzidis // constructor, emit the zero initialization now, unless destination is 45803535265SArgyrios Kyrtzidis // already zeroed. 459fde961dbSEli Friedman if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 460fde961dbSEli Friedman switch (E->getConstructionKind()) { 461fde961dbSEli Friedman case CXXConstructExpr::CK_Delegating: 462fde961dbSEli Friedman case CXXConstructExpr::CK_Complete: 4637a626f63SJohn McCall EmitNullInitialization(Dest.getAddr(), E->getType()); 464fde961dbSEli Friedman break; 465fde961dbSEli Friedman case CXXConstructExpr::CK_VirtualBase: 466fde961dbSEli Friedman case CXXConstructExpr::CK_NonVirtualBase: 467fde961dbSEli Friedman EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 468fde961dbSEli Friedman break; 469fde961dbSEli Friedman } 470fde961dbSEli Friedman } 471630c76efSDouglas Gregor 472630c76efSDouglas Gregor // If this is a call to a trivial default constructor, do nothing. 473630c76efSDouglas Gregor if (CD->isTrivial() && CD->isDefaultConstructor()) 47427da15baSAnders Carlsson return; 475630c76efSDouglas Gregor 4768ea46b66SJohn McCall // Elide the constructor if we're constructing from a temporary. 4778ea46b66SJohn McCall // The temporary check is required because Sema sets this on NRVO 4788ea46b66SJohn McCall // returns. 4799c6890a7SRichard Smith if (getLangOpts().ElideConstructors && E->isElidable()) { 4808ea46b66SJohn McCall assert(getContext().hasSameUnqualifiedType(E->getType(), 4818ea46b66SJohn McCall E->getArg(0)->getType())); 4827a626f63SJohn McCall if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 4837a626f63SJohn McCall EmitAggExpr(E->getArg(0), Dest); 48427da15baSAnders Carlsson return; 48527da15baSAnders Carlsson } 486222cf0efSDouglas Gregor } 487630c76efSDouglas Gregor 488f677a8e9SJohn McCall if (const ConstantArrayType *arrayType 489f677a8e9SJohn McCall = getContext().getAsConstantArrayType(E->getType())) { 490f677a8e9SJohn McCall EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 49127da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 492f677a8e9SJohn McCall } else { 493bceca20aSCameron Esfahani CXXCtorType Type = Ctor_Complete; 494271c3681SAlexis Hunt bool ForVirtualBase = false; 49561535005SDouglas Gregor bool Delegating = false; 496271c3681SAlexis Hunt 497271c3681SAlexis Hunt switch (E->getConstructionKind()) { 498271c3681SAlexis Hunt case CXXConstructExpr::CK_Delegating: 49961bc1737SAlexis Hunt // We should be emitting a constructor; GlobalDecl will assert this 50061bc1737SAlexis Hunt Type = CurGD.getCtorType(); 50161535005SDouglas Gregor Delegating = true; 502271c3681SAlexis Hunt break; 50361bc1737SAlexis Hunt 504271c3681SAlexis Hunt case CXXConstructExpr::CK_Complete: 505271c3681SAlexis Hunt Type = Ctor_Complete; 506271c3681SAlexis Hunt break; 507271c3681SAlexis Hunt 508271c3681SAlexis Hunt case CXXConstructExpr::CK_VirtualBase: 509271c3681SAlexis Hunt ForVirtualBase = true; 510271c3681SAlexis Hunt // fall-through 511271c3681SAlexis Hunt 512271c3681SAlexis Hunt case CXXConstructExpr::CK_NonVirtualBase: 513271c3681SAlexis Hunt Type = Ctor_Base; 514271c3681SAlexis Hunt } 515e11f9ce9SAnders Carlsson 51627da15baSAnders Carlsson // Call the constructor. 51761535005SDouglas Gregor EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 51827da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 51927da15baSAnders Carlsson } 520e11f9ce9SAnders Carlsson } 52127da15baSAnders Carlsson 522e988bdacSFariborz Jahanian void 523e988bdacSFariborz Jahanian CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 524e988bdacSFariborz Jahanian llvm::Value *Src, 52550198098SFariborz Jahanian const Expr *Exp) { 5265d413781SJohn McCall if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 527e988bdacSFariborz Jahanian Exp = E->getSubExpr(); 528e988bdacSFariborz Jahanian assert(isa<CXXConstructExpr>(Exp) && 529e988bdacSFariborz Jahanian "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 530e988bdacSFariborz Jahanian const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 531e988bdacSFariborz Jahanian const CXXConstructorDecl *CD = E->getConstructor(); 532e988bdacSFariborz Jahanian RunCleanupsScope Scope(*this); 533e988bdacSFariborz Jahanian 534e988bdacSFariborz Jahanian // If we require zero initialization before (or instead of) calling the 535e988bdacSFariborz Jahanian // constructor, as can be the case with a non-user-provided default 536e988bdacSFariborz Jahanian // constructor, emit the zero initialization now. 537e988bdacSFariborz Jahanian // FIXME. Do I still need this for a copy ctor synthesis? 538e988bdacSFariborz Jahanian if (E->requiresZeroInitialization()) 539e988bdacSFariborz Jahanian EmitNullInitialization(Dest, E->getType()); 540e988bdacSFariborz Jahanian 54199da11cfSChandler Carruth assert(!getContext().getAsConstantArrayType(E->getType()) 54299da11cfSChandler Carruth && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 543e988bdacSFariborz Jahanian EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 544e988bdacSFariborz Jahanian E->arg_begin(), E->arg_end()); 545e988bdacSFariborz Jahanian } 546e988bdacSFariborz Jahanian 5478ed55a54SJohn McCall static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 5488ed55a54SJohn McCall const CXXNewExpr *E) { 54921122cf6SAnders Carlsson if (!E->isArray()) 5503eb55cfeSKen Dyck return CharUnits::Zero(); 55121122cf6SAnders Carlsson 5527ec4b434SJohn McCall // No cookie is required if the operator new[] being used is the 5537ec4b434SJohn McCall // reserved placement operator new[]. 5547ec4b434SJohn McCall if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 5553eb55cfeSKen Dyck return CharUnits::Zero(); 556399f499fSAnders Carlsson 557284c48ffSJohn McCall return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 55859486a2dSAnders Carlsson } 55959486a2dSAnders Carlsson 560036f2f6bSJohn McCall static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 561036f2f6bSJohn McCall const CXXNewExpr *e, 562f862eb6aSSebastian Redl unsigned minElements, 563036f2f6bSJohn McCall llvm::Value *&numElements, 564036f2f6bSJohn McCall llvm::Value *&sizeWithoutCookie) { 565036f2f6bSJohn McCall QualType type = e->getAllocatedType(); 56659486a2dSAnders Carlsson 567036f2f6bSJohn McCall if (!e->isArray()) { 568036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 569036f2f6bSJohn McCall sizeWithoutCookie 570036f2f6bSJohn McCall = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 571036f2f6bSJohn McCall return sizeWithoutCookie; 57205fc5be3SDouglas Gregor } 57359486a2dSAnders Carlsson 574036f2f6bSJohn McCall // The width of size_t. 575036f2f6bSJohn McCall unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 576036f2f6bSJohn McCall 5778ed55a54SJohn McCall // Figure out the cookie size. 578036f2f6bSJohn McCall llvm::APInt cookieSize(sizeWidth, 579036f2f6bSJohn McCall CalculateCookiePadding(CGF, e).getQuantity()); 5808ed55a54SJohn McCall 58159486a2dSAnders Carlsson // Emit the array size expression. 5827648fb46SArgyrios Kyrtzidis // We multiply the size of all dimensions for NumElements. 5837648fb46SArgyrios Kyrtzidis // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 584036f2f6bSJohn McCall numElements = CGF.EmitScalarExpr(e->getArraySize()); 585036f2f6bSJohn McCall assert(isa<llvm::IntegerType>(numElements->getType())); 5868ed55a54SJohn McCall 587036f2f6bSJohn McCall // The number of elements can be have an arbitrary integer type; 588036f2f6bSJohn McCall // essentially, we need to multiply it by a constant factor, add a 589036f2f6bSJohn McCall // cookie size, and verify that the result is representable as a 590036f2f6bSJohn McCall // size_t. That's just a gloss, though, and it's wrong in one 591036f2f6bSJohn McCall // important way: if the count is negative, it's an error even if 592036f2f6bSJohn McCall // the cookie size would bring the total size >= 0. 5936ab2fa8fSDouglas Gregor bool isSigned 5946ab2fa8fSDouglas Gregor = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 5952192fe50SChris Lattner llvm::IntegerType *numElementsType 596036f2f6bSJohn McCall = cast<llvm::IntegerType>(numElements->getType()); 597036f2f6bSJohn McCall unsigned numElementsWidth = numElementsType->getBitWidth(); 598036f2f6bSJohn McCall 599036f2f6bSJohn McCall // Compute the constant factor. 600036f2f6bSJohn McCall llvm::APInt arraySizeMultiplier(sizeWidth, 1); 6017648fb46SArgyrios Kyrtzidis while (const ConstantArrayType *CAT 602036f2f6bSJohn McCall = CGF.getContext().getAsConstantArrayType(type)) { 603036f2f6bSJohn McCall type = CAT->getElementType(); 604036f2f6bSJohn McCall arraySizeMultiplier *= CAT->getSize(); 6057648fb46SArgyrios Kyrtzidis } 60659486a2dSAnders Carlsson 607036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 608036f2f6bSJohn McCall llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 609036f2f6bSJohn McCall typeSizeMultiplier *= arraySizeMultiplier; 610036f2f6bSJohn McCall 611036f2f6bSJohn McCall // This will be a size_t. 612036f2f6bSJohn McCall llvm::Value *size; 61332ac583dSChris Lattner 61432ac583dSChris Lattner // If someone is doing 'new int[42]' there is no need to do a dynamic check. 61532ac583dSChris Lattner // Don't bloat the -O0 code. 616036f2f6bSJohn McCall if (llvm::ConstantInt *numElementsC = 617036f2f6bSJohn McCall dyn_cast<llvm::ConstantInt>(numElements)) { 618036f2f6bSJohn McCall const llvm::APInt &count = numElementsC->getValue(); 61932ac583dSChris Lattner 620036f2f6bSJohn McCall bool hasAnyOverflow = false; 62132ac583dSChris Lattner 622036f2f6bSJohn McCall // If 'count' was a negative number, it's an overflow. 623036f2f6bSJohn McCall if (isSigned && count.isNegative()) 624036f2f6bSJohn McCall hasAnyOverflow = true; 6258ed55a54SJohn McCall 626036f2f6bSJohn McCall // We want to do all this arithmetic in size_t. If numElements is 627036f2f6bSJohn McCall // wider than that, check whether it's already too big, and if so, 628036f2f6bSJohn McCall // overflow. 629036f2f6bSJohn McCall else if (numElementsWidth > sizeWidth && 630036f2f6bSJohn McCall numElementsWidth - sizeWidth > count.countLeadingZeros()) 631036f2f6bSJohn McCall hasAnyOverflow = true; 632036f2f6bSJohn McCall 633036f2f6bSJohn McCall // Okay, compute a count at the right width. 634036f2f6bSJohn McCall llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 635036f2f6bSJohn McCall 636f862eb6aSSebastian Redl // If there is a brace-initializer, we cannot allocate fewer elements than 637f862eb6aSSebastian Redl // there are initializers. If we do, that's treated like an overflow. 