159486a2dSAnders Carlsson //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 259486a2dSAnders Carlsson // 359486a2dSAnders Carlsson // The LLVM Compiler Infrastructure 459486a2dSAnders Carlsson // 559486a2dSAnders Carlsson // This file is distributed under the University of Illinois Open Source 659486a2dSAnders Carlsson // License. See LICENSE.TXT for details. 759486a2dSAnders Carlsson // 859486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 959486a2dSAnders Carlsson // 1059486a2dSAnders Carlsson // This contains code dealing with code generation of C++ expressions 1159486a2dSAnders Carlsson // 1259486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 1359486a2dSAnders Carlsson 1459486a2dSAnders Carlsson #include "CodeGenFunction.h" 15fe883422SPeter Collingbourne #include "CGCUDARuntime.h" 165d865c32SJohn McCall #include "CGCXXABI.h" 1791bbb554SDevang Patel #include "CGDebugInfo.h" 183a02247dSChandler Carruth #include "CGObjCRuntime.h" 193a02247dSChandler Carruth #include "clang/Frontend/CodeGenOptions.h" 20ffd5551bSChandler Carruth #include "llvm/IR/Intrinsics.h" 21bbe277c4SAnders Carlsson #include "llvm/Support/CallSite.h" 22bbe277c4SAnders Carlsson 2359486a2dSAnders Carlsson using namespace clang; 2459486a2dSAnders Carlsson using namespace CodeGen; 2559486a2dSAnders Carlsson 2627da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27e30752c9SRichard Smith SourceLocation CallLoc, 2827da15baSAnders Carlsson llvm::Value *Callee, 2927da15baSAnders Carlsson ReturnValueSlot ReturnValue, 3027da15baSAnders Carlsson llvm::Value *This, 31ee6bc533STimur Iskhodzhanov llvm::Value *ImplicitParam, 32ee6bc533STimur Iskhodzhanov QualType ImplicitParamTy, 3327da15baSAnders Carlsson CallExpr::const_arg_iterator ArgBeg, 3427da15baSAnders Carlsson CallExpr::const_arg_iterator ArgEnd) { 3527da15baSAnders Carlsson assert(MD->isInstance() && 3627da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 3727da15baSAnders Carlsson 3869d0d262SRichard Smith // C++11 [class.mfct.non-static]p2: 3969d0d262SRichard Smith // If a non-static member function of a class X is called for an object that 4069d0d262SRichard Smith // is not of type X, or of a type derived from X, the behavior is undefined. 414d3110afSRichard Smith EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 424d3110afSRichard Smith : TCK_MemberCall, 434d3110afSRichard Smith CallLoc, This, getContext().getRecordType(MD->getParent())); 4469d0d262SRichard Smith 4527da15baSAnders Carlsson CallArgList Args; 4627da15baSAnders Carlsson 4727da15baSAnders Carlsson // Push the this ptr. 4843dca6a8SEli Friedman Args.add(RValue::get(This), MD->getThisType(getContext())); 4927da15baSAnders Carlsson 50ee6bc533STimur Iskhodzhanov // If there is an implicit parameter (e.g. VTT), emit it. 51ee6bc533STimur Iskhodzhanov if (ImplicitParam) { 52ee6bc533STimur Iskhodzhanov Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53e36a6b3eSAnders Carlsson } 54e36a6b3eSAnders Carlsson 55a729c62bSJohn McCall const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56a729c62bSJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57a729c62bSJohn McCall 58a729c62bSJohn McCall // And the rest of the call args. 5927da15baSAnders Carlsson EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 6027da15baSAnders Carlsson 618dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 62c50c27ccSRafael Espindola Callee, ReturnValue, Args, MD); 6327da15baSAnders Carlsson } 6427da15baSAnders Carlsson 65c53d9e83SAnders Carlsson // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 66c53d9e83SAnders Carlsson // quite what we want. 67c53d9e83SAnders Carlsson static const Expr *skipNoOpCastsAndParens(const Expr *E) { 68c53d9e83SAnders Carlsson while (true) { 69c53d9e83SAnders Carlsson if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 70c53d9e83SAnders Carlsson E = PE->getSubExpr(); 71c53d9e83SAnders Carlsson continue; 72c53d9e83SAnders Carlsson } 73c53d9e83SAnders Carlsson 74c53d9e83SAnders Carlsson if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 75c53d9e83SAnders Carlsson if (CE->getCastKind() == CK_NoOp) { 76c53d9e83SAnders Carlsson E = CE->getSubExpr(); 77c53d9e83SAnders Carlsson continue; 78c53d9e83SAnders Carlsson } 79c53d9e83SAnders Carlsson } 80c53d9e83SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 81c53d9e83SAnders Carlsson if (UO->getOpcode() == UO_Extension) { 82c53d9e83SAnders Carlsson E = UO->getSubExpr(); 83c53d9e83SAnders Carlsson continue; 84c53d9e83SAnders Carlsson } 85c53d9e83SAnders Carlsson } 86c53d9e83SAnders Carlsson return E; 87c53d9e83SAnders Carlsson } 88c53d9e83SAnders Carlsson } 89c53d9e83SAnders Carlsson 9027da15baSAnders Carlsson /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 9127da15baSAnders Carlsson /// expr can be devirtualized. 92252a47f6SFariborz Jahanian static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 93252a47f6SFariborz Jahanian const Expr *Base, 94a7911fa3SAnders Carlsson const CXXMethodDecl *MD) { 95a7911fa3SAnders Carlsson 961ae64c5aSAnders Carlsson // When building with -fapple-kext, all calls must go through the vtable since 971ae64c5aSAnders Carlsson // the kernel linker can do runtime patching of vtables. 98bbafb8a7SDavid Blaikie if (Context.getLangOpts().AppleKext) 99252a47f6SFariborz Jahanian return false; 100252a47f6SFariborz Jahanian 1011ae64c5aSAnders Carlsson // If the most derived class is marked final, we know that no subclass can 1021ae64c5aSAnders Carlsson // override this member function and so we can devirtualize it. For example: 1031ae64c5aSAnders Carlsson // 1041ae64c5aSAnders Carlsson // struct A { virtual void f(); } 1051ae64c5aSAnders Carlsson // struct B final : A { }; 1061ae64c5aSAnders Carlsson // 1071ae64c5aSAnders Carlsson // void f(B *b) { 1081ae64c5aSAnders Carlsson // b->f(); 1091ae64c5aSAnders Carlsson // } 1101ae64c5aSAnders Carlsson // 111b7f5a9c5SRafael Espindola const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 1121ae64c5aSAnders Carlsson if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 1131ae64c5aSAnders Carlsson return true; 1141ae64c5aSAnders Carlsson 11519588aa4SAnders Carlsson // If the member function is marked 'final', we know that it can't be 116b00c2144SAnders Carlsson // overridden and can therefore devirtualize it. 1171eb95961SAnders Carlsson if (MD->hasAttr<FinalAttr>()) 118a7911fa3SAnders Carlsson return true; 119a7911fa3SAnders Carlsson 12019588aa4SAnders Carlsson // Similarly, if the class itself is marked 'final' it can't be overridden 12119588aa4SAnders Carlsson // and we can therefore devirtualize the member function call. 1221eb95961SAnders Carlsson if (MD->getParent()->hasAttr<FinalAttr>()) 123b00c2144SAnders Carlsson return true; 124b00c2144SAnders Carlsson 125c53d9e83SAnders Carlsson Base = skipNoOpCastsAndParens(Base); 12627da15baSAnders Carlsson if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 12727da15baSAnders Carlsson if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 12827da15baSAnders Carlsson // This is a record decl. We know the type and can devirtualize it. 12927da15baSAnders Carlsson return VD->getType()->isRecordType(); 13027da15baSAnders Carlsson } 13127da15baSAnders Carlsson 13227da15baSAnders Carlsson return false; 13327da15baSAnders Carlsson } 13427da15baSAnders Carlsson 13548c15319SRichard Smith // We can devirtualize calls on an object accessed by a class member access 13648c15319SRichard Smith // expression, since by C++11 [basic.life]p6 we know that it can't refer to 13748c15319SRichard Smith // a derived class object constructed in the same location. 13848c15319SRichard Smith if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 13948c15319SRichard Smith if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 14048c15319SRichard Smith return VD->getType()->isRecordType(); 14148c15319SRichard Smith 14227da15baSAnders Carlsson // We can always devirtualize calls on temporary object expressions. 143a682427eSEli Friedman if (isa<CXXConstructExpr>(Base)) 14427da15baSAnders Carlsson return true; 14527da15baSAnders Carlsson 14627da15baSAnders Carlsson // And calls on bound temporaries. 14727da15baSAnders Carlsson if (isa<CXXBindTemporaryExpr>(Base)) 14827da15baSAnders Carlsson return true; 14927da15baSAnders Carlsson 15027da15baSAnders Carlsson // Check if this is a call expr that returns a record type. 15127da15baSAnders Carlsson if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 15227da15baSAnders Carlsson return CE->getCallReturnType()->isRecordType(); 15327da15baSAnders Carlsson 15427da15baSAnders Carlsson // We can't devirtualize the call. 15527da15baSAnders Carlsson return false; 15627da15baSAnders Carlsson } 15727da15baSAnders Carlsson 1583b33c4ecSRafael Espindola static CXXRecordDecl *getCXXRecord(const Expr *E) { 1593b33c4ecSRafael Espindola QualType T = E->getType(); 1603b33c4ecSRafael Espindola if (const PointerType *PTy = T->getAs<PointerType>()) 1613b33c4ecSRafael Espindola T = PTy->getPointeeType(); 1623b33c4ecSRafael Espindola const RecordType *Ty = T->castAs<RecordType>(); 1633b33c4ecSRafael Espindola return cast<CXXRecordDecl>(Ty->getDecl()); 1643b33c4ecSRafael Espindola } 1653b33c4ecSRafael Espindola 16664225794SFrancois Pichet // Note: This function also emit constructor calls to support a MSVC 16764225794SFrancois Pichet // extensions allowing explicit constructor function call. 16827da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 16927da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 1702d2e8707SJohn McCall const Expr *callee = CE->getCallee()->IgnoreParens(); 1712d2e8707SJohn McCall 1722d2e8707SJohn McCall if (isa<BinaryOperator>(callee)) 17327da15baSAnders Carlsson return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 17427da15baSAnders Carlsson 1752d2e8707SJohn McCall const MemberExpr *ME = cast<MemberExpr>(callee); 17627da15baSAnders Carlsson const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 17727da15baSAnders Carlsson 17827da15baSAnders Carlsson if (MD->isStatic()) { 17927da15baSAnders Carlsson // The method is static, emit it as we would a regular call. 18027da15baSAnders Carlsson llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 18127da15baSAnders Carlsson return EmitCall(getContext().getPointerType(MD->getType()), Callee, 18227da15baSAnders Carlsson ReturnValue, CE->arg_begin(), CE->arg_end()); 18327da15baSAnders Carlsson } 18427da15baSAnders Carlsson 1850d635f53SJohn McCall // Compute the object pointer. 186ecbe2e97SRafael Espindola const Expr *Base = ME->getBase(); 187ecbe2e97SRafael Espindola bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 188ecbe2e97SRafael Espindola 1893b33c4ecSRafael Espindola const CXXMethodDecl *DevirtualizedMethod = NULL; 1903b33c4ecSRafael Espindola if (CanUseVirtualCall && 1913b33c4ecSRafael Espindola canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 1923b33c4ecSRafael Espindola const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 1933b33c4ecSRafael Espindola DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 1943b33c4ecSRafael Espindola assert(DevirtualizedMethod); 1953b33c4ecSRafael Espindola const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 1963b33c4ecSRafael Espindola const Expr *Inner = Base->ignoreParenBaseCasts(); 1973b33c4ecSRafael Espindola if (getCXXRecord(Inner) == DevirtualizedClass) 1983b33c4ecSRafael Espindola // If the class of the Inner expression is where the dynamic method 1993b33c4ecSRafael Espindola // is defined, build the this pointer from it. 2003b33c4ecSRafael Espindola Base = Inner; 2013b33c4ecSRafael Espindola else if (getCXXRecord(Base) != DevirtualizedClass) { 2023b33c4ecSRafael Espindola // If the method is defined in a class that is not the best dynamic 2033b33c4ecSRafael Espindola // one or the one of the full expression, we would have to build 2043b33c4ecSRafael Espindola // a derived-to-base cast to compute the correct this pointer, but 2053b33c4ecSRafael Espindola // we don't have support for that yet, so do a virtual call. 2063b33c4ecSRafael Espindola DevirtualizedMethod = NULL; 2073b33c4ecSRafael Espindola } 208b27564afSRafael Espindola // If the return types are not the same, this might be a case where more 209b27564afSRafael Espindola // code needs to run to compensate for it. For example, the derived 210b27564afSRafael Espindola // method might return a type that inherits form from the return 211b27564afSRafael Espindola // type of MD and has a prefix. 212b27564afSRafael Espindola // For now we just avoid devirtualizing these covariant cases. 213b27564afSRafael Espindola if (DevirtualizedMethod && 214b27564afSRafael Espindola DevirtualizedMethod->getResultType().getCanonicalType() != 215b27564afSRafael Espindola MD->getResultType().getCanonicalType()) 216debc71ceSRafael Espindola DevirtualizedMethod = NULL; 2173b33c4ecSRafael Espindola } 218ecbe2e97SRafael Espindola 21927da15baSAnders Carlsson llvm::Value *This; 22027da15baSAnders Carlsson if (ME->isArrow()) 2213b33c4ecSRafael Espindola This = EmitScalarExpr(Base); 222f93ac894SFariborz Jahanian else 2233b33c4ecSRafael Espindola This = EmitLValue(Base).getAddress(); 224ecbe2e97SRafael Espindola 22527da15baSAnders Carlsson 2260d635f53SJohn McCall if (MD->isTrivial()) { 2270d635f53SJohn McCall if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 22864225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 22964225794SFrancois Pichet cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 23064225794SFrancois Pichet return RValue::get(0); 2310d635f53SJohn McCall 23222653bacSSebastian Redl if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 23322653bacSSebastian Redl // We don't like to generate the trivial copy/move assignment operator 23422653bacSSebastian Redl // when it isn't necessary; just produce the proper effect here. 23527da15baSAnders Carlsson llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 2361ca66919SBenjamin Kramer EmitAggregateAssign(This, RHS, CE->getType()); 23727da15baSAnders Carlsson return RValue::get(This); 23827da15baSAnders Carlsson } 23927da15baSAnders Carlsson 24064225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 24122653bacSSebastian Redl cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 24222653bacSSebastian Redl // Trivial move and copy ctor are the same. 24364225794SFrancois Pichet llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 24464225794SFrancois Pichet EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 24564225794SFrancois Pichet CE->arg_begin(), CE->arg_end()); 24664225794SFrancois Pichet return RValue::get(This); 24764225794SFrancois Pichet } 24864225794SFrancois Pichet llvm_unreachable("unknown trivial member function"); 24964225794SFrancois Pichet } 25064225794SFrancois Pichet 2510d635f53SJohn McCall // Compute the function type we're calling. 