159486a2dSAnders Carlsson //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 259486a2dSAnders Carlsson // 359486a2dSAnders Carlsson // The LLVM Compiler Infrastructure 459486a2dSAnders Carlsson // 559486a2dSAnders Carlsson // This file is distributed under the University of Illinois Open Source 659486a2dSAnders Carlsson // License. See LICENSE.TXT for details. 759486a2dSAnders Carlsson // 859486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 959486a2dSAnders Carlsson // 1059486a2dSAnders Carlsson // This contains code dealing with code generation of C++ expressions 1159486a2dSAnders Carlsson // 1259486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 1359486a2dSAnders Carlsson 1459486a2dSAnders Carlsson #include "CodeGenFunction.h" 15fe883422SPeter Collingbourne #include "CGCUDARuntime.h" 165d865c32SJohn McCall #include "CGCXXABI.h" 1791bbb554SDevang Patel #include "CGDebugInfo.h" 183a02247dSChandler Carruth #include "CGObjCRuntime.h" 19a8e7df36SMark Lacey #include "clang/CodeGen/CGFunctionInfo.h" 203a02247dSChandler Carruth #include "clang/Frontend/CodeGenOptions.h" 21c80ceea9SChandler Carruth #include "llvm/IR/CallSite.h" 22ffd5551bSChandler Carruth #include "llvm/IR/Intrinsics.h" 23bbe277c4SAnders Carlsson 2459486a2dSAnders Carlsson using namespace clang; 2559486a2dSAnders Carlsson using namespace CodeGen; 2659486a2dSAnders Carlsson 2727da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 28e30752c9SRichard Smith SourceLocation CallLoc, 2927da15baSAnders Carlsson llvm::Value *Callee, 3027da15baSAnders Carlsson ReturnValueSlot ReturnValue, 3127da15baSAnders Carlsson llvm::Value *This, 32ee6bc533STimur Iskhodzhanov llvm::Value *ImplicitParam, 33ee6bc533STimur Iskhodzhanov QualType ImplicitParamTy, 3427da15baSAnders Carlsson CallExpr::const_arg_iterator ArgBeg, 3527da15baSAnders Carlsson CallExpr::const_arg_iterator ArgEnd) { 3627da15baSAnders Carlsson assert(MD->isInstance() && 3727da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 3827da15baSAnders Carlsson 3969d0d262SRichard Smith // C++11 [class.mfct.non-static]p2: 4069d0d262SRichard Smith // If a non-static member function of a class X is called for an object that 4169d0d262SRichard Smith // is not of type X, or of a type derived from X, the behavior is undefined. 424d3110afSRichard Smith EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 434d3110afSRichard Smith : TCK_MemberCall, 444d3110afSRichard Smith CallLoc, This, getContext().getRecordType(MD->getParent())); 4569d0d262SRichard Smith 4627da15baSAnders Carlsson CallArgList Args; 4727da15baSAnders Carlsson 4827da15baSAnders Carlsson // Push the this ptr. 4943dca6a8SEli Friedman Args.add(RValue::get(This), MD->getThisType(getContext())); 5027da15baSAnders Carlsson 51ee6bc533STimur Iskhodzhanov // If there is an implicit parameter (e.g. VTT), emit it. 52ee6bc533STimur Iskhodzhanov if (ImplicitParam) { 53ee6bc533STimur Iskhodzhanov Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 54e36a6b3eSAnders Carlsson } 55e36a6b3eSAnders Carlsson 56a729c62bSJohn McCall const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 57a729c62bSJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 58a729c62bSJohn McCall 59a729c62bSJohn McCall // And the rest of the call args. 6027da15baSAnders Carlsson EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 6127da15baSAnders Carlsson 628dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 63c50c27ccSRafael Espindola Callee, ReturnValue, Args, MD); 6427da15baSAnders Carlsson } 6527da15baSAnders Carlsson 663b33c4ecSRafael Espindola static CXXRecordDecl *getCXXRecord(const Expr *E) { 673b33c4ecSRafael Espindola QualType T = E->getType(); 683b33c4ecSRafael Espindola if (const PointerType *PTy = T->getAs<PointerType>()) 693b33c4ecSRafael Espindola T = PTy->getPointeeType(); 703b33c4ecSRafael Espindola const RecordType *Ty = T->castAs<RecordType>(); 713b33c4ecSRafael Espindola return cast<CXXRecordDecl>(Ty->getDecl()); 723b33c4ecSRafael Espindola } 733b33c4ecSRafael Espindola 7464225794SFrancois Pichet // Note: This function also emit constructor calls to support a MSVC 7564225794SFrancois Pichet // extensions allowing explicit constructor function call. 7627da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 7727da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 782d2e8707SJohn McCall const Expr *callee = CE->getCallee()->IgnoreParens(); 792d2e8707SJohn McCall 802d2e8707SJohn McCall if (isa<BinaryOperator>(callee)) 8127da15baSAnders Carlsson return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 8227da15baSAnders Carlsson 832d2e8707SJohn McCall const MemberExpr *ME = cast<MemberExpr>(callee); 8427da15baSAnders Carlsson const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 8527da15baSAnders Carlsson 8627da15baSAnders Carlsson if (MD->isStatic()) { 8727da15baSAnders Carlsson // The method is static, emit it as we would a regular call. 8827da15baSAnders Carlsson llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 8927da15baSAnders Carlsson return EmitCall(getContext().getPointerType(MD->getType()), Callee, 90b453cd64SPeter Collingbourne CE->getLocStart(), ReturnValue, CE->arg_begin(), 91b453cd64SPeter Collingbourne CE->arg_end()); 9227da15baSAnders Carlsson } 9327da15baSAnders Carlsson 940d635f53SJohn McCall // Compute the object pointer. 95ecbe2e97SRafael Espindola const Expr *Base = ME->getBase(); 96ecbe2e97SRafael Espindola bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 97ecbe2e97SRafael Espindola 988a13c418SCraig Topper const CXXMethodDecl *DevirtualizedMethod = nullptr; 997463ed7cSBenjamin Kramer if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 1003b33c4ecSRafael Espindola const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 1013b33c4ecSRafael Espindola DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 1023b33c4ecSRafael Espindola assert(DevirtualizedMethod); 1033b33c4ecSRafael Espindola const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 1043b33c4ecSRafael Espindola const Expr *Inner = Base->ignoreParenBaseCasts(); 1053b33c4ecSRafael Espindola if (getCXXRecord(Inner) == DevirtualizedClass) 1063b33c4ecSRafael Espindola // If the class of the Inner expression is where the dynamic method 1073b33c4ecSRafael Espindola // is defined, build the this pointer from it. 1083b33c4ecSRafael Espindola Base = Inner; 1093b33c4ecSRafael Espindola else if (getCXXRecord(Base) != DevirtualizedClass) { 1103b33c4ecSRafael Espindola // If the method is defined in a class that is not the best dynamic 1113b33c4ecSRafael Espindola // one or the one of the full expression, we would have to build 1123b33c4ecSRafael Espindola // a derived-to-base cast to compute the correct this pointer, but 1133b33c4ecSRafael Espindola // we don't have support for that yet, so do a virtual call. 1148a13c418SCraig Topper DevirtualizedMethod = nullptr; 1153b33c4ecSRafael Espindola } 116b27564afSRafael Espindola // If the return types are not the same, this might be a case where more 117b27564afSRafael Espindola // code needs to run to compensate for it. For example, the derived 118b27564afSRafael Espindola // method might return a type that inherits form from the return 119b27564afSRafael Espindola // type of MD and has a prefix. 120b27564afSRafael Espindola // For now we just avoid devirtualizing these covariant cases. 121b27564afSRafael Espindola if (DevirtualizedMethod && 122314cc81bSAlp Toker DevirtualizedMethod->getReturnType().getCanonicalType() != 123314cc81bSAlp Toker MD->getReturnType().getCanonicalType()) 1248a13c418SCraig Topper DevirtualizedMethod = nullptr; 1253b33c4ecSRafael Espindola } 126ecbe2e97SRafael Espindola 12727da15baSAnders Carlsson llvm::Value *This; 12827da15baSAnders Carlsson if (ME->isArrow()) 1293b33c4ecSRafael Espindola This = EmitScalarExpr(Base); 130f93ac894SFariborz Jahanian else 1313b33c4ecSRafael Espindola This = EmitLValue(Base).getAddress(); 132ecbe2e97SRafael Espindola 13327da15baSAnders Carlsson 1340d635f53SJohn McCall if (MD->isTrivial()) { 1358a13c418SCraig Topper if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 13664225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 13764225794SFrancois Pichet cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 1388a13c418SCraig Topper return RValue::get(nullptr); 1390d635f53SJohn McCall 14022653bacSSebastian Redl if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 14122653bacSSebastian Redl // We don't like to generate the trivial copy/move assignment operator 14222653bacSSebastian Redl // when it isn't necessary; just produce the proper effect here. 14327da15baSAnders Carlsson llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 1441ca66919SBenjamin Kramer EmitAggregateAssign(This, RHS, CE->getType()); 14527da15baSAnders Carlsson return RValue::get(This); 14627da15baSAnders Carlsson } 14727da15baSAnders Carlsson 14864225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 14922653bacSSebastian Redl cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 15022653bacSSebastian Redl // Trivial move and copy ctor are the same. 15164225794SFrancois Pichet llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 15264225794SFrancois Pichet EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 15364225794SFrancois Pichet CE->arg_begin(), CE->arg_end()); 15464225794SFrancois Pichet return RValue::get(This); 15564225794SFrancois Pichet } 15664225794SFrancois Pichet llvm_unreachable("unknown trivial member function"); 15764225794SFrancois Pichet } 15864225794SFrancois Pichet 1590d635f53SJohn McCall // Compute the function type we're calling. 160ade60977SEli Friedman const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 1618a13c418SCraig Topper const CGFunctionInfo *FInfo = nullptr; 162ade60977SEli Friedman if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 163ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 16464225794SFrancois Pichet Dtor_Complete); 165ade60977SEli Friedman else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 166ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 16764225794SFrancois Pichet Ctor_Complete); 16864225794SFrancois Pichet else 169ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 1700d635f53SJohn McCall 171e7de47efSReid Kleckner llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 1720d635f53SJohn McCall 17327da15baSAnders Carlsson // C++ [class.virtual]p12: 17427da15baSAnders Carlsson // Explicit qualification with the scope operator (5.1) suppresses the 17527da15baSAnders Carlsson // virtual call mechanism. 17627da15baSAnders Carlsson // 17727da15baSAnders Carlsson // We also don't emit a virtual call if the base expression has a record type 17827da15baSAnders Carlsson // because then we know what the type is. 1793b33c4ecSRafael Espindola bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 18019cee187SStephen Lin llvm::Value *Callee; 1819dc6eef7SStephen Lin 1820d635f53SJohn McCall if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 18319cee187SStephen Lin assert(CE->arg_begin() == CE->arg_end() && 1849dc6eef7SStephen Lin "Destructor shouldn't have explicit parameters"); 1859dc6eef7SStephen Lin assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 1869dc6eef7SStephen Lin if (UseVirtualCall) { 1879dc6eef7SStephen Lin CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 1889dc6eef7SStephen Lin CE->getExprLoc(), This); 18927da15baSAnders Carlsson } else { 1909c6890a7SRichard Smith if (getLangOpts().AppleKext && 191265c325eSFariborz Jahanian MD->isVirtual() && 192265c325eSFariborz Jahanian ME->hasQualifier()) 1937f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 1943b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 195e7de47efSReid Kleckner Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty); 19649e860b2SRafael Espindola else { 1973b33c4ecSRafael Espindola const CXXDestructorDecl *DDtor = 1983b33c4ecSRafael Espindola cast<CXXDestructorDecl>(DevirtualizedMethod); 19949e860b2SRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 20049e860b2SRafael Espindola } 2019dc6eef7SStephen Lin EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 2028a13c418SCraig Topper /*ImplicitParam=*/nullptr, QualType(), nullptr,nullptr); 20327da15baSAnders Carlsson } 2048a13c418SCraig Topper return RValue::get(nullptr); 2059dc6eef7SStephen Lin } 2069dc6eef7SStephen Lin 2079dc6eef7SStephen Lin if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 20864225794SFrancois Pichet Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 2090d635f53SJohn McCall } else if (UseVirtualCall) { 21088fd439aSTimur Iskhodzhanov Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty); 21127da15baSAnders Carlsson } else { 2129c6890a7SRichard Smith if (getLangOpts().AppleKext && 2139f9438b3SFariborz Jahanian MD->isVirtual() && 214252a47f6SFariborz Jahanian ME->hasQualifier()) 2157f6f81baSFariborz Jahanian Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 2163b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 217727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(MD, Ty); 21849e860b2SRafael Espindola else { 2193b33c4ecSRafael Espindola Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 22049e860b2SRafael Espindola } 22127da15baSAnders Carlsson } 22227da15baSAnders Carlsson 223f1749427STimur Iskhodzhanov if (MD->isVirtual()) { 224f1749427STimur Iskhodzhanov This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 225f1749427STimur Iskhodzhanov *this, MD, This, UseVirtualCall); 226f1749427STimur Iskhodzhanov } 22788fd439aSTimur Iskhodzhanov 228e30752c9SRichard Smith return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 2298a13c418SCraig Topper /*ImplicitParam=*/nullptr, QualType(), 230ee6bc533STimur Iskhodzhanov CE->arg_begin(), CE->arg_end()); 23127da15baSAnders Carlsson } 23227da15baSAnders Carlsson 23327da15baSAnders Carlsson RValue 23427da15baSAnders Carlsson CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 23527da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 23627da15baSAnders Carlsson const BinaryOperator *BO = 23727da15baSAnders Carlsson cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 23827da15baSAnders Carlsson const Expr *BaseExpr = BO->getLHS(); 23927da15baSAnders Carlsson const Expr *MemFnExpr = BO->getRHS(); 24027da15baSAnders Carlsson 24127da15baSAnders Carlsson const MemberPointerType *MPT = 2420009fcc3SJohn McCall MemFnExpr->getType()->castAs<MemberPointerType>(); 243475999dcSJohn McCall 24427da15baSAnders Carlsson const FunctionProtoType *FPT = 2450009fcc3SJohn McCall MPT->getPointeeType()->castAs<FunctionProtoType>(); 24627da15baSAnders Carlsson const CXXRecordDecl *RD = 24727da15baSAnders Carlsson cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 24827da15baSAnders Carlsson 24927da15baSAnders Carlsson // Get the member function pointer. 