638f862eb6aSSebastian Redl if (adjustedCount.ult(minElements)) 639f862eb6aSSebastian Redl hasAnyOverflow = true; 640f862eb6aSSebastian Redl 641036f2f6bSJohn McCall // Scale numElements by that. This might overflow, but we don't 642036f2f6bSJohn McCall // care because it only overflows if allocationSize does, too, and 643036f2f6bSJohn McCall // if that overflows then we shouldn't use this. 644036f2f6bSJohn McCall numElements = llvm::ConstantInt::get(CGF.SizeTy, 645036f2f6bSJohn McCall adjustedCount * arraySizeMultiplier); 646036f2f6bSJohn McCall 647036f2f6bSJohn McCall // Compute the size before cookie, and track whether it overflowed. 648036f2f6bSJohn McCall bool overflow; 649036f2f6bSJohn McCall llvm::APInt allocationSize 650036f2f6bSJohn McCall = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 651036f2f6bSJohn McCall hasAnyOverflow |= overflow; 652036f2f6bSJohn McCall 653036f2f6bSJohn McCall // Add in the cookie, and check whether it's overflowed. 654036f2f6bSJohn McCall if (cookieSize != 0) { 655036f2f6bSJohn McCall // Save the current size without a cookie. This shouldn't be 656036f2f6bSJohn McCall // used if there was overflow. 657036f2f6bSJohn McCall sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 658036f2f6bSJohn McCall 659036f2f6bSJohn McCall allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 660036f2f6bSJohn McCall hasAnyOverflow |= overflow; 6618ed55a54SJohn McCall } 6628ed55a54SJohn McCall 663036f2f6bSJohn McCall // On overflow, produce a -1 so operator new will fail. 664036f2f6bSJohn McCall if (hasAnyOverflow) { 665036f2f6bSJohn McCall size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 66632ac583dSChris Lattner } else { 667036f2f6bSJohn McCall size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 66832ac583dSChris Lattner } 66932ac583dSChris Lattner 670036f2f6bSJohn McCall // Otherwise, we might need to use the overflow intrinsics. 6718ed55a54SJohn McCall } else { 672f862eb6aSSebastian Redl // There are up to five conditions we need to test for: 673036f2f6bSJohn McCall // 1) if isSigned, we need to check whether numElements is negative; 674036f2f6bSJohn McCall // 2) if numElementsWidth > sizeWidth, we need to check whether 675036f2f6bSJohn McCall // numElements is larger than something representable in size_t; 676f862eb6aSSebastian Redl // 3) if minElements > 0, we need to check whether numElements is smaller 677f862eb6aSSebastian Redl // than that. 678f862eb6aSSebastian Redl // 4) we need to compute 679036f2f6bSJohn McCall // sizeWithoutCookie := numElements * typeSizeMultiplier 680036f2f6bSJohn McCall // and check whether it overflows; and 681f862eb6aSSebastian Redl // 5) if we need a cookie, we need to compute 682036f2f6bSJohn McCall // size := sizeWithoutCookie + cookieSize 683036f2f6bSJohn McCall // and check whether it overflows. 6848ed55a54SJohn McCall 685036f2f6bSJohn McCall llvm::Value *hasOverflow = 0; 6868ed55a54SJohn McCall 687036f2f6bSJohn McCall // If numElementsWidth > sizeWidth, then one way or another, we're 688036f2f6bSJohn McCall // going to have to do a comparison for (2), and this happens to 689036f2f6bSJohn McCall // take care of (1), too. 690036f2f6bSJohn McCall if (numElementsWidth > sizeWidth) { 691036f2f6bSJohn McCall llvm::APInt threshold(numElementsWidth, 1); 692036f2f6bSJohn McCall threshold <<= sizeWidth; 6938ed55a54SJohn McCall 694036f2f6bSJohn McCall llvm::Value *thresholdV 695036f2f6bSJohn McCall = llvm::ConstantInt::get(numElementsType, threshold); 696036f2f6bSJohn McCall 697036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 698036f2f6bSJohn McCall numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 699036f2f6bSJohn McCall 700036f2f6bSJohn McCall // Otherwise, if we're signed, we want to sext up to size_t. 701036f2f6bSJohn McCall } else if (isSigned) { 702036f2f6bSJohn McCall if (numElementsWidth < sizeWidth) 703036f2f6bSJohn McCall numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 704036f2f6bSJohn McCall 705036f2f6bSJohn McCall // If there's a non-1 type size multiplier, then we can do the 706036f2f6bSJohn McCall // signedness check at the same time as we do the multiply 707036f2f6bSJohn McCall // because a negative number times anything will cause an 708f862eb6aSSebastian Redl // unsigned overflow. Otherwise, we have to do it here. But at least 709f862eb6aSSebastian Redl // in this case, we can subsume the >= minElements check. 710036f2f6bSJohn McCall if (typeSizeMultiplier == 1) 711036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 712f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 713036f2f6bSJohn McCall 714036f2f6bSJohn McCall // Otherwise, zext up to size_t if necessary. 715036f2f6bSJohn McCall } else if (numElementsWidth < sizeWidth) { 716036f2f6bSJohn McCall numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 717036f2f6bSJohn McCall } 718036f2f6bSJohn McCall 719036f2f6bSJohn McCall assert(numElements->getType() == CGF.SizeTy); 720036f2f6bSJohn McCall 721f862eb6aSSebastian Redl if (minElements) { 722f862eb6aSSebastian Redl // Don't allow allocation of fewer elements than we have initializers. 723f862eb6aSSebastian Redl if (!hasOverflow) { 724f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateICmpULT(numElements, 725f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 726f862eb6aSSebastian Redl } else if (numElementsWidth > sizeWidth) { 727f862eb6aSSebastian Redl // The other existing overflow subsumes this check. 728f862eb6aSSebastian Redl // We do an unsigned comparison, since any signed value < -1 is 729f862eb6aSSebastian Redl // taken care of either above or below. 730f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateOr(hasOverflow, 731f862eb6aSSebastian Redl CGF.Builder.CreateICmpULT(numElements, 732f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements))); 733f862eb6aSSebastian Redl } 734f862eb6aSSebastian Redl } 735f862eb6aSSebastian Redl 736036f2f6bSJohn McCall size = numElements; 737036f2f6bSJohn McCall 738036f2f6bSJohn McCall // Multiply by the type size if necessary. This multiplier 739036f2f6bSJohn McCall // includes all the factors for nested arrays. 7408ed55a54SJohn McCall // 741036f2f6bSJohn McCall // This step also causes numElements to be scaled up by the 742036f2f6bSJohn McCall // nested-array factor if necessary. Overflow on this computation 743036f2f6bSJohn McCall // can be ignored because the result shouldn't be used if 744036f2f6bSJohn McCall // allocation fails. 745036f2f6bSJohn McCall if (typeSizeMultiplier != 1) { 746036f2f6bSJohn McCall llvm::Value *umul_with_overflow 7478d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 7488ed55a54SJohn McCall 749036f2f6bSJohn McCall llvm::Value *tsmV = 750036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 751036f2f6bSJohn McCall llvm::Value *result = 752036f2f6bSJohn McCall CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 7538ed55a54SJohn McCall 754036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 755036f2f6bSJohn McCall if (hasOverflow) 756036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 7578ed55a54SJohn McCall else 758036f2f6bSJohn McCall hasOverflow = overflowed; 75959486a2dSAnders Carlsson 760036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 761036f2f6bSJohn McCall 762036f2f6bSJohn McCall // Also scale up numElements by the array size multiplier. 763036f2f6bSJohn McCall if (arraySizeMultiplier != 1) { 764036f2f6bSJohn McCall // If the base element type size is 1, then we can re-use the 765036f2f6bSJohn McCall // multiply we just did. 766036f2f6bSJohn McCall if (typeSize.isOne()) { 767036f2f6bSJohn McCall assert(arraySizeMultiplier == typeSizeMultiplier); 768036f2f6bSJohn McCall numElements = size; 769036f2f6bSJohn McCall 770036f2f6bSJohn McCall // Otherwise we need a separate multiply. 771036f2f6bSJohn McCall } else { 772036f2f6bSJohn McCall llvm::Value *asmV = 773036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 774036f2f6bSJohn McCall numElements = CGF.Builder.CreateMul(numElements, asmV); 775036f2f6bSJohn McCall } 776036f2f6bSJohn McCall } 777036f2f6bSJohn McCall } else { 778036f2f6bSJohn McCall // numElements doesn't need to be scaled. 779036f2f6bSJohn McCall assert(arraySizeMultiplier == 1); 780036f2f6bSJohn McCall } 781036f2f6bSJohn McCall 782036f2f6bSJohn McCall // Add in the cookie size if necessary. 783036f2f6bSJohn McCall if (cookieSize != 0) { 784036f2f6bSJohn McCall sizeWithoutCookie = size; 785036f2f6bSJohn McCall 786036f2f6bSJohn McCall llvm::Value *uadd_with_overflow 7878d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 788036f2f6bSJohn McCall 789036f2f6bSJohn McCall llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 790036f2f6bSJohn McCall llvm::Value *result = 791036f2f6bSJohn McCall CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 792036f2f6bSJohn McCall 793036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 794036f2f6bSJohn McCall if (hasOverflow) 795036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 796036f2f6bSJohn McCall else 797036f2f6bSJohn McCall hasOverflow = overflowed; 798036f2f6bSJohn McCall 799036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 800036f2f6bSJohn McCall } 801036f2f6bSJohn McCall 802036f2f6bSJohn McCall // If we had any possibility of dynamic overflow, make a select to 803036f2f6bSJohn McCall // overwrite 'size' with an all-ones value, which should cause 804036f2f6bSJohn McCall // operator new to throw. 