159486a2dSAnders Carlsson //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 259486a2dSAnders Carlsson // 359486a2dSAnders Carlsson // The LLVM Compiler Infrastructure 459486a2dSAnders Carlsson // 559486a2dSAnders Carlsson // This file is distributed under the University of Illinois Open Source 659486a2dSAnders Carlsson // License. See LICENSE.TXT for details. 759486a2dSAnders Carlsson // 859486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 959486a2dSAnders Carlsson // 1059486a2dSAnders Carlsson // This contains code dealing with code generation of C++ expressions 1159486a2dSAnders Carlsson // 1259486a2dSAnders Carlsson //===----------------------------------------------------------------------===// 1359486a2dSAnders Carlsson 1459486a2dSAnders Carlsson #include "CodeGenFunction.h" 15fe883422SPeter Collingbourne #include "CGCUDARuntime.h" 165d865c32SJohn McCall #include "CGCXXABI.h" 1791bbb554SDevang Patel #include "CGDebugInfo.h" 183a02247dSChandler Carruth #include "CGObjCRuntime.h" 19a8e7df36SMark Lacey #include "clang/CodeGen/CGFunctionInfo.h" 2010a4972aSSaleem Abdulrasool #include "clang/Frontend/CodeGenOptions.h" 21c80ceea9SChandler Carruth #include "llvm/IR/CallSite.h" 22ffd5551bSChandler Carruth #include "llvm/IR/Intrinsics.h" 23bbe277c4SAnders Carlsson 2459486a2dSAnders Carlsson using namespace clang; 2559486a2dSAnders Carlsson using namespace CodeGen; 2659486a2dSAnders Carlsson 27efa956ceSAlexey Samsonov static RequiredArgs 28efa956ceSAlexey Samsonov commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 29efa956ceSAlexey Samsonov llvm::Value *This, llvm::Value *ImplicitParam, 30efa956ceSAlexey Samsonov QualType ImplicitParamTy, const CallExpr *CE, 31762672a7SRichard Smith CallArgList &Args, CallArgList *RtlArgs) { 32a5bf76bdSAlexey Samsonov assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 33a5bf76bdSAlexey Samsonov isa<CXXOperatorCallExpr>(CE)); 3427da15baSAnders Carlsson assert(MD->isInstance() && 35a5bf76bdSAlexey Samsonov "Trying to emit a member or operator call expr on a static method!"); 36034e7270SReid Kleckner ASTContext &C = CGF.getContext(); 3727da15baSAnders Carlsson 3869d0d262SRichard Smith // C++11 [class.mfct.non-static]p2: 3969d0d262SRichard Smith // If a non-static member function of a class X is called for an object that 4069d0d262SRichard Smith // is not of type X, or of a type derived from X, the behavior is undefined. 41a5bf76bdSAlexey Samsonov SourceLocation CallLoc; 42a5bf76bdSAlexey Samsonov if (CE) 43a5bf76bdSAlexey Samsonov CallLoc = CE->getExprLoc(); 44034e7270SReid Kleckner CGF.EmitTypeCheck(isa<CXXConstructorDecl>(MD) 45034e7270SReid Kleckner ? CodeGenFunction::TCK_ConstructorCall 460c0b6d9aSDavid Majnemer : CodeGenFunction::TCK_MemberCall, 47034e7270SReid Kleckner CallLoc, This, C.getRecordType(MD->getParent())); 4827da15baSAnders Carlsson 4927da15baSAnders Carlsson // Push the this ptr. 50034e7270SReid Kleckner const CXXRecordDecl *RD = 51034e7270SReid Kleckner CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 52034e7270SReid Kleckner Args.add(RValue::get(This), 53034e7270SReid Kleckner RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); 5427da15baSAnders Carlsson 55ee6bc533STimur Iskhodzhanov // If there is an implicit parameter (e.g. VTT), emit it. 56ee6bc533STimur Iskhodzhanov if (ImplicitParam) { 57ee6bc533STimur Iskhodzhanov Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 58e36a6b3eSAnders Carlsson } 59e36a6b3eSAnders Carlsson 60a729c62bSJohn McCall const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 61419996ccSGeorge Burgess IV RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 62a729c62bSJohn McCall 63a729c62bSJohn McCall // And the rest of the call args. 64762672a7SRichard Smith if (RtlArgs) { 65762672a7SRichard Smith // Special case: if the caller emitted the arguments right-to-left already 66762672a7SRichard Smith // (prior to emitting the *this argument), we're done. This happens for 67762672a7SRichard Smith // assignment operators. 68762672a7SRichard Smith Args.addFrom(*RtlArgs); 69762672a7SRichard Smith } else if (CE) { 70a5bf76bdSAlexey Samsonov // Special case: skip first argument of CXXOperatorCall (it is "this"). 718e1162c7SAlexey Samsonov unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 72f05779e2SDavid Blaikie CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 738e1162c7SAlexey Samsonov CE->getDirectCallee()); 74a5bf76bdSAlexey Samsonov } else { 758e1162c7SAlexey Samsonov assert( 768e1162c7SAlexey Samsonov FPT->getNumParams() == 0 && 778e1162c7SAlexey Samsonov "No CallExpr specified for function with non-zero number of arguments"); 78a5bf76bdSAlexey Samsonov } 790c0b6d9aSDavid Majnemer return required; 800c0b6d9aSDavid Majnemer } 8127da15baSAnders Carlsson 820c0b6d9aSDavid Majnemer RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 830c0b6d9aSDavid Majnemer const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 840c0b6d9aSDavid Majnemer llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 85762672a7SRichard Smith const CallExpr *CE, CallArgList *RtlArgs) { 860c0b6d9aSDavid Majnemer const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 870c0b6d9aSDavid Majnemer CallArgList Args; 880c0b6d9aSDavid Majnemer RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 89762672a7SRichard Smith *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 908dda7b27SJohn McCall return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 91c50c27ccSRafael Espindola Callee, ReturnValue, Args, MD); 9227da15baSAnders Carlsson } 9327da15baSAnders Carlsson 94ae81bbb4SAlexey Samsonov RValue CodeGenFunction::EmitCXXDestructorCall( 95ae81bbb4SAlexey Samsonov const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This, 96ae81bbb4SAlexey Samsonov llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 97ae81bbb4SAlexey Samsonov StructorType Type) { 980c0b6d9aSDavid Majnemer CallArgList Args; 99ae81bbb4SAlexey Samsonov commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 100762672a7SRichard Smith ImplicitParamTy, CE, Args, nullptr); 101ae81bbb4SAlexey Samsonov return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 102ae81bbb4SAlexey Samsonov Callee, ReturnValueSlot(), Args, DD); 1030c0b6d9aSDavid Majnemer } 1040c0b6d9aSDavid Majnemer 1053b33c4ecSRafael Espindola static CXXRecordDecl *getCXXRecord(const Expr *E) { 1063b33c4ecSRafael Espindola QualType T = E->getType(); 1073b33c4ecSRafael Espindola if (const PointerType *PTy = T->getAs<PointerType>()) 1083b33c4ecSRafael Espindola T = PTy->getPointeeType(); 1093b33c4ecSRafael Espindola const RecordType *Ty = T->castAs<RecordType>(); 1103b33c4ecSRafael Espindola return cast<CXXRecordDecl>(Ty->getDecl()); 1113b33c4ecSRafael Espindola } 1123b33c4ecSRafael Espindola 11364225794SFrancois Pichet // Note: This function also emit constructor calls to support a MSVC 11464225794SFrancois Pichet // extensions allowing explicit constructor function call. 11527da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 11627da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 1172d2e8707SJohn McCall const Expr *callee = CE->getCallee()->IgnoreParens(); 1182d2e8707SJohn McCall 1192d2e8707SJohn McCall if (isa<BinaryOperator>(callee)) 12027da15baSAnders Carlsson return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 12127da15baSAnders Carlsson 1222d2e8707SJohn McCall const MemberExpr *ME = cast<MemberExpr>(callee); 12327da15baSAnders Carlsson const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 12427da15baSAnders Carlsson 12527da15baSAnders Carlsson if (MD->isStatic()) { 12627da15baSAnders Carlsson // The method is static, emit it as we would a regular call. 12727da15baSAnders Carlsson llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 12870b9c01bSAlexey Samsonov return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 12970b9c01bSAlexey Samsonov ReturnValue); 13027da15baSAnders Carlsson } 13127da15baSAnders Carlsson 132aad4af6dSNico Weber bool HasQualifier = ME->hasQualifier(); 133aad4af6dSNico Weber NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 134aad4af6dSNico Weber bool IsArrow = ME->isArrow(); 135ecbe2e97SRafael Espindola const Expr *Base = ME->getBase(); 136aad4af6dSNico Weber 137aad4af6dSNico Weber return EmitCXXMemberOrOperatorMemberCallExpr( 138aad4af6dSNico Weber CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 139aad4af6dSNico Weber } 140aad4af6dSNico Weber 141aad4af6dSNico Weber RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 142aad4af6dSNico Weber const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 143aad4af6dSNico Weber bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 144aad4af6dSNico Weber const Expr *Base) { 145aad4af6dSNico Weber assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 146aad4af6dSNico Weber 147aad4af6dSNico Weber // Compute the object pointer. 148aad4af6dSNico Weber bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 149ecbe2e97SRafael Espindola 1508a13c418SCraig Topper const CXXMethodDecl *DevirtualizedMethod = nullptr; 1517463ed7cSBenjamin Kramer if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 1523b33c4ecSRafael Espindola const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 1533b33c4ecSRafael Espindola DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 1543b33c4ecSRafael Espindola assert(DevirtualizedMethod); 1553b33c4ecSRafael Espindola const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 1563b33c4ecSRafael Espindola const Expr *Inner = Base->ignoreParenBaseCasts(); 1575bd68794SAlexey Bataev if (DevirtualizedMethod->getReturnType().getCanonicalType() != 1585bd68794SAlexey Bataev MD->getReturnType().getCanonicalType()) 1595bd68794SAlexey Bataev // If the return types are not the same, this might be a case where more 1605bd68794SAlexey Bataev // code needs to run to compensate for it. For example, the derived 1615bd68794SAlexey Bataev // method might return a type that inherits form from the return 1625bd68794SAlexey Bataev // type of MD and has a prefix. 1635bd68794SAlexey Bataev // For now we just avoid devirtualizing these covariant cases. 1645bd68794SAlexey Bataev DevirtualizedMethod = nullptr; 1655bd68794SAlexey Bataev else if (getCXXRecord(Inner) == DevirtualizedClass) 1663b33c4ecSRafael Espindola // If the class of the Inner expression is where the dynamic method 1673b33c4ecSRafael Espindola // is defined, build the this pointer from it. 1683b33c4ecSRafael Espindola Base = Inner; 1693b33c4ecSRafael Espindola else if (getCXXRecord(Base) != DevirtualizedClass) { 1703b33c4ecSRafael Espindola // If the method is defined in a class that is not the best dynamic 1713b33c4ecSRafael Espindola // one or the one of the full expression, we would have to build 1723b33c4ecSRafael Espindola // a derived-to-base cast to compute the correct this pointer, but 1733b33c4ecSRafael Espindola // we don't have support for that yet, so do a virtual call. 1748a13c418SCraig Topper DevirtualizedMethod = nullptr; 1753b33c4ecSRafael Espindola } 1763b33c4ecSRafael Espindola } 177ecbe2e97SRafael Espindola 178762672a7SRichard Smith // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 179762672a7SRichard Smith // operator before the LHS. 180762672a7SRichard Smith CallArgList RtlArgStorage; 181762672a7SRichard Smith CallArgList *RtlArgs = nullptr; 182762672a7SRichard Smith if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 183762672a7SRichard Smith if (OCE->isAssignmentOp()) { 184762672a7SRichard Smith RtlArgs = &RtlArgStorage; 185762672a7SRichard Smith EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 186762672a7SRichard Smith drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 187a560ccf2SRichard Smith /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 188762672a7SRichard Smith } 189762672a7SRichard Smith } 190762672a7SRichard Smith 1917f416cc4SJohn McCall Address This = Address::invalid(); 192aad4af6dSNico Weber if (IsArrow) 1937f416cc4SJohn McCall This = EmitPointerWithAlignment(Base); 194f93ac894SFariborz Jahanian else 1953b33c4ecSRafael Espindola This = EmitLValue(Base).getAddress(); 196ecbe2e97SRafael Espindola 19727da15baSAnders Carlsson 198419bd094SRichard Smith if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 1998a13c418SCraig Topper if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 20064225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 20164225794SFrancois Pichet cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 2028a13c418SCraig Topper return RValue::get(nullptr); 2030d635f53SJohn McCall 204aad4af6dSNico Weber if (!MD->getParent()->mayInsertExtraPadding()) { 20522653bacSSebastian Redl if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 20622653bacSSebastian Redl // We don't like to generate the trivial copy/move assignment operator 20722653bacSSebastian Redl // when it isn't necessary; just produce the proper effect here. 208762672a7SRichard Smith LValue RHS = isa<CXXOperatorCallExpr>(CE) 209762672a7SRichard Smith ? MakeNaturalAlignAddrLValue( 210762672a7SRichard Smith (*RtlArgs)[0].RV.getScalarVal(), 211762672a7SRichard Smith (*(CE->arg_begin() + 1))->getType()) 212762672a7SRichard Smith : EmitLValue(*CE->arg_begin()); 213762672a7SRichard Smith EmitAggregateAssign(This, RHS.getAddress(), CE->getType()); 2147f416cc4SJohn McCall return RValue::get(This.getPointer()); 21527da15baSAnders Carlsson } 21627da15baSAnders Carlsson 21764225794SFrancois Pichet if (isa<CXXConstructorDecl>(MD) && 21822653bacSSebastian Redl cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 21922653bacSSebastian Redl // Trivial move and copy ctor are the same. 220525bf650SAlexey Samsonov assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2217f416cc4SJohn McCall Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 222f48ee448SBenjamin Kramer EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 2237f416cc4SJohn McCall return RValue::get(This.getPointer()); 22464225794SFrancois Pichet } 22564225794SFrancois Pichet llvm_unreachable("unknown trivial member function"); 22664225794SFrancois Pichet } 227aad4af6dSNico Weber } 22864225794SFrancois Pichet 2290d635f53SJohn McCall // Compute the function type we're calling. 