250a1dee530SJohn McCall llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 25127da15baSAnders Carlsson 25227da15baSAnders Carlsson // Emit the 'this' pointer. 25327da15baSAnders Carlsson llvm::Value *This; 25427da15baSAnders Carlsson 255e302792bSJohn McCall if (BO->getOpcode() == BO_PtrMemI) 25627da15baSAnders Carlsson This = EmitScalarExpr(BaseExpr); 25727da15baSAnders Carlsson else 25827da15baSAnders Carlsson This = EmitLValue(BaseExpr).getAddress(); 25927da15baSAnders Carlsson 260e30752c9SRichard Smith EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 261e30752c9SRichard Smith QualType(MPT->getClass(), 0)); 26269d0d262SRichard Smith 263475999dcSJohn McCall // Ask the ABI to load the callee. Note that This is modified. 264475999dcSJohn McCall llvm::Value *Callee = 2652b0d66dfSDavid Majnemer CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT); 26627da15baSAnders Carlsson 26727da15baSAnders Carlsson CallArgList Args; 26827da15baSAnders Carlsson 26927da15baSAnders Carlsson QualType ThisType = 27027da15baSAnders Carlsson getContext().getPointerType(getContext().getTagDeclType(RD)); 27127da15baSAnders Carlsson 27227da15baSAnders Carlsson // Push the this ptr. 27343dca6a8SEli Friedman Args.add(RValue::get(This), ThisType); 27427da15baSAnders Carlsson 2758dda7b27SJohn McCall RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 2768dda7b27SJohn McCall 27727da15baSAnders Carlsson // And the rest of the call args 27827da15baSAnders Carlsson EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 2795fa40c3bSNick Lewycky return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 2805fa40c3bSNick Lewycky Callee, ReturnValue, Args); 28127da15baSAnders Carlsson } 28227da15baSAnders Carlsson 28327da15baSAnders Carlsson RValue 28427da15baSAnders Carlsson CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 28527da15baSAnders Carlsson const CXXMethodDecl *MD, 28627da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 28727da15baSAnders Carlsson assert(MD->isInstance() && 28827da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 289e26a872bSJohn McCall LValue LV = EmitLValue(E->getArg(0)); 290e26a872bSJohn McCall llvm::Value *This = LV.getAddress(); 291e26a872bSJohn McCall 292146b8e9aSDouglas Gregor if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 293146b8e9aSDouglas Gregor MD->isTrivial()) { 29427da15baSAnders Carlsson llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 29527da15baSAnders Carlsson QualType Ty = E->getType(); 2961ca66919SBenjamin Kramer EmitAggregateAssign(This, Src, Ty); 29727da15baSAnders Carlsson return RValue::get(This); 29827da15baSAnders Carlsson } 29927da15baSAnders Carlsson 300c36783e8SAnders Carlsson llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 301e30752c9SRichard Smith return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 3028a13c418SCraig Topper /*ImplicitParam=*/nullptr, QualType(), 303ee6bc533STimur Iskhodzhanov E->arg_begin() + 1, E->arg_end()); 30427da15baSAnders Carlsson } 30527da15baSAnders Carlsson 306fe883422SPeter Collingbourne RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 307fe883422SPeter Collingbourne ReturnValueSlot ReturnValue) { 308fe883422SPeter Collingbourne return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 309fe883422SPeter Collingbourne } 310fe883422SPeter Collingbourne 311fde961dbSEli Friedman static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 312fde961dbSEli Friedman llvm::Value *DestPtr, 313fde961dbSEli Friedman const CXXRecordDecl *Base) { 314fde961dbSEli Friedman if (Base->isEmpty()) 315fde961dbSEli Friedman return; 316fde961dbSEli Friedman 317fde961dbSEli Friedman DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 318fde961dbSEli Friedman 319fde961dbSEli Friedman const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 320fde961dbSEli Friedman CharUnits Size = Layout.getNonVirtualSize(); 321d640d7d9SWarren Hunt CharUnits Align = Layout.getNonVirtualAlignment(); 322fde961dbSEli Friedman 323fde961dbSEli Friedman llvm::Value *SizeVal = CGF.CGM.getSize(Size); 324fde961dbSEli Friedman 325fde961dbSEli Friedman // If the type contains a pointer to data member we can't memset it to zero. 326fde961dbSEli Friedman // Instead, create a null constant and copy it to the destination. 327fde961dbSEli Friedman // TODO: there are other patterns besides zero that we can usefully memset, 328fde961dbSEli Friedman // like -1, which happens to be the pattern used by member-pointers. 329fde961dbSEli Friedman // TODO: isZeroInitializable can be over-conservative in the case where a 330fde961dbSEli Friedman // virtual base contains a member pointer. 331fde961dbSEli Friedman if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 332fde961dbSEli Friedman llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 333fde961dbSEli Friedman 334fde961dbSEli Friedman llvm::GlobalVariable *NullVariable = 335fde961dbSEli Friedman new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 336fde961dbSEli Friedman /*isConstant=*/true, 337fde961dbSEli Friedman llvm::GlobalVariable::PrivateLinkage, 338fde961dbSEli Friedman NullConstant, Twine()); 339fde961dbSEli Friedman NullVariable->setAlignment(Align.getQuantity()); 340fde961dbSEli Friedman llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 341fde961dbSEli Friedman 342fde961dbSEli Friedman // Get and call the appropriate llvm.memcpy overload. 343fde961dbSEli Friedman CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 344fde961dbSEli Friedman return; 345fde961dbSEli Friedman } 346fde961dbSEli Friedman 347fde961dbSEli Friedman // Otherwise, just memset the whole thing to zero. This is legal 348fde961dbSEli Friedman // because in LLVM, all default initializers (other than the ones we just 349fde961dbSEli Friedman // handled above) are guaranteed to have a bit pattern of all zeros. 350fde961dbSEli Friedman CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 351fde961dbSEli Friedman Align.getQuantity()); 352fde961dbSEli Friedman } 353fde961dbSEli Friedman 35427da15baSAnders Carlsson void 3557a626f63SJohn McCall CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 3567a626f63SJohn McCall AggValueSlot Dest) { 3577a626f63SJohn McCall assert(!Dest.isIgnored() && "Must have a destination!"); 35827da15baSAnders Carlsson const CXXConstructorDecl *CD = E->getConstructor(); 359630c76efSDouglas Gregor 360630c76efSDouglas Gregor // If we require zero initialization before (or instead of) calling the 361630c76efSDouglas Gregor // constructor, as can be the case with a non-user-provided default 36203535265SArgyrios Kyrtzidis // constructor, emit the zero initialization now, unless destination is 36303535265SArgyrios Kyrtzidis // already zeroed. 364fde961dbSEli Friedman if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 365fde961dbSEli Friedman switch (E->getConstructionKind()) { 366fde961dbSEli Friedman case CXXConstructExpr::CK_Delegating: 367fde961dbSEli Friedman case CXXConstructExpr::CK_Complete: 3687a626f63SJohn McCall EmitNullInitialization(Dest.getAddr(), E->getType()); 369fde961dbSEli Friedman break; 370fde961dbSEli Friedman case CXXConstructExpr::CK_VirtualBase: 371fde961dbSEli Friedman case CXXConstructExpr::CK_NonVirtualBase: 372fde961dbSEli Friedman EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 373fde961dbSEli Friedman break; 374fde961dbSEli Friedman } 375fde961dbSEli Friedman } 376630c76efSDouglas Gregor 377630c76efSDouglas Gregor // If this is a call to a trivial default constructor, do nothing. 378630c76efSDouglas Gregor if (CD->isTrivial() && CD->isDefaultConstructor()) 37927da15baSAnders Carlsson return; 380630c76efSDouglas Gregor 3818ea46b66SJohn McCall // Elide the constructor if we're constructing from a temporary. 3828ea46b66SJohn McCall // The temporary check is required because Sema sets this on NRVO 3838ea46b66SJohn McCall // returns. 3849c6890a7SRichard Smith if (getLangOpts().ElideConstructors && E->isElidable()) { 3858ea46b66SJohn McCall assert(getContext().hasSameUnqualifiedType(E->getType(), 3868ea46b66SJohn McCall E->getArg(0)->getType())); 3877a626f63SJohn McCall if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 3887a626f63SJohn McCall EmitAggExpr(E->getArg(0), Dest); 38927da15baSAnders Carlsson return; 39027da15baSAnders Carlsson } 391222cf0efSDouglas Gregor } 392630c76efSDouglas Gregor 393f677a8e9SJohn McCall if (const ConstantArrayType *arrayType 394f677a8e9SJohn McCall = getContext().getAsConstantArrayType(E->getType())) { 395f677a8e9SJohn McCall EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 39627da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 397f677a8e9SJohn McCall } else { 398bceca20aSCameron Esfahani CXXCtorType Type = Ctor_Complete; 399271c3681SAlexis Hunt bool ForVirtualBase = false; 40061535005SDouglas Gregor bool Delegating = false; 401271c3681SAlexis Hunt 402271c3681SAlexis Hunt switch (E->getConstructionKind()) { 403271c3681SAlexis Hunt case CXXConstructExpr::CK_Delegating: 40461bc1737SAlexis Hunt // We should be emitting a constructor; GlobalDecl will assert this 40561bc1737SAlexis Hunt Type = CurGD.getCtorType(); 40661535005SDouglas Gregor Delegating = true; 407271c3681SAlexis Hunt break; 40861bc1737SAlexis Hunt 409271c3681SAlexis Hunt case CXXConstructExpr::CK_Complete: 410271c3681SAlexis Hunt Type = Ctor_Complete; 411271c3681SAlexis Hunt break; 412271c3681SAlexis Hunt 413271c3681SAlexis Hunt case CXXConstructExpr::CK_VirtualBase: 414271c3681SAlexis Hunt ForVirtualBase = true; 415271c3681SAlexis Hunt // fall-through 416271c3681SAlexis Hunt 417271c3681SAlexis Hunt case CXXConstructExpr::CK_NonVirtualBase: 418271c3681SAlexis Hunt Type = Ctor_Base; 419271c3681SAlexis Hunt } 420e11f9ce9SAnders Carlsson 42127da15baSAnders Carlsson // Call the constructor. 42261535005SDouglas Gregor EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 42327da15baSAnders Carlsson E->arg_begin(), E->arg_end()); 42427da15baSAnders Carlsson } 425e11f9ce9SAnders Carlsson } 42627da15baSAnders Carlsson 427e988bdacSFariborz Jahanian void 428e988bdacSFariborz Jahanian CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 429e988bdacSFariborz Jahanian llvm::Value *Src, 43050198098SFariborz Jahanian const Expr *Exp) { 4315d413781SJohn McCall if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 432e988bdacSFariborz Jahanian Exp = E->getSubExpr(); 433e988bdacSFariborz Jahanian assert(isa<CXXConstructExpr>(Exp) && 434e988bdacSFariborz Jahanian "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 435e988bdacSFariborz Jahanian const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 436e988bdacSFariborz Jahanian const CXXConstructorDecl *CD = E->getConstructor(); 437e988bdacSFariborz Jahanian RunCleanupsScope Scope(*this); 438e988bdacSFariborz Jahanian 439e988bdacSFariborz Jahanian // If we require zero initialization before (or instead of) calling the 440e988bdacSFariborz Jahanian // constructor, as can be the case with a non-user-provided default 441e988bdacSFariborz Jahanian // constructor, emit the zero initialization now. 442e988bdacSFariborz Jahanian // FIXME. Do I still need this for a copy ctor synthesis? 443e988bdacSFariborz Jahanian if (E->requiresZeroInitialization()) 444e988bdacSFariborz Jahanian EmitNullInitialization(Dest, E->getType()); 445e988bdacSFariborz Jahanian 44699da11cfSChandler Carruth assert(!getContext().getAsConstantArrayType(E->getType()) 44799da11cfSChandler Carruth && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 4485fa40c3bSNick Lewycky EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end()); 449e988bdacSFariborz Jahanian } 450e988bdacSFariborz Jahanian 4518ed55a54SJohn McCall static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 4528ed55a54SJohn McCall const CXXNewExpr *E) { 45321122cf6SAnders Carlsson if (!E->isArray()) 4543eb55cfeSKen Dyck return CharUnits::Zero(); 45521122cf6SAnders Carlsson 4567ec4b434SJohn McCall // No cookie is required if the operator new[] being used is the 4577ec4b434SJohn McCall // reserved placement operator new[]. 