805036f2f6bSJohn McCall if (hasOverflow) 806036f2f6bSJohn McCall size = CGF.Builder.CreateSelect(hasOverflow, 807036f2f6bSJohn McCall llvm::Constant::getAllOnesValue(CGF.SizeTy), 808036f2f6bSJohn McCall size); 809036f2f6bSJohn McCall } 810036f2f6bSJohn McCall 811036f2f6bSJohn McCall if (cookieSize == 0) 812036f2f6bSJohn McCall sizeWithoutCookie = size; 813036f2f6bSJohn McCall else 814036f2f6bSJohn McCall assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 815036f2f6bSJohn McCall 816036f2f6bSJohn McCall return size; 81759486a2dSAnders Carlsson } 81859486a2dSAnders Carlsson 819f862eb6aSSebastian Redl static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 820f862eb6aSSebastian Redl QualType AllocType, llvm::Value *NewPtr) { 821d5202e09SFariborz Jahanian 82238cd36dbSEli Friedman CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 823d5202e09SFariborz Jahanian if (!CGF.hasAggregateLLVMType(AllocType)) 82438cd36dbSEli Friedman CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 825a0544d6fSEli Friedman Alignment), 8261553b190SJohn McCall false); 827d5202e09SFariborz Jahanian else if (AllocType->isAnyComplexType()) 828d5202e09SFariborz Jahanian CGF.EmitComplexExprIntoAddr(Init, NewPtr, 829d5202e09SFariborz Jahanian AllocType.isVolatileQualified()); 8307a626f63SJohn McCall else { 8317a626f63SJohn McCall AggValueSlot Slot 832c1d85b93SEli Friedman = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 8338d6fc958SJohn McCall AggValueSlot::IsDestructed, 83446759f4fSJohn McCall AggValueSlot::DoesNotNeedGCBarriers, 835615ed1a3SChad Rosier AggValueSlot::IsNotAliased); 8367a626f63SJohn McCall CGF.EmitAggExpr(Init, Slot); 837d026dc49SSebastian Redl 838d026dc49SSebastian Redl CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init); 8397a626f63SJohn McCall } 840d5202e09SFariborz Jahanian } 841d5202e09SFariborz Jahanian 842d5202e09SFariborz Jahanian void 843d5202e09SFariborz Jahanian CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 84499210dc9SJohn McCall QualType elementType, 84599210dc9SJohn McCall llvm::Value *beginPtr, 84699210dc9SJohn McCall llvm::Value *numElements) { 8476047f07eSSebastian Redl if (!E->hasInitializer()) 8486047f07eSSebastian Redl return; // We have a POD type. 849b66b08efSFariborz Jahanian 850f862eb6aSSebastian Redl llvm::Value *explicitPtr = beginPtr; 85199210dc9SJohn McCall // Find the end of the array, hoisted out of the loop. 85299210dc9SJohn McCall llvm::Value *endPtr = 85399210dc9SJohn McCall Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 854d5202e09SFariborz Jahanian 855f862eb6aSSebastian Redl unsigned initializerElements = 0; 856f862eb6aSSebastian Redl 857f862eb6aSSebastian Redl const Expr *Init = E->getInitializer(); 858f62290a1SChad Rosier llvm::AllocaInst *endOfInit = 0; 859f62290a1SChad Rosier QualType::DestructionKind dtorKind = elementType.isDestructedType(); 860f62290a1SChad Rosier EHScopeStack::stable_iterator cleanup; 861f62290a1SChad Rosier llvm::Instruction *cleanupDominator = 0; 862f862eb6aSSebastian Redl // If the initializer is an initializer list, first do the explicit elements. 863f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 864f862eb6aSSebastian Redl initializerElements = ILE->getNumInits(); 865f62290a1SChad Rosier 866f62290a1SChad Rosier // Enter a partial-destruction cleanup if necessary. 867f62290a1SChad Rosier if (needsEHCleanup(dtorKind)) { 868f62290a1SChad Rosier // In principle we could tell the cleanup where we are more 869f62290a1SChad Rosier // directly, but the control flow can get so varied here that it 870f62290a1SChad Rosier // would actually be quite complex. Therefore we go through an 871f62290a1SChad Rosier // alloca. 872f62290a1SChad Rosier endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 873f62290a1SChad Rosier cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 874f62290a1SChad Rosier pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 875f62290a1SChad Rosier getDestroyer(dtorKind)); 876f62290a1SChad Rosier cleanup = EHStack.stable_begin(); 877f62290a1SChad Rosier } 878f62290a1SChad Rosier 879f862eb6aSSebastian Redl for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 880f62290a1SChad Rosier // Tell the cleanup that it needs to destroy up to this 881f62290a1SChad Rosier // element. TODO: some of these stores can be trivially 882f62290a1SChad Rosier // observed to be unnecessary. 883f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 884f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 885f862eb6aSSebastian Redl explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 886f862eb6aSSebastian Redl } 887f862eb6aSSebastian Redl 888f862eb6aSSebastian Redl // The remaining elements are filled with the array filler expression. 889f862eb6aSSebastian Redl Init = ILE->getArrayFiller(); 890f862eb6aSSebastian Redl } 891f862eb6aSSebastian Redl 89299210dc9SJohn McCall // Create the continuation block. 89399210dc9SJohn McCall llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 894d5202e09SFariborz Jahanian 895f862eb6aSSebastian Redl // If the number of elements isn't constant, we have to now check if there is 896f862eb6aSSebastian Redl // anything left to initialize. 897f862eb6aSSebastian Redl if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 898f862eb6aSSebastian Redl // If all elements have already been initialized, skip the whole loop. 899f62290a1SChad Rosier if (constNum->getZExtValue() <= initializerElements) { 900f62290a1SChad Rosier // If there was a cleanup, deactivate it. 901f62290a1SChad Rosier if (cleanupDominator) 90276bb5cabSDmitri Gribenko DeactivateCleanupBlock(cleanup, cleanupDominator); 903f62290a1SChad Rosier return; 904f62290a1SChad Rosier } 905f862eb6aSSebastian Redl } else { 90699210dc9SJohn McCall llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 907f862eb6aSSebastian Redl llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 90899210dc9SJohn McCall "array.isempty"); 90999210dc9SJohn McCall Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 91099210dc9SJohn McCall EmitBlock(nonEmptyBB); 91199210dc9SJohn McCall } 912d5202e09SFariborz Jahanian 91399210dc9SJohn McCall // Enter the loop. 91499210dc9SJohn McCall llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 91599210dc9SJohn McCall llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 916d5202e09SFariborz Jahanian 91799210dc9SJohn McCall EmitBlock(loopBB); 918d5202e09SFariborz Jahanian 91999210dc9SJohn McCall // Set up the current-element phi. 92099210dc9SJohn McCall llvm::PHINode *curPtr = 921f862eb6aSSebastian Redl Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 922f862eb6aSSebastian Redl curPtr->addIncoming(explicitPtr, entryBB); 923d5202e09SFariborz Jahanian 924f62290a1SChad Rosier // Store the new cleanup position for irregular cleanups. 925f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 926f62290a1SChad Rosier 92799210dc9SJohn McCall // Enter a partial-destruction cleanup if necessary. 928f62290a1SChad Rosier if (!cleanupDominator && needsEHCleanup(dtorKind)) { 92999210dc9SJohn McCall pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 93099210dc9SJohn McCall getDestroyer(dtorKind)); 93199210dc9SJohn McCall cleanup = EHStack.stable_begin(); 932f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 93399210dc9SJohn McCall } 934d5202e09SFariborz Jahanian 93599210dc9SJohn McCall // Emit the initializer into this element. 936f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 937d5202e09SFariborz Jahanian 93899210dc9SJohn McCall // Leave the cleanup if we entered one. 939de6a86b4SEli Friedman if (cleanupDominator) { 940f4beacd0SJohn McCall DeactivateCleanupBlock(cleanup, cleanupDominator); 941f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 942f4beacd0SJohn McCall } 943d5202e09SFariborz Jahanian 94499210dc9SJohn McCall // Advance to the next element. 94599210dc9SJohn McCall llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 94699210dc9SJohn McCall 94799210dc9SJohn McCall // Check whether we've gotten to the end of the array and, if so, 94899210dc9SJohn McCall // exit the loop. 94999210dc9SJohn McCall llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 95099210dc9SJohn McCall Builder.CreateCondBr(isEnd, contBB, loopBB); 95199210dc9SJohn McCall curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 95299210dc9SJohn McCall 95399210dc9SJohn McCall EmitBlock(contBB); 954d5202e09SFariborz Jahanian } 955d5202e09SFariborz Jahanian 95605fc5be3SDouglas Gregor static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 95705fc5be3SDouglas Gregor llvm::Value *NewPtr, llvm::Value *Size) { 958ad7c5c16SJohn McCall CGF.EmitCastToVoidPtr(NewPtr); 959705ba07eSKen Dyck CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 960acc6b4e2SBenjamin Kramer CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 961705ba07eSKen Dyck Alignment.getQuantity(), false); 96205fc5be3SDouglas Gregor } 96305fc5be3SDouglas Gregor 96459486a2dSAnders Carlsson static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 96599210dc9SJohn McCall QualType ElementType, 96659486a2dSAnders Carlsson llvm::Value *NewPtr, 96705fc5be3SDouglas Gregor llvm::Value *NumElements, 96805fc5be3SDouglas Gregor llvm::Value *AllocSizeWithoutCookie) { 9696047f07eSSebastian Redl const Expr *Init = E->getInitializer(); 9703a202f60SAnders Carlsson if (E->isArray()) { 9716047f07eSSebastian Redl if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 9726047f07eSSebastian Redl CXXConstructorDecl *Ctor = CCE->getConstructor(); 973d153103cSDouglas Gregor if (Ctor->isTrivial()) { 97405fc5be3SDouglas Gregor // If new expression did not specify value-initialization, then there 97505fc5be3SDouglas Gregor // is no initialization. 9766047f07eSSebastian Redl if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 97705fc5be3SDouglas Gregor return; 97805fc5be3SDouglas Gregor 97999210dc9SJohn McCall if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 98005fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 98105fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 98299210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 9833a202f60SAnders Carlsson return; 9843a202f60SAnders Carlsson } 98505fc5be3SDouglas Gregor } 98605fc5be3SDouglas Gregor 98705fc5be3SDouglas Gregor CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 9886047f07eSSebastian Redl CCE->arg_begin(), CCE->arg_end(), 98948ddcf2cSEli Friedman CCE->requiresZeroInitialization()); 99005fc5be3SDouglas Gregor return; 9916047f07eSSebastian Redl } else if (Init && isa<ImplicitValueInitExpr>(Init) && 992de6a86b4SEli Friedman CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 99305fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 99405fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 99599210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 99605fc5be3SDouglas Gregor return; 9976047f07eSSebastian Redl } 99899210dc9SJohn McCall CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 999d5202e09SFariborz Jahanian return; 1000d040e6b2SAnders Carlsson } 100159486a2dSAnders Carlsson 10026047f07eSSebastian Redl if (!Init) 1003b66b08efSFariborz Jahanian return; 100459486a2dSAnders Carlsson 1005f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 100659486a2dSAnders Carlsson } 100759486a2dSAnders Carlsson 1008824c2f53SJohn McCall namespace { 1009824c2f53SJohn McCall /// A cleanup to call the given 'operator delete' function upon 1010824c2f53SJohn McCall /// abnormal exit from a new expression. 