2303abfe958SNico Weber const CXXMethodDecl *CalleeDecl = 2313abfe958SNico Weber DevirtualizedMethod ? DevirtualizedMethod : MD; 2328a13c418SCraig Topper const CGFunctionInfo *FInfo = nullptr; 2333abfe958SNico Weber if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 2348d2a19b4SRafael Espindola FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 2358d2a19b4SRafael Espindola Dtor, StructorType::Complete); 2363abfe958SNico Weber else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 2378d2a19b4SRafael Espindola FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 2388d2a19b4SRafael Espindola Ctor, StructorType::Complete); 23964225794SFrancois Pichet else 240ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 2410d635f53SJohn McCall 242e7de47efSReid Kleckner llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 2430d635f53SJohn McCall 244*018f266bSVedant Kumar // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 245*018f266bSVedant Kumar // 'CalleeDecl' instead. 246*018f266bSVedant Kumar 24727da15baSAnders Carlsson // C++ [class.virtual]p12: 24827da15baSAnders Carlsson // Explicit qualification with the scope operator (5.1) suppresses the 24927da15baSAnders Carlsson // virtual call mechanism. 25027da15baSAnders Carlsson // 25127da15baSAnders Carlsson // We also don't emit a virtual call if the base expression has a record type 25227da15baSAnders Carlsson // because then we know what the type is. 2533b33c4ecSRafael Espindola bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 25419cee187SStephen Lin llvm::Value *Callee; 2559dc6eef7SStephen Lin 2560d635f53SJohn McCall if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 25719cee187SStephen Lin assert(CE->arg_begin() == CE->arg_end() && 2589dc6eef7SStephen Lin "Destructor shouldn't have explicit parameters"); 2599dc6eef7SStephen Lin assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 2609dc6eef7SStephen Lin if (UseVirtualCall) { 261aad4af6dSNico Weber CGM.getCXXABI().EmitVirtualDestructorCall( 262aad4af6dSNico Weber *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 26327da15baSAnders Carlsson } else { 264aad4af6dSNico Weber if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 265aad4af6dSNico Weber Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 2663b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 2671ac0ec86SRafael Espindola Callee = 2681ac0ec86SRafael Espindola CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 26949e860b2SRafael Espindola else { 2703b33c4ecSRafael Espindola const CXXDestructorDecl *DDtor = 2713b33c4ecSRafael Espindola cast<CXXDestructorDecl>(DevirtualizedMethod); 27249e860b2SRafael Espindola Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 27349e860b2SRafael Espindola } 274*018f266bSVedant Kumar EmitCXXMemberOrOperatorCall( 275*018f266bSVedant Kumar CalleeDecl, Callee, ReturnValue, This.getPointer(), 276*018f266bSVedant Kumar /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); 27727da15baSAnders Carlsson } 2788a13c418SCraig Topper return RValue::get(nullptr); 2799dc6eef7SStephen Lin } 2809dc6eef7SStephen Lin 2819dc6eef7SStephen Lin if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 28264225794SFrancois Pichet Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 2830d635f53SJohn McCall } else if (UseVirtualCall) { 2846708c4a1SPeter Collingbourne Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 2856708c4a1SPeter Collingbourne CE->getLocStart()); 28627da15baSAnders Carlsson } else { 2871a7488afSPeter Collingbourne if (SanOpts.has(SanitizerKind::CFINVCall) && 2881a7488afSPeter Collingbourne MD->getParent()->isDynamicClass()) { 2894b1ac72cSPiotr Padlewski llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 290fb532b9aSPeter Collingbourne EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 291fb532b9aSPeter Collingbourne CE->getLocStart()); 2921a7488afSPeter Collingbourne } 2931a7488afSPeter Collingbourne 294aad4af6dSNico Weber if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 295aad4af6dSNico Weber Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 2963b33c4ecSRafael Espindola else if (!DevirtualizedMethod) 297727a771aSRafael Espindola Callee = CGM.GetAddrOfFunction(MD, Ty); 29849e860b2SRafael Espindola else { 2993b33c4ecSRafael Espindola Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 30049e860b2SRafael Espindola } 30127da15baSAnders Carlsson } 30227da15baSAnders Carlsson 303f1749427STimur Iskhodzhanov if (MD->isVirtual()) { 304f1749427STimur Iskhodzhanov This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 3054b60f30aSReid Kleckner *this, CalleeDecl, This, UseVirtualCall); 306f1749427STimur Iskhodzhanov } 30788fd439aSTimur Iskhodzhanov 308*018f266bSVedant Kumar return EmitCXXMemberOrOperatorCall( 309*018f266bSVedant Kumar CalleeDecl, Callee, ReturnValue, This.getPointer(), 310*018f266bSVedant Kumar /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 31127da15baSAnders Carlsson } 31227da15baSAnders Carlsson 31327da15baSAnders Carlsson RValue 31427da15baSAnders Carlsson CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 31527da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 31627da15baSAnders Carlsson const BinaryOperator *BO = 31727da15baSAnders Carlsson cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 31827da15baSAnders Carlsson const Expr *BaseExpr = BO->getLHS(); 31927da15baSAnders Carlsson const Expr *MemFnExpr = BO->getRHS(); 32027da15baSAnders Carlsson 32127da15baSAnders Carlsson const MemberPointerType *MPT = 3220009fcc3SJohn McCall MemFnExpr->getType()->castAs<MemberPointerType>(); 323475999dcSJohn McCall 32427da15baSAnders Carlsson const FunctionProtoType *FPT = 3250009fcc3SJohn McCall MPT->getPointeeType()->castAs<FunctionProtoType>(); 32627da15baSAnders Carlsson const CXXRecordDecl *RD = 32727da15baSAnders Carlsson cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 32827da15baSAnders Carlsson 32927da15baSAnders Carlsson // Emit the 'this' pointer. 3307f416cc4SJohn McCall Address This = Address::invalid(); 331e302792bSJohn McCall if (BO->getOpcode() == BO_PtrMemI) 3327f416cc4SJohn McCall This = EmitPointerWithAlignment(BaseExpr); 33327da15baSAnders Carlsson else 33427da15baSAnders Carlsson This = EmitLValue(BaseExpr).getAddress(); 33527da15baSAnders Carlsson 3367f416cc4SJohn McCall EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 337e30752c9SRichard Smith QualType(MPT->getClass(), 0)); 33869d0d262SRichard Smith 339bde62d78SRichard Smith // Get the member function pointer. 340bde62d78SRichard Smith llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 341bde62d78SRichard Smith 342475999dcSJohn McCall // Ask the ABI to load the callee. Note that This is modified. 3437f416cc4SJohn McCall llvm::Value *ThisPtrForCall = nullptr; 344475999dcSJohn McCall llvm::Value *Callee = 3457f416cc4SJohn McCall CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 3467f416cc4SJohn McCall ThisPtrForCall, MemFnPtr, MPT); 34727da15baSAnders Carlsson 34827da15baSAnders Carlsson CallArgList Args; 34927da15baSAnders Carlsson 35027da15baSAnders Carlsson QualType ThisType = 35127da15baSAnders Carlsson getContext().getPointerType(getContext().getTagDeclType(RD)); 35227da15baSAnders Carlsson 35327da15baSAnders Carlsson // Push the this ptr. 3547f416cc4SJohn McCall Args.add(RValue::get(ThisPtrForCall), ThisType); 35527da15baSAnders Carlsson 356419996ccSGeorge Burgess IV RequiredArgs required = 357419996ccSGeorge Burgess IV RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 3588dda7b27SJohn McCall 35927da15baSAnders Carlsson // And the rest of the call args 360419996ccSGeorge Burgess IV EmitCallArgs(Args, FPT, E->arguments()); 3615fa40c3bSNick Lewycky return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 3625fa40c3bSNick Lewycky Callee, ReturnValue, Args); 36327da15baSAnders Carlsson } 36427da15baSAnders Carlsson 36527da15baSAnders Carlsson RValue 36627da15baSAnders Carlsson CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 36727da15baSAnders Carlsson const CXXMethodDecl *MD, 36827da15baSAnders Carlsson ReturnValueSlot ReturnValue) { 36927da15baSAnders Carlsson assert(MD->isInstance() && 37027da15baSAnders Carlsson "Trying to emit a member call expr on a static method!"); 371aad4af6dSNico Weber return EmitCXXMemberOrOperatorMemberCallExpr( 372aad4af6dSNico Weber E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 373aad4af6dSNico Weber /*IsArrow=*/false, E->getArg(0)); 37427da15baSAnders Carlsson } 37527da15baSAnders Carlsson 376fe883422SPeter Collingbourne RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 377fe883422SPeter Collingbourne ReturnValueSlot ReturnValue) { 378fe883422SPeter Collingbourne return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 379fe883422SPeter Collingbourne } 380fe883422SPeter Collingbourne 381fde961dbSEli Friedman static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 3827f416cc4SJohn McCall Address DestPtr, 383fde961dbSEli Friedman const CXXRecordDecl *Base) { 384fde961dbSEli Friedman if (Base->isEmpty()) 385fde961dbSEli Friedman return; 386fde961dbSEli Friedman 3877f416cc4SJohn McCall DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 388fde961dbSEli Friedman 389fde961dbSEli Friedman const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 3908671c6e0SDavid Majnemer CharUnits NVSize = Layout.getNonVirtualSize(); 3918671c6e0SDavid Majnemer 3928671c6e0SDavid Majnemer // We cannot simply zero-initialize the entire base sub-object if vbptrs are 3938671c6e0SDavid Majnemer // present, they are initialized by the most derived class before calling the 3948671c6e0SDavid Majnemer // constructor. 3958671c6e0SDavid Majnemer SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 3968671c6e0SDavid Majnemer Stores.emplace_back(CharUnits::Zero(), NVSize); 3978671c6e0SDavid Majnemer 3988671c6e0SDavid Majnemer // Each store is split by the existence of a vbptr. 3998671c6e0SDavid Majnemer CharUnits VBPtrWidth = CGF.getPointerSize(); 4008671c6e0SDavid Majnemer std::vector<CharUnits> VBPtrOffsets = 4018671c6e0SDavid Majnemer CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 4028671c6e0SDavid Majnemer for (CharUnits VBPtrOffset : VBPtrOffsets) { 4037f980d84SDavid Majnemer // Stop before we hit any virtual base pointers located in virtual bases. 4047f980d84SDavid Majnemer if (VBPtrOffset >= NVSize) 4057f980d84SDavid Majnemer break; 4068671c6e0SDavid Majnemer std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 4078671c6e0SDavid Majnemer CharUnits LastStoreOffset = LastStore.first; 4088671c6e0SDavid Majnemer CharUnits LastStoreSize = LastStore.second; 4098671c6e0SDavid Majnemer 4108671c6e0SDavid Majnemer CharUnits SplitBeforeOffset = LastStoreOffset; 4118671c6e0SDavid Majnemer CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 4128671c6e0SDavid Majnemer assert(!SplitBeforeSize.isNegative() && "negative store size!"); 4138671c6e0SDavid Majnemer if (!SplitBeforeSize.isZero()) 4148671c6e0SDavid Majnemer Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 4158671c6e0SDavid Majnemer 4168671c6e0SDavid Majnemer CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 4178671c6e0SDavid Majnemer CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 4188671c6e0SDavid Majnemer assert(!SplitAfterSize.isNegative() && "negative store size!"); 4198671c6e0SDavid Majnemer if (!SplitAfterSize.isZero()) 4208671c6e0SDavid Majnemer Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 4218671c6e0SDavid Majnemer } 422fde961dbSEli Friedman 423fde961dbSEli Friedman // If the type contains a pointer to data member we can't memset it to zero. 424fde961dbSEli Friedman // Instead, create a null constant and copy it to the destination. 425fde961dbSEli Friedman // TODO: there are other patterns besides zero that we can usefully memset, 426fde961dbSEli Friedman // like -1, which happens to be the pattern used by member-pointers. 427fde961dbSEli Friedman // TODO: isZeroInitializable can be over-conservative in the case where a 428fde961dbSEli Friedman // virtual base contains a member pointer. 4298671c6e0SDavid Majnemer llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 4308671c6e0SDavid Majnemer if (!NullConstantForBase->isNullValue()) { 4318671c6e0SDavid Majnemer llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 4328671c6e0SDavid Majnemer CGF.CGM.getModule(), NullConstantForBase->getType(), 4338671c6e0SDavid Majnemer /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 4348671c6e0SDavid Majnemer NullConstantForBase, Twine()); 4357f416cc4SJohn McCall 4367f416cc4SJohn McCall CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 4377f416cc4SJohn McCall DestPtr.getAlignment()); 438fde961dbSEli Friedman NullVariable->setAlignment(Align.getQuantity()); 4397f416cc4SJohn McCall 4407f416cc4SJohn McCall Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 441fde961dbSEli Friedman 442fde961dbSEli Friedman // Get and call the appropriate llvm.memcpy overload. 4438671c6e0SDavid Majnemer for (std::pair<CharUnits, CharUnits> Store : Stores) { 4448671c6e0SDavid Majnemer CharUnits StoreOffset = Store.first; 4458671c6e0SDavid Majnemer CharUnits StoreSize = Store.second; 4468671c6e0SDavid Majnemer llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 4478671c6e0SDavid Majnemer CGF.Builder.CreateMemCpy( 4488671c6e0SDavid Majnemer CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 4498671c6e0SDavid Majnemer CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 4508671c6e0SDavid Majnemer StoreSizeVal); 451fde961dbSEli Friedman } 452fde961dbSEli Friedman 453fde961dbSEli Friedman // Otherwise, just memset the whole thing to zero. This is legal 454fde961dbSEli Friedman // because in LLVM, all default initializers (other than the ones we just 455fde961dbSEli Friedman // handled above) are guaranteed to have a bit pattern of all zeros. 4568671c6e0SDavid Majnemer } else { 4578671c6e0SDavid Majnemer for (std::pair<CharUnits, CharUnits> Store : Stores) { 4588671c6e0SDavid Majnemer CharUnits StoreOffset = Store.first; 4598671c6e0SDavid Majnemer CharUnits StoreSize = Store.second; 4608671c6e0SDavid Majnemer llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 4618671c6e0SDavid Majnemer CGF.Builder.CreateMemSet( 4628671c6e0SDavid Majnemer CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 4638671c6e0SDavid Majnemer CGF.Builder.getInt8(0), StoreSizeVal); 4648671c6e0SDavid Majnemer } 4658671c6e0SDavid Majnemer } 466fde961dbSEli Friedman } 467fde961dbSEli Friedman 46827da15baSAnders Carlsson void 4697a626f63SJohn McCall CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 4707a626f63SJohn McCall AggValueSlot Dest) { 4717a626f63SJohn McCall assert(!Dest.isIgnored() && "Must have a destination!"); 47227da15baSAnders Carlsson const CXXConstructorDecl *CD = E->getConstructor(); 473630c76efSDouglas Gregor 474630c76efSDouglas Gregor // If we require zero initialization before (or instead of) calling the 475630c76efSDouglas Gregor // constructor, as can be the case with a non-user-provided default 47603535265SArgyrios Kyrtzidis // constructor, emit the zero initialization now, unless destination is 47703535265SArgyrios Kyrtzidis // already zeroed. 