4587ec4b434SJohn McCall if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 4593eb55cfeSKen Dyck return CharUnits::Zero(); 460399f499fSAnders Carlsson 461284c48ffSJohn McCall return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 46259486a2dSAnders Carlsson } 46359486a2dSAnders Carlsson 464036f2f6bSJohn McCall static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 465036f2f6bSJohn McCall const CXXNewExpr *e, 466f862eb6aSSebastian Redl unsigned minElements, 467036f2f6bSJohn McCall llvm::Value *&numElements, 468036f2f6bSJohn McCall llvm::Value *&sizeWithoutCookie) { 469036f2f6bSJohn McCall QualType type = e->getAllocatedType(); 47059486a2dSAnders Carlsson 471036f2f6bSJohn McCall if (!e->isArray()) { 472036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 473036f2f6bSJohn McCall sizeWithoutCookie 474036f2f6bSJohn McCall = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 475036f2f6bSJohn McCall return sizeWithoutCookie; 47605fc5be3SDouglas Gregor } 47759486a2dSAnders Carlsson 478036f2f6bSJohn McCall // The width of size_t. 479036f2f6bSJohn McCall unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 480036f2f6bSJohn McCall 4818ed55a54SJohn McCall // Figure out the cookie size. 482036f2f6bSJohn McCall llvm::APInt cookieSize(sizeWidth, 483036f2f6bSJohn McCall CalculateCookiePadding(CGF, e).getQuantity()); 4848ed55a54SJohn McCall 48559486a2dSAnders Carlsson // Emit the array size expression. 4867648fb46SArgyrios Kyrtzidis // We multiply the size of all dimensions for NumElements. 4877648fb46SArgyrios Kyrtzidis // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 488036f2f6bSJohn McCall numElements = CGF.EmitScalarExpr(e->getArraySize()); 489036f2f6bSJohn McCall assert(isa<llvm::IntegerType>(numElements->getType())); 4908ed55a54SJohn McCall 491036f2f6bSJohn McCall // The number of elements can be have an arbitrary integer type; 492036f2f6bSJohn McCall // essentially, we need to multiply it by a constant factor, add a 493036f2f6bSJohn McCall // cookie size, and verify that the result is representable as a 494036f2f6bSJohn McCall // size_t. That's just a gloss, though, and it's wrong in one 495036f2f6bSJohn McCall // important way: if the count is negative, it's an error even if 496036f2f6bSJohn McCall // the cookie size would bring the total size >= 0. 4976ab2fa8fSDouglas Gregor bool isSigned 4986ab2fa8fSDouglas Gregor = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 4992192fe50SChris Lattner llvm::IntegerType *numElementsType 500036f2f6bSJohn McCall = cast<llvm::IntegerType>(numElements->getType()); 501036f2f6bSJohn McCall unsigned numElementsWidth = numElementsType->getBitWidth(); 502036f2f6bSJohn McCall 503036f2f6bSJohn McCall // Compute the constant factor. 504036f2f6bSJohn McCall llvm::APInt arraySizeMultiplier(sizeWidth, 1); 5057648fb46SArgyrios Kyrtzidis while (const ConstantArrayType *CAT 506036f2f6bSJohn McCall = CGF.getContext().getAsConstantArrayType(type)) { 507036f2f6bSJohn McCall type = CAT->getElementType(); 508036f2f6bSJohn McCall arraySizeMultiplier *= CAT->getSize(); 5097648fb46SArgyrios Kyrtzidis } 51059486a2dSAnders Carlsson 511036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 512036f2f6bSJohn McCall llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 513036f2f6bSJohn McCall typeSizeMultiplier *= arraySizeMultiplier; 514036f2f6bSJohn McCall 515036f2f6bSJohn McCall // This will be a size_t. 516036f2f6bSJohn McCall llvm::Value *size; 51732ac583dSChris Lattner 51832ac583dSChris Lattner // If someone is doing 'new int[42]' there is no need to do a dynamic check. 51932ac583dSChris Lattner // Don't bloat the -O0 code. 520036f2f6bSJohn McCall if (llvm::ConstantInt *numElementsC = 521036f2f6bSJohn McCall dyn_cast<llvm::ConstantInt>(numElements)) { 522036f2f6bSJohn McCall const llvm::APInt &count = numElementsC->getValue(); 52332ac583dSChris Lattner 524036f2f6bSJohn McCall bool hasAnyOverflow = false; 52532ac583dSChris Lattner 526036f2f6bSJohn McCall // If 'count' was a negative number, it's an overflow. 527036f2f6bSJohn McCall if (isSigned && count.isNegative()) 528036f2f6bSJohn McCall hasAnyOverflow = true; 5298ed55a54SJohn McCall 530036f2f6bSJohn McCall // We want to do all this arithmetic in size_t. If numElements is 531036f2f6bSJohn McCall // wider than that, check whether it's already too big, and if so, 532036f2f6bSJohn McCall // overflow. 533036f2f6bSJohn McCall else if (numElementsWidth > sizeWidth && 534036f2f6bSJohn McCall numElementsWidth - sizeWidth > count.countLeadingZeros()) 535036f2f6bSJohn McCall hasAnyOverflow = true; 536036f2f6bSJohn McCall 537036f2f6bSJohn McCall // Okay, compute a count at the right width. 538036f2f6bSJohn McCall llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 539036f2f6bSJohn McCall 540f862eb6aSSebastian Redl // If there is a brace-initializer, we cannot allocate fewer elements than 541f862eb6aSSebastian Redl // there are initializers. If we do, that's treated like an overflow. 542f862eb6aSSebastian Redl if (adjustedCount.ult(minElements)) 543f862eb6aSSebastian Redl hasAnyOverflow = true; 544f862eb6aSSebastian Redl 545036f2f6bSJohn McCall // Scale numElements by that. This might overflow, but we don't 546036f2f6bSJohn McCall // care because it only overflows if allocationSize does, too, and 547036f2f6bSJohn McCall // if that overflows then we shouldn't use this. 548036f2f6bSJohn McCall numElements = llvm::ConstantInt::get(CGF.SizeTy, 549036f2f6bSJohn McCall adjustedCount * arraySizeMultiplier); 550036f2f6bSJohn McCall 551036f2f6bSJohn McCall // Compute the size before cookie, and track whether it overflowed. 552036f2f6bSJohn McCall bool overflow; 553036f2f6bSJohn McCall llvm::APInt allocationSize 554036f2f6bSJohn McCall = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 555036f2f6bSJohn McCall hasAnyOverflow |= overflow; 556036f2f6bSJohn McCall 557036f2f6bSJohn McCall // Add in the cookie, and check whether it's overflowed. 558036f2f6bSJohn McCall if (cookieSize != 0) { 559036f2f6bSJohn McCall // Save the current size without a cookie. This shouldn't be 560036f2f6bSJohn McCall // used if there was overflow. 561036f2f6bSJohn McCall sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 562036f2f6bSJohn McCall 563036f2f6bSJohn McCall allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 564036f2f6bSJohn McCall hasAnyOverflow |= overflow; 5658ed55a54SJohn McCall } 5668ed55a54SJohn McCall 567036f2f6bSJohn McCall // On overflow, produce a -1 so operator new will fail. 568036f2f6bSJohn McCall if (hasAnyOverflow) { 569036f2f6bSJohn McCall size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 57032ac583dSChris Lattner } else { 571036f2f6bSJohn McCall size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 57232ac583dSChris Lattner } 57332ac583dSChris Lattner 574036f2f6bSJohn McCall // Otherwise, we might need to use the overflow intrinsics. 5758ed55a54SJohn McCall } else { 576f862eb6aSSebastian Redl // There are up to five conditions we need to test for: 577036f2f6bSJohn McCall // 1) if isSigned, we need to check whether numElements is negative; 578036f2f6bSJohn McCall // 2) if numElementsWidth > sizeWidth, we need to check whether 579036f2f6bSJohn McCall // numElements is larger than something representable in size_t; 580f862eb6aSSebastian Redl // 3) if minElements > 0, we need to check whether numElements is smaller 581f862eb6aSSebastian Redl // than that. 582f862eb6aSSebastian Redl // 4) we need to compute 583036f2f6bSJohn McCall // sizeWithoutCookie := numElements * typeSizeMultiplier 584036f2f6bSJohn McCall // and check whether it overflows; and 585f862eb6aSSebastian Redl // 5) if we need a cookie, we need to compute 586036f2f6bSJohn McCall // size := sizeWithoutCookie + cookieSize 587036f2f6bSJohn McCall // and check whether it overflows. 5888ed55a54SJohn McCall 5898a13c418SCraig Topper llvm::Value *hasOverflow = nullptr; 5908ed55a54SJohn McCall 591036f2f6bSJohn McCall // If numElementsWidth > sizeWidth, then one way or another, we're 592036f2f6bSJohn McCall // going to have to do a comparison for (2), and this happens to 593036f2f6bSJohn McCall // take care of (1), too. 594036f2f6bSJohn McCall if (numElementsWidth > sizeWidth) { 595036f2f6bSJohn McCall llvm::APInt threshold(numElementsWidth, 1); 596036f2f6bSJohn McCall threshold <<= sizeWidth; 5978ed55a54SJohn McCall 598036f2f6bSJohn McCall llvm::Value *thresholdV 599036f2f6bSJohn McCall = llvm::ConstantInt::get(numElementsType, threshold); 600036f2f6bSJohn McCall 601036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 602036f2f6bSJohn McCall numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 603036f2f6bSJohn McCall 604036f2f6bSJohn McCall // Otherwise, if we're signed, we want to sext up to size_t. 605036f2f6bSJohn McCall } else if (isSigned) { 606036f2f6bSJohn McCall if (numElementsWidth < sizeWidth) 607036f2f6bSJohn McCall numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 608036f2f6bSJohn McCall 609036f2f6bSJohn McCall // If there's a non-1 type size multiplier, then we can do the 610036f2f6bSJohn McCall // signedness check at the same time as we do the multiply 611036f2f6bSJohn McCall // because a negative number times anything will cause an 612f862eb6aSSebastian Redl // unsigned overflow. Otherwise, we have to do it here. But at least 613f862eb6aSSebastian Redl // in this case, we can subsume the >= minElements check. 614036f2f6bSJohn McCall if (typeSizeMultiplier == 1) 615036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 616f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 617036f2f6bSJohn McCall 618036f2f6bSJohn McCall // Otherwise, zext up to size_t if necessary. 619036f2f6bSJohn McCall } else if (numElementsWidth < sizeWidth) { 620036f2f6bSJohn McCall numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 621036f2f6bSJohn McCall } 622036f2f6bSJohn McCall 623036f2f6bSJohn McCall assert(numElements->getType() == CGF.SizeTy); 624036f2f6bSJohn McCall 625f862eb6aSSebastian Redl if (minElements) { 626f862eb6aSSebastian Redl // Don't allow allocation of fewer elements than we have initializers. 627f862eb6aSSebastian Redl if (!hasOverflow) { 628f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateICmpULT(numElements, 629f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 630f862eb6aSSebastian Redl } else if (numElementsWidth > sizeWidth) { 631f862eb6aSSebastian Redl // The other existing overflow subsumes this check. 632f862eb6aSSebastian Redl // We do an unsigned comparison, since any signed value < -1 is 633f862eb6aSSebastian Redl // taken care of either above or below. 634f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateOr(hasOverflow, 635f862eb6aSSebastian Redl CGF.Builder.CreateICmpULT(numElements, 636f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements))); 637f862eb6aSSebastian Redl } 638f862eb6aSSebastian Redl } 639f862eb6aSSebastian Redl 640036f2f6bSJohn McCall size = numElements; 641036f2f6bSJohn McCall 642036f2f6bSJohn McCall // Multiply by the type size if necessary. This multiplier 643036f2f6bSJohn McCall // includes all the factors for nested arrays. 6448ed55a54SJohn McCall // 645036f2f6bSJohn McCall // This step also causes numElements to be scaled up by the 646036f2f6bSJohn McCall // nested-array factor if necessary. Overflow on this computation 647036f2f6bSJohn McCall // can be ignored because the result shouldn't be used if 648036f2f6bSJohn McCall // allocation fails. 649036f2f6bSJohn McCall if (typeSizeMultiplier != 1) { 650036f2f6bSJohn McCall llvm::Value *umul_with_overflow 6518d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 6528ed55a54SJohn McCall 653036f2f6bSJohn McCall llvm::Value *tsmV = 654036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 655036f2f6bSJohn McCall llvm::Value *result = 656036f2f6bSJohn McCall CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 6578ed55a54SJohn McCall 658036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 659036f2f6bSJohn McCall if (hasOverflow) 660036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 6618ed55a54SJohn McCall else 662036f2f6bSJohn McCall hasOverflow = overflowed; 66359486a2dSAnders Carlsson 664036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 665036f2f6bSJohn McCall 666036f2f6bSJohn McCall // Also scale up numElements by the array size multiplier. 667036f2f6bSJohn McCall if (arraySizeMultiplier != 1) { 668036f2f6bSJohn McCall // If the base element type size is 1, then we can re-use the 669036f2f6bSJohn McCall // multiply we just did. 670036f2f6bSJohn McCall if (typeSize.isOne()) { 671036f2f6bSJohn McCall assert(arraySizeMultiplier == typeSizeMultiplier); 672036f2f6bSJohn McCall numElements = size; 673036f2f6bSJohn McCall 674036f2f6bSJohn McCall // Otherwise we need a separate multiply. 675036f2f6bSJohn McCall } else { 676036f2f6bSJohn McCall llvm::Value *asmV = 677036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 678036f2f6bSJohn McCall numElements = CGF.Builder.CreateMul(numElements, asmV); 679036f2f6bSJohn McCall } 680036f2f6bSJohn McCall } 681036f2f6bSJohn McCall } else { 682036f2f6bSJohn McCall // numElements doesn't need to be scaled. 683036f2f6bSJohn McCall assert(arraySizeMultiplier == 1); 684036f2f6bSJohn McCall } 685036f2f6bSJohn McCall 686036f2f6bSJohn McCall // Add in the cookie size if necessary. 687036f2f6bSJohn McCall if (cookieSize != 0) { 688036f2f6bSJohn McCall sizeWithoutCookie = size; 689036f2f6bSJohn McCall 690036f2f6bSJohn McCall llvm::Value *uadd_with_overflow 6918d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 692036f2f6bSJohn McCall 693036f2f6bSJohn McCall llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 694036f2f6bSJohn McCall llvm::Value *result = 695036f2f6bSJohn McCall CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 696036f2f6bSJohn McCall 697036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 698036f2f6bSJohn McCall if (hasOverflow) 699036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 700036f2f6bSJohn McCall else 701036f2f6bSJohn McCall hasOverflow = overflowed; 702036f2f6bSJohn McCall 703036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 704036f2f6bSJohn McCall } 705036f2f6bSJohn McCall 706036f2f6bSJohn McCall // If we had any possibility of dynamic overflow, make a select to 707036f2f6bSJohn McCall // overwrite 'size' with an all-ones value, which should cause 708036f2f6bSJohn McCall // operator new to throw. 