1011824c2f53SJohn McCall class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1012824c2f53SJohn McCall size_t NumPlacementArgs; 1013824c2f53SJohn McCall const FunctionDecl *OperatorDelete; 1014824c2f53SJohn McCall llvm::Value *Ptr; 1015824c2f53SJohn McCall llvm::Value *AllocSize; 1016824c2f53SJohn McCall 1017824c2f53SJohn McCall RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1018824c2f53SJohn McCall 1019824c2f53SJohn McCall public: 1020824c2f53SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1021824c2f53SJohn McCall return NumPlacementArgs * sizeof(RValue); 1022824c2f53SJohn McCall } 1023824c2f53SJohn McCall 1024824c2f53SJohn McCall CallDeleteDuringNew(size_t NumPlacementArgs, 1025824c2f53SJohn McCall const FunctionDecl *OperatorDelete, 1026824c2f53SJohn McCall llvm::Value *Ptr, 1027824c2f53SJohn McCall llvm::Value *AllocSize) 1028824c2f53SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1029824c2f53SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 1030824c2f53SJohn McCall 1031824c2f53SJohn McCall void setPlacementArg(unsigned I, RValue Arg) { 1032824c2f53SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 1033824c2f53SJohn McCall getPlacementArgs()[I] = Arg; 1034824c2f53SJohn McCall } 1035824c2f53SJohn McCall 103630317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 1037824c2f53SJohn McCall const FunctionProtoType *FPT 1038824c2f53SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1039824c2f53SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1040d441b1e6SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1041824c2f53SJohn McCall 1042824c2f53SJohn McCall CallArgList DeleteArgs; 1043824c2f53SJohn McCall 1044824c2f53SJohn McCall // The first argument is always a void*. 1045824c2f53SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 104643dca6a8SEli Friedman DeleteArgs.add(RValue::get(Ptr), *AI++); 1047824c2f53SJohn McCall 1048824c2f53SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 1049824c2f53SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) 105043dca6a8SEli Friedman DeleteArgs.add(RValue::get(AllocSize), *AI++); 1051824c2f53SJohn McCall 1052824c2f53SJohn McCall // Pass the rest of the arguments, which must match exactly. 1053824c2f53SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) 105443dca6a8SEli Friedman DeleteArgs.add(getPlacementArgs()[I], *AI++); 1055824c2f53SJohn McCall 1056824c2f53SJohn McCall // Call 'operator delete'. 10578dda7b27SJohn McCall CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 1058824c2f53SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 1059824c2f53SJohn McCall ReturnValueSlot(), DeleteArgs, OperatorDelete); 1060824c2f53SJohn McCall } 1061824c2f53SJohn McCall }; 10627f9c92a9SJohn McCall 10637f9c92a9SJohn McCall /// A cleanup to call the given 'operator delete' function upon 10647f9c92a9SJohn McCall /// abnormal exit from a new expression when the new expression is 10657f9c92a9SJohn McCall /// conditional. 10667f9c92a9SJohn McCall class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 10677f9c92a9SJohn McCall size_t NumPlacementArgs; 10687f9c92a9SJohn McCall const FunctionDecl *OperatorDelete; 1069cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr; 1070cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize; 10717f9c92a9SJohn McCall 1072cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type *getPlacementArgs() { 1073cb5f77f0SJohn McCall return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 10747f9c92a9SJohn McCall } 10757f9c92a9SJohn McCall 10767f9c92a9SJohn McCall public: 10777f9c92a9SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1078cb5f77f0SJohn McCall return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 10797f9c92a9SJohn McCall } 10807f9c92a9SJohn McCall 10817f9c92a9SJohn McCall CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 10827f9c92a9SJohn McCall const FunctionDecl *OperatorDelete, 1083cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr, 1084cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize) 10857f9c92a9SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 10867f9c92a9SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 10877f9c92a9SJohn McCall 1088cb5f77f0SJohn McCall void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 10897f9c92a9SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 10907f9c92a9SJohn McCall getPlacementArgs()[I] = Arg; 10917f9c92a9SJohn McCall } 10927f9c92a9SJohn McCall 109330317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 10947f9c92a9SJohn McCall const FunctionProtoType *FPT 10957f9c92a9SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 10967f9c92a9SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 10977f9c92a9SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 10987f9c92a9SJohn McCall 10997f9c92a9SJohn McCall CallArgList DeleteArgs; 11007f9c92a9SJohn McCall 11017f9c92a9SJohn McCall // The first argument is always a void*. 11027f9c92a9SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 110343dca6a8SEli Friedman DeleteArgs.add(Ptr.restore(CGF), *AI++); 11047f9c92a9SJohn McCall 11057f9c92a9SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 11067f9c92a9SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1107cb5f77f0SJohn McCall RValue RV = AllocSize.restore(CGF); 110843dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 11097f9c92a9SJohn McCall } 11107f9c92a9SJohn McCall 11117f9c92a9SJohn McCall // Pass the rest of the arguments, which must match exactly. 11127f9c92a9SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1113cb5f77f0SJohn McCall RValue RV = getPlacementArgs()[I].restore(CGF); 111443dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 11157f9c92a9SJohn McCall } 11167f9c92a9SJohn McCall 11177f9c92a9SJohn McCall // Call 'operator delete'. 11188dda7b27SJohn McCall CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT), 11197f9c92a9SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 11207f9c92a9SJohn McCall ReturnValueSlot(), DeleteArgs, OperatorDelete); 11217f9c92a9SJohn McCall } 11227f9c92a9SJohn McCall }; 11237f9c92a9SJohn McCall } 11247f9c92a9SJohn McCall 11257f9c92a9SJohn McCall /// Enter a cleanup to call 'operator delete' if the initializer in a 11267f9c92a9SJohn McCall /// new-expression throws. 11277f9c92a9SJohn McCall static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 11287f9c92a9SJohn McCall const CXXNewExpr *E, 11297f9c92a9SJohn McCall llvm::Value *NewPtr, 11307f9c92a9SJohn McCall llvm::Value *AllocSize, 11317f9c92a9SJohn McCall const CallArgList &NewArgs) { 11327f9c92a9SJohn McCall // If we're not inside a conditional branch, then the cleanup will 11337f9c92a9SJohn McCall // dominate and we can do the easier (and more efficient) thing. 11347f9c92a9SJohn McCall if (!CGF.isInConditionalBranch()) { 11357f9c92a9SJohn McCall CallDeleteDuringNew *Cleanup = CGF.EHStack 11367f9c92a9SJohn McCall .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 11377f9c92a9SJohn McCall E->getNumPlacementArgs(), 11387f9c92a9SJohn McCall E->getOperatorDelete(), 11397f9c92a9SJohn McCall NewPtr, AllocSize); 11407f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1141f4258eb4SEli Friedman Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 11427f9c92a9SJohn McCall 11437f9c92a9SJohn McCall return; 11447f9c92a9SJohn McCall } 11457f9c92a9SJohn McCall 11467f9c92a9SJohn McCall // Otherwise, we need to save all this stuff. 1147cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedNewPtr = 1148cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1149cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedAllocSize = 1150cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 11517f9c92a9SJohn McCall 11527f9c92a9SJohn McCall CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1153f4beacd0SJohn McCall .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 11547f9c92a9SJohn McCall E->getNumPlacementArgs(), 11557f9c92a9SJohn McCall E->getOperatorDelete(), 11567f9c92a9SJohn McCall SavedNewPtr, 11577f9c92a9SJohn McCall SavedAllocSize); 11587f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1159cb5f77f0SJohn McCall Cleanup->setPlacementArg(I, 1160f4258eb4SEli Friedman DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 11617f9c92a9SJohn McCall 1162f4beacd0SJohn McCall CGF.initFullExprCleanup(); 1163824c2f53SJohn McCall } 1164824c2f53SJohn McCall 116559486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 116675f9498aSJohn McCall // The element type being allocated. 116775f9498aSJohn McCall QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 11688ed55a54SJohn McCall 116975f9498aSJohn McCall // 1. Build a call to the allocation function. 117075f9498aSJohn McCall FunctionDecl *allocator = E->getOperatorNew(); 117175f9498aSJohn McCall const FunctionProtoType *allocatorType = 117275f9498aSJohn McCall allocator->getType()->castAs<FunctionProtoType>(); 117359486a2dSAnders Carlsson 117475f9498aSJohn McCall CallArgList allocatorArgs; 117559486a2dSAnders Carlsson 117659486a2dSAnders Carlsson // The allocation size is the first argument. 117775f9498aSJohn McCall QualType sizeType = getContext().getSizeType(); 117859486a2dSAnders Carlsson 1179f862eb6aSSebastian Redl // If there is a brace-initializer, cannot allocate fewer elements than inits. 1180f862eb6aSSebastian Redl unsigned minElements = 0; 1181f862eb6aSSebastian Redl if (E->isArray() && E->hasInitializer()) { 1182f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1183f862eb6aSSebastian Redl minElements = ILE->getNumInits(); 1184f862eb6aSSebastian Redl } 1185f862eb6aSSebastian Redl 118675f9498aSJohn McCall llvm::Value *numElements = 0; 118775f9498aSJohn McCall llvm::Value *allocSizeWithoutCookie = 0; 118875f9498aSJohn McCall llvm::Value *allocSize = 1189f862eb6aSSebastian Redl EmitCXXNewAllocSize(*this, E, minElements, numElements, 1190f862eb6aSSebastian Redl allocSizeWithoutCookie); 119159486a2dSAnders Carlsson 119243dca6a8SEli Friedman allocatorArgs.add(RValue::get(allocSize), sizeType); 119359486a2dSAnders Carlsson 119459486a2dSAnders Carlsson // Emit the rest of the arguments. 