478fde961dbSEli Friedman if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 479fde961dbSEli Friedman switch (E->getConstructionKind()) { 480fde961dbSEli Friedman case CXXConstructExpr::CK_Delegating: 481fde961dbSEli Friedman case CXXConstructExpr::CK_Complete: 4827f416cc4SJohn McCall EmitNullInitialization(Dest.getAddress(), E->getType()); 483fde961dbSEli Friedman break; 484fde961dbSEli Friedman case CXXConstructExpr::CK_VirtualBase: 485fde961dbSEli Friedman case CXXConstructExpr::CK_NonVirtualBase: 4867f416cc4SJohn McCall EmitNullBaseClassInitialization(*this, Dest.getAddress(), 4877f416cc4SJohn McCall CD->getParent()); 488fde961dbSEli Friedman break; 489fde961dbSEli Friedman } 490fde961dbSEli Friedman } 491630c76efSDouglas Gregor 492630c76efSDouglas Gregor // If this is a call to a trivial default constructor, do nothing. 493630c76efSDouglas Gregor if (CD->isTrivial() && CD->isDefaultConstructor()) 49427da15baSAnders Carlsson return; 495630c76efSDouglas Gregor 4968ea46b66SJohn McCall // Elide the constructor if we're constructing from a temporary. 4978ea46b66SJohn McCall // The temporary check is required because Sema sets this on NRVO 4988ea46b66SJohn McCall // returns. 4999c6890a7SRichard Smith if (getLangOpts().ElideConstructors && E->isElidable()) { 5008ea46b66SJohn McCall assert(getContext().hasSameUnqualifiedType(E->getType(), 5018ea46b66SJohn McCall E->getArg(0)->getType())); 5027a626f63SJohn McCall if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 5037a626f63SJohn McCall EmitAggExpr(E->getArg(0), Dest); 50427da15baSAnders Carlsson return; 50527da15baSAnders Carlsson } 506222cf0efSDouglas Gregor } 507630c76efSDouglas Gregor 508e7545b33SAlexey Bataev if (const ArrayType *arrayType 509e7545b33SAlexey Bataev = getContext().getAsArrayType(E->getType())) { 5107f416cc4SJohn McCall EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 511f677a8e9SJohn McCall } else { 512bceca20aSCameron Esfahani CXXCtorType Type = Ctor_Complete; 513271c3681SAlexis Hunt bool ForVirtualBase = false; 51461535005SDouglas Gregor bool Delegating = false; 515271c3681SAlexis Hunt 516271c3681SAlexis Hunt switch (E->getConstructionKind()) { 517271c3681SAlexis Hunt case CXXConstructExpr::CK_Delegating: 51861bc1737SAlexis Hunt // We should be emitting a constructor; GlobalDecl will assert this 51961bc1737SAlexis Hunt Type = CurGD.getCtorType(); 52061535005SDouglas Gregor Delegating = true; 521271c3681SAlexis Hunt break; 52261bc1737SAlexis Hunt 523271c3681SAlexis Hunt case CXXConstructExpr::CK_Complete: 524271c3681SAlexis Hunt Type = Ctor_Complete; 525271c3681SAlexis Hunt break; 526271c3681SAlexis Hunt 527271c3681SAlexis Hunt case CXXConstructExpr::CK_VirtualBase: 528271c3681SAlexis Hunt ForVirtualBase = true; 529271c3681SAlexis Hunt // fall-through 530271c3681SAlexis Hunt 531271c3681SAlexis Hunt case CXXConstructExpr::CK_NonVirtualBase: 532271c3681SAlexis Hunt Type = Ctor_Base; 533271c3681SAlexis Hunt } 534e11f9ce9SAnders Carlsson 53527da15baSAnders Carlsson // Call the constructor. 5367f416cc4SJohn McCall EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 5377f416cc4SJohn McCall Dest.getAddress(), E); 53827da15baSAnders Carlsson } 539e11f9ce9SAnders Carlsson } 54027da15baSAnders Carlsson 5417f416cc4SJohn McCall void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 54250198098SFariborz Jahanian const Expr *Exp) { 5435d413781SJohn McCall if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 544e988bdacSFariborz Jahanian Exp = E->getSubExpr(); 545e988bdacSFariborz Jahanian assert(isa<CXXConstructExpr>(Exp) && 546e988bdacSFariborz Jahanian "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 547e988bdacSFariborz Jahanian const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 548e988bdacSFariborz Jahanian const CXXConstructorDecl *CD = E->getConstructor(); 549e988bdacSFariborz Jahanian RunCleanupsScope Scope(*this); 550e988bdacSFariborz Jahanian 551e988bdacSFariborz Jahanian // If we require zero initialization before (or instead of) calling the 552e988bdacSFariborz Jahanian // constructor, as can be the case with a non-user-provided default 553e988bdacSFariborz Jahanian // constructor, emit the zero initialization now. 554e988bdacSFariborz Jahanian // FIXME. Do I still need this for a copy ctor synthesis? 555e988bdacSFariborz Jahanian if (E->requiresZeroInitialization()) 556e988bdacSFariborz Jahanian EmitNullInitialization(Dest, E->getType()); 557e988bdacSFariborz Jahanian 55899da11cfSChandler Carruth assert(!getContext().getAsConstantArrayType(E->getType()) 55999da11cfSChandler Carruth && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 560525bf650SAlexey Samsonov EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 561e988bdacSFariborz Jahanian } 562e988bdacSFariborz Jahanian 5638ed55a54SJohn McCall static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 5648ed55a54SJohn McCall const CXXNewExpr *E) { 56521122cf6SAnders Carlsson if (!E->isArray()) 5663eb55cfeSKen Dyck return CharUnits::Zero(); 56721122cf6SAnders Carlsson 5687ec4b434SJohn McCall // No cookie is required if the operator new[] being used is the 5697ec4b434SJohn McCall // reserved placement operator new[]. 5707ec4b434SJohn McCall if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 5713eb55cfeSKen Dyck return CharUnits::Zero(); 572399f499fSAnders Carlsson 573284c48ffSJohn McCall return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 57459486a2dSAnders Carlsson } 57559486a2dSAnders Carlsson 576036f2f6bSJohn McCall static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 577036f2f6bSJohn McCall const CXXNewExpr *e, 578f862eb6aSSebastian Redl unsigned minElements, 579036f2f6bSJohn McCall llvm::Value *&numElements, 580036f2f6bSJohn McCall llvm::Value *&sizeWithoutCookie) { 581036f2f6bSJohn McCall QualType type = e->getAllocatedType(); 58259486a2dSAnders Carlsson 583036f2f6bSJohn McCall if (!e->isArray()) { 584036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 585036f2f6bSJohn McCall sizeWithoutCookie 586036f2f6bSJohn McCall = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 587036f2f6bSJohn McCall return sizeWithoutCookie; 58805fc5be3SDouglas Gregor } 58959486a2dSAnders Carlsson 590036f2f6bSJohn McCall // The width of size_t. 591036f2f6bSJohn McCall unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 592036f2f6bSJohn McCall 5938ed55a54SJohn McCall // Figure out the cookie size. 594036f2f6bSJohn McCall llvm::APInt cookieSize(sizeWidth, 595036f2f6bSJohn McCall CalculateCookiePadding(CGF, e).getQuantity()); 5968ed55a54SJohn McCall 59759486a2dSAnders Carlsson // Emit the array size expression. 5987648fb46SArgyrios Kyrtzidis // We multiply the size of all dimensions for NumElements. 5997648fb46SArgyrios Kyrtzidis // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 600036f2f6bSJohn McCall numElements = CGF.EmitScalarExpr(e->getArraySize()); 601036f2f6bSJohn McCall assert(isa<llvm::IntegerType>(numElements->getType())); 6028ed55a54SJohn McCall 603036f2f6bSJohn McCall // The number of elements can be have an arbitrary integer type; 604036f2f6bSJohn McCall // essentially, we need to multiply it by a constant factor, add a 605036f2f6bSJohn McCall // cookie size, and verify that the result is representable as a 606036f2f6bSJohn McCall // size_t. That's just a gloss, though, and it's wrong in one 607036f2f6bSJohn McCall // important way: if the count is negative, it's an error even if 608036f2f6bSJohn McCall // the cookie size would bring the total size >= 0. 6096ab2fa8fSDouglas Gregor bool isSigned 6106ab2fa8fSDouglas Gregor = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 6112192fe50SChris Lattner llvm::IntegerType *numElementsType 612036f2f6bSJohn McCall = cast<llvm::IntegerType>(numElements->getType()); 613036f2f6bSJohn McCall unsigned numElementsWidth = numElementsType->getBitWidth(); 614036f2f6bSJohn McCall 615036f2f6bSJohn McCall // Compute the constant factor. 616036f2f6bSJohn McCall llvm::APInt arraySizeMultiplier(sizeWidth, 1); 6177648fb46SArgyrios Kyrtzidis while (const ConstantArrayType *CAT 618036f2f6bSJohn McCall = CGF.getContext().getAsConstantArrayType(type)) { 619036f2f6bSJohn McCall type = CAT->getElementType(); 620036f2f6bSJohn McCall arraySizeMultiplier *= CAT->getSize(); 6217648fb46SArgyrios Kyrtzidis } 62259486a2dSAnders Carlsson 623036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 624036f2f6bSJohn McCall llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 625036f2f6bSJohn McCall typeSizeMultiplier *= arraySizeMultiplier; 626036f2f6bSJohn McCall 627036f2f6bSJohn McCall // This will be a size_t. 628036f2f6bSJohn McCall llvm::Value *size; 62932ac583dSChris Lattner 63032ac583dSChris Lattner // If someone is doing 'new int[42]' there is no need to do a dynamic check. 63132ac583dSChris Lattner // Don't bloat the -O0 code. 632036f2f6bSJohn McCall if (llvm::ConstantInt *numElementsC = 633036f2f6bSJohn McCall dyn_cast<llvm::ConstantInt>(numElements)) { 634036f2f6bSJohn McCall const llvm::APInt &count = numElementsC->getValue(); 63532ac583dSChris Lattner 636036f2f6bSJohn McCall bool hasAnyOverflow = false; 63732ac583dSChris Lattner 638036f2f6bSJohn McCall // If 'count' was a negative number, it's an overflow. 639036f2f6bSJohn McCall if (isSigned && count.isNegative()) 640036f2f6bSJohn McCall hasAnyOverflow = true; 6418ed55a54SJohn McCall 642036f2f6bSJohn McCall // We want to do all this arithmetic in size_t. If numElements is 643036f2f6bSJohn McCall // wider than that, check whether it's already too big, and if so, 644036f2f6bSJohn McCall // overflow. 645036f2f6bSJohn McCall else if (numElementsWidth > sizeWidth && 646036f2f6bSJohn McCall numElementsWidth - sizeWidth > count.countLeadingZeros()) 647036f2f6bSJohn McCall hasAnyOverflow = true; 648036f2f6bSJohn McCall 649036f2f6bSJohn McCall // Okay, compute a count at the right width. 650036f2f6bSJohn McCall llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 651036f2f6bSJohn McCall 652f862eb6aSSebastian Redl // If there is a brace-initializer, we cannot allocate fewer elements than 653f862eb6aSSebastian Redl // there are initializers. If we do, that's treated like an overflow. 654f862eb6aSSebastian Redl if (adjustedCount.ult(minElements)) 655f862eb6aSSebastian Redl hasAnyOverflow = true; 656f862eb6aSSebastian Redl 657036f2f6bSJohn McCall // Scale numElements by that. This might overflow, but we don't 658036f2f6bSJohn McCall // care because it only overflows if allocationSize does, too, and 659036f2f6bSJohn McCall // if that overflows then we shouldn't use this. 660036f2f6bSJohn McCall numElements = llvm::ConstantInt::get(CGF.SizeTy, 661036f2f6bSJohn McCall adjustedCount * arraySizeMultiplier); 662036f2f6bSJohn McCall 663036f2f6bSJohn McCall // Compute the size before cookie, and track whether it overflowed. 664036f2f6bSJohn McCall bool overflow; 665036f2f6bSJohn McCall llvm::APInt allocationSize 666036f2f6bSJohn McCall = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 667036f2f6bSJohn McCall hasAnyOverflow |= overflow; 668036f2f6bSJohn McCall 669036f2f6bSJohn McCall // Add in the cookie, and check whether it's overflowed. 670036f2f6bSJohn McCall if (cookieSize != 0) { 671036f2f6bSJohn McCall // Save the current size without a cookie. This shouldn't be 672036f2f6bSJohn McCall // used if there was overflow. 673036f2f6bSJohn McCall sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 674036f2f6bSJohn McCall 675036f2f6bSJohn McCall allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 676036f2f6bSJohn McCall hasAnyOverflow |= overflow; 6778ed55a54SJohn McCall } 6788ed55a54SJohn McCall 679036f2f6bSJohn McCall // On overflow, produce a -1 so operator new will fail. 680455f42c9SAaron Ballman if (hasAnyOverflow) { 681455f42c9SAaron Ballman size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 682455f42c9SAaron Ballman } else { 683036f2f6bSJohn McCall size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 684455f42c9SAaron Ballman } 68532ac583dSChris Lattner 686036f2f6bSJohn McCall // Otherwise, we might need to use the overflow intrinsics. 6878ed55a54SJohn McCall } else { 688f862eb6aSSebastian Redl // There are up to five conditions we need to test for: 689036f2f6bSJohn McCall // 1) if isSigned, we need to check whether numElements is negative; 690036f2f6bSJohn McCall // 2) if numElementsWidth > sizeWidth, we need to check whether 691036f2f6bSJohn McCall // numElements is larger than something representable in size_t; 692f862eb6aSSebastian Redl // 3) if minElements > 0, we need to check whether numElements is smaller 693f862eb6aSSebastian Redl // than that. 694f862eb6aSSebastian Redl // 4) we need to compute 695036f2f6bSJohn McCall // sizeWithoutCookie := numElements * typeSizeMultiplier 696036f2f6bSJohn McCall // and check whether it overflows; and 697f862eb6aSSebastian Redl // 5) if we need a cookie, we need to compute 698036f2f6bSJohn McCall // size := sizeWithoutCookie + cookieSize 699036f2f6bSJohn McCall // and check whether it overflows. 7008ed55a54SJohn McCall 7018a13c418SCraig Topper llvm::Value *hasOverflow = nullptr; 7028ed55a54SJohn McCall 703036f2f6bSJohn McCall // If numElementsWidth > sizeWidth, then one way or another, we're 704036f2f6bSJohn McCall // going to have to do a comparison for (2), and this happens to 705036f2f6bSJohn McCall // take care of (1), too. 706036f2f6bSJohn McCall if (numElementsWidth > sizeWidth) { 707036f2f6bSJohn McCall llvm::APInt threshold(numElementsWidth, 1); 708036f2f6bSJohn McCall threshold <<= sizeWidth; 7098ed55a54SJohn McCall 710036f2f6bSJohn McCall llvm::Value *thresholdV 711036f2f6bSJohn McCall = llvm::ConstantInt::get(numElementsType, threshold); 712036f2f6bSJohn McCall 713036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 714036f2f6bSJohn McCall numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 715036f2f6bSJohn McCall 716036f2f6bSJohn McCall // Otherwise, if we're signed, we want to sext up to size_t. 717036f2f6bSJohn McCall } else if (isSigned) { 718036f2f6bSJohn McCall if (numElementsWidth < sizeWidth) 719036f2f6bSJohn McCall numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 720036f2f6bSJohn McCall 721036f2f6bSJohn McCall // If there's a non-1 type size multiplier, then we can do the 722036f2f6bSJohn McCall // signedness check at the same time as we do the multiply 723036f2f6bSJohn McCall // because a negative number times anything will cause an 724f862eb6aSSebastian Redl // unsigned overflow. Otherwise, we have to do it here. But at least 725f862eb6aSSebastian Redl // in this case, we can subsume the >= minElements check. 