252ade60977SEli Friedman const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 25364225794SFrancois Pichet const CGFunctionInfo *FInfo = 0; 254ade60977SEli Friedman if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 255ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 25664225794SFrancois Pichet Dtor_Complete); 257ade60977SEli Friedman else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 258ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 25964225794SFrancois Pichet Ctor_Complete); 26064225794SFrancois Pichet else 261ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 2620d635f53SJohn McCall 263e7de47efSReid Kleckner llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 2640d635f53SJohn McCall 26527da15baSAnders Carlsson // C++ [class.virtual]p12: 26627da15baSAnders Carlsson // Explicit qualification with the scope operator (5.1) suppresses the 26727da15baSAnders Carlsson // virtual call mechanism. 26827da15baSAnders Carlsson // 26927da15baSAnders Carlsson // We also don't emit a virtual call if the base expression has a record type 27027da15baSAnders Carlsson // because then we know what the type is. 2713b33c4ecSRafael Espindola bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 27219cee187SStephen Lin llvm::Value *Callee; 2739dc6eef7SStephen Lin 2740d635f53SJohn McCall if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 27519cee187SStephen Lin assert(CE->arg_begin() == CE->arg_end() && 2769dc6eef7SStephen Lin "Destructor shouldn't have explicit parameters"); 2779dc6eef7SStephen Lin assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 2789dc6eef7SStephen Lin if (UseVirtualCall) { 2799dc6eef7SStephen Lin CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 2809dc6eef7SStephen Lin CE->getExprLoc(), This); 28127da15baSAnders Carlsson } else { 2829c6890a7SRichard Smith if (getLangOpts().AppleKext && 283265c325eSFariborz Jahanian MD->isVirtual() && 284265c325eSFariborz Jahanian ME->hasQualifier()) 2857f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 2863b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 287e7de47efSReid Kleckner Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty); 28849e860b2SRafael Espindola else { 2893b33c4ecSRafael Espindola const CXXDestructorDecl *DDtor = 2903b33c4ecSRafael Espindola cast<CXXDestructorDecl>(DevirtualizedMethod); 29149e860b2SRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 29249e860b2SRafael Espindola } 2939dc6eef7SStephen Lin EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 2949dc6eef7SStephen Lin /*ImplicitParam=*/0, QualType(), 0, 0); 29527da15baSAnders Carlsson } 2969dc6eef7SStephen Lin return RValue::get(0); 2979dc6eef7SStephen Lin } 2989dc6eef7SStephen Lin 2999dc6eef7SStephen Lin if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 30064225794SFrancois Pichet Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 3010d635f53SJohn McCall } else if (UseVirtualCall) { 30227da15baSAnders Carlsson Callee = BuildVirtualCall(MD, This, Ty); 30327da15baSAnders Carlsson } else { 3049c6890a7SRichard Smith if (getLangOpts().AppleKext && 3059f9438b3SFariborz Jahanian MD->isVirtual() && 306252a47f6SFariborz Jahanian ME->hasQualifier()) 3077f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 3083b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 309727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(MD, Ty); 31049e860b2SRafael Espindola else { 3113b33c4ecSRafael Espindola Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 31249e860b2SRafael Espindola } 31327da15baSAnders Carlsson } 31427da15baSAnders Carlsson 315e30752c9SRichard Smith return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 316ee6bc533STimur Iskhodzhanov /*ImplicitParam=*/0, QualType(), 317ee6bc533STimur Iskhodzhanov CE->arg_begin(), CE->arg_end()); 31827da15baSAnders Carlsson } 31927da15baSAnders Carlsson 32027da15baSAnders Carlsson RValue 32127da15baSAnders Carlsson CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 32227da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 32327da15baSAnders Carlsson const BinaryOperator *BO = 32427da15baSAnders Carlsson cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 32527da15baSAnders Carlsson const Expr *BaseExpr = BO->getLHS(); 32627da15baSAnders Carlsson const Expr *MemFnExpr = BO->getRHS(); 32727da15baSAnders Carlsson 32827da15baSAnders Carlsson const MemberPointerType *MPT = 3290009fcc3SJohn McCall MemFnExpr->getType()->castAs<MemberPointerType>(); 330475999dcSJohn McCall 33127da15baSAnders Carlsson const FunctionProtoType *FPT = 3320009fcc3SJohn McCall MPT->getPointeeType()->castAs<FunctionProtoType>(); 33327da15baSAnders Carlsson const CXXRecordDecl *RD = 33427da15baSAnders Carlsson cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 33527da15baSAnders Carlsson 33627da15baSAnders Carlsson // Get the member function pointer. 337a1dee530SJohn McCall llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 33827da15baSAnders Carlsson 33927da15baSAnders Carlsson // Emit the 'this' pointer. 34027da15baSAnders Carlsson llvm::Value *This; 34127da15baSAnders Carlsson 342e302792bSJohn McCall if (BO->getOpcode() == BO_PtrMemI) 34327da15baSAnders Carlsson This = EmitScalarExpr(BaseExpr); 34427da15baSAnders Carlsson else 34527da15baSAnders Carlsson This = EmitLValue(BaseExpr).getAddress(); 34627da15baSAnders Carlsson 347e30752c9SRichard Smith EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 348e30752c9SRichard Smith QualType(MPT->getClass(), 0)); 34969d0d262SRichard Smith 350475999dcSJohn McCall // Ask the ABI to load the callee. Note that This is modified. 351475999dcSJohn McCall llvm::Value *Callee = 352ad7c5c16SJohn McCall CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 35327da15baSAnders Carlsson 35427da15baSAnders Carlsson CallArgList Args; 35527da15baSAnders Carlsson 35627da15baSAnders Carlsson QualType ThisType = 35727da15baSAnders Carlsson getContext().getPointerType(getContext().getTagDeclType(RD)); 35827da15baSAnders Carlsson 35927da15baSAnders Carlsson // Push the this ptr. 36043dca6a8SEli Friedman Args.add(RValue::get(This), ThisType); 36127da15baSAnders Carlsson 3628dda7b27SJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 3638dda7b27SJohn McCall 36427da15baSAnders Carlsson // And the rest of the call args 36527da15baSAnders Carlsson EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 3668dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 36799cc30c3STilmann Scheller ReturnValue, Args); 36827da15baSAnders Carlsson } 36927da15baSAnders Carlsson 37027da15baSAnders Carlsson RValue 37127da15baSAnders Carlsson CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 37227da15baSAnders Carlsson const CXXMethodDecl *MD, 37327da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 37427da15baSAnders Carlsson assert(MD->isInstance() && 37527da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 376e26a872bSJohn McCall LValue LV = EmitLValue(E->getArg(0)); 377e26a872bSJohn McCall llvm::Value *This = LV.getAddress(); 378e26a872bSJohn McCall 379146b8e9aSDouglas Gregor if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 380146b8e9aSDouglas Gregor MD->isTrivial()) { 38127da15baSAnders Carlsson llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 38227da15baSAnders Carlsson QualType Ty = E->getType(); 3831ca66919SBenjamin Kramer EmitAggregateAssign(This, Src, Ty); 38427da15baSAnders Carlsson return RValue::get(This); 38527da15baSAnders Carlsson } 38627da15baSAnders Carlsson 387c36783e8SAnders Carlsson llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 388e30752c9SRichard Smith return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 389ee6bc533STimur Iskhodzhanov /*ImplicitParam=*/0, QualType(), 390ee6bc533STimur Iskhodzhanov E->arg_begin() + 1, E->arg_end()); 39127da15baSAnders Carlsson } 39227da15baSAnders Carlsson 393fe883422SPeter Collingbourne RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 394fe883422SPeter Collingbourne ReturnValueSlot ReturnValue) { 395fe883422SPeter Collingbourne return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 396fe883422SPeter Collingbourne } 397fe883422SPeter Collingbourne 398fde961dbSEli Friedman static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 399fde961dbSEli Friedman llvm::Value *DestPtr, 400fde961dbSEli Friedman const CXXRecordDecl *Base) { 401fde961dbSEli Friedman if (Base->isEmpty()) 402fde961dbSEli Friedman return; 403fde961dbSEli Friedman 404fde961dbSEli Friedman DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 405fde961dbSEli Friedman 406fde961dbSEli Friedman const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 407fde961dbSEli Friedman CharUnits Size = Layout.getNonVirtualSize(); 408fde961dbSEli Friedman CharUnits Align = Layout.getNonVirtualAlign(); 409fde961dbSEli Friedman 410fde961dbSEli Friedman llvm::Value *SizeVal = CGF.CGM.getSize(Size); 411fde961dbSEli Friedman 412fde961dbSEli Friedman // If the type contains a pointer to data member we can't memset it to zero. 413fde961dbSEli Friedman // Instead, create a null constant and copy it to the destination. 414fde961dbSEli Friedman // TODO: there are other patterns besides zero that we can usefully memset, 415fde961dbSEli Friedman // like -1, which happens to be the pattern used by member-pointers. 416fde961dbSEli Friedman // TODO: isZeroInitializable can be over-conservative in the case where a 417fde961dbSEli Friedman // virtual base contains a member pointer. 418fde961dbSEli Friedman if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 419fde961dbSEli Friedman llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 420fde961dbSEli Friedman 421fde961dbSEli Friedman llvm::GlobalVariable *NullVariable = 422fde961dbSEli Friedman new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 423fde961dbSEli Friedman /*isConstant=*/true, 424fde961dbSEli Friedman llvm::GlobalVariable::PrivateLinkage, 425fde961dbSEli Friedman NullConstant, Twine()); 426fde961dbSEli Friedman NullVariable->setAlignment(Align.getQuantity()); 427fde961dbSEli Friedman llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 428fde961dbSEli Friedman 429fde961dbSEli Friedman // Get and call the appropriate llvm.memcpy overload. 430fde961dbSEli Friedman CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 431fde961dbSEli Friedman return; 432fde961dbSEli Friedman } 433fde961dbSEli Friedman 434fde961dbSEli Friedman // Otherwise, just memset the whole thing to zero. This is legal 435fde961dbSEli Friedman // because in LLVM, all default initializers (other than the ones we just 436fde961dbSEli Friedman // handled above) are guaranteed to have a bit pattern of all zeros. 437fde961dbSEli Friedman CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 438fde961dbSEli Friedman Align.getQuantity()); 439fde961dbSEli Friedman } 440fde961dbSEli Friedman 44127da15baSAnders Carlsson void 4427a626f63SJohn McCall CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 4437a626f63SJohn McCall AggValueSlot Dest) { 4447a626f63SJohn McCall assert(!Dest.isIgnored() && "Must have a destination!"); 44527da15baSAnders Carlsson const CXXConstructorDecl *CD = E->getConstructor(); 446630c76efSDouglas Gregor 447630c76efSDouglas Gregor // If we require zero initialization before (or instead of) calling the 448630c76efSDouglas Gregor // constructor, as can be the case with a non-user-provided default 44903535265SArgyrios Kyrtzidis // constructor, emit the zero initialization now, unless destination is 45003535265SArgyrios Kyrtzidis // already zeroed. 451fde961dbSEli Friedman if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 452fde961dbSEli Friedman switch (E->getConstructionKind()) { 453fde961dbSEli Friedman case CXXConstructExpr::CK_Delegating: 454fde961dbSEli Friedman case CXXConstructExpr::CK_Complete: 4557a626f63SJohn McCall EmitNullInitialization(Dest.getAddr(), E->getType()); 456fde961dbSEli Friedman break; 457fde961dbSEli Friedman case CXXConstructExpr::CK_VirtualBase: 458fde961dbSEli Friedman case CXXConstructExpr::CK_NonVirtualBase: 459fde961dbSEli Friedman EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 460fde961dbSEli Friedman break; 461fde961dbSEli Friedman } 462fde961dbSEli Friedman } 463630c76efSDouglas Gregor 464630c76efSDouglas Gregor // If this is a call to a trivial default constructor, do nothing. 465630c76efSDouglas Gregor if (CD->isTrivial() && CD->isDefaultConstructor()) 46627da15baSAnders Carlsson return; 467630c76efSDouglas Gregor 4688ea46b66SJohn McCall // Elide the constructor if we're constructing from a temporary. 4698ea46b66SJohn McCall // The temporary check is required because Sema sets this on NRVO 4708ea46b66SJohn McCall // returns. 