119559486a2dSAnders Carlsson // FIXME: Ideally, this should just use EmitCallArgs. 119675f9498aSJohn McCall CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 119759486a2dSAnders Carlsson 119859486a2dSAnders Carlsson // First, use the types from the function type. 119959486a2dSAnders Carlsson // We start at 1 here because the first argument (the allocation size) 120059486a2dSAnders Carlsson // has already been emitted. 120175f9498aSJohn McCall for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 120275f9498aSJohn McCall ++i, ++placementArg) { 120375f9498aSJohn McCall QualType argType = allocatorType->getArgType(i); 120459486a2dSAnders Carlsson 120575f9498aSJohn McCall assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 120675f9498aSJohn McCall placementArg->getType()) && 120759486a2dSAnders Carlsson "type mismatch in call argument!"); 120859486a2dSAnders Carlsson 120932ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, argType); 121059486a2dSAnders Carlsson } 121159486a2dSAnders Carlsson 121259486a2dSAnders Carlsson // Either we've emitted all the call args, or we have a call to a 121359486a2dSAnders Carlsson // variadic function. 121475f9498aSJohn McCall assert((placementArg == E->placement_arg_end() || 121575f9498aSJohn McCall allocatorType->isVariadic()) && 121675f9498aSJohn McCall "Extra arguments to non-variadic function!"); 121759486a2dSAnders Carlsson 121859486a2dSAnders Carlsson // If we still have any arguments, emit them using the type of the argument. 121975f9498aSJohn McCall for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 122075f9498aSJohn McCall placementArg != placementArgsEnd; ++placementArg) { 122132ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 122259486a2dSAnders Carlsson } 122359486a2dSAnders Carlsson 12247ec4b434SJohn McCall // Emit the allocation call. If the allocator is a global placement 12257ec4b434SJohn McCall // operator, just "inline" it directly. 12267ec4b434SJohn McCall RValue RV; 12277ec4b434SJohn McCall if (allocator->isReservedGlobalPlacementOperator()) { 12287ec4b434SJohn McCall assert(allocatorArgs.size() == 2); 12297ec4b434SJohn McCall RV = allocatorArgs[1].RV; 12307ec4b434SJohn McCall // TODO: kill any unnecessary computations done for the size 12317ec4b434SJohn McCall // argument. 12327ec4b434SJohn McCall } else { 12338dda7b27SJohn McCall RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs, 1234a729c62bSJohn McCall allocatorType), 123575f9498aSJohn McCall CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 123675f9498aSJohn McCall allocatorArgs, allocator); 12377ec4b434SJohn McCall } 123859486a2dSAnders Carlsson 123975f9498aSJohn McCall // Emit a null check on the allocation result if the allocation 124075f9498aSJohn McCall // function is allowed to return null (because it has a non-throwing 124175f9498aSJohn McCall // exception spec; for this part, we inline 124275f9498aSJohn McCall // CXXNewExpr::shouldNullCheckAllocation()) and we have an 124375f9498aSJohn McCall // interesting initializer. 124431ad754cSSebastian Redl bool nullCheck = allocatorType->isNothrow(getContext()) && 12456047f07eSSebastian Redl (!allocType.isPODType(getContext()) || E->hasInitializer()); 124659486a2dSAnders Carlsson 124775f9498aSJohn McCall llvm::BasicBlock *nullCheckBB = 0; 124875f9498aSJohn McCall llvm::BasicBlock *contBB = 0; 124959486a2dSAnders Carlsson 125075f9498aSJohn McCall llvm::Value *allocation = RV.getScalarVal(); 1251ea2fea2aSMicah Villmow unsigned AS = allocation->getType()->getPointerAddressSpace(); 125259486a2dSAnders Carlsson 1253f7dcf320SJohn McCall // The null-check means that the initializer is conditionally 1254f7dcf320SJohn McCall // evaluated. 1255f7dcf320SJohn McCall ConditionalEvaluation conditional(*this); 1256f7dcf320SJohn McCall 125775f9498aSJohn McCall if (nullCheck) { 1258f7dcf320SJohn McCall conditional.begin(*this); 125975f9498aSJohn McCall 126075f9498aSJohn McCall nullCheckBB = Builder.GetInsertBlock(); 126175f9498aSJohn McCall llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 126275f9498aSJohn McCall contBB = createBasicBlock("new.cont"); 126375f9498aSJohn McCall 126475f9498aSJohn McCall llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 126575f9498aSJohn McCall Builder.CreateCondBr(isNull, contBB, notNullBB); 126675f9498aSJohn McCall EmitBlock(notNullBB); 126759486a2dSAnders Carlsson } 126859486a2dSAnders Carlsson 1269824c2f53SJohn McCall // If there's an operator delete, enter a cleanup to call it if an 1270824c2f53SJohn McCall // exception is thrown. 127175f9498aSJohn McCall EHScopeStack::stable_iterator operatorDeleteCleanup; 1272f4beacd0SJohn McCall llvm::Instruction *cleanupDominator = 0; 12737ec4b434SJohn McCall if (E->getOperatorDelete() && 12747ec4b434SJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 127575f9498aSJohn McCall EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 127675f9498aSJohn McCall operatorDeleteCleanup = EHStack.stable_begin(); 1277f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 1278824c2f53SJohn McCall } 1279824c2f53SJohn McCall 1280cf9b1f65SEli Friedman assert((allocSize == allocSizeWithoutCookie) == 1281cf9b1f65SEli Friedman CalculateCookiePadding(*this, E).isZero()); 1282cf9b1f65SEli Friedman if (allocSize != allocSizeWithoutCookie) { 1283cf9b1f65SEli Friedman assert(E->isArray()); 1284cf9b1f65SEli Friedman allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1285cf9b1f65SEli Friedman numElements, 1286cf9b1f65SEli Friedman E, allocType); 1287cf9b1f65SEli Friedman } 1288cf9b1f65SEli Friedman 12892192fe50SChris Lattner llvm::Type *elementPtrTy 129075f9498aSJohn McCall = ConvertTypeForMem(allocType)->getPointerTo(AS); 129175f9498aSJohn McCall llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1292824c2f53SJohn McCall 129399210dc9SJohn McCall EmitNewInitializer(*this, E, allocType, result, numElements, 129499210dc9SJohn McCall allocSizeWithoutCookie); 12958ed55a54SJohn McCall if (E->isArray()) { 12968ed55a54SJohn McCall // NewPtr is a pointer to the base element type. If we're 12978ed55a54SJohn McCall // allocating an array of arrays, we'll need to cast back to the 12988ed55a54SJohn McCall // array pointer type. 12992192fe50SChris Lattner llvm::Type *resultType = ConvertTypeForMem(E->getType()); 130075f9498aSJohn McCall if (result->getType() != resultType) 130175f9498aSJohn McCall result = Builder.CreateBitCast(result, resultType); 130247b4629bSFariborz Jahanian } 130359486a2dSAnders Carlsson 1304824c2f53SJohn McCall // Deactivate the 'operator delete' cleanup if we finished 1305824c2f53SJohn McCall // initialization. 1306f4beacd0SJohn McCall if (operatorDeleteCleanup.isValid()) { 1307f4beacd0SJohn McCall DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1308f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 1309f4beacd0SJohn McCall } 1310824c2f53SJohn McCall 131175f9498aSJohn McCall if (nullCheck) { 1312f7dcf320SJohn McCall conditional.end(*this); 1313f7dcf320SJohn McCall 131475f9498aSJohn McCall llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 131575f9498aSJohn McCall EmitBlock(contBB); 131659486a2dSAnders Carlsson 131720c0f02cSJay Foad llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 131875f9498aSJohn McCall PHI->addIncoming(result, notNullBB); 131975f9498aSJohn McCall PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 132075f9498aSJohn McCall nullCheckBB); 132159486a2dSAnders Carlsson 132275f9498aSJohn McCall result = PHI; 132359486a2dSAnders Carlsson } 132459486a2dSAnders Carlsson 132575f9498aSJohn McCall return result; 132659486a2dSAnders Carlsson } 132759486a2dSAnders Carlsson 132859486a2dSAnders Carlsson void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 132959486a2dSAnders Carlsson llvm::Value *Ptr, 133059486a2dSAnders Carlsson QualType DeleteTy) { 13318ed55a54SJohn McCall assert(DeleteFD->getOverloadedOperator() == OO_Delete); 13328ed55a54SJohn McCall 133359486a2dSAnders Carlsson const FunctionProtoType *DeleteFTy = 133459486a2dSAnders Carlsson DeleteFD->getType()->getAs<FunctionProtoType>(); 133559486a2dSAnders Carlsson 133659486a2dSAnders Carlsson CallArgList DeleteArgs; 133759486a2dSAnders Carlsson 133821122cf6SAnders Carlsson // Check if we need to pass the size to the delete operator. 133921122cf6SAnders Carlsson llvm::Value *Size = 0; 134021122cf6SAnders Carlsson QualType SizeTy; 134121122cf6SAnders Carlsson if (DeleteFTy->getNumArgs() == 2) { 134221122cf6SAnders Carlsson SizeTy = DeleteFTy->getArgType(1); 13437df3cbebSKen Dyck CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 13447df3cbebSKen Dyck Size = llvm::ConstantInt::get(ConvertType(SizeTy), 13457df3cbebSKen Dyck DeleteTypeSize.getQuantity()); 134621122cf6SAnders Carlsson } 134721122cf6SAnders Carlsson 134859486a2dSAnders Carlsson QualType ArgTy = DeleteFTy->getArgType(0); 134959486a2dSAnders Carlsson llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 135043dca6a8SEli Friedman DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 135159486a2dSAnders Carlsson 135221122cf6SAnders Carlsson if (Size) 135343dca6a8SEli Friedman DeleteArgs.add(RValue::get(Size), SizeTy); 135459486a2dSAnders Carlsson 135559486a2dSAnders Carlsson // Emit the call to delete. 13568dda7b27SJohn McCall EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy), 135761a401caSAnders Carlsson CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 135859486a2dSAnders Carlsson DeleteArgs, DeleteFD); 135959486a2dSAnders Carlsson } 136059486a2dSAnders Carlsson 13618ed55a54SJohn McCall namespace { 13628ed55a54SJohn McCall /// Calls the given 'operator delete' on a single object. 13638ed55a54SJohn McCall struct CallObjectDelete : EHScopeStack::Cleanup { 13648ed55a54SJohn McCall llvm::Value *Ptr; 13658ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 13668ed55a54SJohn McCall QualType ElementType; 13678ed55a54SJohn McCall 13688ed55a54SJohn McCall CallObjectDelete(llvm::Value *Ptr, 13698ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13708ed55a54SJohn McCall QualType ElementType) 13718ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 13728ed55a54SJohn McCall 137330317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 13748ed55a54SJohn McCall CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 13758ed55a54SJohn McCall } 13768ed55a54SJohn McCall }; 13778ed55a54SJohn McCall } 13788ed55a54SJohn McCall 13798ed55a54SJohn McCall /// Emit the code for deleting a single object. 