709036f2f6bSJohn McCall if (hasOverflow) 710036f2f6bSJohn McCall size = CGF.Builder.CreateSelect(hasOverflow, 711036f2f6bSJohn McCall llvm::Constant::getAllOnesValue(CGF.SizeTy), 712036f2f6bSJohn McCall size); 713036f2f6bSJohn McCall } 714036f2f6bSJohn McCall 715036f2f6bSJohn McCall if (cookieSize == 0) 716036f2f6bSJohn McCall sizeWithoutCookie = size; 717036f2f6bSJohn McCall else 718036f2f6bSJohn McCall assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 719036f2f6bSJohn McCall 720036f2f6bSJohn McCall return size; 72159486a2dSAnders Carlsson } 72259486a2dSAnders Carlsson 723f862eb6aSSebastian Redl static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 724f862eb6aSSebastian Redl QualType AllocType, llvm::Value *NewPtr) { 7251c96bc5dSRichard Smith // FIXME: Refactor with EmitExprAsInit. 72638cd36dbSEli Friedman CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 72747fb9508SJohn McCall switch (CGF.getEvaluationKind(AllocType)) { 72847fb9508SJohn McCall case TEK_Scalar: 7298a13c418SCraig Topper CGF.EmitScalarInit(Init, nullptr, CGF.MakeAddrLValue(NewPtr, AllocType, 730a0544d6fSEli Friedman Alignment), 7311553b190SJohn McCall false); 73247fb9508SJohn McCall return; 73347fb9508SJohn McCall case TEK_Complex: 73447fb9508SJohn McCall CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 73547fb9508SJohn McCall Alignment), 73647fb9508SJohn McCall /*isInit*/ true); 73747fb9508SJohn McCall return; 73847fb9508SJohn McCall case TEK_Aggregate: { 7397a626f63SJohn McCall AggValueSlot Slot 740c1d85b93SEli Friedman = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 7418d6fc958SJohn McCall AggValueSlot::IsDestructed, 74246759f4fSJohn McCall AggValueSlot::DoesNotNeedGCBarriers, 743615ed1a3SChad Rosier AggValueSlot::IsNotAliased); 7447a626f63SJohn McCall CGF.EmitAggExpr(Init, Slot); 74547fb9508SJohn McCall return; 7467a626f63SJohn McCall } 747d5202e09SFariborz Jahanian } 74847fb9508SJohn McCall llvm_unreachable("bad evaluation kind"); 74947fb9508SJohn McCall } 750d5202e09SFariborz Jahanian 751d5202e09SFariborz Jahanian void 752d5202e09SFariborz Jahanian CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 753*06a67e2cSRichard Smith QualType ElementType, 754*06a67e2cSRichard Smith llvm::Value *BeginPtr, 755*06a67e2cSRichard Smith llvm::Value *NumElements, 756*06a67e2cSRichard Smith llvm::Value *AllocSizeWithoutCookie) { 757*06a67e2cSRichard Smith // If we have a type with trivial initialization and no initializer, 758*06a67e2cSRichard Smith // there's nothing to do. 7596047f07eSSebastian Redl if (!E->hasInitializer()) 760*06a67e2cSRichard Smith return; 761b66b08efSFariborz Jahanian 762*06a67e2cSRichard Smith llvm::Value *CurPtr = BeginPtr; 763d5202e09SFariborz Jahanian 764*06a67e2cSRichard Smith unsigned InitListElements = 0; 765f862eb6aSSebastian Redl 766f862eb6aSSebastian Redl const Expr *Init = E->getInitializer(); 767*06a67e2cSRichard Smith llvm::AllocaInst *EndOfInit = nullptr; 768*06a67e2cSRichard Smith QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 769*06a67e2cSRichard Smith EHScopeStack::stable_iterator Cleanup; 770*06a67e2cSRichard Smith llvm::Instruction *CleanupDominator = nullptr; 7711c96bc5dSRichard Smith 772f862eb6aSSebastian Redl // If the initializer is an initializer list, first do the explicit elements. 773f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 774*06a67e2cSRichard Smith InitListElements = ILE->getNumInits(); 775f62290a1SChad Rosier 7761c96bc5dSRichard Smith // If this is a multi-dimensional array new, we will initialize multiple 7771c96bc5dSRichard Smith // elements with each init list element. 7781c96bc5dSRichard Smith QualType AllocType = E->getAllocatedType(); 7791c96bc5dSRichard Smith if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 7801c96bc5dSRichard Smith AllocType->getAsArrayTypeUnsafe())) { 781*06a67e2cSRichard Smith unsigned AS = CurPtr->getType()->getPointerAddressSpace(); 7821c96bc5dSRichard Smith llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS); 783*06a67e2cSRichard Smith CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy); 784*06a67e2cSRichard Smith InitListElements *= getContext().getConstantArrayElementCount(CAT); 7851c96bc5dSRichard Smith } 7861c96bc5dSRichard Smith 787*06a67e2cSRichard Smith // Enter a partial-destruction Cleanup if necessary. 788*06a67e2cSRichard Smith if (needsEHCleanup(DtorKind)) { 789*06a67e2cSRichard Smith // In principle we could tell the Cleanup where we are more 790f62290a1SChad Rosier // directly, but the control flow can get so varied here that it 791f62290a1SChad Rosier // would actually be quite complex. Therefore we go through an 792f62290a1SChad Rosier // alloca. 793*06a67e2cSRichard Smith EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end"); 794*06a67e2cSRichard Smith CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit); 795*06a67e2cSRichard Smith pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType, 796*06a67e2cSRichard Smith getDestroyer(DtorKind)); 797*06a67e2cSRichard Smith Cleanup = EHStack.stable_begin(); 798f62290a1SChad Rosier } 799f62290a1SChad Rosier 800f862eb6aSSebastian Redl for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 801f62290a1SChad Rosier // Tell the cleanup that it needs to destroy up to this 802f62290a1SChad Rosier // element. TODO: some of these stores can be trivially 803f62290a1SChad Rosier // observed to be unnecessary. 804*06a67e2cSRichard Smith if (EndOfInit) 805*06a67e2cSRichard Smith Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()), 806*06a67e2cSRichard Smith EndOfInit); 807*06a67e2cSRichard Smith // FIXME: If the last initializer is an incomplete initializer list for 808*06a67e2cSRichard Smith // an array, and we have an array filler, we can fold together the two 809*06a67e2cSRichard Smith // initialization loops. 8101c96bc5dSRichard Smith StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 811*06a67e2cSRichard Smith ILE->getInit(i)->getType(), CurPtr); 812*06a67e2cSRichard Smith CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next"); 813f862eb6aSSebastian Redl } 814f862eb6aSSebastian Redl 815f862eb6aSSebastian Redl // The remaining elements are filled with the array filler expression. 816f862eb6aSSebastian Redl Init = ILE->getArrayFiller(); 8171c96bc5dSRichard Smith 818*06a67e2cSRichard Smith // Extract the initializer for the individual array elements by pulling 819*06a67e2cSRichard Smith // out the array filler from all the nested initializer lists. This avoids 820*06a67e2cSRichard Smith // generating a nested loop for the initialization. 821*06a67e2cSRichard Smith while (Init && Init->getType()->isConstantArrayType()) { 822*06a67e2cSRichard Smith auto *SubILE = dyn_cast<InitListExpr>(Init); 823*06a67e2cSRichard Smith if (!SubILE) 824*06a67e2cSRichard Smith break; 825*06a67e2cSRichard Smith assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 826*06a67e2cSRichard Smith Init = SubILE->getArrayFiller(); 827f862eb6aSSebastian Redl } 828f862eb6aSSebastian Redl 829*06a67e2cSRichard Smith // Switch back to initializing one base element at a time. 830*06a67e2cSRichard Smith CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType()); 831f62290a1SChad Rosier } 832e6c980c4SChandler Carruth 833*06a67e2cSRichard Smith // Attempt to perform zero-initialization using memset. 834*06a67e2cSRichard Smith auto TryMemsetInitialization = [&]() -> bool { 835*06a67e2cSRichard Smith // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 836*06a67e2cSRichard Smith // we can initialize with a memset to -1. 837*06a67e2cSRichard Smith if (!CGM.getTypes().isZeroInitializable(ElementType)) 838*06a67e2cSRichard Smith return false; 839e6c980c4SChandler Carruth 840*06a67e2cSRichard Smith // Optimization: since zero initialization will just set the memory 841*06a67e2cSRichard Smith // to all zeroes, generate a single memset to do it in one shot. 842*06a67e2cSRichard Smith 843*06a67e2cSRichard Smith // Subtract out the size of any elements we've already initialized. 844*06a67e2cSRichard Smith auto *RemainingSize = AllocSizeWithoutCookie; 845*06a67e2cSRichard Smith if (InitListElements) { 846*06a67e2cSRichard Smith // We know this can't overflow; we check this when doing the allocation. 847*06a67e2cSRichard Smith auto *InitializedSize = llvm::ConstantInt::get( 848*06a67e2cSRichard Smith RemainingSize->getType(), 849*06a67e2cSRichard Smith getContext().getTypeSizeInChars(ElementType).getQuantity() * 850*06a67e2cSRichard Smith InitListElements); 851*06a67e2cSRichard Smith RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 85299210dc9SJohn McCall } 853d5202e09SFariborz Jahanian 854*06a67e2cSRichard Smith // Create the memset. 855*06a67e2cSRichard Smith CharUnits Alignment = getContext().getTypeAlignInChars(ElementType); 856*06a67e2cSRichard Smith Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, 857705ba07eSKen Dyck Alignment.getQuantity(), false); 858*06a67e2cSRichard Smith return true; 859*06a67e2cSRichard Smith }; 86005fc5be3SDouglas Gregor 861*06a67e2cSRichard Smith // If this is a constructor call, try to optimize it out, and failing that 862*06a67e2cSRichard Smith // emit a single loop to initialize all remaining elements. 8636047f07eSSebastian Redl if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 8646047f07eSSebastian Redl CXXConstructorDecl *Ctor = CCE->getConstructor(); 865d153103cSDouglas Gregor if (Ctor->isTrivial()) { 86605fc5be3SDouglas Gregor // If new expression did not specify value-initialization, then there 86705fc5be3SDouglas Gregor // is no initialization. 8686047f07eSSebastian Redl if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 86905fc5be3SDouglas Gregor return; 87005fc5be3SDouglas Gregor 871*06a67e2cSRichard Smith if (TryMemsetInitialization()) 8723a202f60SAnders Carlsson return; 8733a202f60SAnders Carlsson } 87405fc5be3SDouglas Gregor 875*06a67e2cSRichard Smith // Store the new Cleanup position for irregular Cleanups. 876*06a67e2cSRichard Smith // 877*06a67e2cSRichard Smith // FIXME: Share this cleanup with the constructor call emission rather than 878*06a67e2cSRichard Smith // having it create a cleanup of its own. 879*06a67e2cSRichard Smith if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 880*06a67e2cSRichard Smith 881*06a67e2cSRichard Smith // Emit a constructor call loop to initialize the remaining elements. 882*06a67e2cSRichard Smith if (InitListElements) 883*06a67e2cSRichard Smith NumElements = Builder.CreateSub( 884*06a67e2cSRichard Smith NumElements, 885*06a67e2cSRichard Smith llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 886*06a67e2cSRichard Smith EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, 8876047f07eSSebastian Redl CCE->arg_begin(), CCE->arg_end(), 88848ddcf2cSEli Friedman CCE->requiresZeroInitialization()); 88905fc5be3SDouglas Gregor return; 8906047f07eSSebastian Redl } 891*06a67e2cSRichard Smith 892*06a67e2cSRichard Smith // If this is value-initialization, we can usually use memset. 893*06a67e2cSRichard Smith ImplicitValueInitExpr IVIE(ElementType); 894*06a67e2cSRichard Smith if (Init && isa<ImplicitValueInitExpr>(Init)) { 895*06a67e2cSRichard Smith if (TryMemsetInitialization()) 896*06a67e2cSRichard Smith return; 897*06a67e2cSRichard Smith 898*06a67e2cSRichard Smith // Switch to an ImplicitValueInitExpr for the element type. This handles 899*06a67e2cSRichard Smith // only one case: multidimensional array new of pointers to members. In 900*06a67e2cSRichard Smith // all other cases, we already have an initializer for the array element. 901*06a67e2cSRichard Smith Init = &IVIE; 902*06a67e2cSRichard Smith } 903*06a67e2cSRichard Smith 904*06a67e2cSRichard Smith // At this point we should have found an initializer for the individual 905*06a67e2cSRichard Smith // elements of the array. 906*06a67e2cSRichard Smith assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 907*06a67e2cSRichard Smith "got wrong type of element to initialize"); 908*06a67e2cSRichard Smith 909*06a67e2cSRichard Smith llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 910*06a67e2cSRichard Smith 911*06a67e2cSRichard Smith // If all elements have already been initialized, skip the whole loop. 912*06a67e2cSRichard Smith if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 913*06a67e2cSRichard Smith // If there was a Cleanup, deactivate it. 914*06a67e2cSRichard Smith if (CleanupDominator) 915*06a67e2cSRichard Smith DeactivateCleanupBlock(Cleanup, CleanupDominator); 916d5202e09SFariborz Jahanian return; 917d040e6b2SAnders Carlsson } 91859486a2dSAnders Carlsson 919*06a67e2cSRichard Smith // Create the loop blocks. 920*06a67e2cSRichard Smith llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 921*06a67e2cSRichard Smith llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 922*06a67e2cSRichard Smith llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 92359486a2dSAnders Carlsson 924*06a67e2cSRichard Smith // Find the end of the array, hoisted out of the loop. 925*06a67e2cSRichard Smith llvm::Value *EndPtr = 926*06a67e2cSRichard Smith Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end"); 927*06a67e2cSRichard Smith 928*06a67e2cSRichard Smith // If the number of elements isn't constant, we have to now check if there is 929*06a67e2cSRichard Smith // anything left to initialize. 930*06a67e2cSRichard Smith if (!ConstNum) { 931*06a67e2cSRichard Smith llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr, 932*06a67e2cSRichard Smith "array.isempty"); 933*06a67e2cSRichard Smith Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 934*06a67e2cSRichard Smith } 935*06a67e2cSRichard Smith 936*06a67e2cSRichard Smith // Enter the loop. 937*06a67e2cSRichard Smith EmitBlock(LoopBB); 938*06a67e2cSRichard Smith 939*06a67e2cSRichard Smith // Set up the current-element phi. 940*06a67e2cSRichard Smith llvm::PHINode *CurPtrPhi = 941*06a67e2cSRichard Smith Builder.CreatePHI(CurPtr->getType(), 2, "array.cur"); 942*06a67e2cSRichard Smith CurPtrPhi->addIncoming(CurPtr, EntryBB); 943*06a67e2cSRichard Smith CurPtr = CurPtrPhi; 944*06a67e2cSRichard Smith 945*06a67e2cSRichard Smith // Store the new Cleanup position for irregular Cleanups. 