4719c6890a7SRichard Smith if (getLangOpts().ElideConstructors && E->isElidable()) { 4728ea46b66SJohn McCall assert(getContext().hasSameUnqualifiedType(E->getType(), 4738ea46b66SJohn McCall E->getArg(0)->getType())); 4747a626f63SJohn McCall if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 4757a626f63SJohn McCall EmitAggExpr(E->getArg(0), Dest); 47627da15baSAnders Carlsson return; 47727da15baSAnders Carlsson } 478222cf0efSDouglas Gregor } 479630c76efSDouglas Gregor 480f677a8e9SJohn McCall if (const ConstantArrayType *arrayType 481f677a8e9SJohn McCall = getContext().getAsConstantArrayType(E->getType())) { 482f677a8e9SJohn McCall EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 48327da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 484f677a8e9SJohn McCall } else { 485bceca20aSCameron Esfahani CXXCtorType Type = Ctor_Complete; 486271c3681SAlexis Hunt bool ForVirtualBase = false; 48761535005SDouglas Gregor bool Delegating = false; 488271c3681SAlexis Hunt 489271c3681SAlexis Hunt switch (E->getConstructionKind()) { 490271c3681SAlexis Hunt case CXXConstructExpr::CK_Delegating: 49161bc1737SAlexis Hunt // We should be emitting a constructor; GlobalDecl will assert this 49261bc1737SAlexis Hunt Type = CurGD.getCtorType(); 49361535005SDouglas Gregor Delegating = true; 494271c3681SAlexis Hunt break; 49561bc1737SAlexis Hunt 496271c3681SAlexis Hunt case CXXConstructExpr::CK_Complete: 497271c3681SAlexis Hunt Type = Ctor_Complete; 498271c3681SAlexis Hunt break; 499271c3681SAlexis Hunt 500271c3681SAlexis Hunt case CXXConstructExpr::CK_VirtualBase: 501271c3681SAlexis Hunt ForVirtualBase = true; 502271c3681SAlexis Hunt // fall-through 503271c3681SAlexis Hunt 504271c3681SAlexis Hunt case CXXConstructExpr::CK_NonVirtualBase: 505271c3681SAlexis Hunt Type = Ctor_Base; 506271c3681SAlexis Hunt } 507e11f9ce9SAnders Carlsson 50827da15baSAnders Carlsson // Call the constructor. 50961535005SDouglas Gregor EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 51027da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 51127da15baSAnders Carlsson } 512e11f9ce9SAnders Carlsson } 51327da15baSAnders Carlsson 514e988bdacSFariborz Jahanian void 515e988bdacSFariborz Jahanian CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 516e988bdacSFariborz Jahanian llvm::Value *Src, 51750198098SFariborz Jahanian const Expr *Exp) { 5185d413781SJohn McCall if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 519e988bdacSFariborz Jahanian Exp = E->getSubExpr(); 520e988bdacSFariborz Jahanian assert(isa<CXXConstructExpr>(Exp) && 521e988bdacSFariborz Jahanian "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 522e988bdacSFariborz Jahanian const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 523e988bdacSFariborz Jahanian const CXXConstructorDecl *CD = E->getConstructor(); 524e988bdacSFariborz Jahanian RunCleanupsScope Scope(*this); 525e988bdacSFariborz Jahanian 526e988bdacSFariborz Jahanian // If we require zero initialization before (or instead of) calling the 527e988bdacSFariborz Jahanian // constructor, as can be the case with a non-user-provided default 528e988bdacSFariborz Jahanian // constructor, emit the zero initialization now. 529e988bdacSFariborz Jahanian // FIXME. Do I still need this for a copy ctor synthesis? 530e988bdacSFariborz Jahanian if (E->requiresZeroInitialization()) 531e988bdacSFariborz Jahanian EmitNullInitialization(Dest, E->getType()); 532e988bdacSFariborz Jahanian 53399da11cfSChandler Carruth assert(!getContext().getAsConstantArrayType(E->getType()) 53499da11cfSChandler Carruth && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 535e988bdacSFariborz Jahanian EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 536e988bdacSFariborz Jahanian E->arg_begin(), E->arg_end()); 537e988bdacSFariborz Jahanian } 538e988bdacSFariborz Jahanian 5398ed55a54SJohn McCall static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 5408ed55a54SJohn McCall const CXXNewExpr *E) { 54121122cf6SAnders Carlsson if (!E->isArray()) 5423eb55cfeSKen Dyck return CharUnits::Zero(); 54321122cf6SAnders Carlsson 5447ec4b434SJohn McCall // No cookie is required if the operator new[] being used is the 5457ec4b434SJohn McCall // reserved placement operator new[]. 5467ec4b434SJohn McCall if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 5473eb55cfeSKen Dyck return CharUnits::Zero(); 548399f499fSAnders Carlsson 549284c48ffSJohn McCall return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 55059486a2dSAnders Carlsson } 55159486a2dSAnders Carlsson 552036f2f6bSJohn McCall static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 553036f2f6bSJohn McCall const CXXNewExpr *e, 554f862eb6aSSebastian Redl unsigned minElements, 555036f2f6bSJohn McCall llvm::Value *&numElements, 556036f2f6bSJohn McCall llvm::Value *&sizeWithoutCookie) { 557036f2f6bSJohn McCall QualType type = e->getAllocatedType(); 55859486a2dSAnders Carlsson 559036f2f6bSJohn McCall if (!e->isArray()) { 560036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 561036f2f6bSJohn McCall sizeWithoutCookie 562036f2f6bSJohn McCall = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 563036f2f6bSJohn McCall return sizeWithoutCookie; 56405fc5be3SDouglas Gregor } 56559486a2dSAnders Carlsson 566036f2f6bSJohn McCall // The width of size_t. 567036f2f6bSJohn McCall unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 568036f2f6bSJohn McCall 5698ed55a54SJohn McCall // Figure out the cookie size. 570036f2f6bSJohn McCall llvm::APInt cookieSize(sizeWidth, 571036f2f6bSJohn McCall CalculateCookiePadding(CGF, e).getQuantity()); 5728ed55a54SJohn McCall 57359486a2dSAnders Carlsson // Emit the array size expression. 5747648fb46SArgyrios Kyrtzidis // We multiply the size of all dimensions for NumElements. 5757648fb46SArgyrios Kyrtzidis // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 576036f2f6bSJohn McCall numElements = CGF.EmitScalarExpr(e->getArraySize()); 577036f2f6bSJohn McCall assert(isa<llvm::IntegerType>(numElements->getType())); 5788ed55a54SJohn McCall 579036f2f6bSJohn McCall // The number of elements can be have an arbitrary integer type; 580036f2f6bSJohn McCall // essentially, we need to multiply it by a constant factor, add a 581036f2f6bSJohn McCall // cookie size, and verify that the result is representable as a 582036f2f6bSJohn McCall // size_t. That's just a gloss, though, and it's wrong in one 583036f2f6bSJohn McCall // important way: if the count is negative, it's an error even if 584036f2f6bSJohn McCall // the cookie size would bring the total size >= 0. 5856ab2fa8fSDouglas Gregor bool isSigned 5866ab2fa8fSDouglas Gregor = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 5872192fe50SChris Lattner llvm::IntegerType *numElementsType 588036f2f6bSJohn McCall = cast<llvm::IntegerType>(numElements->getType()); 589036f2f6bSJohn McCall unsigned numElementsWidth = numElementsType->getBitWidth(); 590036f2f6bSJohn McCall 591036f2f6bSJohn McCall // Compute the constant factor. 592036f2f6bSJohn McCall llvm::APInt arraySizeMultiplier(sizeWidth, 1); 5937648fb46SArgyrios Kyrtzidis while (const ConstantArrayType *CAT 594036f2f6bSJohn McCall = CGF.getContext().getAsConstantArrayType(type)) { 595036f2f6bSJohn McCall type = CAT->getElementType(); 596036f2f6bSJohn McCall arraySizeMultiplier *= CAT->getSize(); 5977648fb46SArgyrios Kyrtzidis } 59859486a2dSAnders Carlsson 599036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 600036f2f6bSJohn McCall llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 601036f2f6bSJohn McCall typeSizeMultiplier *= arraySizeMultiplier; 602036f2f6bSJohn McCall 603036f2f6bSJohn McCall // This will be a size_t. 604036f2f6bSJohn McCall llvm::Value *size; 60532ac583dSChris Lattner 60632ac583dSChris Lattner // If someone is doing 'new int[42]' there is no need to do a dynamic check. 60732ac583dSChris Lattner // Don't bloat the -O0 code. 608036f2f6bSJohn McCall if (llvm::ConstantInt *numElementsC = 609036f2f6bSJohn McCall dyn_cast<llvm::ConstantInt>(numElements)) { 610036f2f6bSJohn McCall const llvm::APInt &count = numElementsC->getValue(); 61132ac583dSChris Lattner 612036f2f6bSJohn McCall bool hasAnyOverflow = false; 61332ac583dSChris Lattner 614036f2f6bSJohn McCall // If 'count' was a negative number, it's an overflow. 615036f2f6bSJohn McCall if (isSigned && count.isNegative()) 616036f2f6bSJohn McCall hasAnyOverflow = true; 6178ed55a54SJohn McCall 618036f2f6bSJohn McCall // We want to do all this arithmetic in size_t. If numElements is 619036f2f6bSJohn McCall // wider than that, check whether it's already too big, and if so, 620036f2f6bSJohn McCall // overflow. 621036f2f6bSJohn McCall else if (numElementsWidth > sizeWidth && 622036f2f6bSJohn McCall numElementsWidth - sizeWidth > count.countLeadingZeros()) 623036f2f6bSJohn McCall hasAnyOverflow = true; 624036f2f6bSJohn McCall 625036f2f6bSJohn McCall // Okay, compute a count at the right width. 626036f2f6bSJohn McCall llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 627036f2f6bSJohn McCall 628f862eb6aSSebastian Redl // If there is a brace-initializer, we cannot allocate fewer elements than 629f862eb6aSSebastian Redl // there are initializers. If we do, that's treated like an overflow. 630f862eb6aSSebastian Redl if (adjustedCount.ult(minElements)) 631f862eb6aSSebastian Redl hasAnyOverflow = true; 632f862eb6aSSebastian Redl 633036f2f6bSJohn McCall // Scale numElements by that. This might overflow, but we don't 634036f2f6bSJohn McCall // care because it only overflows if allocationSize does, too, and 635036f2f6bSJohn McCall // if that overflows then we shouldn't use this. 636036f2f6bSJohn McCall numElements = llvm::ConstantInt::get(CGF.SizeTy, 637036f2f6bSJohn McCall adjustedCount * arraySizeMultiplier); 638036f2f6bSJohn McCall 639036f2f6bSJohn McCall // Compute the size before cookie, and track whether it overflowed. 640036f2f6bSJohn McCall bool overflow; 641036f2f6bSJohn McCall llvm::APInt allocationSize 642036f2f6bSJohn McCall = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 643036f2f6bSJohn McCall hasAnyOverflow |= overflow; 644036f2f6bSJohn McCall 645036f2f6bSJohn McCall // Add in the cookie, and check whether it's overflowed. 646036f2f6bSJohn McCall if (cookieSize != 0) { 647036f2f6bSJohn McCall // Save the current size without a cookie. This shouldn't be 648036f2f6bSJohn McCall // used if there was overflow. 649036f2f6bSJohn McCall sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 650036f2f6bSJohn McCall 651036f2f6bSJohn McCall allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 652036f2f6bSJohn McCall hasAnyOverflow |= overflow; 6538ed55a54SJohn McCall } 6548ed55a54SJohn McCall 655036f2f6bSJohn McCall // On overflow, produce a -1 so operator new will fail. 656036f2f6bSJohn McCall if (hasAnyOverflow) { 657036f2f6bSJohn McCall size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 65832ac583dSChris Lattner } else { 659036f2f6bSJohn McCall size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 66032ac583dSChris Lattner } 66132ac583dSChris Lattner 662036f2f6bSJohn McCall // Otherwise, we might need to use the overflow intrinsics. 6638ed55a54SJohn McCall } else { 664f862eb6aSSebastian Redl // There are up to five conditions we need to test for: 665036f2f6bSJohn McCall // 1) if isSigned, we need to check whether numElements is negative; 666036f2f6bSJohn McCall // 2) if numElementsWidth > sizeWidth, we need to check whether 667036f2f6bSJohn McCall // numElements is larger than something representable in size_t; 668f862eb6aSSebastian Redl // 3) if minElements > 0, we need to check whether numElements is smaller 669f862eb6aSSebastian Redl // than that. 670f862eb6aSSebastian Redl // 4) we need to compute 671036f2f6bSJohn McCall // sizeWithoutCookie := numElements * typeSizeMultiplier 672036f2f6bSJohn McCall // and check whether it overflows; and 673f862eb6aSSebastian Redl // 5) if we need a cookie, we need to compute 674036f2f6bSJohn McCall // size := sizeWithoutCookie + cookieSize 675036f2f6bSJohn McCall // and check whether it overflows. 6768ed55a54SJohn McCall 677036f2f6bSJohn McCall llvm::Value *hasOverflow = 0; 6788ed55a54SJohn McCall 679036f2f6bSJohn McCall // If numElementsWidth > sizeWidth, then one way or another, we're 680036f2f6bSJohn McCall // going to have to do a comparison for (2), and this happens to 681036f2f6bSJohn McCall // take care of (1), too. 682036f2f6bSJohn McCall if (numElementsWidth > sizeWidth) { 683036f2f6bSJohn McCall llvm::APInt threshold(numElementsWidth, 1); 684036f2f6bSJohn McCall threshold <<= sizeWidth; 6858ed55a54SJohn McCall 686036f2f6bSJohn McCall llvm::Value *thresholdV 687036f2f6bSJohn McCall = llvm::ConstantInt::get(numElementsType, threshold); 688036f2f6bSJohn McCall 689036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 690036f2f6bSJohn McCall numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 691036f2f6bSJohn McCall 692036f2f6bSJohn McCall // Otherwise, if we're signed, we want to sext up to size_t. 693036f2f6bSJohn McCall } else if (isSigned) { 694036f2f6bSJohn McCall if (numElementsWidth < sizeWidth) 695036f2f6bSJohn McCall numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 696036f2f6bSJohn McCall 697036f2f6bSJohn McCall // If there's a non-1 type size multiplier, then we can do the 698036f2f6bSJohn McCall // signedness check at the same time as we do the multiply 699036f2f6bSJohn McCall // because a negative number times anything will cause an 700f862eb6aSSebastian Redl // unsigned overflow. Otherwise, we have to do it here. But at least 701f862eb6aSSebastian Redl // in this case, we can subsume the >= minElements check. 702036f2f6bSJohn McCall if (typeSizeMultiplier == 1) 703036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 704f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 705036f2f6bSJohn McCall 706036f2f6bSJohn McCall // Otherwise, zext up to size_t if necessary. 