726036f2f6bSJohn McCall if (typeSizeMultiplier == 1) 727036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 728f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 729036f2f6bSJohn McCall 730036f2f6bSJohn McCall // Otherwise, zext up to size_t if necessary. 731036f2f6bSJohn McCall } else if (numElementsWidth < sizeWidth) { 732036f2f6bSJohn McCall numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 733036f2f6bSJohn McCall } 734036f2f6bSJohn McCall 735036f2f6bSJohn McCall assert(numElements->getType() == CGF.SizeTy); 736036f2f6bSJohn McCall 737f862eb6aSSebastian Redl if (minElements) { 738f862eb6aSSebastian Redl // Don't allow allocation of fewer elements than we have initializers. 739f862eb6aSSebastian Redl if (!hasOverflow) { 740f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateICmpULT(numElements, 741f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)); 742f862eb6aSSebastian Redl } else if (numElementsWidth > sizeWidth) { 743f862eb6aSSebastian Redl // The other existing overflow subsumes this check. 744f862eb6aSSebastian Redl // We do an unsigned comparison, since any signed value < -1 is 745f862eb6aSSebastian Redl // taken care of either above or below. 746f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateOr(hasOverflow, 747f862eb6aSSebastian Redl CGF.Builder.CreateICmpULT(numElements, 748f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements))); 749f862eb6aSSebastian Redl } 750f862eb6aSSebastian Redl } 751f862eb6aSSebastian Redl 752036f2f6bSJohn McCall size = numElements; 753036f2f6bSJohn McCall 754036f2f6bSJohn McCall // Multiply by the type size if necessary. This multiplier 755036f2f6bSJohn McCall // includes all the factors for nested arrays. 7568ed55a54SJohn McCall // 757036f2f6bSJohn McCall // This step also causes numElements to be scaled up by the 758036f2f6bSJohn McCall // nested-array factor if necessary. Overflow on this computation 759036f2f6bSJohn McCall // can be ignored because the result shouldn't be used if 760036f2f6bSJohn McCall // allocation fails. 761036f2f6bSJohn McCall if (typeSizeMultiplier != 1) { 762036f2f6bSJohn McCall llvm::Value *umul_with_overflow 7638d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 7648ed55a54SJohn McCall 765036f2f6bSJohn McCall llvm::Value *tsmV = 766036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 767036f2f6bSJohn McCall llvm::Value *result = 76843f9bb73SDavid Blaikie CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 7698ed55a54SJohn McCall 770036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 771036f2f6bSJohn McCall if (hasOverflow) 772036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 7738ed55a54SJohn McCall else 774036f2f6bSJohn McCall hasOverflow = overflowed; 77559486a2dSAnders Carlsson 776036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 777036f2f6bSJohn McCall 778036f2f6bSJohn McCall // Also scale up numElements by the array size multiplier. 779036f2f6bSJohn McCall if (arraySizeMultiplier != 1) { 780036f2f6bSJohn McCall // If the base element type size is 1, then we can re-use the 781036f2f6bSJohn McCall // multiply we just did. 782036f2f6bSJohn McCall if (typeSize.isOne()) { 783036f2f6bSJohn McCall assert(arraySizeMultiplier == typeSizeMultiplier); 784036f2f6bSJohn McCall numElements = size; 785036f2f6bSJohn McCall 786036f2f6bSJohn McCall // Otherwise we need a separate multiply. 787036f2f6bSJohn McCall } else { 788036f2f6bSJohn McCall llvm::Value *asmV = 789036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 790036f2f6bSJohn McCall numElements = CGF.Builder.CreateMul(numElements, asmV); 791036f2f6bSJohn McCall } 792036f2f6bSJohn McCall } 793036f2f6bSJohn McCall } else { 794036f2f6bSJohn McCall // numElements doesn't need to be scaled. 795036f2f6bSJohn McCall assert(arraySizeMultiplier == 1); 796036f2f6bSJohn McCall } 797036f2f6bSJohn McCall 798036f2f6bSJohn McCall // Add in the cookie size if necessary. 799036f2f6bSJohn McCall if (cookieSize != 0) { 800036f2f6bSJohn McCall sizeWithoutCookie = size; 801036f2f6bSJohn McCall 802036f2f6bSJohn McCall llvm::Value *uadd_with_overflow 8038d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 804036f2f6bSJohn McCall 805036f2f6bSJohn McCall llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 806036f2f6bSJohn McCall llvm::Value *result = 80743f9bb73SDavid Blaikie CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 808036f2f6bSJohn McCall 809036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 810036f2f6bSJohn McCall if (hasOverflow) 811036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 812036f2f6bSJohn McCall else 813036f2f6bSJohn McCall hasOverflow = overflowed; 814036f2f6bSJohn McCall 815036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0); 816036f2f6bSJohn McCall } 817036f2f6bSJohn McCall 818036f2f6bSJohn McCall // If we had any possibility of dynamic overflow, make a select to 819036f2f6bSJohn McCall // overwrite 'size' with an all-ones value, which should cause 820036f2f6bSJohn McCall // operator new to throw. 821036f2f6bSJohn McCall if (hasOverflow) 822455f42c9SAaron Ballman size = CGF.Builder.CreateSelect(hasOverflow, 823455f42c9SAaron Ballman llvm::Constant::getAllOnesValue(CGF.SizeTy), 824036f2f6bSJohn McCall size); 825036f2f6bSJohn McCall } 826036f2f6bSJohn McCall 827036f2f6bSJohn McCall if (cookieSize == 0) 828036f2f6bSJohn McCall sizeWithoutCookie = size; 829036f2f6bSJohn McCall else 830036f2f6bSJohn McCall assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 831036f2f6bSJohn McCall 832036f2f6bSJohn McCall return size; 83359486a2dSAnders Carlsson } 83459486a2dSAnders Carlsson 835f862eb6aSSebastian Redl static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 8367f416cc4SJohn McCall QualType AllocType, Address NewPtr) { 8371c96bc5dSRichard Smith // FIXME: Refactor with EmitExprAsInit. 83847fb9508SJohn McCall switch (CGF.getEvaluationKind(AllocType)) { 83947fb9508SJohn McCall case TEK_Scalar: 840a2c1124fSDavid Blaikie CGF.EmitScalarInit(Init, nullptr, 8417f416cc4SJohn McCall CGF.MakeAddrLValue(NewPtr, AllocType), false); 84247fb9508SJohn McCall return; 84347fb9508SJohn McCall case TEK_Complex: 8447f416cc4SJohn McCall CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 84547fb9508SJohn McCall /*isInit*/ true); 84647fb9508SJohn McCall return; 84747fb9508SJohn McCall case TEK_Aggregate: { 8487a626f63SJohn McCall AggValueSlot Slot 8497f416cc4SJohn McCall = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 8508d6fc958SJohn McCall AggValueSlot::IsDestructed, 85146759f4fSJohn McCall AggValueSlot::DoesNotNeedGCBarriers, 852615ed1a3SChad Rosier AggValueSlot::IsNotAliased); 8537a626f63SJohn McCall CGF.EmitAggExpr(Init, Slot); 85447fb9508SJohn McCall return; 8557a626f63SJohn McCall } 856d5202e09SFariborz Jahanian } 85747fb9508SJohn McCall llvm_unreachable("bad evaluation kind"); 85847fb9508SJohn McCall } 859d5202e09SFariborz Jahanian 860fb901c7aSDavid Blaikie void CodeGenFunction::EmitNewArrayInitializer( 861fb901c7aSDavid Blaikie const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 8627f416cc4SJohn McCall Address BeginPtr, llvm::Value *NumElements, 86306a67e2cSRichard Smith llvm::Value *AllocSizeWithoutCookie) { 86406a67e2cSRichard Smith // If we have a type with trivial initialization and no initializer, 86506a67e2cSRichard Smith // there's nothing to do. 8666047f07eSSebastian Redl if (!E->hasInitializer()) 86706a67e2cSRichard Smith return; 868b66b08efSFariborz Jahanian 8697f416cc4SJohn McCall Address CurPtr = BeginPtr; 870d5202e09SFariborz Jahanian 87106a67e2cSRichard Smith unsigned InitListElements = 0; 872f862eb6aSSebastian Redl 873f862eb6aSSebastian Redl const Expr *Init = E->getInitializer(); 8747f416cc4SJohn McCall Address EndOfInit = Address::invalid(); 87506a67e2cSRichard Smith QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 87606a67e2cSRichard Smith EHScopeStack::stable_iterator Cleanup; 87706a67e2cSRichard Smith llvm::Instruction *CleanupDominator = nullptr; 8781c96bc5dSRichard Smith 8797f416cc4SJohn McCall CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 8807f416cc4SJohn McCall CharUnits ElementAlign = 8817f416cc4SJohn McCall BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 8827f416cc4SJohn McCall 8830511d23aSRichard Smith // Attempt to perform zero-initialization using memset. 8840511d23aSRichard Smith auto TryMemsetInitialization = [&]() -> bool { 8850511d23aSRichard Smith // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 8860511d23aSRichard Smith // we can initialize with a memset to -1. 8870511d23aSRichard Smith if (!CGM.getTypes().isZeroInitializable(ElementType)) 8880511d23aSRichard Smith return false; 8890511d23aSRichard Smith 8900511d23aSRichard Smith // Optimization: since zero initialization will just set the memory 8910511d23aSRichard Smith // to all zeroes, generate a single memset to do it in one shot. 8920511d23aSRichard Smith 8930511d23aSRichard Smith // Subtract out the size of any elements we've already initialized. 8940511d23aSRichard Smith auto *RemainingSize = AllocSizeWithoutCookie; 8950511d23aSRichard Smith if (InitListElements) { 8960511d23aSRichard Smith // We know this can't overflow; we check this when doing the allocation. 8970511d23aSRichard Smith auto *InitializedSize = llvm::ConstantInt::get( 8980511d23aSRichard Smith RemainingSize->getType(), 8990511d23aSRichard Smith getContext().getTypeSizeInChars(ElementType).getQuantity() * 9000511d23aSRichard Smith InitListElements); 9010511d23aSRichard Smith RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 9020511d23aSRichard Smith } 9030511d23aSRichard Smith 9040511d23aSRichard Smith // Create the memset. 9050511d23aSRichard Smith Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 9060511d23aSRichard Smith return true; 9070511d23aSRichard Smith }; 9080511d23aSRichard Smith 909f862eb6aSSebastian Redl // If the initializer is an initializer list, first do the explicit elements. 910f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 9110511d23aSRichard Smith // Initializing from a (braced) string literal is a special case; the init 9120511d23aSRichard Smith // list element does not initialize a (single) array element. 9130511d23aSRichard Smith if (ILE->isStringLiteralInit()) { 9140511d23aSRichard Smith // Initialize the initial portion of length equal to that of the string 9150511d23aSRichard Smith // literal. The allocation must be for at least this much; we emitted a 9160511d23aSRichard Smith // check for that earlier. 9170511d23aSRichard Smith AggValueSlot Slot = 9180511d23aSRichard Smith AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 9190511d23aSRichard Smith AggValueSlot::IsDestructed, 9200511d23aSRichard Smith AggValueSlot::DoesNotNeedGCBarriers, 9210511d23aSRichard Smith AggValueSlot::IsNotAliased); 9220511d23aSRichard Smith EmitAggExpr(ILE->getInit(0), Slot); 9230511d23aSRichard Smith 9240511d23aSRichard Smith // Move past these elements. 9250511d23aSRichard Smith InitListElements = 9260511d23aSRichard Smith cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 9270511d23aSRichard Smith ->getSize().getZExtValue(); 9280511d23aSRichard Smith CurPtr = 9290511d23aSRichard Smith Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 9300511d23aSRichard Smith Builder.getSize(InitListElements), 9310511d23aSRichard Smith "string.init.end"), 9320511d23aSRichard Smith CurPtr.getAlignment().alignmentAtOffset(InitListElements * 9330511d23aSRichard Smith ElementSize)); 9340511d23aSRichard Smith 9350511d23aSRichard Smith // Zero out the rest, if any remain. 9360511d23aSRichard Smith llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 9370511d23aSRichard Smith if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 9380511d23aSRichard Smith bool OK = TryMemsetInitialization(); 9390511d23aSRichard Smith (void)OK; 9400511d23aSRichard Smith assert(OK && "couldn't memset character type?"); 9410511d23aSRichard Smith } 9420511d23aSRichard Smith return; 9430511d23aSRichard Smith } 9440511d23aSRichard Smith 94506a67e2cSRichard Smith InitListElements = ILE->getNumInits(); 946f62290a1SChad Rosier 9471c96bc5dSRichard Smith // If this is a multi-dimensional array new, we will initialize multiple 9481c96bc5dSRichard Smith // elements with each init list element. 9491c96bc5dSRichard Smith QualType AllocType = E->getAllocatedType(); 9501c96bc5dSRichard Smith if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 9511c96bc5dSRichard Smith AllocType->getAsArrayTypeUnsafe())) { 952fb901c7aSDavid Blaikie ElementTy = ConvertTypeForMem(AllocType); 9537f416cc4SJohn McCall CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 95406a67e2cSRichard Smith InitListElements *= getContext().getConstantArrayElementCount(CAT); 9551c96bc5dSRichard Smith } 9561c96bc5dSRichard Smith 95706a67e2cSRichard Smith // Enter a partial-destruction Cleanup if necessary. 95806a67e2cSRichard Smith if (needsEHCleanup(DtorKind)) { 95906a67e2cSRichard Smith // In principle we could tell the Cleanup where we are more 960f62290a1SChad Rosier // directly, but the control flow can get so varied here that it 961f62290a1SChad Rosier // would actually be quite complex. Therefore we go through an 962f62290a1SChad Rosier // alloca. 9637f416cc4SJohn McCall EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 9647f416cc4SJohn McCall "array.init.end"); 9657f416cc4SJohn McCall CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 9667f416cc4SJohn McCall pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 9677f416cc4SJohn McCall ElementType, ElementAlign, 96806a67e2cSRichard Smith getDestroyer(DtorKind)); 96906a67e2cSRichard Smith Cleanup = EHStack.stable_begin(); 970f62290a1SChad Rosier } 971f62290a1SChad Rosier 9727f416cc4SJohn McCall CharUnits StartAlign = CurPtr.getAlignment(); 973f862eb6aSSebastian Redl for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 974f62290a1SChad Rosier // Tell the cleanup that it needs to destroy up to this 975f62290a1SChad Rosier // element. TODO: some of these stores can be trivially 976f62290a1SChad Rosier // observed to be unnecessary. 