13808ed55a54SJohn McCall static void EmitObjectDelete(CodeGenFunction &CGF, 13818ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13828ed55a54SJohn McCall llvm::Value *Ptr, 13831c2e20d7SDouglas Gregor QualType ElementType, 13841c2e20d7SDouglas Gregor bool UseGlobalDelete) { 13858ed55a54SJohn McCall // Find the destructor for the type, if applicable. If the 13868ed55a54SJohn McCall // destructor is virtual, we'll just emit the vcall and return. 13878ed55a54SJohn McCall const CXXDestructorDecl *Dtor = 0; 13888ed55a54SJohn McCall if (const RecordType *RT = ElementType->getAs<RecordType>()) { 13898ed55a54SJohn McCall CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1390b23533dbSEli Friedman if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 13918ed55a54SJohn McCall Dtor = RD->getDestructor(); 13928ed55a54SJohn McCall 13938ed55a54SJohn McCall if (Dtor->isVirtual()) { 13941c2e20d7SDouglas Gregor if (UseGlobalDelete) { 13951c2e20d7SDouglas Gregor // If we're supposed to call the global delete, make sure we do so 13961c2e20d7SDouglas Gregor // even if the destructor throws. 139782fb8920SJohn McCall 139882fb8920SJohn McCall // Derive the complete-object pointer, which is what we need 139982fb8920SJohn McCall // to pass to the deallocation function. 140082fb8920SJohn McCall llvm::Value *completePtr = 140182fb8920SJohn McCall CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 140282fb8920SJohn McCall 14031c2e20d7SDouglas Gregor CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 140482fb8920SJohn McCall completePtr, OperatorDelete, 14051c2e20d7SDouglas Gregor ElementType); 14061c2e20d7SDouglas Gregor } 14071c2e20d7SDouglas Gregor 1408e30752c9SRichard Smith // FIXME: Provide a source location here. 1409d619711cSTimur Iskhodzhanov CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1410d619711cSTimur Iskhodzhanov CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 1411d619711cSTimur Iskhodzhanov SourceLocation(), 1412d619711cSTimur Iskhodzhanov ReturnValueSlot(), Ptr); 14138ed55a54SJohn McCall 14141c2e20d7SDouglas Gregor if (UseGlobalDelete) { 14151c2e20d7SDouglas Gregor CGF.PopCleanupBlock(); 14161c2e20d7SDouglas Gregor } 14171c2e20d7SDouglas Gregor 14188ed55a54SJohn McCall return; 14198ed55a54SJohn McCall } 14208ed55a54SJohn McCall } 14218ed55a54SJohn McCall } 14228ed55a54SJohn McCall 14238ed55a54SJohn McCall // Make sure that we call delete even if the dtor throws. 1424e4df6c8dSJohn McCall // This doesn't have to a conditional cleanup because we're going 1425e4df6c8dSJohn McCall // to pop it off in a second. 14268ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 14278ed55a54SJohn McCall Ptr, OperatorDelete, ElementType); 14288ed55a54SJohn McCall 14298ed55a54SJohn McCall if (Dtor) 14308ed55a54SJohn McCall CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 143161535005SDouglas Gregor /*ForVirtualBase=*/false, 143261535005SDouglas Gregor /*Delegating=*/false, 143361535005SDouglas Gregor Ptr); 1434bbafb8a7SDavid Blaikie else if (CGF.getLangOpts().ObjCAutoRefCount && 143531168b07SJohn McCall ElementType->isObjCLifetimeType()) { 143631168b07SJohn McCall switch (ElementType.getObjCLifetime()) { 143731168b07SJohn McCall case Qualifiers::OCL_None: 143831168b07SJohn McCall case Qualifiers::OCL_ExplicitNone: 143931168b07SJohn McCall case Qualifiers::OCL_Autoreleasing: 144031168b07SJohn McCall break; 144131168b07SJohn McCall 144231168b07SJohn McCall case Qualifiers::OCL_Strong: { 144331168b07SJohn McCall // Load the pointer value. 144431168b07SJohn McCall llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 144531168b07SJohn McCall ElementType.isVolatileQualified()); 144631168b07SJohn McCall 144731168b07SJohn McCall CGF.EmitARCRelease(PtrValue, /*precise*/ true); 144831168b07SJohn McCall break; 144931168b07SJohn McCall } 145031168b07SJohn McCall 145131168b07SJohn McCall case Qualifiers::OCL_Weak: 145231168b07SJohn McCall CGF.EmitARCDestroyWeak(Ptr); 145331168b07SJohn McCall break; 145431168b07SJohn McCall } 145531168b07SJohn McCall } 14568ed55a54SJohn McCall 14578ed55a54SJohn McCall CGF.PopCleanupBlock(); 14588ed55a54SJohn McCall } 14598ed55a54SJohn McCall 14608ed55a54SJohn McCall namespace { 14618ed55a54SJohn McCall /// Calls the given 'operator delete' on an array of objects. 14628ed55a54SJohn McCall struct CallArrayDelete : EHScopeStack::Cleanup { 14638ed55a54SJohn McCall llvm::Value *Ptr; 14648ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 14658ed55a54SJohn McCall llvm::Value *NumElements; 14668ed55a54SJohn McCall QualType ElementType; 14678ed55a54SJohn McCall CharUnits CookieSize; 14688ed55a54SJohn McCall 14698ed55a54SJohn McCall CallArrayDelete(llvm::Value *Ptr, 14708ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 14718ed55a54SJohn McCall llvm::Value *NumElements, 14728ed55a54SJohn McCall QualType ElementType, 14738ed55a54SJohn McCall CharUnits CookieSize) 14748ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 14758ed55a54SJohn McCall ElementType(ElementType), CookieSize(CookieSize) {} 14768ed55a54SJohn McCall 147730317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 14788ed55a54SJohn McCall const FunctionProtoType *DeleteFTy = 14798ed55a54SJohn McCall OperatorDelete->getType()->getAs<FunctionProtoType>(); 14808ed55a54SJohn McCall assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 14818ed55a54SJohn McCall 14828ed55a54SJohn McCall CallArgList Args; 14838ed55a54SJohn McCall 14848ed55a54SJohn McCall // Pass the pointer as the first argument. 14858ed55a54SJohn McCall QualType VoidPtrTy = DeleteFTy->getArgType(0); 14868ed55a54SJohn McCall llvm::Value *DeletePtr 14878ed55a54SJohn McCall = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 148843dca6a8SEli Friedman Args.add(RValue::get(DeletePtr), VoidPtrTy); 14898ed55a54SJohn McCall 14908ed55a54SJohn McCall // Pass the original requested size as the second argument. 14918ed55a54SJohn McCall if (DeleteFTy->getNumArgs() == 2) { 14928ed55a54SJohn McCall QualType size_t = DeleteFTy->getArgType(1); 14932192fe50SChris Lattner llvm::IntegerType *SizeTy 14948ed55a54SJohn McCall = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 14958ed55a54SJohn McCall 14968ed55a54SJohn McCall CharUnits ElementTypeSize = 14978ed55a54SJohn McCall CGF.CGM.getContext().getTypeSizeInChars(ElementType); 14988ed55a54SJohn McCall 14998ed55a54SJohn McCall // The size of an element, multiplied by the number of elements. 15008ed55a54SJohn McCall llvm::Value *Size 15018ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 15028ed55a54SJohn McCall Size = CGF.Builder.CreateMul(Size, NumElements); 15038ed55a54SJohn McCall 15048ed55a54SJohn McCall // Plus the size of the cookie if applicable. 15058ed55a54SJohn McCall if (!CookieSize.isZero()) { 15068ed55a54SJohn McCall llvm::Value *CookieSizeV 15078ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 15088ed55a54SJohn McCall Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 15098ed55a54SJohn McCall } 15108ed55a54SJohn McCall 151143dca6a8SEli Friedman Args.add(RValue::get(Size), size_t); 15128ed55a54SJohn McCall } 15138ed55a54SJohn McCall 15148ed55a54SJohn McCall // Emit the call to delete. 15158dda7b27SJohn McCall CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy), 15168ed55a54SJohn McCall CGF.CGM.GetAddrOfFunction(OperatorDelete), 15178ed55a54SJohn McCall ReturnValueSlot(), Args, OperatorDelete); 15188ed55a54SJohn McCall } 15198ed55a54SJohn McCall }; 15208ed55a54SJohn McCall } 15218ed55a54SJohn McCall 15228ed55a54SJohn McCall /// Emit the code for deleting an array of objects. 15238ed55a54SJohn McCall static void EmitArrayDelete(CodeGenFunction &CGF, 1524284c48ffSJohn McCall const CXXDeleteExpr *E, 1525ca2c56f2SJohn McCall llvm::Value *deletedPtr, 1526ca2c56f2SJohn McCall QualType elementType) { 1527ca2c56f2SJohn McCall llvm::Value *numElements = 0; 1528ca2c56f2SJohn McCall llvm::Value *allocatedPtr = 0; 1529ca2c56f2SJohn McCall CharUnits cookieSize; 1530ca2c56f2SJohn McCall CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1531ca2c56f2SJohn McCall numElements, allocatedPtr, cookieSize); 15328ed55a54SJohn McCall 1533ca2c56f2SJohn McCall assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 15348ed55a54SJohn McCall 15358ed55a54SJohn McCall // Make sure that we call delete even if one of the dtors throws. 1536ca2c56f2SJohn McCall const FunctionDecl *operatorDelete = E->getOperatorDelete(); 15378ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1538ca2c56f2SJohn McCall allocatedPtr, operatorDelete, 1539ca2c56f2SJohn McCall numElements, elementType, 1540ca2c56f2SJohn McCall cookieSize); 15418ed55a54SJohn McCall 1542ca2c56f2SJohn McCall // Destroy the elements. 1543ca2c56f2SJohn McCall if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1544ca2c56f2SJohn McCall assert(numElements && "no element count for a type with a destructor!"); 154531168b07SJohn McCall 1546ca2c56f2SJohn McCall llvm::Value *arrayEnd = 1547ca2c56f2SJohn McCall CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 154897eab0a2SJohn McCall 154997eab0a2SJohn McCall // Note that it is legal to allocate a zero-length array, and we 155097eab0a2SJohn McCall // can never fold the check away because the length should always 155197eab0a2SJohn McCall // come from a cookie. 1552ca2c56f2SJohn McCall CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1553ca2c56f2SJohn McCall CGF.getDestroyer(dtorKind), 155497eab0a2SJohn McCall /*checkZeroLength*/ true, 1555ca2c56f2SJohn McCall CGF.needsEHCleanup(dtorKind)); 15568ed55a54SJohn McCall } 15578ed55a54SJohn McCall 1558ca2c56f2SJohn McCall // Pop the cleanup block. 15598ed55a54SJohn McCall CGF.PopCleanupBlock(); 15608ed55a54SJohn McCall } 15618ed55a54SJohn McCall 156259486a2dSAnders Carlsson void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 156359486a2dSAnders Carlsson const Expr *Arg = E->getArgument(); 156459486a2dSAnders Carlsson llvm::Value *Ptr = EmitScalarExpr(Arg); 156559486a2dSAnders Carlsson 156659486a2dSAnders Carlsson // Null check the pointer. 