707036f2f6bSJohn McCall } else if (numElementsWidth < sizeWidth) { 708036f2f6bSJohn McCall numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 709036f2f6bSJohn McCall } 710036f2f6bSJohn McCall 711036f2f6bSJohn McCall assert(numElements->getType() == CGF.SizeTy); 712036f2f6bSJohn McCall 713f862eb6aSSebastian Redl if (minElements) { 714f862eb6aSSebastian Redl // Don't allow allocation of fewer elements than we have initializers. 715f862eb6aSSebastian Redl if (!hasOverflow) { 716f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateICmpULT(numElements, 717f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 718f862eb6aSSebastian Redl } else if (numElementsWidth > sizeWidth) { 719f862eb6aSSebastian Redl // The other existing overflow subsumes this check. 720f862eb6aSSebastian Redl // We do an unsigned comparison, since any signed value < -1 is 721f862eb6aSSebastian Redl // taken care of either above or below. 722f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateOr(hasOverflow, 723f862eb6aSSebastian Redl CGF.Builder.CreateICmpULT(numElements, 724f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements))); 725f862eb6aSSebastian Redl } 726f862eb6aSSebastian Redl } 727f862eb6aSSebastian Redl 728036f2f6bSJohn McCall size = numElements; 729036f2f6bSJohn McCall 730036f2f6bSJohn McCall // Multiply by the type size if necessary. This multiplier 731036f2f6bSJohn McCall // includes all the factors for nested arrays. 7328ed55a54SJohn McCall // 733036f2f6bSJohn McCall // This step also causes numElements to be scaled up by the 734036f2f6bSJohn McCall // nested-array factor if necessary. Overflow on this computation 735036f2f6bSJohn McCall // can be ignored because the result shouldn't be used if 736036f2f6bSJohn McCall // allocation fails. 737036f2f6bSJohn McCall if (typeSizeMultiplier != 1) { 738036f2f6bSJohn McCall llvm::Value *umul_with_overflow 7398d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 7408ed55a54SJohn McCall 741036f2f6bSJohn McCall llvm::Value *tsmV = 742036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 743036f2f6bSJohn McCall llvm::Value *result = 744036f2f6bSJohn McCall CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 7458ed55a54SJohn McCall 746036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 747036f2f6bSJohn McCall if (hasOverflow) 748036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 7498ed55a54SJohn McCall else 750036f2f6bSJohn McCall hasOverflow = overflowed; 75159486a2dSAnders Carlsson 752036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 753036f2f6bSJohn McCall 754036f2f6bSJohn McCall // Also scale up numElements by the array size multiplier. 755036f2f6bSJohn McCall if (arraySizeMultiplier != 1) { 756036f2f6bSJohn McCall // If the base element type size is 1, then we can re-use the 757036f2f6bSJohn McCall // multiply we just did. 758036f2f6bSJohn McCall if (typeSize.isOne()) { 759036f2f6bSJohn McCall assert(arraySizeMultiplier == typeSizeMultiplier); 760036f2f6bSJohn McCall numElements = size; 761036f2f6bSJohn McCall 762036f2f6bSJohn McCall // Otherwise we need a separate multiply. 763036f2f6bSJohn McCall } else { 764036f2f6bSJohn McCall llvm::Value *asmV = 765036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 766036f2f6bSJohn McCall numElements = CGF.Builder.CreateMul(numElements, asmV); 767036f2f6bSJohn McCall } 768036f2f6bSJohn McCall } 769036f2f6bSJohn McCall } else { 770036f2f6bSJohn McCall // numElements doesn't need to be scaled. 771036f2f6bSJohn McCall assert(arraySizeMultiplier == 1); 772036f2f6bSJohn McCall } 773036f2f6bSJohn McCall 774036f2f6bSJohn McCall // Add in the cookie size if necessary. 775036f2f6bSJohn McCall if (cookieSize != 0) { 776036f2f6bSJohn McCall sizeWithoutCookie = size; 777036f2f6bSJohn McCall 778036f2f6bSJohn McCall llvm::Value *uadd_with_overflow 7798d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 780036f2f6bSJohn McCall 781036f2f6bSJohn McCall llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 782036f2f6bSJohn McCall llvm::Value *result = 783036f2f6bSJohn McCall CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 784036f2f6bSJohn McCall 785036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 786036f2f6bSJohn McCall if (hasOverflow) 787036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 788036f2f6bSJohn McCall else 789036f2f6bSJohn McCall hasOverflow = overflowed; 790036f2f6bSJohn McCall 791036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 792036f2f6bSJohn McCall } 793036f2f6bSJohn McCall 794036f2f6bSJohn McCall // If we had any possibility of dynamic overflow, make a select to 795036f2f6bSJohn McCall // overwrite 'size' with an all-ones value, which should cause 796036f2f6bSJohn McCall // operator new to throw. 797036f2f6bSJohn McCall if (hasOverflow) 798036f2f6bSJohn McCall size = CGF.Builder.CreateSelect(hasOverflow, 799036f2f6bSJohn McCall llvm::Constant::getAllOnesValue(CGF.SizeTy), 800036f2f6bSJohn McCall size); 801036f2f6bSJohn McCall } 802036f2f6bSJohn McCall 803036f2f6bSJohn McCall if (cookieSize == 0) 804036f2f6bSJohn McCall sizeWithoutCookie = size; 805036f2f6bSJohn McCall else 806036f2f6bSJohn McCall assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 807036f2f6bSJohn McCall 808036f2f6bSJohn McCall return size; 80959486a2dSAnders Carlsson } 81059486a2dSAnders Carlsson 811f862eb6aSSebastian Redl static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 812f862eb6aSSebastian Redl QualType AllocType, llvm::Value *NewPtr) { 813d5202e09SFariborz Jahanian 81438cd36dbSEli Friedman CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 81547fb9508SJohn McCall switch (CGF.getEvaluationKind(AllocType)) { 81647fb9508SJohn McCall case TEK_Scalar: 81738cd36dbSEli Friedman CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 818a0544d6fSEli Friedman Alignment), 8191553b190SJohn McCall false); 82047fb9508SJohn McCall return; 82147fb9508SJohn McCall case TEK_Complex: 82247fb9508SJohn McCall CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 82347fb9508SJohn McCall Alignment), 82447fb9508SJohn McCall /*isInit*/ true); 82547fb9508SJohn McCall return; 82647fb9508SJohn McCall case TEK_Aggregate: { 8277a626f63SJohn McCall AggValueSlot Slot 828c1d85b93SEli Friedman = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 8298d6fc958SJohn McCall AggValueSlot::IsDestructed, 83046759f4fSJohn McCall AggValueSlot::DoesNotNeedGCBarriers, 831615ed1a3SChad Rosier AggValueSlot::IsNotAliased); 8327a626f63SJohn McCall CGF.EmitAggExpr(Init, Slot); 83347fb9508SJohn McCall return; 8347a626f63SJohn McCall } 835d5202e09SFariborz Jahanian } 83647fb9508SJohn McCall llvm_unreachable("bad evaluation kind"); 83747fb9508SJohn McCall } 838d5202e09SFariborz Jahanian 839d5202e09SFariborz Jahanian void 840d5202e09SFariborz Jahanian CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 84199210dc9SJohn McCall QualType elementType, 84299210dc9SJohn McCall llvm::Value *beginPtr, 84399210dc9SJohn McCall llvm::Value *numElements) { 8446047f07eSSebastian Redl if (!E->hasInitializer()) 8456047f07eSSebastian Redl return; // We have a POD type. 846b66b08efSFariborz Jahanian 847f862eb6aSSebastian Redl llvm::Value *explicitPtr = beginPtr; 84899210dc9SJohn McCall // Find the end of the array, hoisted out of the loop. 84999210dc9SJohn McCall llvm::Value *endPtr = 85099210dc9SJohn McCall Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 851d5202e09SFariborz Jahanian 852f862eb6aSSebastian Redl unsigned initializerElements = 0; 853f862eb6aSSebastian Redl 854f862eb6aSSebastian Redl const Expr *Init = E->getInitializer(); 855f62290a1SChad Rosier llvm::AllocaInst *endOfInit = 0; 856f62290a1SChad Rosier QualType::DestructionKind dtorKind = elementType.isDestructedType(); 857f62290a1SChad Rosier EHScopeStack::stable_iterator cleanup; 858f62290a1SChad Rosier llvm::Instruction *cleanupDominator = 0; 859f862eb6aSSebastian Redl // If the initializer is an initializer list, first do the explicit elements. 860f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 861f862eb6aSSebastian Redl initializerElements = ILE->getNumInits(); 862f62290a1SChad Rosier 863f62290a1SChad Rosier // Enter a partial-destruction cleanup if necessary. 864f62290a1SChad Rosier if (needsEHCleanup(dtorKind)) { 865f62290a1SChad Rosier // In principle we could tell the cleanup where we are more 866f62290a1SChad Rosier // directly, but the control flow can get so varied here that it 867f62290a1SChad Rosier // would actually be quite complex. Therefore we go through an 868f62290a1SChad Rosier // alloca. 869f62290a1SChad Rosier endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 870f62290a1SChad Rosier cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 871f62290a1SChad Rosier pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 872f62290a1SChad Rosier getDestroyer(dtorKind)); 873f62290a1SChad Rosier cleanup = EHStack.stable_begin(); 874f62290a1SChad Rosier } 875f62290a1SChad Rosier 876f862eb6aSSebastian Redl for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 877f62290a1SChad Rosier // Tell the cleanup that it needs to destroy up to this 878f62290a1SChad Rosier // element. TODO: some of these stores can be trivially 879f62290a1SChad Rosier // observed to be unnecessary. 880f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 881f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 882f862eb6aSSebastian Redl explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 883f862eb6aSSebastian Redl } 884f862eb6aSSebastian Redl 885f862eb6aSSebastian Redl // The remaining elements are filled with the array filler expression. 886f862eb6aSSebastian Redl Init = ILE->getArrayFiller(); 887f862eb6aSSebastian Redl } 888f862eb6aSSebastian Redl 88999210dc9SJohn McCall // Create the continuation block. 89099210dc9SJohn McCall llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 891d5202e09SFariborz Jahanian 892f862eb6aSSebastian Redl // If the number of elements isn't constant, we have to now check if there is 893f862eb6aSSebastian Redl // anything left to initialize. 894f862eb6aSSebastian Redl if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 895f862eb6aSSebastian Redl // If all elements have already been initialized, skip the whole loop. 896f62290a1SChad Rosier if (constNum->getZExtValue() <= initializerElements) { 897f62290a1SChad Rosier // If there was a cleanup, deactivate it. 898f62290a1SChad Rosier if (cleanupDominator) 89976bb5cabSDmitri Gribenko DeactivateCleanupBlock(cleanup, cleanupDominator); 900f62290a1SChad Rosier return; 901f62290a1SChad Rosier } 902f862eb6aSSebastian Redl } else { 90399210dc9SJohn McCall llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 904f862eb6aSSebastian Redl llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 90599210dc9SJohn McCall "array.isempty"); 90699210dc9SJohn McCall Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 90799210dc9SJohn McCall EmitBlock(nonEmptyBB); 90899210dc9SJohn McCall } 909d5202e09SFariborz Jahanian 91099210dc9SJohn McCall // Enter the loop. 91199210dc9SJohn McCall llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 91299210dc9SJohn McCall llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 913d5202e09SFariborz Jahanian 91499210dc9SJohn McCall EmitBlock(loopBB); 915d5202e09SFariborz Jahanian 91699210dc9SJohn McCall // Set up the current-element phi. 91799210dc9SJohn McCall llvm::PHINode *curPtr = 918f862eb6aSSebastian Redl Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 919f862eb6aSSebastian Redl curPtr->addIncoming(explicitPtr, entryBB); 920d5202e09SFariborz Jahanian 921f62290a1SChad Rosier // Store the new cleanup position for irregular cleanups. 922f62290a1SChad Rosier if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 923f62290a1SChad Rosier 92499210dc9SJohn McCall // Enter a partial-destruction cleanup if necessary. 925f62290a1SChad Rosier if (!cleanupDominator && needsEHCleanup(dtorKind)) { 92699210dc9SJohn McCall pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 92799210dc9SJohn McCall getDestroyer(dtorKind)); 92899210dc9SJohn McCall cleanup = EHStack.stable_begin(); 929f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 93099210dc9SJohn McCall } 931d5202e09SFariborz Jahanian 93299210dc9SJohn McCall // Emit the initializer into this element. 933f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 934d5202e09SFariborz Jahanian 93599210dc9SJohn McCall // Leave the cleanup if we entered one. 936de6a86b4SEli Friedman if (cleanupDominator) { 937f4beacd0SJohn McCall DeactivateCleanupBlock(cleanup, cleanupDominator); 938f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 939f4beacd0SJohn McCall } 940d5202e09SFariborz Jahanian 94199210dc9SJohn McCall // Advance to the next element. 94299210dc9SJohn McCall llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 94399210dc9SJohn McCall 94499210dc9SJohn McCall // Check whether we've gotten to the end of the array and, if so, 94599210dc9SJohn McCall // exit the loop. 94699210dc9SJohn McCall llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 94799210dc9SJohn McCall Builder.CreateCondBr(isEnd, contBB, loopBB); 94899210dc9SJohn McCall curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 94999210dc9SJohn McCall 95099210dc9SJohn McCall EmitBlock(contBB); 951d5202e09SFariborz Jahanian } 952d5202e09SFariborz Jahanian 95305fc5be3SDouglas Gregor static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 95405fc5be3SDouglas Gregor llvm::Value *NewPtr, llvm::Value *Size) { 955ad7c5c16SJohn McCall CGF.EmitCastToVoidPtr(NewPtr); 956705ba07eSKen Dyck CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 957acc6b4e2SBenjamin Kramer CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 958705ba07eSKen Dyck Alignment.getQuantity(), false); 95905fc5be3SDouglas Gregor } 96005fc5be3SDouglas Gregor 96159486a2dSAnders Carlsson static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 96299210dc9SJohn McCall QualType ElementType, 96359486a2dSAnders Carlsson llvm::Value *NewPtr, 96405fc5be3SDouglas Gregor llvm::Value *NumElements, 96505fc5be3SDouglas Gregor llvm::Value *AllocSizeWithoutCookie) { 9666047f07eSSebastian Redl const Expr *Init = E->getInitializer(); 9673a202f60SAnders Carlsson if (E->isArray()) { 9686047f07eSSebastian Redl if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 9696047f07eSSebastian Redl CXXConstructorDecl *Ctor = CCE->getConstructor(); 970d153103cSDouglas Gregor if (Ctor->isTrivial()) { 97105fc5be3SDouglas Gregor // If new expression did not specify value-initialization, then there 97205fc5be3SDouglas Gregor // is no initialization. 