9777f416cc4SJohn McCall if (EndOfInit.isValid()) { 9787f416cc4SJohn McCall auto FinishedPtr = 9797f416cc4SJohn McCall Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 9807f416cc4SJohn McCall Builder.CreateStore(FinishedPtr, EndOfInit); 9817f416cc4SJohn McCall } 98206a67e2cSRichard Smith // FIXME: If the last initializer is an incomplete initializer list for 98306a67e2cSRichard Smith // an array, and we have an array filler, we can fold together the two 98406a67e2cSRichard Smith // initialization loops. 9851c96bc5dSRichard Smith StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 98606a67e2cSRichard Smith ILE->getInit(i)->getType(), CurPtr); 9877f416cc4SJohn McCall CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 9887f416cc4SJohn McCall Builder.getSize(1), 9897f416cc4SJohn McCall "array.exp.next"), 9907f416cc4SJohn McCall StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 991f862eb6aSSebastian Redl } 992f862eb6aSSebastian Redl 993f862eb6aSSebastian Redl // The remaining elements are filled with the array filler expression. 994f862eb6aSSebastian Redl Init = ILE->getArrayFiller(); 9951c96bc5dSRichard Smith 99606a67e2cSRichard Smith // Extract the initializer for the individual array elements by pulling 99706a67e2cSRichard Smith // out the array filler from all the nested initializer lists. This avoids 99806a67e2cSRichard Smith // generating a nested loop for the initialization. 99906a67e2cSRichard Smith while (Init && Init->getType()->isConstantArrayType()) { 100006a67e2cSRichard Smith auto *SubILE = dyn_cast<InitListExpr>(Init); 100106a67e2cSRichard Smith if (!SubILE) 100206a67e2cSRichard Smith break; 100306a67e2cSRichard Smith assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 100406a67e2cSRichard Smith Init = SubILE->getArrayFiller(); 1005f862eb6aSSebastian Redl } 1006f862eb6aSSebastian Redl 100706a67e2cSRichard Smith // Switch back to initializing one base element at a time. 10087f416cc4SJohn McCall CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1009f62290a1SChad Rosier } 1010e6c980c4SChandler Carruth 1011454a7cdfSRichard Smith // If all elements have already been initialized, skip any further 1012454a7cdfSRichard Smith // initialization. 1013454a7cdfSRichard Smith llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1014454a7cdfSRichard Smith if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1015454a7cdfSRichard Smith // If there was a Cleanup, deactivate it. 1016454a7cdfSRichard Smith if (CleanupDominator) 1017454a7cdfSRichard Smith DeactivateCleanupBlock(Cleanup, CleanupDominator); 1018454a7cdfSRichard Smith return; 1019454a7cdfSRichard Smith } 1020454a7cdfSRichard Smith 1021454a7cdfSRichard Smith assert(Init && "have trailing elements to initialize but no initializer"); 1022454a7cdfSRichard Smith 102306a67e2cSRichard Smith // If this is a constructor call, try to optimize it out, and failing that 102406a67e2cSRichard Smith // emit a single loop to initialize all remaining elements. 1025454a7cdfSRichard Smith if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 10266047f07eSSebastian Redl CXXConstructorDecl *Ctor = CCE->getConstructor(); 1027d153103cSDouglas Gregor if (Ctor->isTrivial()) { 102805fc5be3SDouglas Gregor // If new expression did not specify value-initialization, then there 102905fc5be3SDouglas Gregor // is no initialization. 10306047f07eSSebastian Redl if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 103105fc5be3SDouglas Gregor return; 103205fc5be3SDouglas Gregor 103306a67e2cSRichard Smith if (TryMemsetInitialization()) 10343a202f60SAnders Carlsson return; 10353a202f60SAnders Carlsson } 103605fc5be3SDouglas Gregor 103706a67e2cSRichard Smith // Store the new Cleanup position for irregular Cleanups. 103806a67e2cSRichard Smith // 103906a67e2cSRichard Smith // FIXME: Share this cleanup with the constructor call emission rather than 104006a67e2cSRichard Smith // having it create a cleanup of its own. 10417f416cc4SJohn McCall if (EndOfInit.isValid()) 10427f416cc4SJohn McCall Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 104306a67e2cSRichard Smith 104406a67e2cSRichard Smith // Emit a constructor call loop to initialize the remaining elements. 104506a67e2cSRichard Smith if (InitListElements) 104606a67e2cSRichard Smith NumElements = Builder.CreateSub( 104706a67e2cSRichard Smith NumElements, 104806a67e2cSRichard Smith llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 104970b9c01bSAlexey Samsonov EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 105048ddcf2cSEli Friedman CCE->requiresZeroInitialization()); 105105fc5be3SDouglas Gregor return; 10526047f07eSSebastian Redl } 105306a67e2cSRichard Smith 105406a67e2cSRichard Smith // If this is value-initialization, we can usually use memset. 105506a67e2cSRichard Smith ImplicitValueInitExpr IVIE(ElementType); 1056454a7cdfSRichard Smith if (isa<ImplicitValueInitExpr>(Init)) { 105706a67e2cSRichard Smith if (TryMemsetInitialization()) 105806a67e2cSRichard Smith return; 105906a67e2cSRichard Smith 106006a67e2cSRichard Smith // Switch to an ImplicitValueInitExpr for the element type. This handles 106106a67e2cSRichard Smith // only one case: multidimensional array new of pointers to members. In 106206a67e2cSRichard Smith // all other cases, we already have an initializer for the array element. 106306a67e2cSRichard Smith Init = &IVIE; 106406a67e2cSRichard Smith } 106506a67e2cSRichard Smith 106606a67e2cSRichard Smith // At this point we should have found an initializer for the individual 106706a67e2cSRichard Smith // elements of the array. 106806a67e2cSRichard Smith assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 106906a67e2cSRichard Smith "got wrong type of element to initialize"); 107006a67e2cSRichard Smith 1071454a7cdfSRichard Smith // If we have an empty initializer list, we can usually use memset. 1072454a7cdfSRichard Smith if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1073454a7cdfSRichard Smith if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1074d5202e09SFariborz Jahanian return; 107559486a2dSAnders Carlsson 1076cb77930dSYunzhong Gao // If we have a struct whose every field is value-initialized, we can 1077cb77930dSYunzhong Gao // usually use memset. 1078cb77930dSYunzhong Gao if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1079cb77930dSYunzhong Gao if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1080cb77930dSYunzhong Gao if (RType->getDecl()->isStruct()) { 1081872307e2SRichard Smith unsigned NumElements = 0; 1082872307e2SRichard Smith if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1083872307e2SRichard Smith NumElements = CXXRD->getNumBases(); 1084cb77930dSYunzhong Gao for (auto *Field : RType->getDecl()->fields()) 1085cb77930dSYunzhong Gao if (!Field->isUnnamedBitfield()) 1086872307e2SRichard Smith ++NumElements; 1087872307e2SRichard Smith // FIXME: Recurse into nested InitListExprs. 1088872307e2SRichard Smith if (ILE->getNumInits() == NumElements) 1089cb77930dSYunzhong Gao for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1090cb77930dSYunzhong Gao if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1091872307e2SRichard Smith --NumElements; 1092872307e2SRichard Smith if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1093cb77930dSYunzhong Gao return; 1094cb77930dSYunzhong Gao } 1095cb77930dSYunzhong Gao } 1096cb77930dSYunzhong Gao } 1097cb77930dSYunzhong Gao 109806a67e2cSRichard Smith // Create the loop blocks. 109906a67e2cSRichard Smith llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 110006a67e2cSRichard Smith llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 110106a67e2cSRichard Smith llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 110259486a2dSAnders Carlsson 110306a67e2cSRichard Smith // Find the end of the array, hoisted out of the loop. 110406a67e2cSRichard Smith llvm::Value *EndPtr = 11057f416cc4SJohn McCall Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 110606a67e2cSRichard Smith 110706a67e2cSRichard Smith // If the number of elements isn't constant, we have to now check if there is 110806a67e2cSRichard Smith // anything left to initialize. 110906a67e2cSRichard Smith if (!ConstNum) { 11107f416cc4SJohn McCall llvm::Value *IsEmpty = 11117f416cc4SJohn McCall Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 111206a67e2cSRichard Smith Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 111306a67e2cSRichard Smith } 111406a67e2cSRichard Smith 111506a67e2cSRichard Smith // Enter the loop. 111606a67e2cSRichard Smith EmitBlock(LoopBB); 111706a67e2cSRichard Smith 111806a67e2cSRichard Smith // Set up the current-element phi. 111906a67e2cSRichard Smith llvm::PHINode *CurPtrPhi = 11207f416cc4SJohn McCall Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 11217f416cc4SJohn McCall CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 11227f416cc4SJohn McCall 11237f416cc4SJohn McCall CurPtr = Address(CurPtrPhi, ElementAlign); 112406a67e2cSRichard Smith 112506a67e2cSRichard Smith // Store the new Cleanup position for irregular Cleanups. 11267f416cc4SJohn McCall if (EndOfInit.isValid()) 11277f416cc4SJohn McCall Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 112806a67e2cSRichard Smith 112906a67e2cSRichard Smith // Enter a partial-destruction Cleanup if necessary. 113006a67e2cSRichard Smith if (!CleanupDominator && needsEHCleanup(DtorKind)) { 11317f416cc4SJohn McCall pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 11327f416cc4SJohn McCall ElementType, ElementAlign, 113306a67e2cSRichard Smith getDestroyer(DtorKind)); 113406a67e2cSRichard Smith Cleanup = EHStack.stable_begin(); 113506a67e2cSRichard Smith CleanupDominator = Builder.CreateUnreachable(); 113606a67e2cSRichard Smith } 113706a67e2cSRichard Smith 113806a67e2cSRichard Smith // Emit the initializer into this element. 113906a67e2cSRichard Smith StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 114006a67e2cSRichard Smith 114106a67e2cSRichard Smith // Leave the Cleanup if we entered one. 114206a67e2cSRichard Smith if (CleanupDominator) { 114306a67e2cSRichard Smith DeactivateCleanupBlock(Cleanup, CleanupDominator); 114406a67e2cSRichard Smith CleanupDominator->eraseFromParent(); 114506a67e2cSRichard Smith } 114606a67e2cSRichard Smith 114706a67e2cSRichard Smith // Advance to the next element by adjusting the pointer type as necessary. 114806a67e2cSRichard Smith llvm::Value *NextPtr = 11497f416cc4SJohn McCall Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 11507f416cc4SJohn McCall "array.next"); 115106a67e2cSRichard Smith 115206a67e2cSRichard Smith // Check whether we've gotten to the end of the array and, if so, 115306a67e2cSRichard Smith // exit the loop. 115406a67e2cSRichard Smith llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 115506a67e2cSRichard Smith Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 115606a67e2cSRichard Smith CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 115706a67e2cSRichard Smith 115806a67e2cSRichard Smith EmitBlock(ContBB); 115906a67e2cSRichard Smith } 116006a67e2cSRichard Smith 116106a67e2cSRichard Smith static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1162fb901c7aSDavid Blaikie QualType ElementType, llvm::Type *ElementTy, 11637f416cc4SJohn McCall Address NewPtr, llvm::Value *NumElements, 116406a67e2cSRichard Smith llvm::Value *AllocSizeWithoutCookie) { 11659b479666SDavid Blaikie ApplyDebugLocation DL(CGF, E); 116606a67e2cSRichard Smith if (E->isArray()) 1167fb901c7aSDavid Blaikie CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 116806a67e2cSRichard Smith AllocSizeWithoutCookie); 116906a67e2cSRichard Smith else if (const Expr *Init = E->getInitializer()) 117066e4197fSDavid Blaikie StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 117159486a2dSAnders Carlsson } 117259486a2dSAnders Carlsson 11738d0dc31dSRichard Smith /// Emit a call to an operator new or operator delete function, as implicitly 11748d0dc31dSRichard Smith /// created by new-expressions and delete-expressions. 11758d0dc31dSRichard Smith static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 11768d0dc31dSRichard Smith const FunctionDecl *Callee, 11778d0dc31dSRichard Smith const FunctionProtoType *CalleeType, 11788d0dc31dSRichard Smith const CallArgList &Args) { 11798d0dc31dSRichard Smith llvm::Instruction *CallOrInvoke; 11801235a8daSRichard Smith llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 11818d0dc31dSRichard Smith RValue RV = 1182f770683fSPeter Collingbourne CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1183f770683fSPeter Collingbourne Args, CalleeType, /*chainCall=*/false), 1184f770683fSPeter Collingbourne CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 11858d0dc31dSRichard Smith 11868d0dc31dSRichard Smith /// C++1y [expr.new]p10: 11878d0dc31dSRichard Smith /// [In a new-expression,] an implementation is allowed to omit a call 11888d0dc31dSRichard Smith /// to a replaceable global allocation function. 11898d0dc31dSRichard Smith /// 11908d0dc31dSRichard Smith /// We model such elidable calls with the 'builtin' attribute. 11916956d587SRafael Espindola llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 11921235a8daSRichard Smith if (Callee->isReplaceableGlobalAllocationFunction() && 11936956d587SRafael Espindola Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 11948d0dc31dSRichard Smith // FIXME: Add addAttribute to CallSite. 11958d0dc31dSRichard Smith if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 11968d0dc31dSRichard Smith CI->addAttribute(llvm::AttributeSet::FunctionIndex, 11978d0dc31dSRichard Smith llvm::Attribute::Builtin); 11988d0dc31dSRichard Smith else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 11998d0dc31dSRichard Smith II->addAttribute(llvm::AttributeSet::FunctionIndex, 12008d0dc31dSRichard Smith llvm::Attribute::Builtin); 12018d0dc31dSRichard Smith else 12028d0dc31dSRichard Smith llvm_unreachable("unexpected kind of call instruction"); 12038d0dc31dSRichard Smith } 12048d0dc31dSRichard Smith 12058d0dc31dSRichard Smith return RV; 12068d0dc31dSRichard Smith } 12078d0dc31dSRichard Smith 1208760520bcSRichard Smith RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1209760520bcSRichard Smith const Expr *Arg, 1210760520bcSRichard Smith bool IsDelete) { 1211760520bcSRichard Smith CallArgList Args; 1212760520bcSRichard Smith const Stmt *ArgS = Arg; 1213f05779e2SDavid Blaikie EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1214760520bcSRichard Smith // Find the allocation or deallocation function that we're calling. 1215760520bcSRichard Smith ASTContext &Ctx = getContext(); 1216760520bcSRichard Smith DeclarationName Name = Ctx.DeclarationNames 1217760520bcSRichard Smith .