946*06a67e2cSRichard Smith if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 947*06a67e2cSRichard Smith 948*06a67e2cSRichard Smith // Enter a partial-destruction Cleanup if necessary. 949*06a67e2cSRichard Smith if (!CleanupDominator && needsEHCleanup(DtorKind)) { 950*06a67e2cSRichard Smith pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType, 951*06a67e2cSRichard Smith getDestroyer(DtorKind)); 952*06a67e2cSRichard Smith Cleanup = EHStack.stable_begin(); 953*06a67e2cSRichard Smith CleanupDominator = Builder.CreateUnreachable(); 954*06a67e2cSRichard Smith } 955*06a67e2cSRichard Smith 956*06a67e2cSRichard Smith // Emit the initializer into this element. 957*06a67e2cSRichard Smith StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 958*06a67e2cSRichard Smith 959*06a67e2cSRichard Smith // Leave the Cleanup if we entered one. 960*06a67e2cSRichard Smith if (CleanupDominator) { 961*06a67e2cSRichard Smith DeactivateCleanupBlock(Cleanup, CleanupDominator); 962*06a67e2cSRichard Smith CleanupDominator->eraseFromParent(); 963*06a67e2cSRichard Smith } 964*06a67e2cSRichard Smith 965*06a67e2cSRichard Smith // Advance to the next element by adjusting the pointer type as necessary. 966*06a67e2cSRichard Smith llvm::Value *NextPtr = 967*06a67e2cSRichard Smith Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next"); 968*06a67e2cSRichard Smith 969*06a67e2cSRichard Smith // Check whether we've gotten to the end of the array and, if so, 970*06a67e2cSRichard Smith // exit the loop. 971*06a67e2cSRichard Smith llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 972*06a67e2cSRichard Smith Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 973*06a67e2cSRichard Smith CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 974*06a67e2cSRichard Smith 975*06a67e2cSRichard Smith EmitBlock(ContBB); 976*06a67e2cSRichard Smith } 977*06a67e2cSRichard Smith 978*06a67e2cSRichard Smith static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 979*06a67e2cSRichard Smith QualType ElementType, 980*06a67e2cSRichard Smith llvm::Value *NewPtr, 981*06a67e2cSRichard Smith llvm::Value *NumElements, 982*06a67e2cSRichard Smith llvm::Value *AllocSizeWithoutCookie) { 983*06a67e2cSRichard Smith if (E->isArray()) 984*06a67e2cSRichard Smith CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements, 985*06a67e2cSRichard Smith AllocSizeWithoutCookie); 986*06a67e2cSRichard Smith else if (const Expr *Init = E->getInitializer()) 987f862eb6aSSebastian Redl StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 98859486a2dSAnders Carlsson } 98959486a2dSAnders Carlsson 9908d0dc31dSRichard Smith /// Emit a call to an operator new or operator delete function, as implicitly 9918d0dc31dSRichard Smith /// created by new-expressions and delete-expressions. 9928d0dc31dSRichard Smith static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 9938d0dc31dSRichard Smith const FunctionDecl *Callee, 9948d0dc31dSRichard Smith const FunctionProtoType *CalleeType, 9958d0dc31dSRichard Smith const CallArgList &Args) { 9968d0dc31dSRichard Smith llvm::Instruction *CallOrInvoke; 9971235a8daSRichard Smith llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 9988d0dc31dSRichard Smith RValue RV = 9998d0dc31dSRichard Smith CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType), 10001235a8daSRichard Smith CalleeAddr, ReturnValueSlot(), Args, 10018d0dc31dSRichard Smith Callee, &CallOrInvoke); 10028d0dc31dSRichard Smith 10038d0dc31dSRichard Smith /// C++1y [expr.new]p10: 10048d0dc31dSRichard Smith /// [In a new-expression,] an implementation is allowed to omit a call 10058d0dc31dSRichard Smith /// to a replaceable global allocation function. 10068d0dc31dSRichard Smith /// 10078d0dc31dSRichard Smith /// We model such elidable calls with the 'builtin' attribute. 10086956d587SRafael Espindola llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 10091235a8daSRichard Smith if (Callee->isReplaceableGlobalAllocationFunction() && 10106956d587SRafael Espindola Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 10118d0dc31dSRichard Smith // FIXME: Add addAttribute to CallSite. 10128d0dc31dSRichard Smith if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 10138d0dc31dSRichard Smith CI->addAttribute(llvm::AttributeSet::FunctionIndex, 10148d0dc31dSRichard Smith llvm::Attribute::Builtin); 10158d0dc31dSRichard Smith else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 10168d0dc31dSRichard Smith II->addAttribute(llvm::AttributeSet::FunctionIndex, 10178d0dc31dSRichard Smith llvm::Attribute::Builtin); 10188d0dc31dSRichard Smith else 10198d0dc31dSRichard Smith llvm_unreachable("unexpected kind of call instruction"); 10208d0dc31dSRichard Smith } 10218d0dc31dSRichard Smith 10228d0dc31dSRichard Smith return RV; 10238d0dc31dSRichard Smith } 10248d0dc31dSRichard Smith 1025824c2f53SJohn McCall namespace { 1026824c2f53SJohn McCall /// A cleanup to call the given 'operator delete' function upon 1027824c2f53SJohn McCall /// abnormal exit from a new expression. 1028824c2f53SJohn McCall class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1029824c2f53SJohn McCall size_t NumPlacementArgs; 1030824c2f53SJohn McCall const FunctionDecl *OperatorDelete; 1031824c2f53SJohn McCall llvm::Value *Ptr; 1032824c2f53SJohn McCall llvm::Value *AllocSize; 1033824c2f53SJohn McCall 1034824c2f53SJohn McCall RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1035824c2f53SJohn McCall 1036824c2f53SJohn McCall public: 1037824c2f53SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1038824c2f53SJohn McCall return NumPlacementArgs * sizeof(RValue); 1039824c2f53SJohn McCall } 1040824c2f53SJohn McCall 1041824c2f53SJohn McCall CallDeleteDuringNew(size_t NumPlacementArgs, 1042824c2f53SJohn McCall const FunctionDecl *OperatorDelete, 1043824c2f53SJohn McCall llvm::Value *Ptr, 1044824c2f53SJohn McCall llvm::Value *AllocSize) 1045824c2f53SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1046824c2f53SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 1047824c2f53SJohn McCall 1048824c2f53SJohn McCall void setPlacementArg(unsigned I, RValue Arg) { 1049824c2f53SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 1050824c2f53SJohn McCall getPlacementArgs()[I] = Arg; 1051824c2f53SJohn McCall } 1052824c2f53SJohn McCall 10534f12f10dSCraig Topper void Emit(CodeGenFunction &CGF, Flags flags) override { 1054824c2f53SJohn McCall const FunctionProtoType *FPT 1055824c2f53SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 10569cacbabdSAlp Toker assert(FPT->getNumParams() == NumPlacementArgs + 1 || 10579cacbabdSAlp Toker (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1058824c2f53SJohn McCall 1059824c2f53SJohn McCall CallArgList DeleteArgs; 1060824c2f53SJohn McCall 1061824c2f53SJohn McCall // The first argument is always a void*. 10629cacbabdSAlp Toker FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 106343dca6a8SEli Friedman DeleteArgs.add(RValue::get(Ptr), *AI++); 1064824c2f53SJohn McCall 1065824c2f53SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 10669cacbabdSAlp Toker if (FPT->getNumParams() == NumPlacementArgs + 2) 106743dca6a8SEli Friedman DeleteArgs.add(RValue::get(AllocSize), *AI++); 1068824c2f53SJohn McCall 1069824c2f53SJohn McCall // Pass the rest of the arguments, which must match exactly. 1070824c2f53SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) 107143dca6a8SEli Friedman DeleteArgs.add(getPlacementArgs()[I], *AI++); 1072824c2f53SJohn McCall 1073824c2f53SJohn McCall // Call 'operator delete'. 10748d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1075824c2f53SJohn McCall } 1076824c2f53SJohn McCall }; 10777f9c92a9SJohn McCall 10787f9c92a9SJohn McCall /// A cleanup to call the given 'operator delete' function upon 10797f9c92a9SJohn McCall /// abnormal exit from a new expression when the new expression is 10807f9c92a9SJohn McCall /// conditional. 10817f9c92a9SJohn McCall class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 10827f9c92a9SJohn McCall size_t NumPlacementArgs; 10837f9c92a9SJohn McCall const FunctionDecl *OperatorDelete; 1084cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr; 1085cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize; 10867f9c92a9SJohn McCall 1087cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type *getPlacementArgs() { 1088cb5f77f0SJohn McCall return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 10897f9c92a9SJohn McCall } 10907f9c92a9SJohn McCall 10917f9c92a9SJohn McCall public: 10927f9c92a9SJohn McCall static size_t getExtraSize(size_t NumPlacementArgs) { 1093cb5f77f0SJohn McCall return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 10947f9c92a9SJohn McCall } 10957f9c92a9SJohn McCall 10967f9c92a9SJohn McCall CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 10977f9c92a9SJohn McCall const FunctionDecl *OperatorDelete, 1098cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type Ptr, 1099cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type AllocSize) 11007f9c92a9SJohn McCall : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 11017f9c92a9SJohn McCall Ptr(Ptr), AllocSize(AllocSize) {} 11027f9c92a9SJohn McCall 1103cb5f77f0SJohn McCall void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 11047f9c92a9SJohn McCall assert(I < NumPlacementArgs && "index out of range"); 11057f9c92a9SJohn McCall getPlacementArgs()[I] = Arg; 11067f9c92a9SJohn McCall } 11077f9c92a9SJohn McCall 11084f12f10dSCraig Topper void Emit(CodeGenFunction &CGF, Flags flags) override { 11097f9c92a9SJohn McCall const FunctionProtoType *FPT 11107f9c92a9SJohn McCall = OperatorDelete->getType()->getAs<FunctionProtoType>(); 11119cacbabdSAlp Toker assert(FPT->getNumParams() == NumPlacementArgs + 1 || 11129cacbabdSAlp Toker (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 11137f9c92a9SJohn McCall 11147f9c92a9SJohn McCall CallArgList DeleteArgs; 11157f9c92a9SJohn McCall 11167f9c92a9SJohn McCall // The first argument is always a void*. 11179cacbabdSAlp Toker FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 111843dca6a8SEli Friedman DeleteArgs.add(Ptr.restore(CGF), *AI++); 11197f9c92a9SJohn McCall 11207f9c92a9SJohn McCall // A member 'operator delete' can take an extra 'size_t' argument. 11219cacbabdSAlp Toker if (FPT->getNumParams() == NumPlacementArgs + 2) { 1122cb5f77f0SJohn McCall RValue RV = AllocSize.restore(CGF); 112343dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 11247f9c92a9SJohn McCall } 11257f9c92a9SJohn McCall 11267f9c92a9SJohn McCall // Pass the rest of the arguments, which must match exactly. 11277f9c92a9SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1128cb5f77f0SJohn McCall RValue RV = getPlacementArgs()[I].restore(CGF); 112943dca6a8SEli Friedman DeleteArgs.add(RV, *AI++); 11307f9c92a9SJohn McCall } 11317f9c92a9SJohn McCall 11327f9c92a9SJohn McCall // Call 'operator delete'. 11338d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 11347f9c92a9SJohn McCall } 11357f9c92a9SJohn McCall }; 11367f9c92a9SJohn McCall } 11377f9c92a9SJohn McCall 11387f9c92a9SJohn McCall /// Enter a cleanup to call 'operator delete' if the initializer in a 11397f9c92a9SJohn McCall /// new-expression throws. 11407f9c92a9SJohn McCall static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 11417f9c92a9SJohn McCall const CXXNewExpr *E, 11427f9c92a9SJohn McCall llvm::Value *NewPtr, 11437f9c92a9SJohn McCall llvm::Value *AllocSize, 11447f9c92a9SJohn McCall const CallArgList &NewArgs) { 11457f9c92a9SJohn McCall // If we're not inside a conditional branch, then the cleanup will 11467f9c92a9SJohn McCall // dominate and we can do the easier (and more efficient) thing. 11477f9c92a9SJohn McCall if (!CGF.isInConditionalBranch()) { 11487f9c92a9SJohn McCall CallDeleteDuringNew *Cleanup = CGF.EHStack 11497f9c92a9SJohn McCall .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 11507f9c92a9SJohn McCall E->getNumPlacementArgs(), 11517f9c92a9SJohn McCall E->getOperatorDelete(), 11527f9c92a9SJohn McCall NewPtr, AllocSize); 11537f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1154f4258eb4SEli Friedman Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 11557f9c92a9SJohn McCall 11567f9c92a9SJohn McCall return; 11577f9c92a9SJohn McCall } 11587f9c92a9SJohn McCall 11597f9c92a9SJohn McCall // Otherwise, we need to save all this stuff. 1160cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedNewPtr = 1161cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1162cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedAllocSize = 1163cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 11647f9c92a9SJohn McCall 11657f9c92a9SJohn McCall CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1166f4beacd0SJohn McCall .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 11677f9c92a9SJohn McCall E->getNumPlacementArgs(), 11687f9c92a9SJohn McCall E->getOperatorDelete(), 11697f9c92a9SJohn McCall SavedNewPtr, 11707f9c92a9SJohn McCall SavedAllocSize); 11717f9c92a9SJohn McCall for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1172cb5f77f0SJohn McCall Cleanup->setPlacementArg(I, 1173f4258eb4SEli Friedman DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 11747f9c92a9SJohn McCall 1175f4beacd0SJohn McCall CGF.initFullExprCleanup(); 1176824c2f53SJohn McCall } 1177824c2f53SJohn McCall 117859486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 117975f9498aSJohn McCall // The element type being allocated. 