9736047f07eSSebastian Redl if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 97405fc5be3SDouglas Gregor return; 97505fc5be3SDouglas Gregor 97699210dc9SJohn McCall if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 97705fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 97805fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 97999210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 9803a202f60SAnders Carlsson return; 9813a202f60SAnders Carlsson } 98205fc5be3SDouglas Gregor } 98305fc5be3SDouglas Gregor 98405fc5be3SDouglas Gregor CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 9856047f07eSSebastian Redl CCE->arg_begin(), CCE->arg_end(), 98648ddcf2cSEli Friedman CCE->requiresZeroInitialization()); 98705fc5be3SDouglas Gregor return; 9886047f07eSSebastian Redl } else if (Init && isa<ImplicitValueInitExpr>(Init) && 989de6a86b4SEli Friedman CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 99005fc5be3SDouglas Gregor // Optimization: since zero initialization will just set the memory 99105fc5be3SDouglas Gregor // to all zeroes, generate a single memset to do it in one shot. 99299210dc9SJohn McCall EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 99305fc5be3SDouglas Gregor return; 9946047f07eSSebastian Redl } 99599210dc9SJohn McCall CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 996d5202e09SFariborz Jahanian return; 997d040e6b2SAnders Carlsson } 99859486a2dSAnders Carlsson 9996047f07eSSebastian Redl if (!Init) 1000b66b08efSFariborz Jahanian return; 100159486a2dSAnders Carlsson 1002f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 100359486a2dSAnders Carlsson } 100459486a2dSAnders Carlsson 10058d0dc31dSRichard Smith /// Emit a call to an operator new or operator delete function, as implicitly 10068d0dc31dSRichard Smith /// created by new-expressions and delete-expressions. 10078d0dc31dSRichard Smith static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 10088d0dc31dSRichard Smith const FunctionDecl *Callee, 10098d0dc31dSRichard Smith const FunctionProtoType *CalleeType, 10108d0dc31dSRichard Smith const CallArgList &Args) { 10118d0dc31dSRichard Smith llvm::Instruction *CallOrInvoke; 1012*1235a8daSRichard Smith llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 10138d0dc31dSRichard Smith RValue RV = 10148d0dc31dSRichard Smith CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType), 1015*1235a8daSRichard Smith CalleeAddr, ReturnValueSlot(), Args, 10168d0dc31dSRichard Smith Callee, &CallOrInvoke); 10178d0dc31dSRichard Smith 10188d0dc31dSRichard Smith /// C++1y [expr.new]p10: 10198d0dc31dSRichard Smith /// [In a new-expression,] an implementation is allowed to omit a call 10208d0dc31dSRichard Smith /// to a replaceable global allocation function. 10218d0dc31dSRichard Smith /// 10228d0dc31dSRichard Smith /// We model such elidable calls with the 'builtin' attribute. 1023*1235a8daSRichard Smith llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1024*1235a8daSRichard Smith if (Callee->isReplaceableGlobalAllocationFunction() && 1025*1235a8daSRichard Smith Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 10268d0dc31dSRichard Smith // FIXME: Add addAttribute to CallSite. 10278d0dc31dSRichard Smith if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 10288d0dc31dSRichard Smith CI->addAttribute(llvm::AttributeSet::FunctionIndex, 10298d0dc31dSRichard Smith llvm::Attribute::Builtin); 10308d0dc31dSRichard Smith else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 10318d0dc31dSRichard Smith II->addAttribute(llvm::AttributeSet::FunctionIndex, 10328d0dc31dSRichard Smith llvm::Attribute::Builtin); 10338d0dc31dSRichard Smith else 10348d0dc31dSRichard Smith llvm_unreachable("unexpected kind of call instruction"); 10358d0dc31dSRichard Smith } 10368d0dc31dSRichard Smith 10378d0dc31dSRichard Smith return RV; 10388d0dc31dSRichard Smith } 10398d0dc31dSRichard Smith 1040824c2f53SJohn McCall namespace { 1041824c2f53SJohn McCall /// A cleanup to call the given 'operator delete' function upon 1042824c2f53SJohn McCall /// abnormal exit from a new expression. 1043824c2f53SJohn McCall class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1044824c2f53SJohn McCall size_t NumPlacementArgs; 1045824c2f53SJohn McCall const FunctionDecl *OperatorDelete; 1046824c2f53SJohn McCall llvm::Value *Ptr; 1047824c2f53SJohn McCall llvm::Value *AllocSize; 1048824c2f53SJohn McCall 1049824c2f53SJohn McCall RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1050824c2f53SJohn McCall 1051824c2f53SJohn McCall public: 1052824c2f53SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1053824c2f53SJohn McCall return NumPlacementArgs * sizeof(RValue); 1054824c2f53SJohn McCall } 1055824c2f53SJohn McCall 1056824c2f53SJohn McCall CallDeleteDuringNew(size_t NumPlacementArgs, 1057824c2f53SJohn McCall const FunctionDecl *OperatorDelete, 1058824c2f53SJohn McCall llvm::Value *Ptr, 1059824c2f53SJohn McCall llvm::Value *AllocSize) 1060824c2f53SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1061824c2f53SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 1062824c2f53SJohn McCall 1063824c2f53SJohn McCall void setPlacementArg(unsigned I, RValue Arg) { 1064824c2f53SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 1065824c2f53SJohn McCall getPlacementArgs()[I] = Arg; 1066824c2f53SJohn McCall } 1067824c2f53SJohn McCall 106830317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 1069824c2f53SJohn McCall const FunctionProtoType *FPT 1070824c2f53SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1071824c2f53SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1072d441b1e6SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1073824c2f53SJohn McCall 1074824c2f53SJohn McCall CallArgList DeleteArgs; 1075824c2f53SJohn McCall 1076824c2f53SJohn McCall // The first argument is always a void*. 1077824c2f53SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 107843dca6a8SEli Friedman DeleteArgs.add(RValue::get(Ptr), *AI++); 1079824c2f53SJohn McCall 1080824c2f53SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 1081824c2f53SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) 108243dca6a8SEli Friedman DeleteArgs.add(RValue::get(AllocSize), *AI++); 1083824c2f53SJohn McCall 1084824c2f53SJohn McCall // Pass the rest of the arguments, which must match exactly. 1085824c2f53SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) 108643dca6a8SEli Friedman DeleteArgs.add(getPlacementArgs()[I], *AI++); 1087824c2f53SJohn McCall 1088824c2f53SJohn McCall // Call 'operator delete'. 10898d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1090824c2f53SJohn McCall } 1091824c2f53SJohn McCall }; 10927f9c92a9SJohn McCall 10937f9c92a9SJohn McCall /// A cleanup to call the given 'operator delete' function upon 10947f9c92a9SJohn McCall /// abnormal exit from a new expression when the new expression is 10957f9c92a9SJohn McCall /// conditional. 10967f9c92a9SJohn McCall class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 10977f9c92a9SJohn McCall size_t NumPlacementArgs; 10987f9c92a9SJohn McCall const FunctionDecl *OperatorDelete; 1099cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr; 1100cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize; 11017f9c92a9SJohn McCall 1102cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type *getPlacementArgs() { 1103cb5f77f0SJohn McCall return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 11047f9c92a9SJohn McCall } 11057f9c92a9SJohn McCall 11067f9c92a9SJohn McCall public: 11077f9c92a9SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1108cb5f77f0SJohn McCall return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 11097f9c92a9SJohn McCall } 11107f9c92a9SJohn McCall 11117f9c92a9SJohn McCall CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 11127f9c92a9SJohn McCall const FunctionDecl *OperatorDelete, 1113cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr, 1114cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize) 11157f9c92a9SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 11167f9c92a9SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 11177f9c92a9SJohn McCall 1118cb5f77f0SJohn McCall void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 11197f9c92a9SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 11207f9c92a9SJohn McCall getPlacementArgs()[I] = Arg; 11217f9c92a9SJohn McCall } 11227f9c92a9SJohn McCall 112330317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 11247f9c92a9SJohn McCall const FunctionProtoType *FPT 11257f9c92a9SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 11267f9c92a9SJohn McCall assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 11277f9c92a9SJohn McCall (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 11287f9c92a9SJohn McCall 11297f9c92a9SJohn McCall CallArgList DeleteArgs; 11307f9c92a9SJohn McCall 11317f9c92a9SJohn McCall // The first argument is always a void*. 11327f9c92a9SJohn McCall FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 113343dca6a8SEli Friedman DeleteArgs.add(Ptr.restore(CGF), *AI++); 11347f9c92a9SJohn McCall 11357f9c92a9SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 11367f9c92a9SJohn McCall if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1137cb5f77f0SJohn McCall RValue RV = AllocSize.restore(CGF); 113843dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 11397f9c92a9SJohn McCall } 11407f9c92a9SJohn McCall 11417f9c92a9SJohn McCall // Pass the rest of the arguments, which must match exactly. 11427f9c92a9SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1143cb5f77f0SJohn McCall RValue RV = getPlacementArgs()[I].restore(CGF); 114443dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 11457f9c92a9SJohn McCall } 11467f9c92a9SJohn McCall 11477f9c92a9SJohn McCall // Call 'operator delete'. 11488d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 11497f9c92a9SJohn McCall } 11507f9c92a9SJohn McCall }; 11517f9c92a9SJohn McCall } 11527f9c92a9SJohn McCall 11537f9c92a9SJohn McCall /// Enter a cleanup to call 'operator delete' if the initializer in a 11547f9c92a9SJohn McCall /// new-expression throws. 11557f9c92a9SJohn McCall static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 11567f9c92a9SJohn McCall const CXXNewExpr *E, 11577f9c92a9SJohn McCall llvm::Value *NewPtr, 11587f9c92a9SJohn McCall llvm::Value *AllocSize, 11597f9c92a9SJohn McCall const CallArgList &NewArgs) { 11607f9c92a9SJohn McCall // If we're not inside a conditional branch, then the cleanup will 11617f9c92a9SJohn McCall // dominate and we can do the easier (and more efficient) thing. 11627f9c92a9SJohn McCall if (!CGF.isInConditionalBranch()) { 11637f9c92a9SJohn McCall CallDeleteDuringNew *Cleanup = CGF.EHStack 11647f9c92a9SJohn McCall .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 11657f9c92a9SJohn McCall E->getNumPlacementArgs(), 11667f9c92a9SJohn McCall E->getOperatorDelete(), 11677f9c92a9SJohn McCall NewPtr, AllocSize); 11687f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1169f4258eb4SEli Friedman Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 11707f9c92a9SJohn McCall 11717f9c92a9SJohn McCall return; 11727f9c92a9SJohn McCall } 11737f9c92a9SJohn McCall 11747f9c92a9SJohn McCall // Otherwise, we need to save all this stuff. 1175cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedNewPtr = 1176cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1177cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedAllocSize = 1178cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 11797f9c92a9SJohn McCall 11807f9c92a9SJohn McCall CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1181f4beacd0SJohn McCall .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 11827f9c92a9SJohn McCall E->getNumPlacementArgs(), 11837f9c92a9SJohn McCall E->getOperatorDelete(), 11847f9c92a9SJohn McCall SavedNewPtr, 11857f9c92a9SJohn McCall SavedAllocSize); 11867f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1187cb5f77f0SJohn McCall Cleanup->setPlacementArg(I, 1188f4258eb4SEli Friedman DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 11897f9c92a9SJohn McCall 1190f4beacd0SJohn McCall CGF.initFullExprCleanup(); 1191824c2f53SJohn McCall } 1192824c2f53SJohn McCall 119359486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 119475f9498aSJohn McCall // The element type being allocated. 119575f9498aSJohn McCall QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 11968ed55a54SJohn McCall 119775f9498aSJohn McCall // 1. Build a call to the allocation function. 119875f9498aSJohn McCall FunctionDecl *allocator = E->getOperatorNew(); 119975f9498aSJohn McCall const FunctionProtoType *allocatorType = 120075f9498aSJohn McCall allocator->getType()->castAs<FunctionProtoType>(); 120159486a2dSAnders Carlsson 120275f9498aSJohn McCall CallArgList allocatorArgs; 120359486a2dSAnders Carlsson 120459486a2dSAnders Carlsson // The allocation size is the first argument. 120575f9498aSJohn McCall QualType sizeType = getContext().getSizeType(); 120659486a2dSAnders Carlsson 1207f862eb6aSSebastian Redl // If there is a brace-initializer, cannot allocate fewer elements than inits. 