156759486a2dSAnders Carlsson llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 156859486a2dSAnders Carlsson llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 156959486a2dSAnders Carlsson 157098981b10SAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 157159486a2dSAnders Carlsson 157259486a2dSAnders Carlsson Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 157359486a2dSAnders Carlsson EmitBlock(DeleteNotNull); 157459486a2dSAnders Carlsson 15758ed55a54SJohn McCall // We might be deleting a pointer to array. If so, GEP down to the 15768ed55a54SJohn McCall // first non-array element. 15778ed55a54SJohn McCall // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 15788ed55a54SJohn McCall QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 15798ed55a54SJohn McCall if (DeleteTy->isConstantArrayType()) { 15808ed55a54SJohn McCall llvm::Value *Zero = Builder.getInt32(0); 15810e62c1ccSChris Lattner SmallVector<llvm::Value*,8> GEP; 158259486a2dSAnders Carlsson 15838ed55a54SJohn McCall GEP.push_back(Zero); // point at the outermost array 15848ed55a54SJohn McCall 15858ed55a54SJohn McCall // For each layer of array type we're pointing at: 15868ed55a54SJohn McCall while (const ConstantArrayType *Arr 15878ed55a54SJohn McCall = getContext().getAsConstantArrayType(DeleteTy)) { 15888ed55a54SJohn McCall // 1. Unpeel the array type. 15898ed55a54SJohn McCall DeleteTy = Arr->getElementType(); 15908ed55a54SJohn McCall 15918ed55a54SJohn McCall // 2. GEP to the first element of the array. 15928ed55a54SJohn McCall GEP.push_back(Zero); 15938ed55a54SJohn McCall } 15948ed55a54SJohn McCall 1595040dd82fSJay Foad Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 15968ed55a54SJohn McCall } 15978ed55a54SJohn McCall 159804f36218SDouglas Gregor assert(ConvertTypeForMem(DeleteTy) == 159904f36218SDouglas Gregor cast<llvm::PointerType>(Ptr->getType())->getElementType()); 16008ed55a54SJohn McCall 160159486a2dSAnders Carlsson if (E->isArrayForm()) { 1602284c48ffSJohn McCall EmitArrayDelete(*this, E, Ptr, DeleteTy); 16038ed55a54SJohn McCall } else { 16041c2e20d7SDouglas Gregor EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 16051c2e20d7SDouglas Gregor E->isGlobalDelete()); 160659486a2dSAnders Carlsson } 160759486a2dSAnders Carlsson 160859486a2dSAnders Carlsson EmitBlock(DeleteEnd); 160959486a2dSAnders Carlsson } 161059486a2dSAnders Carlsson 16110c63350bSAnders Carlsson static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 16120c63350bSAnders Carlsson // void __cxa_bad_typeid(); 1613ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 16140c63350bSAnders Carlsson 16150c63350bSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 16160c63350bSAnders Carlsson } 16170c63350bSAnders Carlsson 16180c63350bSAnders Carlsson static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1619bbe277c4SAnders Carlsson llvm::Value *Fn = getBadTypeidFn(CGF); 1620*882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 16210c63350bSAnders Carlsson CGF.Builder.CreateUnreachable(); 16220c63350bSAnders Carlsson } 16230c63350bSAnders Carlsson 1624940f02d2SAnders Carlsson static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1625940f02d2SAnders Carlsson const Expr *E, 16262192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy) { 1627940f02d2SAnders Carlsson // Get the vtable pointer. 1628940f02d2SAnders Carlsson llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1629940f02d2SAnders Carlsson 1630940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1631940f02d2SAnders Carlsson // If the glvalue expression is obtained by applying the unary * operator to 1632940f02d2SAnders Carlsson // a pointer and the pointer is a null pointer value, the typeid expression 1633940f02d2SAnders Carlsson // throws the std::bad_typeid exception. 1634940f02d2SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1635940f02d2SAnders Carlsson if (UO->getOpcode() == UO_Deref) { 1636940f02d2SAnders Carlsson llvm::BasicBlock *BadTypeidBlock = 1637940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.bad_typeid"); 1638940f02d2SAnders Carlsson llvm::BasicBlock *EndBlock = 1639940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.end"); 1640940f02d2SAnders Carlsson 1641940f02d2SAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1642940f02d2SAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1643940f02d2SAnders Carlsson 1644940f02d2SAnders Carlsson CGF.EmitBlock(BadTypeidBlock); 1645940f02d2SAnders Carlsson EmitBadTypeidCall(CGF); 1646940f02d2SAnders Carlsson CGF.EmitBlock(EndBlock); 1647940f02d2SAnders Carlsson } 1648940f02d2SAnders Carlsson } 1649940f02d2SAnders Carlsson 1650940f02d2SAnders Carlsson llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1651940f02d2SAnders Carlsson StdTypeInfoPtrTy->getPointerTo()); 1652940f02d2SAnders Carlsson 1653940f02d2SAnders Carlsson // Load the type info. 1654940f02d2SAnders Carlsson Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1655940f02d2SAnders Carlsson return CGF.Builder.CreateLoad(Value); 1656940f02d2SAnders Carlsson } 1657940f02d2SAnders Carlsson 165859486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 16592192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy = 1660940f02d2SAnders Carlsson ConvertType(E->getType())->getPointerTo(); 1661fd7dfeb7SAnders Carlsson 16623f4336cbSAnders Carlsson if (E->isTypeOperand()) { 16633f4336cbSAnders Carlsson llvm::Constant *TypeInfo = 16643f4336cbSAnders Carlsson CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1665940f02d2SAnders Carlsson return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 16663f4336cbSAnders Carlsson } 1667fd7dfeb7SAnders Carlsson 1668940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1669940f02d2SAnders Carlsson // When typeid is applied to a glvalue expression whose type is a 1670940f02d2SAnders Carlsson // polymorphic class type, the result refers to a std::type_info object 1671940f02d2SAnders Carlsson // representing the type of the most derived object (that is, the dynamic 1672940f02d2SAnders Carlsson // type) to which the glvalue refers. 1673ef8bf436SRichard Smith if (E->isPotentiallyEvaluated()) 1674940f02d2SAnders Carlsson return EmitTypeidFromVTable(*this, E->getExprOperand(), 1675940f02d2SAnders Carlsson StdTypeInfoPtrTy); 1676940f02d2SAnders Carlsson 1677940f02d2SAnders Carlsson QualType OperandTy = E->getExprOperand()->getType(); 1678940f02d2SAnders Carlsson return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1679940f02d2SAnders Carlsson StdTypeInfoPtrTy); 168059486a2dSAnders Carlsson } 168159486a2dSAnders Carlsson 1682882d790fSAnders Carlsson static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1683882d790fSAnders Carlsson // void *__dynamic_cast(const void *sub, 1684882d790fSAnders Carlsson // const abi::__class_type_info *src, 1685882d790fSAnders Carlsson // const abi::__class_type_info *dst, 1686882d790fSAnders Carlsson // std::ptrdiff_t src2dst_offset); 1687882d790fSAnders Carlsson 1688ece0409aSChris Lattner llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1689a5f58b05SChris Lattner llvm::Type *PtrDiffTy = 1690882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1691882d790fSAnders Carlsson 1692a5f58b05SChris Lattner llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1693882d790fSAnders Carlsson 1694b5206330SBenjamin Kramer llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); 1695882d790fSAnders Carlsson 1696b5206330SBenjamin Kramer // Mark the function as nounwind readonly. 1697b5206330SBenjamin Kramer llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, 1698b5206330SBenjamin Kramer llvm::Attribute::ReadOnly }; 1699b5206330SBenjamin Kramer llvm::AttributeSet Attrs = llvm::AttributeSet::get( 1700b5206330SBenjamin Kramer CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); 1701b5206330SBenjamin Kramer 1702b5206330SBenjamin Kramer return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); 1703882d790fSAnders Carlsson } 1704882d790fSAnders Carlsson 1705882d790fSAnders Carlsson static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1706882d790fSAnders Carlsson // void __cxa_bad_cast(); 1707ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1708882d790fSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1709882d790fSAnders Carlsson } 1710882d790fSAnders Carlsson 1711c1c9971cSAnders Carlsson static void EmitBadCastCall(CodeGenFunction &CGF) { 1712bbe277c4SAnders Carlsson llvm::Value *Fn = getBadCastFn(CGF); 1713*882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1714c1c9971cSAnders Carlsson CGF.Builder.CreateUnreachable(); 1715c1c9971cSAnders Carlsson } 1716c1c9971cSAnders Carlsson 1717d9c8455aSBenjamin Kramer /// \brief Compute the src2dst_offset hint as described in the 1718d9c8455aSBenjamin Kramer /// Itanium C++ ABI [2.9.7] 1719d9c8455aSBenjamin Kramer static CharUnits computeOffsetHint(ASTContext &Context, 1720d9c8455aSBenjamin Kramer const CXXRecordDecl *Src, 1721d9c8455aSBenjamin Kramer const CXXRecordDecl *Dst) { 1722d9c8455aSBenjamin Kramer CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1723d9c8455aSBenjamin Kramer /*DetectVirtual=*/false); 1724d9c8455aSBenjamin Kramer 1725d9c8455aSBenjamin Kramer // If Dst is not derived from Src we can skip the whole computation below and 1726d9c8455aSBenjamin Kramer // return that Src is not a public base of Dst. Record all inheritance paths. 1727d9c8455aSBenjamin Kramer if (!Dst->isDerivedFrom(Src, Paths)) 1728d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1729d9c8455aSBenjamin Kramer 1730d9c8455aSBenjamin Kramer unsigned NumPublicPaths = 0; 1731d9c8455aSBenjamin Kramer CharUnits Offset; 1732d9c8455aSBenjamin Kramer 1733d9c8455aSBenjamin Kramer // Now walk all possible inheritance paths. 1734d9c8455aSBenjamin Kramer for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); 1735d9c8455aSBenjamin Kramer I != E; ++I) { 1736d9c8455aSBenjamin Kramer if (I->Access != AS_public) // Ignore non-public inheritance. 1737d9c8455aSBenjamin Kramer continue; 1738d9c8455aSBenjamin Kramer 1739d9c8455aSBenjamin Kramer ++NumPublicPaths; 1740d9c8455aSBenjamin Kramer 1741d9c8455aSBenjamin Kramer for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 1742d9c8455aSBenjamin Kramer // If the path contains a virtual base class we can't give any hint. 1743d9c8455aSBenjamin Kramer // -1: no hint. 1744d9c8455aSBenjamin Kramer if (J->Base->isVirtual()) 1745d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-1ULL); 1746d9c8455aSBenjamin Kramer 1747d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) // Won't use offsets, skip computation. 