118075f9498aSJohn McCall QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 11818ed55a54SJohn McCall 118275f9498aSJohn McCall // 1. Build a call to the allocation function. 118375f9498aSJohn McCall FunctionDecl *allocator = E->getOperatorNew(); 118475f9498aSJohn McCall const FunctionProtoType *allocatorType = 118575f9498aSJohn McCall allocator->getType()->castAs<FunctionProtoType>(); 118659486a2dSAnders Carlsson 118775f9498aSJohn McCall CallArgList allocatorArgs; 118859486a2dSAnders Carlsson 118959486a2dSAnders Carlsson // The allocation size is the first argument. 119075f9498aSJohn McCall QualType sizeType = getContext().getSizeType(); 119159486a2dSAnders Carlsson 1192f862eb6aSSebastian Redl // If there is a brace-initializer, cannot allocate fewer elements than inits. 1193f862eb6aSSebastian Redl unsigned minElements = 0; 1194f862eb6aSSebastian Redl if (E->isArray() && E->hasInitializer()) { 1195f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1196f862eb6aSSebastian Redl minElements = ILE->getNumInits(); 1197f862eb6aSSebastian Redl } 1198f862eb6aSSebastian Redl 11998a13c418SCraig Topper llvm::Value *numElements = nullptr; 12008a13c418SCraig Topper llvm::Value *allocSizeWithoutCookie = nullptr; 120175f9498aSJohn McCall llvm::Value *allocSize = 1202f862eb6aSSebastian Redl EmitCXXNewAllocSize(*this, E, minElements, numElements, 1203f862eb6aSSebastian Redl allocSizeWithoutCookie); 120459486a2dSAnders Carlsson 120543dca6a8SEli Friedman allocatorArgs.add(RValue::get(allocSize), sizeType); 120659486a2dSAnders Carlsson 120759486a2dSAnders Carlsson // We start at 1 here because the first argument (the allocation size) 120859486a2dSAnders Carlsson // has already been emitted. 1209739756c0SReid Kleckner EmitCallArgs(allocatorArgs, allocatorType->isVariadic(), 12109cacbabdSAlp Toker allocatorType->param_type_begin() + 1, 12119cacbabdSAlp Toker allocatorType->param_type_end(), E->placement_arg_begin(), 1212739756c0SReid Kleckner E->placement_arg_end()); 121359486a2dSAnders Carlsson 12147ec4b434SJohn McCall // Emit the allocation call. If the allocator is a global placement 12157ec4b434SJohn McCall // operator, just "inline" it directly. 12167ec4b434SJohn McCall RValue RV; 12177ec4b434SJohn McCall if (allocator->isReservedGlobalPlacementOperator()) { 12187ec4b434SJohn McCall assert(allocatorArgs.size() == 2); 12197ec4b434SJohn McCall RV = allocatorArgs[1].RV; 12207ec4b434SJohn McCall // TODO: kill any unnecessary computations done for the size 12217ec4b434SJohn McCall // argument. 12227ec4b434SJohn McCall } else { 12238d0dc31dSRichard Smith RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 12247ec4b434SJohn McCall } 122559486a2dSAnders Carlsson 122675f9498aSJohn McCall // Emit a null check on the allocation result if the allocation 122775f9498aSJohn McCall // function is allowed to return null (because it has a non-throwing 122875f9498aSJohn McCall // exception spec; for this part, we inline 122975f9498aSJohn McCall // CXXNewExpr::shouldNullCheckAllocation()) and we have an 123075f9498aSJohn McCall // interesting initializer. 123131ad754cSSebastian Redl bool nullCheck = allocatorType->isNothrow(getContext()) && 12326047f07eSSebastian Redl (!allocType.isPODType(getContext()) || E->hasInitializer()); 123359486a2dSAnders Carlsson 12348a13c418SCraig Topper llvm::BasicBlock *nullCheckBB = nullptr; 12358a13c418SCraig Topper llvm::BasicBlock *contBB = nullptr; 123659486a2dSAnders Carlsson 123775f9498aSJohn McCall llvm::Value *allocation = RV.getScalarVal(); 1238ea2fea2aSMicah Villmow unsigned AS = allocation->getType()->getPointerAddressSpace(); 123959486a2dSAnders Carlsson 1240f7dcf320SJohn McCall // The null-check means that the initializer is conditionally 1241f7dcf320SJohn McCall // evaluated. 1242f7dcf320SJohn McCall ConditionalEvaluation conditional(*this); 1243f7dcf320SJohn McCall 124475f9498aSJohn McCall if (nullCheck) { 1245f7dcf320SJohn McCall conditional.begin(*this); 124675f9498aSJohn McCall 124775f9498aSJohn McCall nullCheckBB = Builder.GetInsertBlock(); 124875f9498aSJohn McCall llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 124975f9498aSJohn McCall contBB = createBasicBlock("new.cont"); 125075f9498aSJohn McCall 125175f9498aSJohn McCall llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 125275f9498aSJohn McCall Builder.CreateCondBr(isNull, contBB, notNullBB); 125375f9498aSJohn McCall EmitBlock(notNullBB); 125459486a2dSAnders Carlsson } 125559486a2dSAnders Carlsson 1256824c2f53SJohn McCall // If there's an operator delete, enter a cleanup to call it if an 1257824c2f53SJohn McCall // exception is thrown. 125875f9498aSJohn McCall EHScopeStack::stable_iterator operatorDeleteCleanup; 12598a13c418SCraig Topper llvm::Instruction *cleanupDominator = nullptr; 12607ec4b434SJohn McCall if (E->getOperatorDelete() && 12617ec4b434SJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 126275f9498aSJohn McCall EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 126375f9498aSJohn McCall operatorDeleteCleanup = EHStack.stable_begin(); 1264f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 1265824c2f53SJohn McCall } 1266824c2f53SJohn McCall 1267cf9b1f65SEli Friedman assert((allocSize == allocSizeWithoutCookie) == 1268cf9b1f65SEli Friedman CalculateCookiePadding(*this, E).isZero()); 1269cf9b1f65SEli Friedman if (allocSize != allocSizeWithoutCookie) { 1270cf9b1f65SEli Friedman assert(E->isArray()); 1271cf9b1f65SEli Friedman allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1272cf9b1f65SEli Friedman numElements, 1273cf9b1f65SEli Friedman E, allocType); 1274cf9b1f65SEli Friedman } 1275cf9b1f65SEli Friedman 12762192fe50SChris Lattner llvm::Type *elementPtrTy 127775f9498aSJohn McCall = ConvertTypeForMem(allocType)->getPointerTo(AS); 127875f9498aSJohn McCall llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1279824c2f53SJohn McCall 128099210dc9SJohn McCall EmitNewInitializer(*this, E, allocType, result, numElements, 128199210dc9SJohn McCall allocSizeWithoutCookie); 12828ed55a54SJohn McCall if (E->isArray()) { 12838ed55a54SJohn McCall // NewPtr is a pointer to the base element type. If we're 12848ed55a54SJohn McCall // allocating an array of arrays, we'll need to cast back to the 12858ed55a54SJohn McCall // array pointer type. 12862192fe50SChris Lattner llvm::Type *resultType = ConvertTypeForMem(E->getType()); 128775f9498aSJohn McCall if (result->getType() != resultType) 128875f9498aSJohn McCall result = Builder.CreateBitCast(result, resultType); 128947b4629bSFariborz Jahanian } 129059486a2dSAnders Carlsson 1291824c2f53SJohn McCall // Deactivate the 'operator delete' cleanup if we finished 1292824c2f53SJohn McCall // initialization. 1293f4beacd0SJohn McCall if (operatorDeleteCleanup.isValid()) { 1294f4beacd0SJohn McCall DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1295f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 1296f4beacd0SJohn McCall } 1297824c2f53SJohn McCall 129875f9498aSJohn McCall if (nullCheck) { 1299f7dcf320SJohn McCall conditional.end(*this); 1300f7dcf320SJohn McCall 130175f9498aSJohn McCall llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 130275f9498aSJohn McCall EmitBlock(contBB); 130359486a2dSAnders Carlsson 130420c0f02cSJay Foad llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 130575f9498aSJohn McCall PHI->addIncoming(result, notNullBB); 130675f9498aSJohn McCall PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 130775f9498aSJohn McCall nullCheckBB); 130859486a2dSAnders Carlsson 130975f9498aSJohn McCall result = PHI; 131059486a2dSAnders Carlsson } 131159486a2dSAnders Carlsson 131275f9498aSJohn McCall return result; 131359486a2dSAnders Carlsson } 131459486a2dSAnders Carlsson 131559486a2dSAnders Carlsson void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 131659486a2dSAnders Carlsson llvm::Value *Ptr, 131759486a2dSAnders Carlsson QualType DeleteTy) { 13188ed55a54SJohn McCall assert(DeleteFD->getOverloadedOperator() == OO_Delete); 13198ed55a54SJohn McCall 132059486a2dSAnders Carlsson const FunctionProtoType *DeleteFTy = 132159486a2dSAnders Carlsson DeleteFD->getType()->getAs<FunctionProtoType>(); 132259486a2dSAnders Carlsson 132359486a2dSAnders Carlsson CallArgList DeleteArgs; 132459486a2dSAnders Carlsson 132521122cf6SAnders Carlsson // Check if we need to pass the size to the delete operator. 13268a13c418SCraig Topper llvm::Value *Size = nullptr; 132721122cf6SAnders Carlsson QualType SizeTy; 13289cacbabdSAlp Toker if (DeleteFTy->getNumParams() == 2) { 13299cacbabdSAlp Toker SizeTy = DeleteFTy->getParamType(1); 13307df3cbebSKen Dyck CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 13317df3cbebSKen Dyck Size = llvm::ConstantInt::get(ConvertType(SizeTy), 13327df3cbebSKen Dyck DeleteTypeSize.getQuantity()); 133321122cf6SAnders Carlsson } 133421122cf6SAnders Carlsson 13359cacbabdSAlp Toker QualType ArgTy = DeleteFTy->getParamType(0); 133659486a2dSAnders Carlsson llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 133743dca6a8SEli Friedman DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 133859486a2dSAnders Carlsson 133921122cf6SAnders Carlsson if (Size) 134043dca6a8SEli Friedman DeleteArgs.add(RValue::get(Size), SizeTy); 134159486a2dSAnders Carlsson 134259486a2dSAnders Carlsson // Emit the call to delete. 13438d0dc31dSRichard Smith EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 134459486a2dSAnders Carlsson } 134559486a2dSAnders Carlsson 13468ed55a54SJohn McCall namespace { 13478ed55a54SJohn McCall /// Calls the given 'operator delete' on a single object. 13488ed55a54SJohn McCall struct CallObjectDelete : EHScopeStack::Cleanup { 13498ed55a54SJohn McCall llvm::Value *Ptr; 13508ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 13518ed55a54SJohn McCall QualType ElementType; 13528ed55a54SJohn McCall 13538ed55a54SJohn McCall CallObjectDelete(llvm::Value *Ptr, 13548ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13558ed55a54SJohn McCall QualType ElementType) 13568ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 13578ed55a54SJohn McCall 13584f12f10dSCraig Topper void Emit(CodeGenFunction &CGF, Flags flags) override { 13598ed55a54SJohn McCall CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 13608ed55a54SJohn McCall } 13618ed55a54SJohn McCall }; 13628ed55a54SJohn McCall } 13638ed55a54SJohn McCall 13648ed55a54SJohn McCall /// Emit the code for deleting a single object. 13658ed55a54SJohn McCall static void EmitObjectDelete(CodeGenFunction &CGF, 13668ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 13678ed55a54SJohn McCall llvm::Value *Ptr, 13681c2e20d7SDouglas Gregor QualType ElementType, 13691c2e20d7SDouglas Gregor bool UseGlobalDelete) { 13708ed55a54SJohn McCall // Find the destructor for the type, if applicable. If the 13718ed55a54SJohn McCall // destructor is virtual, we'll just emit the vcall and return. 13728a13c418SCraig Topper const CXXDestructorDecl *Dtor = nullptr; 13738ed55a54SJohn McCall if (const RecordType *RT = ElementType->getAs<RecordType>()) { 13748ed55a54SJohn McCall CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1375b23533dbSEli Friedman if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 13768ed55a54SJohn McCall Dtor = RD->getDestructor(); 13778ed55a54SJohn McCall 13788ed55a54SJohn McCall if (Dtor->isVirtual()) { 13791c2e20d7SDouglas Gregor if (UseGlobalDelete) { 13801c2e20d7SDouglas Gregor // If we're supposed to call the global delete, make sure we do so 13811c2e20d7SDouglas Gregor // even if the destructor throws. 138282fb8920SJohn McCall 138382fb8920SJohn McCall // Derive the complete-object pointer, which is what we need 138482fb8920SJohn McCall // to pass to the deallocation function. 138582fb8920SJohn McCall llvm::Value *completePtr = 138682fb8920SJohn McCall CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 138782fb8920SJohn McCall 13881c2e20d7SDouglas Gregor CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 138982fb8920SJohn McCall completePtr, OperatorDelete, 13901c2e20d7SDouglas Gregor ElementType); 13911c2e20d7SDouglas Gregor } 13921c2e20d7SDouglas Gregor 1393e30752c9SRichard Smith // FIXME: Provide a source location here. 1394d619711cSTimur Iskhodzhanov CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1395d619711cSTimur Iskhodzhanov CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 13969dc6eef7SStephen Lin SourceLocation(), Ptr); 13978ed55a54SJohn McCall 13981c2e20d7SDouglas Gregor if (UseGlobalDelete) { 13991c2e20d7SDouglas Gregor CGF.PopCleanupBlock(); 14001c2e20d7SDouglas Gregor } 14011c2e20d7SDouglas Gregor 14028ed55a54SJohn McCall return; 14038ed55a54SJohn McCall } 14048ed55a54SJohn McCall } 14058ed55a54SJohn McCall } 14068ed55a54SJohn McCall 14078ed55a54SJohn McCall // Make sure that we call delete even if the dtor throws. 1408e4df6c8dSJohn McCall // This doesn't have to a conditional cleanup because we're going 1409e4df6c8dSJohn McCall // to pop it off in a second. 14108ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 14118ed55a54SJohn McCall Ptr, OperatorDelete, ElementType); 14128ed55a54SJohn McCall 14138ed55a54SJohn McCall if (Dtor) 14148ed55a54SJohn McCall CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 141561535005SDouglas Gregor /*ForVirtualBase=*/false, 141661535005SDouglas Gregor /*Delegating=*/false, 141761535005SDouglas Gregor Ptr); 1418bbafb8a7SDavid Blaikie else if (CGF.getLangOpts().ObjCAutoRefCount && 141931168b07SJohn McCall ElementType->isObjCLifetimeType()) { 142031168b07SJohn McCall switch (ElementType.getObjCLifetime()) { 142131168b07SJohn McCall case Qualifiers::OCL_None: 142231168b07SJohn McCall case Qualifiers::OCL_ExplicitNone: 142331168b07SJohn McCall case Qualifiers::OCL_Autoreleasing: 142431168b07SJohn McCall break; 142531168b07SJohn McCall 142631168b07SJohn McCall case Qualifiers::OCL_Strong: { 142731168b07SJohn McCall // Load the pointer value. 