1208f862eb6aSSebastian Redl unsigned minElements = 0; 1209f862eb6aSSebastian Redl if (E->isArray() && E->hasInitializer()) { 1210f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1211f862eb6aSSebastian Redl minElements = ILE->getNumInits(); 1212f862eb6aSSebastian Redl } 1213f862eb6aSSebastian Redl 121475f9498aSJohn McCall llvm::Value *numElements = 0; 121575f9498aSJohn McCall llvm::Value *allocSizeWithoutCookie = 0; 121675f9498aSJohn McCall llvm::Value *allocSize = 1217f862eb6aSSebastian Redl EmitCXXNewAllocSize(*this, E, minElements, numElements, 1218f862eb6aSSebastian Redl allocSizeWithoutCookie); 121959486a2dSAnders Carlsson 122043dca6a8SEli Friedman allocatorArgs.add(RValue::get(allocSize), sizeType); 122159486a2dSAnders Carlsson 122259486a2dSAnders Carlsson // Emit the rest of the arguments. 122359486a2dSAnders Carlsson // FIXME: Ideally, this should just use EmitCallArgs. 122475f9498aSJohn McCall CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 122559486a2dSAnders Carlsson 122659486a2dSAnders Carlsson // First, use the types from the function type. 122759486a2dSAnders Carlsson // We start at 1 here because the first argument (the allocation size) 122859486a2dSAnders Carlsson // has already been emitted. 122975f9498aSJohn McCall for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 123075f9498aSJohn McCall ++i, ++placementArg) { 123175f9498aSJohn McCall QualType argType = allocatorType->getArgType(i); 123259486a2dSAnders Carlsson 123375f9498aSJohn McCall assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 123475f9498aSJohn McCall placementArg->getType()) && 123559486a2dSAnders Carlsson "type mismatch in call argument!"); 123659486a2dSAnders Carlsson 123732ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, argType); 123859486a2dSAnders Carlsson } 123959486a2dSAnders Carlsson 124059486a2dSAnders Carlsson // Either we've emitted all the call args, or we have a call to a 124159486a2dSAnders Carlsson // variadic function. 124275f9498aSJohn McCall assert((placementArg == E->placement_arg_end() || 124375f9498aSJohn McCall allocatorType->isVariadic()) && 124475f9498aSJohn McCall "Extra arguments to non-variadic function!"); 124559486a2dSAnders Carlsson 124659486a2dSAnders Carlsson // If we still have any arguments, emit them using the type of the argument. 124775f9498aSJohn McCall for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 124875f9498aSJohn McCall placementArg != placementArgsEnd; ++placementArg) { 124932ea9694SJohn McCall EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 125059486a2dSAnders Carlsson } 125159486a2dSAnders Carlsson 12527ec4b434SJohn McCall // Emit the allocation call. If the allocator is a global placement 12537ec4b434SJohn McCall // operator, just "inline" it directly. 12547ec4b434SJohn McCall RValue RV; 12557ec4b434SJohn McCall if (allocator->isReservedGlobalPlacementOperator()) { 12567ec4b434SJohn McCall assert(allocatorArgs.size() == 2); 12577ec4b434SJohn McCall RV = allocatorArgs[1].RV; 12587ec4b434SJohn McCall // TODO: kill any unnecessary computations done for the size 12597ec4b434SJohn McCall // argument. 12607ec4b434SJohn McCall } else { 12618d0dc31dSRichard Smith RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 12627ec4b434SJohn McCall } 126359486a2dSAnders Carlsson 126475f9498aSJohn McCall // Emit a null check on the allocation result if the allocation 126575f9498aSJohn McCall // function is allowed to return null (because it has a non-throwing 126675f9498aSJohn McCall // exception spec; for this part, we inline 126775f9498aSJohn McCall // CXXNewExpr::shouldNullCheckAllocation()) and we have an 126875f9498aSJohn McCall // interesting initializer. 126931ad754cSSebastian Redl bool nullCheck = allocatorType->isNothrow(getContext()) && 12706047f07eSSebastian Redl (!allocType.isPODType(getContext()) || E->hasInitializer()); 127159486a2dSAnders Carlsson 127275f9498aSJohn McCall llvm::BasicBlock *nullCheckBB = 0; 127375f9498aSJohn McCall llvm::BasicBlock *contBB = 0; 127459486a2dSAnders Carlsson 127575f9498aSJohn McCall llvm::Value *allocation = RV.getScalarVal(); 1276ea2fea2aSMicah Villmow unsigned AS = allocation->getType()->getPointerAddressSpace(); 127759486a2dSAnders Carlsson 1278f7dcf320SJohn McCall // The null-check means that the initializer is conditionally 1279f7dcf320SJohn McCall // evaluated. 1280f7dcf320SJohn McCall ConditionalEvaluation conditional(*this); 1281f7dcf320SJohn McCall 128275f9498aSJohn McCall if (nullCheck) { 1283f7dcf320SJohn McCall conditional.begin(*this); 128475f9498aSJohn McCall 128575f9498aSJohn McCall nullCheckBB = Builder.GetInsertBlock(); 128675f9498aSJohn McCall llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 128775f9498aSJohn McCall contBB = createBasicBlock("new.cont"); 128875f9498aSJohn McCall 128975f9498aSJohn McCall llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 129075f9498aSJohn McCall Builder.CreateCondBr(isNull, contBB, notNullBB); 129175f9498aSJohn McCall EmitBlock(notNullBB); 129259486a2dSAnders Carlsson } 129359486a2dSAnders Carlsson 1294824c2f53SJohn McCall // If there's an operator delete, enter a cleanup to call it if an 1295824c2f53SJohn McCall // exception is thrown. 129675f9498aSJohn McCall EHScopeStack::stable_iterator operatorDeleteCleanup; 1297f4beacd0SJohn McCall llvm::Instruction *cleanupDominator = 0; 12987ec4b434SJohn McCall if (E->getOperatorDelete() && 12997ec4b434SJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 130075f9498aSJohn McCall EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 130175f9498aSJohn McCall operatorDeleteCleanup = EHStack.stable_begin(); 1302f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 1303824c2f53SJohn McCall } 1304824c2f53SJohn McCall 1305cf9b1f65SEli Friedman assert((allocSize == allocSizeWithoutCookie) == 1306cf9b1f65SEli Friedman CalculateCookiePadding(*this, E).isZero()); 1307cf9b1f65SEli Friedman if (allocSize != allocSizeWithoutCookie) { 1308cf9b1f65SEli Friedman assert(E->isArray()); 1309cf9b1f65SEli Friedman allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1310cf9b1f65SEli Friedman numElements, 1311cf9b1f65SEli Friedman E, allocType); 1312cf9b1f65SEli Friedman } 1313cf9b1f65SEli Friedman 13142192fe50SChris Lattner llvm::Type *elementPtrTy 131575f9498aSJohn McCall = ConvertTypeForMem(allocType)->getPointerTo(AS); 131675f9498aSJohn McCall llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1317824c2f53SJohn McCall 131899210dc9SJohn McCall EmitNewInitializer(*this, E, allocType, result, numElements, 131999210dc9SJohn McCall allocSizeWithoutCookie); 13208ed55a54SJohn McCall if (E->isArray()) { 13218ed55a54SJohn McCall // NewPtr is a pointer to the base element type. If we're 13228ed55a54SJohn McCall // allocating an array of arrays, we'll need to cast back to the 13238ed55a54SJohn McCall // array pointer type. 13242192fe50SChris Lattner llvm::Type *resultType = ConvertTypeForMem(E->getType()); 132575f9498aSJohn McCall if (result->getType() != resultType) 132675f9498aSJohn McCall result = Builder.CreateBitCast(result, resultType); 132747b4629bSFariborz Jahanian } 132859486a2dSAnders Carlsson 1329824c2f53SJohn McCall // Deactivate the 'operator delete' cleanup if we finished 1330824c2f53SJohn McCall // initialization. 1331f4beacd0SJohn McCall if (operatorDeleteCleanup.isValid()) { 1332f4beacd0SJohn McCall DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1333f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 1334f4beacd0SJohn McCall } 1335824c2f53SJohn McCall 133675f9498aSJohn McCall if (nullCheck) { 1337f7dcf320SJohn McCall conditional.end(*this); 1338f7dcf320SJohn McCall 133975f9498aSJohn McCall llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 134075f9498aSJohn McCall EmitBlock(contBB); 134159486a2dSAnders Carlsson 134220c0f02cSJay Foad llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 134375f9498aSJohn McCall PHI->addIncoming(result, notNullBB); 134475f9498aSJohn McCall PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 134575f9498aSJohn McCall nullCheckBB); 134659486a2dSAnders Carlsson 134775f9498aSJohn McCall result = PHI; 134859486a2dSAnders Carlsson } 134959486a2dSAnders Carlsson 135075f9498aSJohn McCall return result; 135159486a2dSAnders Carlsson } 135259486a2dSAnders Carlsson 135359486a2dSAnders Carlsson void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 135459486a2dSAnders Carlsson llvm::Value *Ptr, 135559486a2dSAnders Carlsson QualType DeleteTy) { 13568ed55a54SJohn McCall assert(DeleteFD->getOverloadedOperator() == OO_Delete); 13578ed55a54SJohn McCall 135859486a2dSAnders Carlsson const FunctionProtoType *DeleteFTy = 135959486a2dSAnders Carlsson DeleteFD->getType()->getAs<FunctionProtoType>(); 136059486a2dSAnders Carlsson 136159486a2dSAnders Carlsson CallArgList DeleteArgs; 136259486a2dSAnders Carlsson 136321122cf6SAnders Carlsson // Check if we need to pass the size to the delete operator. 136421122cf6SAnders Carlsson llvm::Value *Size = 0; 136521122cf6SAnders Carlsson QualType SizeTy; 136621122cf6SAnders Carlsson if (DeleteFTy->getNumArgs() == 2) { 136721122cf6SAnders Carlsson SizeTy = DeleteFTy->getArgType(1); 13687df3cbebSKen Dyck CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 13697df3cbebSKen Dyck Size = llvm::ConstantInt::get(ConvertType(SizeTy), 13707df3cbebSKen Dyck DeleteTypeSize.getQuantity()); 137121122cf6SAnders Carlsson } 137221122cf6SAnders Carlsson 137359486a2dSAnders Carlsson QualType ArgTy = DeleteFTy->getArgType(0); 137459486a2dSAnders Carlsson llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 137543dca6a8SEli Friedman DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 137659486a2dSAnders Carlsson 137721122cf6SAnders Carlsson if (Size) 137843dca6a8SEli Friedman DeleteArgs.add(RValue::get(Size), SizeTy); 137959486a2dSAnders Carlsson 138059486a2dSAnders Carlsson // Emit the call to delete. 13818d0dc31dSRichard Smith EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 138259486a2dSAnders Carlsson } 138359486a2dSAnders Carlsson 13848ed55a54SJohn McCall namespace { 13858ed55a54SJohn McCall /// Calls the given 'operator delete' on a single object. 13868ed55a54SJohn McCall struct CallObjectDelete : EHScopeStack::Cleanup { 13878ed55a54SJohn McCall llvm::Value *Ptr; 13888ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 13898ed55a54SJohn McCall QualType ElementType; 13908ed55a54SJohn McCall 13918ed55a54SJohn McCall CallObjectDelete(llvm::Value *Ptr, 13928ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13938ed55a54SJohn McCall QualType ElementType) 13948ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 13958ed55a54SJohn McCall 139630317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 13978ed55a54SJohn McCall CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 13988ed55a54SJohn McCall } 13998ed55a54SJohn McCall }; 14008ed55a54SJohn McCall } 14018ed55a54SJohn McCall 14028ed55a54SJohn McCall /// Emit the code for deleting a single object. 14038ed55a54SJohn McCall static void EmitObjectDelete(CodeGenFunction &CGF, 14048ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 14058ed55a54SJohn McCall llvm::Value *Ptr, 14061c2e20d7SDouglas Gregor QualType ElementType, 14071c2e20d7SDouglas Gregor bool UseGlobalDelete) { 14088ed55a54SJohn McCall // Find the destructor for the type, if applicable. If the 14098ed55a54SJohn McCall // destructor is virtual, we'll just emit the vcall and return. 14108ed55a54SJohn McCall const CXXDestructorDecl *Dtor = 0; 14118ed55a54SJohn McCall if (const RecordType *RT = ElementType->getAs<RecordType>()) { 14128ed55a54SJohn McCall CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1413b23533dbSEli Friedman if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 14148ed55a54SJohn McCall Dtor = RD->getDestructor(); 14158ed55a54SJohn McCall 14168ed55a54SJohn McCall if (Dtor->isVirtual()) { 14171c2e20d7SDouglas Gregor if (UseGlobalDelete) { 14181c2e20d7SDouglas Gregor // If we're supposed to call the global delete, make sure we do so 14191c2e20d7SDouglas Gregor // even if the destructor throws. 142082fb8920SJohn McCall 142182fb8920SJohn McCall // Derive the complete-object pointer, which is what we need 142282fb8920SJohn McCall // to pass to the deallocation function. 142382fb8920SJohn McCall llvm::Value *completePtr = 142482fb8920SJohn McCall CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 142582fb8920SJohn McCall 14261c2e20d7SDouglas Gregor CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 142782fb8920SJohn McCall completePtr, OperatorDelete, 14281c2e20d7SDouglas Gregor ElementType); 14291c2e20d7SDouglas Gregor } 14301c2e20d7SDouglas Gregor 1431e30752c9SRichard Smith // FIXME: Provide a source location here. 1432d619711cSTimur Iskhodzhanov CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1433d619711cSTimur Iskhodzhanov CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 14349dc6eef7SStephen Lin SourceLocation(), Ptr); 14358ed55a54SJohn McCall 14361c2e20d7SDouglas Gregor if (UseGlobalDelete) { 14371c2e20d7SDouglas Gregor CGF.PopCleanupBlock(); 14381c2e20d7SDouglas Gregor } 14391c2e20d7SDouglas Gregor 14408ed55a54SJohn McCall return; 14418ed55a54SJohn McCall } 14428ed55a54SJohn McCall } 14438ed55a54SJohn McCall } 14448ed55a54SJohn McCall 14458ed55a54SJohn McCall // Make sure that we call delete even if the dtor throws. 1446e4df6c8dSJohn McCall // This doesn't have to a conditional cleanup because we're going 1447e4df6c8dSJohn McCall // to pop it off in a second. 