1748d9c8455aSBenjamin Kramer continue; 1749d9c8455aSBenjamin Kramer 1750d9c8455aSBenjamin Kramer // Accumulate the base class offsets. 1751d9c8455aSBenjamin Kramer const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); 1752d9c8455aSBenjamin Kramer Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); 1753d9c8455aSBenjamin Kramer } 1754d9c8455aSBenjamin Kramer } 1755d9c8455aSBenjamin Kramer 1756d9c8455aSBenjamin Kramer // -2: Src is not a public base of Dst. 1757d9c8455aSBenjamin Kramer if (NumPublicPaths == 0) 1758d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1759d9c8455aSBenjamin Kramer 1760d9c8455aSBenjamin Kramer // -3: Src is a multiple public base type but never a virtual base type. 1761d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) 1762d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-3ULL); 1763d9c8455aSBenjamin Kramer 1764d9c8455aSBenjamin Kramer // Otherwise, the Src type is a unique public nonvirtual base type of Dst. 1765d9c8455aSBenjamin Kramer // Return the offset of Src from the origin of Dst. 1766d9c8455aSBenjamin Kramer return Offset; 1767d9c8455aSBenjamin Kramer } 1768d9c8455aSBenjamin Kramer 1769882d790fSAnders Carlsson static llvm::Value * 1770882d790fSAnders Carlsson EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1771882d790fSAnders Carlsson QualType SrcTy, QualType DestTy, 1772882d790fSAnders Carlsson llvm::BasicBlock *CastEnd) { 17732192fe50SChris Lattner llvm::Type *PtrDiffLTy = 1774882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 17752192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1776882d790fSAnders Carlsson 1777882d790fSAnders Carlsson if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1778882d790fSAnders Carlsson if (PTy->getPointeeType()->isVoidType()) { 1779882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p7: 1780882d790fSAnders Carlsson // If T is "pointer to cv void," then the result is a pointer to the 1781882d790fSAnders Carlsson // most derived object pointed to by v. 1782882d790fSAnders Carlsson 1783882d790fSAnders Carlsson // Get the vtable pointer. 1784882d790fSAnders Carlsson llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1785882d790fSAnders Carlsson 1786882d790fSAnders Carlsson // Get the offset-to-top from the vtable. 1787882d790fSAnders Carlsson llvm::Value *OffsetToTop = 1788882d790fSAnders Carlsson CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1789882d790fSAnders Carlsson OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1790882d790fSAnders Carlsson 1791882d790fSAnders Carlsson // Finally, add the offset to the pointer. 1792882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1793882d790fSAnders Carlsson Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1794882d790fSAnders Carlsson 1795882d790fSAnders Carlsson return CGF.Builder.CreateBitCast(Value, DestLTy); 1796882d790fSAnders Carlsson } 1797882d790fSAnders Carlsson } 1798882d790fSAnders Carlsson 1799882d790fSAnders Carlsson QualType SrcRecordTy; 1800882d790fSAnders Carlsson QualType DestRecordTy; 1801882d790fSAnders Carlsson 1802882d790fSAnders Carlsson if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1803882d790fSAnders Carlsson SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1804882d790fSAnders Carlsson DestRecordTy = DestPTy->getPointeeType(); 1805882d790fSAnders Carlsson } else { 1806882d790fSAnders Carlsson SrcRecordTy = SrcTy; 1807882d790fSAnders Carlsson DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1808882d790fSAnders Carlsson } 1809882d790fSAnders Carlsson 1810882d790fSAnders Carlsson assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1811882d790fSAnders Carlsson assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1812882d790fSAnders Carlsson 1813882d790fSAnders Carlsson llvm::Value *SrcRTTI = 1814882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1815882d790fSAnders Carlsson llvm::Value *DestRTTI = 1816882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1817882d790fSAnders Carlsson 1818d9c8455aSBenjamin Kramer // Compute the offset hint. 1819d9c8455aSBenjamin Kramer const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1820d9c8455aSBenjamin Kramer const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); 1821d9c8455aSBenjamin Kramer llvm::Value *OffsetHint = 1822d9c8455aSBenjamin Kramer llvm::ConstantInt::get(PtrDiffLTy, 1823d9c8455aSBenjamin Kramer computeOffsetHint(CGF.getContext(), SrcDecl, 1824d9c8455aSBenjamin Kramer DestDecl).getQuantity()); 1825882d790fSAnders Carlsson 1826882d790fSAnders Carlsson // Emit the call to __dynamic_cast. 1827882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1828*882987f3SJohn McCall 1829*882987f3SJohn McCall llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; 1830*882987f3SJohn McCall Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); 1831882d790fSAnders Carlsson Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1832882d790fSAnders Carlsson 1833882d790fSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1834882d790fSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1835882d790fSAnders Carlsson if (DestTy->isReferenceType()) { 1836882d790fSAnders Carlsson llvm::BasicBlock *BadCastBlock = 1837882d790fSAnders Carlsson CGF.createBasicBlock("dynamic_cast.bad_cast"); 1838882d790fSAnders Carlsson 1839882d790fSAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1840882d790fSAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1841882d790fSAnders Carlsson 1842882d790fSAnders Carlsson CGF.EmitBlock(BadCastBlock); 1843c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1844882d790fSAnders Carlsson } 1845882d790fSAnders Carlsson 1846882d790fSAnders Carlsson return Value; 1847882d790fSAnders Carlsson } 1848882d790fSAnders Carlsson 1849c1c9971cSAnders Carlsson static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1850c1c9971cSAnders Carlsson QualType DestTy) { 18512192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1852c1c9971cSAnders Carlsson if (DestTy->isPointerType()) 1853c1c9971cSAnders Carlsson return llvm::Constant::getNullValue(DestLTy); 1854c1c9971cSAnders Carlsson 1855c1c9971cSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1856c1c9971cSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1857c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1858c1c9971cSAnders Carlsson 1859c1c9971cSAnders Carlsson CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1860c1c9971cSAnders Carlsson return llvm::UndefValue::get(DestLTy); 1861c1c9971cSAnders Carlsson } 1862c1c9971cSAnders Carlsson 1863882d790fSAnders Carlsson llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 186459486a2dSAnders Carlsson const CXXDynamicCastExpr *DCE) { 18653f4336cbSAnders Carlsson QualType DestTy = DCE->getTypeAsWritten(); 18663f4336cbSAnders Carlsson 1867c1c9971cSAnders Carlsson if (DCE->isAlwaysNull()) 1868c1c9971cSAnders Carlsson return EmitDynamicCastToNull(*this, DestTy); 1869c1c9971cSAnders Carlsson 1870c1c9971cSAnders Carlsson QualType SrcTy = DCE->getSubExpr()->getType(); 1871c1c9971cSAnders Carlsson 1872882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p4: 1873882d790fSAnders Carlsson // If the value of v is a null pointer value in the pointer case, the result 1874882d790fSAnders Carlsson // is the null pointer value of type T. 1875882d790fSAnders Carlsson bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 187659486a2dSAnders Carlsson 1877882d790fSAnders Carlsson llvm::BasicBlock *CastNull = 0; 1878882d790fSAnders Carlsson llvm::BasicBlock *CastNotNull = 0; 1879882d790fSAnders Carlsson llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1880fa8b4955SDouglas Gregor 1881882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1882882d790fSAnders Carlsson CastNull = createBasicBlock("dynamic_cast.null"); 1883882d790fSAnders Carlsson CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1884882d790fSAnders Carlsson 1885882d790fSAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Value); 1886882d790fSAnders Carlsson Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1887882d790fSAnders Carlsson EmitBlock(CastNotNull); 188859486a2dSAnders Carlsson } 188959486a2dSAnders Carlsson 1890882d790fSAnders Carlsson Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 18913f4336cbSAnders Carlsson 1892882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1893882d790fSAnders Carlsson EmitBranch(CastEnd); 189459486a2dSAnders Carlsson 1895882d790fSAnders Carlsson EmitBlock(CastNull); 1896882d790fSAnders Carlsson EmitBranch(CastEnd); 189759486a2dSAnders Carlsson } 189859486a2dSAnders Carlsson 1899882d790fSAnders Carlsson EmitBlock(CastEnd); 190059486a2dSAnders Carlsson 1901882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1902882d790fSAnders Carlsson llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1903882d790fSAnders Carlsson PHI->addIncoming(Value, CastNotNull); 1904882d790fSAnders Carlsson PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 190559486a2dSAnders Carlsson 1906882d790fSAnders Carlsson Value = PHI; 190759486a2dSAnders Carlsson } 190859486a2dSAnders Carlsson 1909882d790fSAnders Carlsson return Value; 191059486a2dSAnders Carlsson } 1911c370a7eeSEli Friedman 1912c370a7eeSEli Friedman void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 19138631f3e8SEli Friedman RunCleanupsScope Scope(*this); 19147f1ff600SEli Friedman LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 19157f1ff600SEli Friedman Slot.getAlignment()); 19168631f3e8SEli Friedman 1917c370a7eeSEli Friedman CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1918c370a7eeSEli Friedman for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1919c370a7eeSEli Friedman e = E->capture_init_end(); 1920c370a7eeSEli Friedman i != e; ++i, ++CurField) { 1921c370a7eeSEli Friedman // Emit initialization 19227f1ff600SEli Friedman 192340ed2973SDavid Blaikie LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 19245f1a04ffSEli Friedman ArrayRef<VarDecl *> ArrayIndexes; 19255f1a04ffSEli Friedman if (CurField->getType()->isArrayType()) 19265f1a04ffSEli Friedman ArrayIndexes = E->getCaptureInitIndexVars(i); 192740ed2973SDavid Blaikie EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1928c370a7eeSEli Friedman } 1929c370a7eeSEli Friedman } 1930