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1218760520bcSRichard Smith for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1219599bed75SRichard Smith if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1220599bed75SRichard Smith if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1221760520bcSRichard Smith return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1222760520bcSRichard Smith llvm_unreachable("predeclared global operator new/delete is missing"); 1223760520bcSRichard Smith } 1224760520bcSRichard Smith 1225b2f0f057SRichard Smith static std::pair<bool, bool> 1226b2f0f057SRichard Smith shouldPassSizeAndAlignToUsualDelete(const FunctionProtoType *FPT) { 1227b2f0f057SRichard Smith auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1228e9abe648SDaniel Jasper 1229b2f0f057SRichard Smith // The first argument is always a void*. 1230b2f0f057SRichard Smith ++AI; 1231b2f0f057SRichard Smith 1232b2f0f057SRichard Smith // Figure out what other parameters we should be implicitly passing. 1233b2f0f057SRichard Smith bool PassSize = false; 1234b2f0f057SRichard Smith bool PassAlignment = false; 1235b2f0f057SRichard Smith 1236b2f0f057SRichard Smith if (AI != AE && (*AI)->isIntegerType()) { 1237b2f0f057SRichard Smith PassSize = true; 1238b2f0f057SRichard Smith ++AI; 1239b2f0f057SRichard Smith } 1240b2f0f057SRichard Smith 1241b2f0f057SRichard Smith if (AI != AE && (*AI)->isAlignValT()) { 1242b2f0f057SRichard Smith PassAlignment = true; 1243b2f0f057SRichard Smith ++AI; 1244b2f0f057SRichard Smith } 1245b2f0f057SRichard Smith 1246b2f0f057SRichard Smith assert(AI == AE && "unexpected usual deallocation function parameter"); 1247b2f0f057SRichard Smith return {PassSize, PassAlignment}; 1248b2f0f057SRichard Smith } 1249b2f0f057SRichard Smith 1250b2f0f057SRichard Smith namespace { 1251b2f0f057SRichard Smith /// A cleanup to call the given 'operator delete' function upon abnormal 1252b2f0f057SRichard Smith /// exit from a new expression. Templated on a traits type that deals with 1253b2f0f057SRichard Smith /// ensuring that the arguments dominate the cleanup if necessary. 1254b2f0f057SRichard Smith template<typename Traits> 1255b2f0f057SRichard Smith class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1256b2f0f057SRichard Smith /// Type used to hold llvm::Value*s. 1257b2f0f057SRichard Smith typedef typename Traits::ValueTy ValueTy; 1258b2f0f057SRichard Smith /// Type used to hold RValues. 1259b2f0f057SRichard Smith typedef typename Traits::RValueTy RValueTy; 1260b2f0f057SRichard Smith struct PlacementArg { 1261b2f0f057SRichard Smith RValueTy ArgValue; 1262b2f0f057SRichard Smith QualType ArgType; 1263b2f0f057SRichard Smith }; 1264b2f0f057SRichard Smith 1265b2f0f057SRichard Smith unsigned NumPlacementArgs : 31; 1266b2f0f057SRichard Smith unsigned PassAlignmentToPlacementDelete : 1; 1267b2f0f057SRichard Smith const FunctionDecl *OperatorDelete; 1268b2f0f057SRichard Smith ValueTy Ptr; 1269b2f0f057SRichard Smith ValueTy AllocSize; 1270b2f0f057SRichard Smith CharUnits AllocAlign; 1271b2f0f057SRichard Smith 1272b2f0f057SRichard Smith PlacementArg *getPlacementArgs() { 1273b2f0f057SRichard Smith return reinterpret_cast<PlacementArg *>(this + 1); 1274b2f0f057SRichard Smith } 1275e9abe648SDaniel Jasper 1276e9abe648SDaniel Jasper public: 1277e9abe648SDaniel Jasper static size_t getExtraSize(size_t NumPlacementArgs) { 1278b2f0f057SRichard Smith return NumPlacementArgs * sizeof(PlacementArg); 1279e9abe648SDaniel Jasper } 1280e9abe648SDaniel Jasper 1281e9abe648SDaniel Jasper CallDeleteDuringNew(size_t NumPlacementArgs, 1282b2f0f057SRichard Smith const FunctionDecl *OperatorDelete, ValueTy Ptr, 1283b2f0f057SRichard Smith ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1284b2f0f057SRichard Smith CharUnits AllocAlign) 1285b2f0f057SRichard Smith : NumPlacementArgs(NumPlacementArgs), 1286b2f0f057SRichard Smith PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1287b2f0f057SRichard Smith OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1288b2f0f057SRichard Smith AllocAlign(AllocAlign) {} 1289e9abe648SDaniel Jasper 1290b2f0f057SRichard Smith void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1291e9abe648SDaniel Jasper assert(I < NumPlacementArgs && "index out of range"); 1292b2f0f057SRichard Smith getPlacementArgs()[I] = {Arg, Type}; 1293e9abe648SDaniel Jasper } 1294e9abe648SDaniel Jasper 1295e9abe648SDaniel Jasper void Emit(CodeGenFunction &CGF, Flags flags) override { 1296b2f0f057SRichard Smith const FunctionProtoType *FPT = 1297b2f0f057SRichard Smith OperatorDelete->getType()->getAs<FunctionProtoType>(); 1298e9abe648SDaniel Jasper CallArgList DeleteArgs; 1299824c2f53SJohn McCall 1300189e52fcSRichard Smith // The first argument is always a void*. 1301b2f0f057SRichard Smith DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1302189e52fcSRichard Smith 1303b2f0f057SRichard Smith // Figure out what other parameters we should be implicitly passing. 1304b2f0f057SRichard Smith bool PassSize = false; 1305b2f0f057SRichard Smith bool PassAlignment = false; 1306b2f0f057SRichard Smith if (NumPlacementArgs) { 1307b2f0f057SRichard Smith // A placement deallocation function is implicitly passed an alignment 1308b2f0f057SRichard Smith // if the placement allocation function was, but is never passed a size. 1309b2f0f057SRichard Smith PassAlignment = PassAlignmentToPlacementDelete; 1310b2f0f057SRichard Smith } else { 1311b2f0f057SRichard Smith // For a non-placement new-expression, 'operator delete' can take a 1312b2f0f057SRichard Smith // size and/or an alignment if it has the right parameters. 1313b2f0f057SRichard Smith std::tie(PassSize, PassAlignment) = 1314b2f0f057SRichard Smith shouldPassSizeAndAlignToUsualDelete(FPT); 1315189e52fcSRichard Smith } 1316824c2f53SJohn McCall 1317b2f0f057SRichard Smith // The second argument can be a std::size_t (for non-placement delete). 1318b2f0f057SRichard Smith if (PassSize) 1319b2f0f057SRichard Smith DeleteArgs.add(Traits::get(CGF, AllocSize), 1320b2f0f057SRichard Smith CGF.getContext().getSizeType()); 1321824c2f53SJohn McCall 1322b2f0f057SRichard Smith // The next (second or third) argument can be a std::align_val_t, which 1323b2f0f057SRichard Smith // is an enum whose underlying type is std::size_t. 1324b2f0f057SRichard Smith // FIXME: Use the right type as the parameter type. Note that in a call 1325b2f0f057SRichard Smith // to operator delete(size_t, ...), we may not have it available. 1326b2f0f057SRichard Smith if (PassAlignment) 1327b2f0f057SRichard Smith DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1328b2f0f057SRichard Smith CGF.SizeTy, AllocAlign.getQuantity())), 1329b2f0f057SRichard Smith CGF.getContext().getSizeType()); 13307f9c92a9SJohn McCall 13317f9c92a9SJohn McCall // Pass the rest of the arguments, which must match exactly. 13327f9c92a9SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1333b2f0f057SRichard Smith auto Arg = getPlacementArgs()[I]; 1334b2f0f057SRichard Smith DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 13357f9c92a9SJohn McCall } 13367f9c92a9SJohn McCall 13377f9c92a9SJohn McCall // Call 'operator delete'. 13388d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 13397f9c92a9SJohn McCall } 13407f9c92a9SJohn McCall }; 1341ab9db510SAlexander Kornienko } 13427f9c92a9SJohn McCall 13437f9c92a9SJohn McCall /// Enter a cleanup to call 'operator delete' if the initializer in a 13447f9c92a9SJohn McCall /// new-expression throws. 13457f9c92a9SJohn McCall static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 13467f9c92a9SJohn McCall const CXXNewExpr *E, 13477f416cc4SJohn McCall Address NewPtr, 13487f9c92a9SJohn McCall llvm::Value *AllocSize, 1349b2f0f057SRichard Smith CharUnits AllocAlign, 13507f9c92a9SJohn McCall const CallArgList &NewArgs) { 1351b2f0f057SRichard Smith unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1352b2f0f057SRichard Smith 13537f9c92a9SJohn McCall // If we're not inside a conditional branch, then the cleanup will 13547f9c92a9SJohn McCall // dominate and we can do the easier (and more efficient) thing. 13557f9c92a9SJohn McCall if (!CGF.isInConditionalBranch()) { 1356b2f0f057SRichard Smith struct DirectCleanupTraits { 1357b2f0f057SRichard Smith typedef llvm::Value *ValueTy; 1358b2f0f057SRichard Smith typedef RValue RValueTy; 1359b2f0f057SRichard Smith static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1360b2f0f057SRichard Smith static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1361b2f0f057SRichard Smith }; 1362b2f0f057SRichard Smith 1363b2f0f057SRichard Smith typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1364b2f0f057SRichard Smith 1365b2f0f057SRichard Smith DirectCleanup *Cleanup = CGF.EHStack 1366b2f0f057SRichard Smith .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 13677f9c92a9SJohn McCall E->getNumPlacementArgs(), 13687f9c92a9SJohn McCall E->getOperatorDelete(), 13697f416cc4SJohn McCall NewPtr.getPointer(), 1370b2f0f057SRichard Smith AllocSize, 1371b2f0f057SRichard Smith E->passAlignment(), 1372b2f0f057SRichard Smith AllocAlign); 1373b2f0f057SRichard Smith for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1374b2f0f057SRichard Smith auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1375b2f0f057SRichard Smith Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty); 1376b2f0f057SRichard Smith } 13777f9c92a9SJohn McCall 13787f9c92a9SJohn McCall return; 13797f9c92a9SJohn McCall } 13807f9c92a9SJohn McCall 13817f9c92a9SJohn McCall // Otherwise, we need to save all this stuff. 1382cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedNewPtr = 13837f416cc4SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1384cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedAllocSize = 1385cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 13867f9c92a9SJohn McCall 1387b2f0f057SRichard Smith struct ConditionalCleanupTraits { 1388b2f0f057SRichard Smith typedef DominatingValue<RValue>::saved_type ValueTy; 1389b2f0f057SRichard Smith typedef DominatingValue<RValue>::saved_type RValueTy; 1390b2f0f057SRichard Smith static RValue get(CodeGenFunction &CGF, ValueTy V) { 1391b2f0f057SRichard Smith return V.restore(CGF); 1392b2f0f057SRichard Smith } 1393b2f0f057SRichard Smith }; 1394b2f0f057SRichard Smith typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1395b2f0f057SRichard Smith 1396b2f0f057SRichard Smith ConditionalCleanup *Cleanup = CGF.EHStack 1397b2f0f057SRichard Smith .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 13987f9c92a9SJohn McCall E->getNumPlacementArgs(), 13997f9c92a9SJohn McCall E->getOperatorDelete(), 14007f9c92a9SJohn McCall SavedNewPtr, 1401b2f0f057SRichard Smith SavedAllocSize, 1402b2f0f057SRichard Smith E->passAlignment(), 1403b2f0f057SRichard Smith AllocAlign); 1404b2f0f057SRichard Smith for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1405b2f0f057SRichard Smith auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1406b2f0f057SRichard Smith Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV), 1407b2f0f057SRichard Smith Arg.Ty); 1408b2f0f057SRichard Smith } 14097f9c92a9SJohn McCall 1410f4beacd0SJohn McCall CGF.initFullExprCleanup(); 1411824c2f53SJohn McCall } 1412824c2f53SJohn McCall 141359486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 141475f9498aSJohn McCall // The element type being allocated. 141575f9498aSJohn McCall QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 14168ed55a54SJohn McCall 141775f9498aSJohn McCall // 1. Build a call to the allocation function. 141875f9498aSJohn McCall FunctionDecl *allocator = E->getOperatorNew(); 141959486a2dSAnders Carlsson 1420f862eb6aSSebastian Redl // If there is a brace-initializer, cannot allocate fewer elements than inits. 1421f862eb6aSSebastian Redl unsigned minElements = 0; 1422f862eb6aSSebastian Redl if (E->isArray() && E->hasInitializer()) { 14230511d23aSRichard Smith const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 14240511d23aSRichard Smith if (ILE && ILE->isStringLiteralInit()) 14250511d23aSRichard Smith minElements = 14260511d23aSRichard Smith cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 14270511d23aSRichard Smith ->getSize().getZExtValue(); 14280511d23aSRichard Smith else if (ILE) 1429f862eb6aSSebastian Redl minElements = ILE->getNumInits(); 1430f862eb6aSSebastian Redl } 1431f862eb6aSSebastian Redl 14328a13c418SCraig Topper llvm::Value *numElements = nullptr; 14338a13c418SCraig Topper llvm::Value *allocSizeWithoutCookie = nullptr; 143475f9498aSJohn McCall llvm::Value *allocSize = 1435f862eb6aSSebastian Redl EmitCXXNewAllocSize(*this, E, minElements, numElements, 1436f862eb6aSSebastian Redl allocSizeWithoutCookie); 1437b2f0f057SRichard Smith CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 143859486a2dSAnders Carlsson 14397f416cc4SJohn McCall // Emit the allocation call. If the allocator is a global placement 14407f416cc4SJohn McCall // operator, just "inline" it directly. 14417f416cc4SJohn McCall Address allocation = Address::invalid(); 14427f416cc4SJohn McCall CallArgList allocatorArgs; 14437f416cc4SJohn McCall if (allocator->isReservedGlobalPlacementOperator()) { 144453dcf94dSJohn McCall assert(E->getNumPlacementArgs() == 1); 144553dcf94dSJohn McCall const Expr *arg = *E->placement_arguments().begin(); 144653dcf94dSJohn McCall 14477f416cc4SJohn McCall AlignmentSource alignSource; 144853dcf94dSJohn McCall allocation = EmitPointerWithAlignment(arg, &alignSource); 14497f416cc4SJohn McCall 14507f416cc4SJohn McCall // The pointer expression will, in many cases, be an opaque void*. 14517f416cc4SJohn McCall // In these cases, discard the computed alignment and use the 14527f416cc4SJohn McCall // formal alignment of the allocated type. 1453b2f0f057SRichard Smith if (alignSource != AlignmentSource::Decl) 1454b2f0f057SRichard Smith allocation = Address(allocation.getPointer(), allocAlign); 14557f416cc4SJohn McCall 145653dcf94dSJohn McCall // Set up allocatorArgs for the call to operator delete if it's not 145753dcf94dSJohn McCall // the reserved global operator. 145853dcf94dSJohn McCall if (E->getOperatorDelete() && 145953dcf94dSJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 146053dcf94dSJohn McCall allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 146153dcf94dSJohn McCall allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 146253dcf94dSJohn McCall } 146353dcf94dSJohn McCall 14647f416cc4SJohn McCall } else { 14657f416cc4SJohn McCall const FunctionProtoType *allocatorType = 14667f416cc4SJohn McCall allocator->getType()->castAs<FunctionProtoType>(); 1467b2f0f057SRichard Smith unsigned ParamsToSkip = 0; 14687f416cc4SJohn McCall 14697f416cc4SJohn McCall // The allocation size is the first argument. 