14488ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 14498ed55a54SJohn McCall Ptr, OperatorDelete, ElementType); 14508ed55a54SJohn McCall 14518ed55a54SJohn McCall if (Dtor) 14528ed55a54SJohn McCall CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 145361535005SDouglas Gregor /*ForVirtualBase=*/false, 145461535005SDouglas Gregor /*Delegating=*/false, 145561535005SDouglas Gregor Ptr); 1456bbafb8a7SDavid Blaikie else if (CGF.getLangOpts().ObjCAutoRefCount && 145731168b07SJohn McCall ElementType->isObjCLifetimeType()) { 145831168b07SJohn McCall switch (ElementType.getObjCLifetime()) { 145931168b07SJohn McCall case Qualifiers::OCL_None: 146031168b07SJohn McCall case Qualifiers::OCL_ExplicitNone: 146131168b07SJohn McCall case Qualifiers::OCL_Autoreleasing: 146231168b07SJohn McCall break; 146331168b07SJohn McCall 146431168b07SJohn McCall case Qualifiers::OCL_Strong: { 146531168b07SJohn McCall // Load the pointer value. 146631168b07SJohn McCall llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 146731168b07SJohn McCall ElementType.isVolatileQualified()); 146831168b07SJohn McCall 1469cdda29c9SJohn McCall CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 147031168b07SJohn McCall break; 147131168b07SJohn McCall } 147231168b07SJohn McCall 147331168b07SJohn McCall case Qualifiers::OCL_Weak: 147431168b07SJohn McCall CGF.EmitARCDestroyWeak(Ptr); 147531168b07SJohn McCall break; 147631168b07SJohn McCall } 147731168b07SJohn McCall } 14788ed55a54SJohn McCall 14798ed55a54SJohn McCall CGF.PopCleanupBlock(); 14808ed55a54SJohn McCall } 14818ed55a54SJohn McCall 14828ed55a54SJohn McCall namespace { 14838ed55a54SJohn McCall /// Calls the given 'operator delete' on an array of objects. 14848ed55a54SJohn McCall struct CallArrayDelete : EHScopeStack::Cleanup { 14858ed55a54SJohn McCall llvm::Value *Ptr; 14868ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 14878ed55a54SJohn McCall llvm::Value *NumElements; 14888ed55a54SJohn McCall QualType ElementType; 14898ed55a54SJohn McCall CharUnits CookieSize; 14908ed55a54SJohn McCall 14918ed55a54SJohn McCall CallArrayDelete(llvm::Value *Ptr, 14928ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 14938ed55a54SJohn McCall llvm::Value *NumElements, 14948ed55a54SJohn McCall QualType ElementType, 14958ed55a54SJohn McCall CharUnits CookieSize) 14968ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 14978ed55a54SJohn McCall ElementType(ElementType), CookieSize(CookieSize) {} 14988ed55a54SJohn McCall 149930317fdaSJohn McCall void Emit(CodeGenFunction &CGF, Flags flags) { 15008ed55a54SJohn McCall const FunctionProtoType *DeleteFTy = 15018ed55a54SJohn McCall OperatorDelete->getType()->getAs<FunctionProtoType>(); 15028ed55a54SJohn McCall assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 15038ed55a54SJohn McCall 15048ed55a54SJohn McCall CallArgList Args; 15058ed55a54SJohn McCall 15068ed55a54SJohn McCall // Pass the pointer as the first argument. 15078ed55a54SJohn McCall QualType VoidPtrTy = DeleteFTy->getArgType(0); 15088ed55a54SJohn McCall llvm::Value *DeletePtr 15098ed55a54SJohn McCall = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 151043dca6a8SEli Friedman Args.add(RValue::get(DeletePtr), VoidPtrTy); 15118ed55a54SJohn McCall 15128ed55a54SJohn McCall // Pass the original requested size as the second argument. 15138ed55a54SJohn McCall if (DeleteFTy->getNumArgs() == 2) { 15148ed55a54SJohn McCall QualType size_t = DeleteFTy->getArgType(1); 15152192fe50SChris Lattner llvm::IntegerType *SizeTy 15168ed55a54SJohn McCall = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 15178ed55a54SJohn McCall 15188ed55a54SJohn McCall CharUnits ElementTypeSize = 15198ed55a54SJohn McCall CGF.CGM.getContext().getTypeSizeInChars(ElementType); 15208ed55a54SJohn McCall 15218ed55a54SJohn McCall // The size of an element, multiplied by the number of elements. 15228ed55a54SJohn McCall llvm::Value *Size 15238ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 15248ed55a54SJohn McCall Size = CGF.Builder.CreateMul(Size, NumElements); 15258ed55a54SJohn McCall 15268ed55a54SJohn McCall // Plus the size of the cookie if applicable. 15278ed55a54SJohn McCall if (!CookieSize.isZero()) { 15288ed55a54SJohn McCall llvm::Value *CookieSizeV 15298ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 15308ed55a54SJohn McCall Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 15318ed55a54SJohn McCall } 15328ed55a54SJohn McCall 153343dca6a8SEli Friedman Args.add(RValue::get(Size), size_t); 15348ed55a54SJohn McCall } 15358ed55a54SJohn McCall 15368ed55a54SJohn McCall // Emit the call to delete. 15378d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 15388ed55a54SJohn McCall } 15398ed55a54SJohn McCall }; 15408ed55a54SJohn McCall } 15418ed55a54SJohn McCall 15428ed55a54SJohn McCall /// Emit the code for deleting an array of objects. 15438ed55a54SJohn McCall static void EmitArrayDelete(CodeGenFunction &CGF, 1544284c48ffSJohn McCall const CXXDeleteExpr *E, 1545ca2c56f2SJohn McCall llvm::Value *deletedPtr, 1546ca2c56f2SJohn McCall QualType elementType) { 1547ca2c56f2SJohn McCall llvm::Value *numElements = 0; 1548ca2c56f2SJohn McCall llvm::Value *allocatedPtr = 0; 1549ca2c56f2SJohn McCall CharUnits cookieSize; 1550ca2c56f2SJohn McCall CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1551ca2c56f2SJohn McCall numElements, allocatedPtr, cookieSize); 15528ed55a54SJohn McCall 1553ca2c56f2SJohn McCall assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 15548ed55a54SJohn McCall 15558ed55a54SJohn McCall // Make sure that we call delete even if one of the dtors throws. 1556ca2c56f2SJohn McCall const FunctionDecl *operatorDelete = E->getOperatorDelete(); 15578ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1558ca2c56f2SJohn McCall allocatedPtr, operatorDelete, 1559ca2c56f2SJohn McCall numElements, elementType, 1560ca2c56f2SJohn McCall cookieSize); 15618ed55a54SJohn McCall 1562ca2c56f2SJohn McCall // Destroy the elements. 1563ca2c56f2SJohn McCall if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1564ca2c56f2SJohn McCall assert(numElements && "no element count for a type with a destructor!"); 156531168b07SJohn McCall 1566ca2c56f2SJohn McCall llvm::Value *arrayEnd = 1567ca2c56f2SJohn McCall CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 156897eab0a2SJohn McCall 156997eab0a2SJohn McCall // Note that it is legal to allocate a zero-length array, and we 157097eab0a2SJohn McCall // can never fold the check away because the length should always 157197eab0a2SJohn McCall // come from a cookie. 1572ca2c56f2SJohn McCall CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1573ca2c56f2SJohn McCall CGF.getDestroyer(dtorKind), 157497eab0a2SJohn McCall /*checkZeroLength*/ true, 1575ca2c56f2SJohn McCall CGF.needsEHCleanup(dtorKind)); 15768ed55a54SJohn McCall } 15778ed55a54SJohn McCall 1578ca2c56f2SJohn McCall // Pop the cleanup block. 15798ed55a54SJohn McCall CGF.PopCleanupBlock(); 15808ed55a54SJohn McCall } 15818ed55a54SJohn McCall 158259486a2dSAnders Carlsson void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 158359486a2dSAnders Carlsson const Expr *Arg = E->getArgument(); 158459486a2dSAnders Carlsson llvm::Value *Ptr = EmitScalarExpr(Arg); 158559486a2dSAnders Carlsson 158659486a2dSAnders Carlsson // Null check the pointer. 158759486a2dSAnders Carlsson llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 158859486a2dSAnders Carlsson llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 158959486a2dSAnders Carlsson 159098981b10SAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 159159486a2dSAnders Carlsson 159259486a2dSAnders Carlsson Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 159359486a2dSAnders Carlsson EmitBlock(DeleteNotNull); 159459486a2dSAnders Carlsson 15958ed55a54SJohn McCall // We might be deleting a pointer to array. If so, GEP down to the 15968ed55a54SJohn McCall // first non-array element. 15978ed55a54SJohn McCall // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 15988ed55a54SJohn McCall QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 15998ed55a54SJohn McCall if (DeleteTy->isConstantArrayType()) { 16008ed55a54SJohn McCall llvm::Value *Zero = Builder.getInt32(0); 16010e62c1ccSChris Lattner SmallVector<llvm::Value*,8> GEP; 160259486a2dSAnders Carlsson 16038ed55a54SJohn McCall GEP.push_back(Zero); // point at the outermost array 16048ed55a54SJohn McCall 16058ed55a54SJohn McCall // For each layer of array type we're pointing at: 16068ed55a54SJohn McCall while (const ConstantArrayType *Arr 16078ed55a54SJohn McCall = getContext().getAsConstantArrayType(DeleteTy)) { 16088ed55a54SJohn McCall // 1. Unpeel the array type. 16098ed55a54SJohn McCall DeleteTy = Arr->getElementType(); 16108ed55a54SJohn McCall 16118ed55a54SJohn McCall // 2. GEP to the first element of the array. 16128ed55a54SJohn McCall GEP.push_back(Zero); 16138ed55a54SJohn McCall } 16148ed55a54SJohn McCall 1615040dd82fSJay Foad Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 16168ed55a54SJohn McCall } 16178ed55a54SJohn McCall 161804f36218SDouglas Gregor assert(ConvertTypeForMem(DeleteTy) == 161904f36218SDouglas Gregor cast<llvm::PointerType>(Ptr->getType())->getElementType()); 16208ed55a54SJohn McCall 162159486a2dSAnders Carlsson if (E->isArrayForm()) { 1622284c48ffSJohn McCall EmitArrayDelete(*this, E, Ptr, DeleteTy); 16238ed55a54SJohn McCall } else { 16241c2e20d7SDouglas Gregor EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 16251c2e20d7SDouglas Gregor E->isGlobalDelete()); 162659486a2dSAnders Carlsson } 162759486a2dSAnders Carlsson 162859486a2dSAnders Carlsson EmitBlock(DeleteEnd); 162959486a2dSAnders Carlsson } 163059486a2dSAnders Carlsson 16310c63350bSAnders Carlsson static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 16320c63350bSAnders Carlsson // void __cxa_bad_typeid(); 1633ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 16340c63350bSAnders Carlsson 16350c63350bSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 16360c63350bSAnders Carlsson } 16370c63350bSAnders Carlsson 16380c63350bSAnders Carlsson static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1639bbe277c4SAnders Carlsson llvm::Value *Fn = getBadTypeidFn(CGF); 1640882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 16410c63350bSAnders Carlsson CGF.Builder.CreateUnreachable(); 16420c63350bSAnders Carlsson } 16430c63350bSAnders Carlsson 1644940f02d2SAnders Carlsson static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1645940f02d2SAnders Carlsson const Expr *E, 16462192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy) { 1647940f02d2SAnders Carlsson // Get the vtable pointer. 1648940f02d2SAnders Carlsson llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1649940f02d2SAnders Carlsson 1650940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1651940f02d2SAnders Carlsson // If the glvalue expression is obtained by applying the unary * operator to 1652940f02d2SAnders Carlsson // a pointer and the pointer is a null pointer value, the typeid expression 1653940f02d2SAnders Carlsson // throws the std::bad_typeid exception. 1654940f02d2SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1655940f02d2SAnders Carlsson if (UO->getOpcode() == UO_Deref) { 1656940f02d2SAnders Carlsson llvm::BasicBlock *BadTypeidBlock = 1657940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.bad_typeid"); 1658940f02d2SAnders Carlsson llvm::BasicBlock *EndBlock = 1659940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.end"); 1660940f02d2SAnders Carlsson 1661940f02d2SAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1662940f02d2SAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1663940f02d2SAnders Carlsson 1664940f02d2SAnders Carlsson CGF.EmitBlock(BadTypeidBlock); 1665940f02d2SAnders Carlsson EmitBadTypeidCall(CGF); 1666940f02d2SAnders Carlsson CGF.EmitBlock(EndBlock); 1667940f02d2SAnders Carlsson } 1668940f02d2SAnders Carlsson } 1669940f02d2SAnders Carlsson 1670940f02d2SAnders Carlsson llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1671940f02d2SAnders Carlsson StdTypeInfoPtrTy->getPointerTo()); 1672940f02d2SAnders Carlsson 1673940f02d2SAnders Carlsson // Load the type info. 1674940f02d2SAnders Carlsson Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1675940f02d2SAnders Carlsson return CGF.Builder.CreateLoad(Value); 1676940f02d2SAnders Carlsson } 1677940f02d2SAnders Carlsson 167859486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 16792192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy = 1680940f02d2SAnders Carlsson ConvertType(E->getType())->getPointerTo(); 1681fd7dfeb7SAnders Carlsson 16823f4336cbSAnders Carlsson if (E->isTypeOperand()) { 16833f4336cbSAnders Carlsson llvm::Constant *TypeInfo = 16843f4336cbSAnders Carlsson CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1685940f02d2SAnders Carlsson return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 16863f4336cbSAnders Carlsson } 1687fd7dfeb7SAnders Carlsson 1688940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1689940f02d2SAnders Carlsson // When typeid is applied to a glvalue expression whose type is a 1690940f02d2SAnders Carlsson // polymorphic class type, the result refers to a std::type_info object 1691940f02d2SAnders Carlsson // representing the type of the most derived object (that is, the dynamic 1692940f02d2SAnders Carlsson // type) to which the glvalue refers. 1693ef8bf436SRichard Smith if (E->isPotentiallyEvaluated()) 1694940f02d2SAnders Carlsson return EmitTypeidFromVTable(*this, E->getExprOperand(), 1695940f02d2SAnders Carlsson StdTypeInfoPtrTy); 1696940f02d2SAnders Carlsson 1697940f02d2SAnders Carlsson QualType OperandTy = E->getExprOperand()->getType(); 1698940f02d2SAnders Carlsson return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1699940f02d2SAnders Carlsson StdTypeInfoPtrTy); 170059486a2dSAnders Carlsson } 170159486a2dSAnders Carlsson 1702882d790fSAnders Carlsson static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1703882d790fSAnders Carlsson // void *__dynamic_cast(const void *sub, 1704882d790fSAnders Carlsson // const abi::__class_type_info *src, 1705882d790fSAnders Carlsson // const abi::__class_type_info *dst, 1706882d790fSAnders Carlsson // std::ptrdiff_t src2dst_offset); 1707882d790fSAnders Carlsson 1708ece0409aSChris Lattner llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1709a5f58b05SChris Lattner llvm::Type *PtrDiffTy = 1710882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1711882d790fSAnders Carlsson 1712a5f58b05SChris Lattner llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1713882d790fSAnders Carlsson 1714b5206330SBenjamin Kramer llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); 1715882d790fSAnders Carlsson 1716b5206330SBenjamin Kramer // Mark the function as nounwind readonly. 