142831168b07SJohn McCall llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 142931168b07SJohn McCall ElementType.isVolatileQualified()); 143031168b07SJohn McCall 1431cdda29c9SJohn McCall CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 143231168b07SJohn McCall break; 143331168b07SJohn McCall } 143431168b07SJohn McCall 143531168b07SJohn McCall case Qualifiers::OCL_Weak: 143631168b07SJohn McCall CGF.EmitARCDestroyWeak(Ptr); 143731168b07SJohn McCall break; 143831168b07SJohn McCall } 143931168b07SJohn McCall } 14408ed55a54SJohn McCall 14418ed55a54SJohn McCall CGF.PopCleanupBlock(); 14428ed55a54SJohn McCall } 14438ed55a54SJohn McCall 14448ed55a54SJohn McCall namespace { 14458ed55a54SJohn McCall /// Calls the given 'operator delete' on an array of objects. 14468ed55a54SJohn McCall struct CallArrayDelete : EHScopeStack::Cleanup { 14478ed55a54SJohn McCall llvm::Value *Ptr; 14488ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 14498ed55a54SJohn McCall llvm::Value *NumElements; 14508ed55a54SJohn McCall QualType ElementType; 14518ed55a54SJohn McCall CharUnits CookieSize; 14528ed55a54SJohn McCall 14538ed55a54SJohn McCall CallArrayDelete(llvm::Value *Ptr, 14548ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 14558ed55a54SJohn McCall llvm::Value *NumElements, 14568ed55a54SJohn McCall QualType ElementType, 14578ed55a54SJohn McCall CharUnits CookieSize) 14588ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 14598ed55a54SJohn McCall ElementType(ElementType), CookieSize(CookieSize) {} 14608ed55a54SJohn McCall 14614f12f10dSCraig Topper void Emit(CodeGenFunction &CGF, Flags flags) override { 14628ed55a54SJohn McCall const FunctionProtoType *DeleteFTy = 14638ed55a54SJohn McCall OperatorDelete->getType()->getAs<FunctionProtoType>(); 14649cacbabdSAlp Toker assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 14658ed55a54SJohn McCall 14668ed55a54SJohn McCall CallArgList Args; 14678ed55a54SJohn McCall 14688ed55a54SJohn McCall // Pass the pointer as the first argument. 14699cacbabdSAlp Toker QualType VoidPtrTy = DeleteFTy->getParamType(0); 14708ed55a54SJohn McCall llvm::Value *DeletePtr 14718ed55a54SJohn McCall = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 147243dca6a8SEli Friedman Args.add(RValue::get(DeletePtr), VoidPtrTy); 14738ed55a54SJohn McCall 14748ed55a54SJohn McCall // Pass the original requested size as the second argument. 14759cacbabdSAlp Toker if (DeleteFTy->getNumParams() == 2) { 14769cacbabdSAlp Toker QualType size_t = DeleteFTy->getParamType(1); 14772192fe50SChris Lattner llvm::IntegerType *SizeTy 14788ed55a54SJohn McCall = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 14798ed55a54SJohn McCall 14808ed55a54SJohn McCall CharUnits ElementTypeSize = 14818ed55a54SJohn McCall CGF.CGM.getContext().getTypeSizeInChars(ElementType); 14828ed55a54SJohn McCall 14838ed55a54SJohn McCall // The size of an element, multiplied by the number of elements. 14848ed55a54SJohn McCall llvm::Value *Size 14858ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 14868ed55a54SJohn McCall Size = CGF.Builder.CreateMul(Size, NumElements); 14878ed55a54SJohn McCall 14888ed55a54SJohn McCall // Plus the size of the cookie if applicable. 14898ed55a54SJohn McCall if (!CookieSize.isZero()) { 14908ed55a54SJohn McCall llvm::Value *CookieSizeV 14918ed55a54SJohn McCall = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 14928ed55a54SJohn McCall Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 14938ed55a54SJohn McCall } 14948ed55a54SJohn McCall 149543dca6a8SEli Friedman Args.add(RValue::get(Size), size_t); 14968ed55a54SJohn McCall } 14978ed55a54SJohn McCall 14988ed55a54SJohn McCall // Emit the call to delete. 14998d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 15008ed55a54SJohn McCall } 15018ed55a54SJohn McCall }; 15028ed55a54SJohn McCall } 15038ed55a54SJohn McCall 15048ed55a54SJohn McCall /// Emit the code for deleting an array of objects. 15058ed55a54SJohn McCall static void EmitArrayDelete(CodeGenFunction &CGF, 1506284c48ffSJohn McCall const CXXDeleteExpr *E, 1507ca2c56f2SJohn McCall llvm::Value *deletedPtr, 1508ca2c56f2SJohn McCall QualType elementType) { 15098a13c418SCraig Topper llvm::Value *numElements = nullptr; 15108a13c418SCraig Topper llvm::Value *allocatedPtr = nullptr; 1511ca2c56f2SJohn McCall CharUnits cookieSize; 1512ca2c56f2SJohn McCall CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1513ca2c56f2SJohn McCall numElements, allocatedPtr, cookieSize); 15148ed55a54SJohn McCall 1515ca2c56f2SJohn McCall assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 15168ed55a54SJohn McCall 15178ed55a54SJohn McCall // Make sure that we call delete even if one of the dtors throws. 1518ca2c56f2SJohn McCall const FunctionDecl *operatorDelete = E->getOperatorDelete(); 15198ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1520ca2c56f2SJohn McCall allocatedPtr, operatorDelete, 1521ca2c56f2SJohn McCall numElements, elementType, 1522ca2c56f2SJohn McCall cookieSize); 15238ed55a54SJohn McCall 1524ca2c56f2SJohn McCall // Destroy the elements. 1525ca2c56f2SJohn McCall if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1526ca2c56f2SJohn McCall assert(numElements && "no element count for a type with a destructor!"); 152731168b07SJohn McCall 1528ca2c56f2SJohn McCall llvm::Value *arrayEnd = 1529ca2c56f2SJohn McCall CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 153097eab0a2SJohn McCall 153197eab0a2SJohn McCall // Note that it is legal to allocate a zero-length array, and we 153297eab0a2SJohn McCall // can never fold the check away because the length should always 153397eab0a2SJohn McCall // come from a cookie. 1534ca2c56f2SJohn McCall CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1535ca2c56f2SJohn McCall CGF.getDestroyer(dtorKind), 153697eab0a2SJohn McCall /*checkZeroLength*/ true, 1537ca2c56f2SJohn McCall CGF.needsEHCleanup(dtorKind)); 15388ed55a54SJohn McCall } 15398ed55a54SJohn McCall 1540ca2c56f2SJohn McCall // Pop the cleanup block. 15418ed55a54SJohn McCall CGF.PopCleanupBlock(); 15428ed55a54SJohn McCall } 15438ed55a54SJohn McCall 154459486a2dSAnders Carlsson void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 154559486a2dSAnders Carlsson const Expr *Arg = E->getArgument(); 154659486a2dSAnders Carlsson llvm::Value *Ptr = EmitScalarExpr(Arg); 154759486a2dSAnders Carlsson 154859486a2dSAnders Carlsson // Null check the pointer. 154959486a2dSAnders Carlsson llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 155059486a2dSAnders Carlsson llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 155159486a2dSAnders Carlsson 155298981b10SAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 155359486a2dSAnders Carlsson 155459486a2dSAnders Carlsson Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 155559486a2dSAnders Carlsson EmitBlock(DeleteNotNull); 155659486a2dSAnders Carlsson 15578ed55a54SJohn McCall // We might be deleting a pointer to array. If so, GEP down to the 15588ed55a54SJohn McCall // first non-array element. 15598ed55a54SJohn McCall // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 15608ed55a54SJohn McCall QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 15618ed55a54SJohn McCall if (DeleteTy->isConstantArrayType()) { 15628ed55a54SJohn McCall llvm::Value *Zero = Builder.getInt32(0); 15630e62c1ccSChris Lattner SmallVector<llvm::Value*,8> GEP; 156459486a2dSAnders Carlsson 15658ed55a54SJohn McCall GEP.push_back(Zero); // point at the outermost array 15668ed55a54SJohn McCall 15678ed55a54SJohn McCall // For each layer of array type we're pointing at: 15688ed55a54SJohn McCall while (const ConstantArrayType *Arr 15698ed55a54SJohn McCall = getContext().getAsConstantArrayType(DeleteTy)) { 15708ed55a54SJohn McCall // 1. Unpeel the array type. 15718ed55a54SJohn McCall DeleteTy = Arr->getElementType(); 15728ed55a54SJohn McCall 15738ed55a54SJohn McCall // 2. GEP to the first element of the array. 15748ed55a54SJohn McCall GEP.push_back(Zero); 15758ed55a54SJohn McCall } 15768ed55a54SJohn McCall 1577040dd82fSJay Foad Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 15788ed55a54SJohn McCall } 15798ed55a54SJohn McCall 158004f36218SDouglas Gregor assert(ConvertTypeForMem(DeleteTy) == 158104f36218SDouglas Gregor cast<llvm::PointerType>(Ptr->getType())->getElementType()); 15828ed55a54SJohn McCall 158359486a2dSAnders Carlsson if (E->isArrayForm()) { 1584284c48ffSJohn McCall EmitArrayDelete(*this, E, Ptr, DeleteTy); 15858ed55a54SJohn McCall } else { 15861c2e20d7SDouglas Gregor EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 15871c2e20d7SDouglas Gregor E->isGlobalDelete()); 158859486a2dSAnders Carlsson } 158959486a2dSAnders Carlsson 159059486a2dSAnders Carlsson EmitBlock(DeleteEnd); 159159486a2dSAnders Carlsson } 159259486a2dSAnders Carlsson 15930c63350bSAnders Carlsson static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 15940c63350bSAnders Carlsson // void __cxa_bad_typeid(); 1595ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 15960c63350bSAnders Carlsson 15970c63350bSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 15980c63350bSAnders Carlsson } 15990c63350bSAnders Carlsson 16000c63350bSAnders Carlsson static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1601bbe277c4SAnders Carlsson llvm::Value *Fn = getBadTypeidFn(CGF); 1602882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 16030c63350bSAnders Carlsson CGF.Builder.CreateUnreachable(); 16040c63350bSAnders Carlsson } 16050c63350bSAnders Carlsson 1606940f02d2SAnders Carlsson static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1607940f02d2SAnders Carlsson const Expr *E, 16082192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy) { 1609940f02d2SAnders Carlsson // Get the vtable pointer. 1610940f02d2SAnders Carlsson llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1611940f02d2SAnders Carlsson 1612940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1613940f02d2SAnders Carlsson // If the glvalue expression is obtained by applying the unary * operator to 1614940f02d2SAnders Carlsson // a pointer and the pointer is a null pointer value, the typeid expression 1615940f02d2SAnders Carlsson // throws the std::bad_typeid exception. 1616940f02d2SAnders Carlsson if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1617940f02d2SAnders Carlsson if (UO->getOpcode() == UO_Deref) { 1618940f02d2SAnders Carlsson llvm::BasicBlock *BadTypeidBlock = 1619940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.bad_typeid"); 1620940f02d2SAnders Carlsson llvm::BasicBlock *EndBlock = 1621940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.end"); 1622940f02d2SAnders Carlsson 1623940f02d2SAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1624940f02d2SAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1625940f02d2SAnders Carlsson 1626940f02d2SAnders Carlsson CGF.EmitBlock(BadTypeidBlock); 1627940f02d2SAnders Carlsson EmitBadTypeidCall(CGF); 1628940f02d2SAnders Carlsson CGF.EmitBlock(EndBlock); 1629940f02d2SAnders Carlsson } 1630940f02d2SAnders Carlsson } 1631940f02d2SAnders Carlsson 1632940f02d2SAnders Carlsson llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1633940f02d2SAnders Carlsson StdTypeInfoPtrTy->getPointerTo()); 1634940f02d2SAnders Carlsson 1635940f02d2SAnders Carlsson // Load the type info. 1636940f02d2SAnders Carlsson Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1637940f02d2SAnders Carlsson return CGF.Builder.CreateLoad(Value); 1638940f02d2SAnders Carlsson } 1639940f02d2SAnders Carlsson 164059486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 16412192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy = 1642940f02d2SAnders Carlsson ConvertType(E->getType())->getPointerTo(); 1643fd7dfeb7SAnders Carlsson 16443f4336cbSAnders Carlsson if (E->isTypeOperand()) { 16453f4336cbSAnders Carlsson llvm::Constant *TypeInfo = 1646143c55eaSDavid Majnemer CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1647940f02d2SAnders Carlsson return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 16483f4336cbSAnders Carlsson } 1649fd7dfeb7SAnders Carlsson 1650940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1651940f02d2SAnders Carlsson // When typeid is applied to a glvalue expression whose type is a 1652940f02d2SAnders Carlsson // polymorphic class type, the result refers to a std::type_info object 1653940f02d2SAnders Carlsson // representing the type of the most derived object (that is, the dynamic 1654940f02d2SAnders Carlsson // type) to which the glvalue refers. 1655ef8bf436SRichard Smith if (E->isPotentiallyEvaluated()) 1656940f02d2SAnders Carlsson return EmitTypeidFromVTable(*this, E->getExprOperand(), 1657940f02d2SAnders Carlsson StdTypeInfoPtrTy); 1658940f02d2SAnders Carlsson 1659940f02d2SAnders Carlsson QualType OperandTy = E->getExprOperand()->getType(); 1660940f02d2SAnders Carlsson return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1661940f02d2SAnders Carlsson StdTypeInfoPtrTy); 166259486a2dSAnders Carlsson } 166359486a2dSAnders Carlsson 1664882d790fSAnders Carlsson static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1665882d790fSAnders Carlsson // void *__dynamic_cast(const void *sub, 1666882d790fSAnders Carlsson // const abi::__class_type_info *src, 1667882d790fSAnders Carlsson // const abi::__class_type_info *dst, 1668882d790fSAnders Carlsson // std::ptrdiff_t src2dst_offset); 1669882d790fSAnders Carlsson 1670ece0409aSChris Lattner llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1671a5f58b05SChris Lattner llvm::Type *PtrDiffTy = 1672882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1673882d790fSAnders Carlsson 1674a5f58b05SChris Lattner llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1675882d790fSAnders Carlsson 1676b5206330SBenjamin Kramer llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); 1677882d790fSAnders Carlsson 1678b5206330SBenjamin Kramer // Mark the function as nounwind readonly. 