14707f416cc4SJohn McCall QualType sizeType = getContext().getSizeType(); 147143dca6a8SEli Friedman allocatorArgs.add(RValue::get(allocSize), sizeType); 1472b2f0f057SRichard Smith ++ParamsToSkip; 147359486a2dSAnders Carlsson 1474b2f0f057SRichard Smith if (allocSize != allocSizeWithoutCookie) { 1475b2f0f057SRichard Smith CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1476b2f0f057SRichard Smith allocAlign = std::max(allocAlign, cookieAlign); 1477b2f0f057SRichard Smith } 1478b2f0f057SRichard Smith 1479b2f0f057SRichard Smith // The allocation alignment may be passed as the second argument. 1480b2f0f057SRichard Smith if (E->passAlignment()) { 1481b2f0f057SRichard Smith QualType AlignValT = sizeType; 1482b2f0f057SRichard Smith if (allocatorType->getNumParams() > 1) { 1483b2f0f057SRichard Smith AlignValT = allocatorType->getParamType(1); 1484b2f0f057SRichard Smith assert(getContext().hasSameUnqualifiedType( 1485b2f0f057SRichard Smith AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1486b2f0f057SRichard Smith sizeType) && 1487b2f0f057SRichard Smith "wrong type for alignment parameter"); 1488b2f0f057SRichard Smith ++ParamsToSkip; 1489b2f0f057SRichard Smith } else { 1490b2f0f057SRichard Smith // Corner case, passing alignment to 'operator new(size_t, ...)'. 1491b2f0f057SRichard Smith assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1492b2f0f057SRichard Smith } 1493b2f0f057SRichard Smith allocatorArgs.add( 1494b2f0f057SRichard Smith RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1495b2f0f057SRichard Smith AlignValT); 1496b2f0f057SRichard Smith } 1497b2f0f057SRichard Smith 1498b2f0f057SRichard Smith // FIXME: Why do we not pass a CalleeDecl here? 1499f05779e2SDavid Blaikie EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1500b2f0f057SRichard Smith /*CalleeDecl*/nullptr, /*ParamsToSkip*/ParamsToSkip); 150159486a2dSAnders Carlsson 15027f416cc4SJohn McCall RValue RV = 15037f416cc4SJohn McCall EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 15047f416cc4SJohn McCall 1505b2f0f057SRichard Smith // If this was a call to a global replaceable allocation function that does 1506b2f0f057SRichard Smith // not take an alignment argument, the allocator is known to produce 1507b2f0f057SRichard Smith // storage that's suitably aligned for any object that fits, up to a known 1508b2f0f057SRichard Smith // threshold. Otherwise assume it's suitably aligned for the allocated type. 1509b2f0f057SRichard Smith CharUnits allocationAlign = allocAlign; 1510b2f0f057SRichard Smith if (!E->passAlignment() && 1511b2f0f057SRichard Smith allocator->isReplaceableGlobalAllocationFunction()) { 1512b2f0f057SRichard Smith unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1513b2f0f057SRichard Smith Target.getNewAlign(), getContext().getTypeSize(allocType))); 1514b2f0f057SRichard Smith allocationAlign = std::max( 1515b2f0f057SRichard Smith allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 15167f416cc4SJohn McCall } 15177f416cc4SJohn McCall 15187f416cc4SJohn McCall allocation = Address(RV.getScalarVal(), allocationAlign); 15197ec4b434SJohn McCall } 152059486a2dSAnders Carlsson 152175f9498aSJohn McCall // Emit a null check on the allocation result if the allocation 152275f9498aSJohn McCall // function is allowed to return null (because it has a non-throwing 1523902a0238SRichard Smith // exception spec or is the reserved placement new) and we have an 152475f9498aSJohn McCall // interesting initializer. 1525902a0238SRichard Smith bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 15266047f07eSSebastian Redl (!allocType.isPODType(getContext()) || E->hasInitializer()); 152759486a2dSAnders Carlsson 15288a13c418SCraig Topper llvm::BasicBlock *nullCheckBB = nullptr; 15298a13c418SCraig Topper llvm::BasicBlock *contBB = nullptr; 153059486a2dSAnders Carlsson 1531f7dcf320SJohn McCall // The null-check means that the initializer is conditionally 1532f7dcf320SJohn McCall // evaluated. 1533f7dcf320SJohn McCall ConditionalEvaluation conditional(*this); 1534f7dcf320SJohn McCall 153575f9498aSJohn McCall if (nullCheck) { 1536f7dcf320SJohn McCall conditional.begin(*this); 153775f9498aSJohn McCall 153875f9498aSJohn McCall nullCheckBB = Builder.GetInsertBlock(); 153975f9498aSJohn McCall llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 154075f9498aSJohn McCall contBB = createBasicBlock("new.cont"); 154175f9498aSJohn McCall 15427f416cc4SJohn McCall llvm::Value *isNull = 15437f416cc4SJohn McCall Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 154475f9498aSJohn McCall Builder.CreateCondBr(isNull, contBB, notNullBB); 154575f9498aSJohn McCall EmitBlock(notNullBB); 154659486a2dSAnders Carlsson } 154759486a2dSAnders Carlsson 1548824c2f53SJohn McCall // If there's an operator delete, enter a cleanup to call it if an 1549824c2f53SJohn McCall // exception is thrown. 155075f9498aSJohn McCall EHScopeStack::stable_iterator operatorDeleteCleanup; 15518a13c418SCraig Topper llvm::Instruction *cleanupDominator = nullptr; 15527ec4b434SJohn McCall if (E->getOperatorDelete() && 15537ec4b434SJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1554b2f0f057SRichard Smith EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1555b2f0f057SRichard Smith allocatorArgs); 155675f9498aSJohn McCall operatorDeleteCleanup = EHStack.stable_begin(); 1557f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable(); 1558824c2f53SJohn McCall } 1559824c2f53SJohn McCall 1560cf9b1f65SEli Friedman assert((allocSize == allocSizeWithoutCookie) == 1561cf9b1f65SEli Friedman CalculateCookiePadding(*this, E).isZero()); 1562cf9b1f65SEli Friedman if (allocSize != allocSizeWithoutCookie) { 1563cf9b1f65SEli Friedman assert(E->isArray()); 1564cf9b1f65SEli Friedman allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1565cf9b1f65SEli Friedman numElements, 1566cf9b1f65SEli Friedman E, allocType); 1567cf9b1f65SEli Friedman } 1568cf9b1f65SEli Friedman 1569fb901c7aSDavid Blaikie llvm::Type *elementTy = ConvertTypeForMem(allocType); 15707f416cc4SJohn McCall Address result = Builder.CreateElementBitCast(allocation, elementTy); 1571824c2f53SJohn McCall 1572338c9d0aSPiotr Padlewski // Passing pointer through invariant.group.barrier to avoid propagation of 1573338c9d0aSPiotr Padlewski // vptrs information which may be included in previous type. 1574338c9d0aSPiotr Padlewski if (CGM.getCodeGenOpts().StrictVTablePointers && 1575338c9d0aSPiotr Padlewski CGM.getCodeGenOpts().OptimizationLevel > 0 && 1576338c9d0aSPiotr Padlewski allocator->isReservedGlobalPlacementOperator()) 1577338c9d0aSPiotr Padlewski result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1578338c9d0aSPiotr Padlewski result.getAlignment()); 1579338c9d0aSPiotr Padlewski 1580fb901c7aSDavid Blaikie EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 158199210dc9SJohn McCall allocSizeWithoutCookie); 15828ed55a54SJohn McCall if (E->isArray()) { 15838ed55a54SJohn McCall // NewPtr is a pointer to the base element type. If we're 15848ed55a54SJohn McCall // allocating an array of arrays, we'll need to cast back to the 15858ed55a54SJohn McCall // array pointer type. 15862192fe50SChris Lattner llvm::Type *resultType = ConvertTypeForMem(E->getType()); 15877f416cc4SJohn McCall if (result.getType() != resultType) 158875f9498aSJohn McCall result = Builder.CreateBitCast(result, resultType); 158947b4629bSFariborz Jahanian } 159059486a2dSAnders Carlsson 1591824c2f53SJohn McCall // Deactivate the 'operator delete' cleanup if we finished 1592824c2f53SJohn McCall // initialization. 1593f4beacd0SJohn McCall if (operatorDeleteCleanup.isValid()) { 1594f4beacd0SJohn McCall DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1595f4beacd0SJohn McCall cleanupDominator->eraseFromParent(); 1596f4beacd0SJohn McCall } 1597824c2f53SJohn McCall 15987f416cc4SJohn McCall llvm::Value *resultPtr = result.getPointer(); 159975f9498aSJohn McCall if (nullCheck) { 1600f7dcf320SJohn McCall conditional.end(*this); 1601f7dcf320SJohn McCall 160275f9498aSJohn McCall llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 160375f9498aSJohn McCall EmitBlock(contBB); 160459486a2dSAnders Carlsson 16057f416cc4SJohn McCall llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 16067f416cc4SJohn McCall PHI->addIncoming(resultPtr, notNullBB); 16077f416cc4SJohn McCall PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 160875f9498aSJohn McCall nullCheckBB); 160959486a2dSAnders Carlsson 16107f416cc4SJohn McCall resultPtr = PHI; 161159486a2dSAnders Carlsson } 161259486a2dSAnders Carlsson 16137f416cc4SJohn McCall return resultPtr; 161459486a2dSAnders Carlsson } 161559486a2dSAnders Carlsson 161659486a2dSAnders Carlsson void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1617b2f0f057SRichard Smith llvm::Value *Ptr, QualType DeleteTy, 1618b2f0f057SRichard Smith llvm::Value *NumElements, 1619b2f0f057SRichard Smith CharUnits CookieSize) { 1620b2f0f057SRichard Smith assert((!NumElements && CookieSize.isZero()) || 1621b2f0f057SRichard Smith DeleteFD->getOverloadedOperator() == OO_Array_Delete); 16228ed55a54SJohn McCall 162359486a2dSAnders Carlsson const FunctionProtoType *DeleteFTy = 162459486a2dSAnders Carlsson DeleteFD->getType()->getAs<FunctionProtoType>(); 162559486a2dSAnders Carlsson 162659486a2dSAnders Carlsson CallArgList DeleteArgs; 162759486a2dSAnders Carlsson 1628b2f0f057SRichard Smith std::pair<bool, bool> PassSizeAndAlign = 1629b2f0f057SRichard Smith shouldPassSizeAndAlignToUsualDelete(DeleteFTy); 163021122cf6SAnders Carlsson 1631b2f0f057SRichard Smith auto ParamTypeIt = DeleteFTy->param_type_begin(); 1632b2f0f057SRichard Smith 1633b2f0f057SRichard Smith // Pass the pointer itself. 1634b2f0f057SRichard Smith QualType ArgTy = *ParamTypeIt++; 163559486a2dSAnders Carlsson llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 163643dca6a8SEli Friedman DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 163759486a2dSAnders Carlsson 1638b2f0f057SRichard Smith // Pass the size if the delete function has a size_t parameter. 1639b2f0f057SRichard Smith if (PassSizeAndAlign.first) { 1640b2f0f057SRichard Smith QualType SizeType = *ParamTypeIt++; 1641b2f0f057SRichard Smith CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1642b2f0f057SRichard Smith llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1643b2f0f057SRichard Smith DeleteTypeSize.getQuantity()); 1644b2f0f057SRichard Smith 1645b2f0f057SRichard Smith // For array new, multiply by the number of elements. 1646b2f0f057SRichard Smith if (NumElements) 1647b2f0f057SRichard Smith Size = Builder.CreateMul(Size, NumElements); 1648b2f0f057SRichard Smith 1649b2f0f057SRichard Smith // If there is a cookie, add the cookie size. 1650b2f0f057SRichard Smith if (!CookieSize.isZero()) 1651b2f0f057SRichard Smith Size = Builder.CreateAdd( 1652b2f0f057SRichard Smith Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1653b2f0f057SRichard Smith 1654b2f0f057SRichard Smith DeleteArgs.add(RValue::get(Size), SizeType); 1655b2f0f057SRichard Smith } 1656b2f0f057SRichard Smith 1657b2f0f057SRichard Smith // Pass the alignment if the delete function has an align_val_t parameter. 1658b2f0f057SRichard Smith if (PassSizeAndAlign.second) { 1659b2f0f057SRichard Smith QualType AlignValType = *ParamTypeIt++; 1660b2f0f057SRichard Smith CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1661b2f0f057SRichard Smith getContext().getTypeAlignIfKnown(DeleteTy)); 1662b2f0f057SRichard Smith llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1663b2f0f057SRichard Smith DeleteTypeAlign.getQuantity()); 1664b2f0f057SRichard Smith DeleteArgs.add(RValue::get(Align), AlignValType); 1665b2f0f057SRichard Smith } 1666b2f0f057SRichard Smith 1667b2f0f057SRichard Smith assert(ParamTypeIt == DeleteFTy->param_type_end() && 1668b2f0f057SRichard Smith "unknown parameter to usual delete function"); 166959486a2dSAnders Carlsson 167059486a2dSAnders Carlsson // Emit the call to delete. 16718d0dc31dSRichard Smith EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 167259486a2dSAnders Carlsson } 167359486a2dSAnders Carlsson 16748ed55a54SJohn McCall namespace { 16758ed55a54SJohn McCall /// Calls the given 'operator delete' on a single object. 16767e70d680SDavid Blaikie struct CallObjectDelete final : EHScopeStack::Cleanup { 16778ed55a54SJohn McCall llvm::Value *Ptr; 16788ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 16798ed55a54SJohn McCall QualType ElementType; 16808ed55a54SJohn McCall 16818ed55a54SJohn McCall CallObjectDelete(llvm::Value *Ptr, 16828ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 16838ed55a54SJohn McCall QualType ElementType) 16848ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 16858ed55a54SJohn McCall 16864f12f10dSCraig Topper void Emit(CodeGenFunction &CGF, Flags flags) override { 16878ed55a54SJohn McCall CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 16888ed55a54SJohn McCall } 16898ed55a54SJohn McCall }; 1690ab9db510SAlexander Kornienko } 16918ed55a54SJohn McCall 16920c0b6d9aSDavid Majnemer void 16930c0b6d9aSDavid Majnemer CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 16940c0b6d9aSDavid Majnemer llvm::Value *CompletePtr, 16950c0b6d9aSDavid Majnemer QualType ElementType) { 16960c0b6d9aSDavid Majnemer EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 16970c0b6d9aSDavid Majnemer OperatorDelete, ElementType); 16980c0b6d9aSDavid Majnemer } 16990c0b6d9aSDavid Majnemer 17008ed55a54SJohn McCall /// Emit the code for deleting a single object. 17018ed55a54SJohn McCall static void EmitObjectDelete(CodeGenFunction &CGF, 17020868137aSDavid Majnemer const CXXDeleteExpr *DE, 17037f416cc4SJohn McCall Address Ptr, 17040868137aSDavid Majnemer QualType ElementType) { 17058ed55a54SJohn McCall // Find the destructor for the type, if applicable. If the 17068ed55a54SJohn McCall // destructor is virtual, we'll just emit the vcall and return. 17078a13c418SCraig Topper const CXXDestructorDecl *Dtor = nullptr; 17088ed55a54SJohn McCall if (const RecordType *RT = ElementType->getAs<RecordType>()) { 17098ed55a54SJohn McCall CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1710b23533dbSEli Friedman if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 17118ed55a54SJohn McCall Dtor = RD->getDestructor(); 17128ed55a54SJohn McCall 17138ed55a54SJohn McCall if (Dtor->isVirtual()) { 17140868137aSDavid Majnemer CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 17150868137aSDavid Majnemer Dtor); 17168ed55a54SJohn McCall return; 17178ed55a54SJohn McCall } 17188ed55a54SJohn McCall } 17198ed55a54SJohn McCall } 17208ed55a54SJohn McCall 17218ed55a54SJohn McCall // Make sure that we call delete even if the dtor throws. 