1717b5206330SBenjamin Kramer llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, 1718b5206330SBenjamin Kramer llvm::Attribute::ReadOnly }; 1719b5206330SBenjamin Kramer llvm::AttributeSet Attrs = llvm::AttributeSet::get( 1720b5206330SBenjamin Kramer CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); 1721b5206330SBenjamin Kramer 1722b5206330SBenjamin Kramer return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); 1723882d790fSAnders Carlsson } 1724882d790fSAnders Carlsson 1725882d790fSAnders Carlsson static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1726882d790fSAnders Carlsson // void __cxa_bad_cast(); 1727ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1728882d790fSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1729882d790fSAnders Carlsson } 1730882d790fSAnders Carlsson 1731c1c9971cSAnders Carlsson static void EmitBadCastCall(CodeGenFunction &CGF) { 1732bbe277c4SAnders Carlsson llvm::Value *Fn = getBadCastFn(CGF); 1733882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1734c1c9971cSAnders Carlsson CGF.Builder.CreateUnreachable(); 1735c1c9971cSAnders Carlsson } 1736c1c9971cSAnders Carlsson 1737d9c8455aSBenjamin Kramer /// \brief Compute the src2dst_offset hint as described in the 1738d9c8455aSBenjamin Kramer /// Itanium C++ ABI [2.9.7] 1739d9c8455aSBenjamin Kramer static CharUnits computeOffsetHint(ASTContext &Context, 1740d9c8455aSBenjamin Kramer const CXXRecordDecl *Src, 1741d9c8455aSBenjamin Kramer const CXXRecordDecl *Dst) { 1742d9c8455aSBenjamin Kramer CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1743d9c8455aSBenjamin Kramer /*DetectVirtual=*/false); 1744d9c8455aSBenjamin Kramer 1745d9c8455aSBenjamin Kramer // If Dst is not derived from Src we can skip the whole computation below and 1746d9c8455aSBenjamin Kramer // return that Src is not a public base of Dst. Record all inheritance paths. 1747d9c8455aSBenjamin Kramer if (!Dst->isDerivedFrom(Src, Paths)) 1748d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1749d9c8455aSBenjamin Kramer 1750d9c8455aSBenjamin Kramer unsigned NumPublicPaths = 0; 1751d9c8455aSBenjamin Kramer CharUnits Offset; 1752d9c8455aSBenjamin Kramer 1753d9c8455aSBenjamin Kramer // Now walk all possible inheritance paths. 1754d9c8455aSBenjamin Kramer for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); 1755d9c8455aSBenjamin Kramer I != E; ++I) { 1756d9c8455aSBenjamin Kramer if (I->Access != AS_public) // Ignore non-public inheritance. 1757d9c8455aSBenjamin Kramer continue; 1758d9c8455aSBenjamin Kramer 1759d9c8455aSBenjamin Kramer ++NumPublicPaths; 1760d9c8455aSBenjamin Kramer 1761d9c8455aSBenjamin Kramer for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 1762d9c8455aSBenjamin Kramer // If the path contains a virtual base class we can't give any hint. 1763d9c8455aSBenjamin Kramer // -1: no hint. 1764d9c8455aSBenjamin Kramer if (J->Base->isVirtual()) 1765d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-1ULL); 1766d9c8455aSBenjamin Kramer 1767d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) // Won't use offsets, skip computation. 1768d9c8455aSBenjamin Kramer continue; 1769d9c8455aSBenjamin Kramer 1770d9c8455aSBenjamin Kramer // Accumulate the base class offsets. 1771d9c8455aSBenjamin Kramer const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); 1772d9c8455aSBenjamin Kramer Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); 1773d9c8455aSBenjamin Kramer } 1774d9c8455aSBenjamin Kramer } 1775d9c8455aSBenjamin Kramer 1776d9c8455aSBenjamin Kramer // -2: Src is not a public base of Dst. 1777d9c8455aSBenjamin Kramer if (NumPublicPaths == 0) 1778d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1779d9c8455aSBenjamin Kramer 1780d9c8455aSBenjamin Kramer // -3: Src is a multiple public base type but never a virtual base type. 1781d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) 1782d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-3ULL); 1783d9c8455aSBenjamin Kramer 1784d9c8455aSBenjamin Kramer // Otherwise, the Src type is a unique public nonvirtual base type of Dst. 1785d9c8455aSBenjamin Kramer // Return the offset of Src from the origin of Dst. 1786d9c8455aSBenjamin Kramer return Offset; 1787d9c8455aSBenjamin Kramer } 1788d9c8455aSBenjamin Kramer 1789882d790fSAnders Carlsson static llvm::Value * 1790882d790fSAnders Carlsson EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1791882d790fSAnders Carlsson QualType SrcTy, QualType DestTy, 1792882d790fSAnders Carlsson llvm::BasicBlock *CastEnd) { 17932192fe50SChris Lattner llvm::Type *PtrDiffLTy = 1794882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 17952192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1796882d790fSAnders Carlsson 1797882d790fSAnders Carlsson if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1798882d790fSAnders Carlsson if (PTy->getPointeeType()->isVoidType()) { 1799882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p7: 1800882d790fSAnders Carlsson // If T is "pointer to cv void," then the result is a pointer to the 1801882d790fSAnders Carlsson // most derived object pointed to by v. 1802882d790fSAnders Carlsson 1803882d790fSAnders Carlsson // Get the vtable pointer. 1804882d790fSAnders Carlsson llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1805882d790fSAnders Carlsson 1806882d790fSAnders Carlsson // Get the offset-to-top from the vtable. 1807882d790fSAnders Carlsson llvm::Value *OffsetToTop = 1808882d790fSAnders Carlsson CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1809882d790fSAnders Carlsson OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1810882d790fSAnders Carlsson 1811882d790fSAnders Carlsson // Finally, add the offset to the pointer. 1812882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1813882d790fSAnders Carlsson Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1814882d790fSAnders Carlsson 1815882d790fSAnders Carlsson return CGF.Builder.CreateBitCast(Value, DestLTy); 1816882d790fSAnders Carlsson } 1817882d790fSAnders Carlsson } 1818882d790fSAnders Carlsson 1819882d790fSAnders Carlsson QualType SrcRecordTy; 1820882d790fSAnders Carlsson QualType DestRecordTy; 1821882d790fSAnders Carlsson 1822882d790fSAnders Carlsson if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1823882d790fSAnders Carlsson SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1824882d790fSAnders Carlsson DestRecordTy = DestPTy->getPointeeType(); 1825882d790fSAnders Carlsson } else { 1826882d790fSAnders Carlsson SrcRecordTy = SrcTy; 1827882d790fSAnders Carlsson DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1828882d790fSAnders Carlsson } 1829882d790fSAnders Carlsson 1830882d790fSAnders Carlsson assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1831882d790fSAnders Carlsson assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1832882d790fSAnders Carlsson 1833882d790fSAnders Carlsson llvm::Value *SrcRTTI = 1834882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1835882d790fSAnders Carlsson llvm::Value *DestRTTI = 1836882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1837882d790fSAnders Carlsson 1838d9c8455aSBenjamin Kramer // Compute the offset hint. 1839d9c8455aSBenjamin Kramer const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1840d9c8455aSBenjamin Kramer const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); 1841d9c8455aSBenjamin Kramer llvm::Value *OffsetHint = 1842d9c8455aSBenjamin Kramer llvm::ConstantInt::get(PtrDiffLTy, 1843d9c8455aSBenjamin Kramer computeOffsetHint(CGF.getContext(), SrcDecl, 1844d9c8455aSBenjamin Kramer DestDecl).getQuantity()); 1845882d790fSAnders Carlsson 1846882d790fSAnders Carlsson // Emit the call to __dynamic_cast. 1847882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1848882987f3SJohn McCall 1849882987f3SJohn McCall llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; 1850882987f3SJohn McCall Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); 1851882d790fSAnders Carlsson Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1852882d790fSAnders Carlsson 1853882d790fSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1854882d790fSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1855882d790fSAnders Carlsson if (DestTy->isReferenceType()) { 1856882d790fSAnders Carlsson llvm::BasicBlock *BadCastBlock = 1857882d790fSAnders Carlsson CGF.createBasicBlock("dynamic_cast.bad_cast"); 1858882d790fSAnders Carlsson 1859882d790fSAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1860882d790fSAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1861882d790fSAnders Carlsson 1862882d790fSAnders Carlsson CGF.EmitBlock(BadCastBlock); 1863c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1864882d790fSAnders Carlsson } 1865882d790fSAnders Carlsson 1866882d790fSAnders Carlsson return Value; 1867882d790fSAnders Carlsson } 1868882d790fSAnders Carlsson 1869c1c9971cSAnders Carlsson static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1870c1c9971cSAnders Carlsson QualType DestTy) { 18712192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1872c1c9971cSAnders Carlsson if (DestTy->isPointerType()) 1873c1c9971cSAnders Carlsson return llvm::Constant::getNullValue(DestLTy); 1874c1c9971cSAnders Carlsson 1875c1c9971cSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1876c1c9971cSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1877c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1878c1c9971cSAnders Carlsson 1879c1c9971cSAnders Carlsson CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1880c1c9971cSAnders Carlsson return llvm::UndefValue::get(DestLTy); 1881c1c9971cSAnders Carlsson } 1882c1c9971cSAnders Carlsson 1883882d790fSAnders Carlsson llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 188459486a2dSAnders Carlsson const CXXDynamicCastExpr *DCE) { 18853f4336cbSAnders Carlsson QualType DestTy = DCE->getTypeAsWritten(); 18863f4336cbSAnders Carlsson 1887c1c9971cSAnders Carlsson if (DCE->isAlwaysNull()) 1888c1c9971cSAnders Carlsson return EmitDynamicCastToNull(*this, DestTy); 1889c1c9971cSAnders Carlsson 1890c1c9971cSAnders Carlsson QualType SrcTy = DCE->getSubExpr()->getType(); 1891c1c9971cSAnders Carlsson 1892882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p4: 1893882d790fSAnders Carlsson // If the value of v is a null pointer value in the pointer case, the result 1894882d790fSAnders Carlsson // is the null pointer value of type T. 1895882d790fSAnders Carlsson bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 189659486a2dSAnders Carlsson 1897882d790fSAnders Carlsson llvm::BasicBlock *CastNull = 0; 1898882d790fSAnders Carlsson llvm::BasicBlock *CastNotNull = 0; 1899882d790fSAnders Carlsson llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1900fa8b4955SDouglas Gregor 1901882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1902882d790fSAnders Carlsson CastNull = createBasicBlock("dynamic_cast.null"); 1903882d790fSAnders Carlsson CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1904882d790fSAnders Carlsson 1905882d790fSAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Value); 1906882d790fSAnders Carlsson Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1907882d790fSAnders Carlsson EmitBlock(CastNotNull); 190859486a2dSAnders Carlsson } 190959486a2dSAnders Carlsson 1910882d790fSAnders Carlsson Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 19113f4336cbSAnders Carlsson 1912882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1913882d790fSAnders Carlsson EmitBranch(CastEnd); 191459486a2dSAnders Carlsson 1915882d790fSAnders Carlsson EmitBlock(CastNull); 1916882d790fSAnders Carlsson EmitBranch(CastEnd); 191759486a2dSAnders Carlsson } 191859486a2dSAnders Carlsson 1919882d790fSAnders Carlsson EmitBlock(CastEnd); 192059486a2dSAnders Carlsson 1921882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1922882d790fSAnders Carlsson llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1923882d790fSAnders Carlsson PHI->addIncoming(Value, CastNotNull); 1924882d790fSAnders Carlsson PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 192559486a2dSAnders Carlsson 1926882d790fSAnders Carlsson Value = PHI; 192759486a2dSAnders Carlsson } 192859486a2dSAnders Carlsson 1929882d790fSAnders Carlsson return Value; 193059486a2dSAnders Carlsson } 1931c370a7eeSEli Friedman 1932c370a7eeSEli Friedman void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 19338631f3e8SEli Friedman RunCleanupsScope Scope(*this); 19347f1ff600SEli Friedman LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 19357f1ff600SEli Friedman Slot.getAlignment()); 19368631f3e8SEli Friedman 1937c370a7eeSEli Friedman CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1938c370a7eeSEli Friedman for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1939c370a7eeSEli Friedman e = E->capture_init_end(); 1940c370a7eeSEli Friedman i != e; ++i, ++CurField) { 1941c370a7eeSEli Friedman // Emit initialization 19427f1ff600SEli Friedman 194340ed2973SDavid Blaikie LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 19445f1a04ffSEli Friedman ArrayRef<VarDecl *> ArrayIndexes; 19455f1a04ffSEli Friedman if (CurField->getType()->isArrayType()) 19465f1a04ffSEli Friedman ArrayIndexes = E->getCaptureInitIndexVars(i); 194740ed2973SDavid Blaikie EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1948c370a7eeSEli Friedman } 1949c370a7eeSEli Friedman } 1950