1679b5206330SBenjamin Kramer llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, 1680b5206330SBenjamin Kramer llvm::Attribute::ReadOnly }; 1681b5206330SBenjamin Kramer llvm::AttributeSet Attrs = llvm::AttributeSet::get( 1682b5206330SBenjamin Kramer CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); 1683b5206330SBenjamin Kramer 1684b5206330SBenjamin Kramer return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); 1685882d790fSAnders Carlsson } 1686882d790fSAnders Carlsson 1687882d790fSAnders Carlsson static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1688882d790fSAnders Carlsson // void __cxa_bad_cast(); 1689ece0409aSChris Lattner llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1690882d790fSAnders Carlsson return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1691882d790fSAnders Carlsson } 1692882d790fSAnders Carlsson 1693c1c9971cSAnders Carlsson static void EmitBadCastCall(CodeGenFunction &CGF) { 1694bbe277c4SAnders Carlsson llvm::Value *Fn = getBadCastFn(CGF); 1695882987f3SJohn McCall CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1696c1c9971cSAnders Carlsson CGF.Builder.CreateUnreachable(); 1697c1c9971cSAnders Carlsson } 1698c1c9971cSAnders Carlsson 1699d9c8455aSBenjamin Kramer /// \brief Compute the src2dst_offset hint as described in the 1700d9c8455aSBenjamin Kramer /// Itanium C++ ABI [2.9.7] 1701d9c8455aSBenjamin Kramer static CharUnits computeOffsetHint(ASTContext &Context, 1702d9c8455aSBenjamin Kramer const CXXRecordDecl *Src, 1703d9c8455aSBenjamin Kramer const CXXRecordDecl *Dst) { 1704d9c8455aSBenjamin Kramer CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1705d9c8455aSBenjamin Kramer /*DetectVirtual=*/false); 1706d9c8455aSBenjamin Kramer 1707d9c8455aSBenjamin Kramer // If Dst is not derived from Src we can skip the whole computation below and 1708d9c8455aSBenjamin Kramer // return that Src is not a public base of Dst. Record all inheritance paths. 1709d9c8455aSBenjamin Kramer if (!Dst->isDerivedFrom(Src, Paths)) 1710d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1711d9c8455aSBenjamin Kramer 1712d9c8455aSBenjamin Kramer unsigned NumPublicPaths = 0; 1713d9c8455aSBenjamin Kramer CharUnits Offset; 1714d9c8455aSBenjamin Kramer 1715d9c8455aSBenjamin Kramer // Now walk all possible inheritance paths. 1716d9c8455aSBenjamin Kramer for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); 1717d9c8455aSBenjamin Kramer I != E; ++I) { 1718d9c8455aSBenjamin Kramer if (I->Access != AS_public) // Ignore non-public inheritance. 1719d9c8455aSBenjamin Kramer continue; 1720d9c8455aSBenjamin Kramer 1721d9c8455aSBenjamin Kramer ++NumPublicPaths; 1722d9c8455aSBenjamin Kramer 1723d9c8455aSBenjamin Kramer for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 1724d9c8455aSBenjamin Kramer // If the path contains a virtual base class we can't give any hint. 1725d9c8455aSBenjamin Kramer // -1: no hint. 1726d9c8455aSBenjamin Kramer if (J->Base->isVirtual()) 1727d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-1ULL); 1728d9c8455aSBenjamin Kramer 1729d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) // Won't use offsets, skip computation. 1730d9c8455aSBenjamin Kramer continue; 1731d9c8455aSBenjamin Kramer 1732d9c8455aSBenjamin Kramer // Accumulate the base class offsets. 1733d9c8455aSBenjamin Kramer const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); 1734d9c8455aSBenjamin Kramer Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); 1735d9c8455aSBenjamin Kramer } 1736d9c8455aSBenjamin Kramer } 1737d9c8455aSBenjamin Kramer 1738d9c8455aSBenjamin Kramer // -2: Src is not a public base of Dst. 1739d9c8455aSBenjamin Kramer if (NumPublicPaths == 0) 1740d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-2ULL); 1741d9c8455aSBenjamin Kramer 1742d9c8455aSBenjamin Kramer // -3: Src is a multiple public base type but never a virtual base type. 1743d9c8455aSBenjamin Kramer if (NumPublicPaths > 1) 1744d9c8455aSBenjamin Kramer return CharUnits::fromQuantity(-3ULL); 1745d9c8455aSBenjamin Kramer 1746d9c8455aSBenjamin Kramer // Otherwise, the Src type is a unique public nonvirtual base type of Dst. 1747d9c8455aSBenjamin Kramer // Return the offset of Src from the origin of Dst. 1748d9c8455aSBenjamin Kramer return Offset; 1749d9c8455aSBenjamin Kramer } 1750d9c8455aSBenjamin Kramer 1751882d790fSAnders Carlsson static llvm::Value * 1752882d790fSAnders Carlsson EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1753882d790fSAnders Carlsson QualType SrcTy, QualType DestTy, 1754882d790fSAnders Carlsson llvm::BasicBlock *CastEnd) { 17552192fe50SChris Lattner llvm::Type *PtrDiffLTy = 1756882d790fSAnders Carlsson CGF.ConvertType(CGF.getContext().getPointerDiffType()); 17572192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1758882d790fSAnders Carlsson 1759882d790fSAnders Carlsson if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1760882d790fSAnders Carlsson if (PTy->getPointeeType()->isVoidType()) { 1761882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p7: 1762882d790fSAnders Carlsson // If T is "pointer to cv void," then the result is a pointer to the 1763882d790fSAnders Carlsson // most derived object pointed to by v. 1764882d790fSAnders Carlsson 1765882d790fSAnders Carlsson // Get the vtable pointer. 1766882d790fSAnders Carlsson llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1767882d790fSAnders Carlsson 1768882d790fSAnders Carlsson // Get the offset-to-top from the vtable. 1769882d790fSAnders Carlsson llvm::Value *OffsetToTop = 1770882d790fSAnders Carlsson CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1771882d790fSAnders Carlsson OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1772882d790fSAnders Carlsson 1773882d790fSAnders Carlsson // Finally, add the offset to the pointer. 1774882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1775882d790fSAnders Carlsson Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1776882d790fSAnders Carlsson 1777882d790fSAnders Carlsson return CGF.Builder.CreateBitCast(Value, DestLTy); 1778882d790fSAnders Carlsson } 1779882d790fSAnders Carlsson } 1780882d790fSAnders Carlsson 1781882d790fSAnders Carlsson QualType SrcRecordTy; 1782882d790fSAnders Carlsson QualType DestRecordTy; 1783882d790fSAnders Carlsson 1784882d790fSAnders Carlsson if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1785882d790fSAnders Carlsson SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1786882d790fSAnders Carlsson DestRecordTy = DestPTy->getPointeeType(); 1787882d790fSAnders Carlsson } else { 1788882d790fSAnders Carlsson SrcRecordTy = SrcTy; 1789882d790fSAnders Carlsson DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1790882d790fSAnders Carlsson } 1791882d790fSAnders Carlsson 1792882d790fSAnders Carlsson assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1793882d790fSAnders Carlsson assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1794882d790fSAnders Carlsson 1795882d790fSAnders Carlsson llvm::Value *SrcRTTI = 1796882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1797882d790fSAnders Carlsson llvm::Value *DestRTTI = 1798882d790fSAnders Carlsson CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1799882d790fSAnders Carlsson 1800d9c8455aSBenjamin Kramer // Compute the offset hint. 1801d9c8455aSBenjamin Kramer const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1802d9c8455aSBenjamin Kramer const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); 1803d9c8455aSBenjamin Kramer llvm::Value *OffsetHint = 1804d9c8455aSBenjamin Kramer llvm::ConstantInt::get(PtrDiffLTy, 1805d9c8455aSBenjamin Kramer computeOffsetHint(CGF.getContext(), SrcDecl, 1806d9c8455aSBenjamin Kramer DestDecl).getQuantity()); 1807882d790fSAnders Carlsson 1808882d790fSAnders Carlsson // Emit the call to __dynamic_cast. 1809882d790fSAnders Carlsson Value = CGF.EmitCastToVoidPtr(Value); 1810882987f3SJohn McCall 1811882987f3SJohn McCall llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; 1812882987f3SJohn McCall Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); 1813882d790fSAnders Carlsson Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1814882d790fSAnders Carlsson 1815882d790fSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1816882d790fSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1817882d790fSAnders Carlsson if (DestTy->isReferenceType()) { 1818882d790fSAnders Carlsson llvm::BasicBlock *BadCastBlock = 1819882d790fSAnders Carlsson CGF.createBasicBlock("dynamic_cast.bad_cast"); 1820882d790fSAnders Carlsson 1821882d790fSAnders Carlsson llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1822882d790fSAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1823882d790fSAnders Carlsson 1824882d790fSAnders Carlsson CGF.EmitBlock(BadCastBlock); 1825c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1826882d790fSAnders Carlsson } 1827882d790fSAnders Carlsson 1828882d790fSAnders Carlsson return Value; 1829882d790fSAnders Carlsson } 1830882d790fSAnders Carlsson 1831c1c9971cSAnders Carlsson static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1832c1c9971cSAnders Carlsson QualType DestTy) { 18332192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1834c1c9971cSAnders Carlsson if (DestTy->isPointerType()) 1835c1c9971cSAnders Carlsson return llvm::Constant::getNullValue(DestLTy); 1836c1c9971cSAnders Carlsson 1837c1c9971cSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1838c1c9971cSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 1839c1c9971cSAnders Carlsson EmitBadCastCall(CGF); 1840c1c9971cSAnders Carlsson 1841c1c9971cSAnders Carlsson CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1842c1c9971cSAnders Carlsson return llvm::UndefValue::get(DestLTy); 1843c1c9971cSAnders Carlsson } 1844c1c9971cSAnders Carlsson 1845882d790fSAnders Carlsson llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 184659486a2dSAnders Carlsson const CXXDynamicCastExpr *DCE) { 18473f4336cbSAnders Carlsson QualType DestTy = DCE->getTypeAsWritten(); 18483f4336cbSAnders Carlsson 1849c1c9971cSAnders Carlsson if (DCE->isAlwaysNull()) 1850c1c9971cSAnders Carlsson return EmitDynamicCastToNull(*this, DestTy); 1851c1c9971cSAnders Carlsson 1852c1c9971cSAnders Carlsson QualType SrcTy = DCE->getSubExpr()->getType(); 1853c1c9971cSAnders Carlsson 1854882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p4: 1855882d790fSAnders Carlsson // If the value of v is a null pointer value in the pointer case, the result 1856882d790fSAnders Carlsson // is the null pointer value of type T. 1857882d790fSAnders Carlsson bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 185859486a2dSAnders Carlsson 18598a13c418SCraig Topper llvm::BasicBlock *CastNull = nullptr; 18608a13c418SCraig Topper llvm::BasicBlock *CastNotNull = nullptr; 1861882d790fSAnders Carlsson llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1862fa8b4955SDouglas Gregor 1863882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1864882d790fSAnders Carlsson CastNull = createBasicBlock("dynamic_cast.null"); 1865882d790fSAnders Carlsson CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1866882d790fSAnders Carlsson 1867882d790fSAnders Carlsson llvm::Value *IsNull = Builder.CreateIsNull(Value); 1868882d790fSAnders Carlsson Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1869882d790fSAnders Carlsson EmitBlock(CastNotNull); 187059486a2dSAnders Carlsson } 187159486a2dSAnders Carlsson 1872882d790fSAnders Carlsson Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 18733f4336cbSAnders Carlsson 1874882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1875882d790fSAnders Carlsson EmitBranch(CastEnd); 187659486a2dSAnders Carlsson 1877882d790fSAnders Carlsson EmitBlock(CastNull); 1878882d790fSAnders Carlsson EmitBranch(CastEnd); 187959486a2dSAnders Carlsson } 188059486a2dSAnders Carlsson 1881882d790fSAnders Carlsson EmitBlock(CastEnd); 188259486a2dSAnders Carlsson 1883882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 1884882d790fSAnders Carlsson llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1885882d790fSAnders Carlsson PHI->addIncoming(Value, CastNotNull); 1886882d790fSAnders Carlsson PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 188759486a2dSAnders Carlsson 1888882d790fSAnders Carlsson Value = PHI; 188959486a2dSAnders Carlsson } 189059486a2dSAnders Carlsson 1891882d790fSAnders Carlsson return Value; 189259486a2dSAnders Carlsson } 1893c370a7eeSEli Friedman 1894c370a7eeSEli Friedman void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 18958631f3e8SEli Friedman RunCleanupsScope Scope(*this); 18967f1ff600SEli Friedman LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 18977f1ff600SEli Friedman Slot.getAlignment()); 18988631f3e8SEli Friedman 1899c370a7eeSEli Friedman CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1900c370a7eeSEli Friedman for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1901c370a7eeSEli Friedman e = E->capture_init_end(); 1902c370a7eeSEli Friedman i != e; ++i, ++CurField) { 1903c370a7eeSEli Friedman // Emit initialization 19047f1ff600SEli Friedman 190540ed2973SDavid Blaikie LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 19065f1a04ffSEli Friedman ArrayRef<VarDecl *> ArrayIndexes; 19075f1a04ffSEli Friedman if (CurField->getType()->isArrayType()) 19085f1a04ffSEli Friedman ArrayIndexes = E->getCaptureInitIndexVars(i); 190940ed2973SDavid Blaikie EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1910c370a7eeSEli Friedman } 1911c370a7eeSEli Friedman } 1912