1722e4df6c8dSJohn McCall // This doesn't have to a conditional cleanup because we're going 1723e4df6c8dSJohn McCall // to pop it off in a second. 17240868137aSDavid Majnemer const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 17258ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 17267f416cc4SJohn McCall Ptr.getPointer(), 17277f416cc4SJohn McCall OperatorDelete, ElementType); 17288ed55a54SJohn McCall 17298ed55a54SJohn McCall if (Dtor) 17308ed55a54SJohn McCall CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 173161535005SDouglas Gregor /*ForVirtualBase=*/false, 173261535005SDouglas Gregor /*Delegating=*/false, 173361535005SDouglas Gregor Ptr); 1734460ce58fSJohn McCall else if (auto Lifetime = ElementType.getObjCLifetime()) { 1735460ce58fSJohn McCall switch (Lifetime) { 173631168b07SJohn McCall case Qualifiers::OCL_None: 173731168b07SJohn McCall case Qualifiers::OCL_ExplicitNone: 173831168b07SJohn McCall case Qualifiers::OCL_Autoreleasing: 173931168b07SJohn McCall break; 174031168b07SJohn McCall 17417f416cc4SJohn McCall case Qualifiers::OCL_Strong: 17427f416cc4SJohn McCall CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 174331168b07SJohn McCall break; 174431168b07SJohn McCall 174531168b07SJohn McCall case Qualifiers::OCL_Weak: 174631168b07SJohn McCall CGF.EmitARCDestroyWeak(Ptr); 174731168b07SJohn McCall break; 174831168b07SJohn McCall } 174931168b07SJohn McCall } 17508ed55a54SJohn McCall 17518ed55a54SJohn McCall CGF.PopCleanupBlock(); 17528ed55a54SJohn McCall } 17538ed55a54SJohn McCall 17548ed55a54SJohn McCall namespace { 17558ed55a54SJohn McCall /// Calls the given 'operator delete' on an array of objects. 17567e70d680SDavid Blaikie struct CallArrayDelete final : EHScopeStack::Cleanup { 17578ed55a54SJohn McCall llvm::Value *Ptr; 17588ed55a54SJohn McCall const FunctionDecl *OperatorDelete; 17598ed55a54SJohn McCall llvm::Value *NumElements; 17608ed55a54SJohn McCall QualType ElementType; 17618ed55a54SJohn McCall CharUnits CookieSize; 17628ed55a54SJohn McCall 17638ed55a54SJohn McCall CallArrayDelete(llvm::Value *Ptr, 17648ed55a54SJohn McCall const FunctionDecl *OperatorDelete, 17658ed55a54SJohn McCall llvm::Value *NumElements, 17668ed55a54SJohn McCall QualType ElementType, 17678ed55a54SJohn McCall CharUnits CookieSize) 17688ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 17698ed55a54SJohn McCall ElementType(ElementType), CookieSize(CookieSize) {} 17708ed55a54SJohn McCall 17714f12f10dSCraig Topper void Emit(CodeGenFunction &CGF, Flags flags) override { 1772b2f0f057SRichard Smith CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1773b2f0f057SRichard Smith CookieSize); 17748ed55a54SJohn McCall } 17758ed55a54SJohn McCall }; 1776ab9db510SAlexander Kornienko } 17778ed55a54SJohn McCall 17788ed55a54SJohn McCall /// Emit the code for deleting an array of objects. 17798ed55a54SJohn McCall static void EmitArrayDelete(CodeGenFunction &CGF, 1780284c48ffSJohn McCall const CXXDeleteExpr *E, 17817f416cc4SJohn McCall Address deletedPtr, 1782ca2c56f2SJohn McCall QualType elementType) { 17838a13c418SCraig Topper llvm::Value *numElements = nullptr; 17848a13c418SCraig Topper llvm::Value *allocatedPtr = nullptr; 1785ca2c56f2SJohn McCall CharUnits cookieSize; 1786ca2c56f2SJohn McCall CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1787ca2c56f2SJohn McCall numElements, allocatedPtr, cookieSize); 17888ed55a54SJohn McCall 1789ca2c56f2SJohn McCall assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 17908ed55a54SJohn McCall 17918ed55a54SJohn McCall // Make sure that we call delete even if one of the dtors throws. 1792ca2c56f2SJohn McCall const FunctionDecl *operatorDelete = E->getOperatorDelete(); 17938ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1794ca2c56f2SJohn McCall allocatedPtr, operatorDelete, 1795ca2c56f2SJohn McCall numElements, elementType, 1796ca2c56f2SJohn McCall cookieSize); 17978ed55a54SJohn McCall 1798ca2c56f2SJohn McCall // Destroy the elements. 1799ca2c56f2SJohn McCall if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1800ca2c56f2SJohn McCall assert(numElements && "no element count for a type with a destructor!"); 180131168b07SJohn McCall 18027f416cc4SJohn McCall CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 18037f416cc4SJohn McCall CharUnits elementAlign = 18047f416cc4SJohn McCall deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 18057f416cc4SJohn McCall 18067f416cc4SJohn McCall llvm::Value *arrayBegin = deletedPtr.getPointer(); 1807ca2c56f2SJohn McCall llvm::Value *arrayEnd = 18087f416cc4SJohn McCall CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 180997eab0a2SJohn McCall 181097eab0a2SJohn McCall // Note that it is legal to allocate a zero-length array, and we 181197eab0a2SJohn McCall // can never fold the check away because the length should always 181297eab0a2SJohn McCall // come from a cookie. 18137f416cc4SJohn McCall CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1814ca2c56f2SJohn McCall CGF.getDestroyer(dtorKind), 181597eab0a2SJohn McCall /*checkZeroLength*/ true, 1816ca2c56f2SJohn McCall CGF.needsEHCleanup(dtorKind)); 18178ed55a54SJohn McCall } 18188ed55a54SJohn McCall 1819ca2c56f2SJohn McCall // Pop the cleanup block. 18208ed55a54SJohn McCall CGF.PopCleanupBlock(); 18218ed55a54SJohn McCall } 18228ed55a54SJohn McCall 182359486a2dSAnders Carlsson void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 182459486a2dSAnders Carlsson const Expr *Arg = E->getArgument(); 18257f416cc4SJohn McCall Address Ptr = EmitPointerWithAlignment(Arg); 182659486a2dSAnders Carlsson 182759486a2dSAnders Carlsson // Null check the pointer. 182859486a2dSAnders Carlsson llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 182959486a2dSAnders Carlsson llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 183059486a2dSAnders Carlsson 18317f416cc4SJohn McCall llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 183259486a2dSAnders Carlsson 183359486a2dSAnders Carlsson Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 183459486a2dSAnders Carlsson EmitBlock(DeleteNotNull); 183559486a2dSAnders Carlsson 18368ed55a54SJohn McCall // We might be deleting a pointer to array. If so, GEP down to the 18378ed55a54SJohn McCall // first non-array element. 18388ed55a54SJohn McCall // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 18398ed55a54SJohn McCall QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 18408ed55a54SJohn McCall if (DeleteTy->isConstantArrayType()) { 18418ed55a54SJohn McCall llvm::Value *Zero = Builder.getInt32(0); 18420e62c1ccSChris Lattner SmallVector<llvm::Value*,8> GEP; 184359486a2dSAnders Carlsson 18448ed55a54SJohn McCall GEP.push_back(Zero); // point at the outermost array 18458ed55a54SJohn McCall 18468ed55a54SJohn McCall // For each layer of array type we're pointing at: 18478ed55a54SJohn McCall while (const ConstantArrayType *Arr 18488ed55a54SJohn McCall = getContext().getAsConstantArrayType(DeleteTy)) { 18498ed55a54SJohn McCall // 1. Unpeel the array type. 18508ed55a54SJohn McCall DeleteTy = Arr->getElementType(); 18518ed55a54SJohn McCall 18528ed55a54SJohn McCall // 2. GEP to the first element of the array. 18538ed55a54SJohn McCall GEP.push_back(Zero); 18548ed55a54SJohn McCall } 18558ed55a54SJohn McCall 18567f416cc4SJohn McCall Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 18577f416cc4SJohn McCall Ptr.getAlignment()); 18588ed55a54SJohn McCall } 18598ed55a54SJohn McCall 18607f416cc4SJohn McCall assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 18618ed55a54SJohn McCall 18627270ef57SReid Kleckner if (E->isArrayForm()) { 18637270ef57SReid Kleckner EmitArrayDelete(*this, E, Ptr, DeleteTy); 18647270ef57SReid Kleckner } else { 18657270ef57SReid Kleckner EmitObjectDelete(*this, E, Ptr, DeleteTy); 18667270ef57SReid Kleckner } 186759486a2dSAnders Carlsson 186859486a2dSAnders Carlsson EmitBlock(DeleteEnd); 186959486a2dSAnders Carlsson } 187059486a2dSAnders Carlsson 18711c3d95ebSDavid Majnemer static bool isGLValueFromPointerDeref(const Expr *E) { 18721c3d95ebSDavid Majnemer E = E->IgnoreParens(); 18731c3d95ebSDavid Majnemer 18741c3d95ebSDavid Majnemer if (const auto *CE = dyn_cast<CastExpr>(E)) { 18751c3d95ebSDavid Majnemer if (!CE->getSubExpr()->isGLValue()) 18761c3d95ebSDavid Majnemer return false; 18771c3d95ebSDavid Majnemer return isGLValueFromPointerDeref(CE->getSubExpr()); 18781c3d95ebSDavid Majnemer } 18791c3d95ebSDavid Majnemer 18801c3d95ebSDavid Majnemer if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 18811c3d95ebSDavid Majnemer return isGLValueFromPointerDeref(OVE->getSourceExpr()); 18821c3d95ebSDavid Majnemer 18831c3d95ebSDavid Majnemer if (const auto *BO = dyn_cast<BinaryOperator>(E)) 18841c3d95ebSDavid Majnemer if (BO->getOpcode() == BO_Comma) 18851c3d95ebSDavid Majnemer return isGLValueFromPointerDeref(BO->getRHS()); 18861c3d95ebSDavid Majnemer 18871c3d95ebSDavid Majnemer if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 18881c3d95ebSDavid Majnemer return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 18891c3d95ebSDavid Majnemer isGLValueFromPointerDeref(ACO->getFalseExpr()); 18901c3d95ebSDavid Majnemer 18911c3d95ebSDavid Majnemer // C++11 [expr.sub]p1: 18921c3d95ebSDavid Majnemer // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 18931c3d95ebSDavid Majnemer if (isa<ArraySubscriptExpr>(E)) 18941c3d95ebSDavid Majnemer return true; 18951c3d95ebSDavid Majnemer 18961c3d95ebSDavid Majnemer if (const auto *UO = dyn_cast<UnaryOperator>(E)) 18971c3d95ebSDavid Majnemer if (UO->getOpcode() == UO_Deref) 18981c3d95ebSDavid Majnemer return true; 18991c3d95ebSDavid Majnemer 19001c3d95ebSDavid Majnemer return false; 19011c3d95ebSDavid Majnemer } 19021c3d95ebSDavid Majnemer 1903747e301eSWarren Hunt static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 19042192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy) { 1905940f02d2SAnders Carlsson // Get the vtable pointer. 19067f416cc4SJohn McCall Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1907940f02d2SAnders Carlsson 1908940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1909940f02d2SAnders Carlsson // If the glvalue expression is obtained by applying the unary * operator to 1910940f02d2SAnders Carlsson // a pointer and the pointer is a null pointer value, the typeid expression 1911940f02d2SAnders Carlsson // throws the std::bad_typeid exception. 19121c3d95ebSDavid Majnemer // 19131c3d95ebSDavid Majnemer // However, this paragraph's intent is not clear. We choose a very generous 19141c3d95ebSDavid Majnemer // interpretation which implores us to consider comma operators, conditional 19151c3d95ebSDavid Majnemer // operators, parentheses and other such constructs. 19161162d25cSDavid Majnemer QualType SrcRecordTy = E->getType(); 19171c3d95ebSDavid Majnemer if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 19181c3d95ebSDavid Majnemer isGLValueFromPointerDeref(E), SrcRecordTy)) { 1919940f02d2SAnders Carlsson llvm::BasicBlock *BadTypeidBlock = 1920940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.bad_typeid"); 19211162d25cSDavid Majnemer llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1922940f02d2SAnders Carlsson 19237f416cc4SJohn McCall llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 1924940f02d2SAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1925940f02d2SAnders Carlsson 1926940f02d2SAnders Carlsson CGF.EmitBlock(BadTypeidBlock); 19271162d25cSDavid Majnemer CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1928940f02d2SAnders Carlsson CGF.EmitBlock(EndBlock); 1929940f02d2SAnders Carlsson } 1930940f02d2SAnders Carlsson 19311162d25cSDavid Majnemer return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 19321162d25cSDavid Majnemer StdTypeInfoPtrTy); 1933940f02d2SAnders Carlsson } 1934940f02d2SAnders Carlsson 193559486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 19362192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy = 1937940f02d2SAnders Carlsson ConvertType(E->getType())->getPointerTo(); 1938fd7dfeb7SAnders Carlsson 19393f4336cbSAnders Carlsson if (E->isTypeOperand()) { 19403f4336cbSAnders Carlsson llvm::Constant *TypeInfo = 1941143c55eaSDavid Majnemer CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1942940f02d2SAnders Carlsson return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 19433f4336cbSAnders Carlsson } 1944fd7dfeb7SAnders Carlsson 1945940f02d2SAnders Carlsson // C++ [expr.typeid]p2: 1946940f02d2SAnders Carlsson // When typeid is applied to a glvalue expression whose type is a 1947940f02d2SAnders Carlsson // polymorphic class type, the result refers to a std::type_info object 1948940f02d2SAnders Carlsson // representing the type of the most derived object (that is, the dynamic 1949940f02d2SAnders Carlsson // type) to which the glvalue refers. 1950ef8bf436SRichard Smith if (E->isPotentiallyEvaluated()) 1951940f02d2SAnders Carlsson return EmitTypeidFromVTable(*this, E->getExprOperand(), 1952940f02d2SAnders Carlsson StdTypeInfoPtrTy); 1953940f02d2SAnders Carlsson 1954940f02d2SAnders Carlsson QualType OperandTy = E->getExprOperand()->getType(); 1955940f02d2SAnders Carlsson return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1956940f02d2SAnders Carlsson StdTypeInfoPtrTy); 195759486a2dSAnders Carlsson } 195859486a2dSAnders Carlsson 1959c1c9971cSAnders Carlsson static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1960c1c9971cSAnders Carlsson QualType DestTy) { 19612192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1962c1c9971cSAnders Carlsson if (DestTy->isPointerType()) 1963c1c9971cSAnders Carlsson return llvm::Constant::getNullValue(DestLTy); 1964c1c9971cSAnders Carlsson 1965c1c9971cSAnders Carlsson /// C++ [expr.dynamic.cast]p9: 1966c1c9971cSAnders Carlsson /// A failed cast to reference type throws std::bad_cast 19671162d25cSDavid Majnemer if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 19681162d25cSDavid Majnemer return nullptr; 1969c1c9971cSAnders Carlsson 1970c1c9971cSAnders Carlsson CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1971c1c9971cSAnders Carlsson return llvm::UndefValue::get(DestLTy); 1972c1c9971cSAnders Carlsson } 1973c1c9971cSAnders Carlsson 19747f416cc4SJohn McCall llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 197559486a2dSAnders Carlsson const CXXDynamicCastExpr *DCE) { 19762bf9b4c0SAlexey Bataev CGM.EmitExplicitCastExprType(DCE, this); 19773f4336cbSAnders Carlsson QualType DestTy = DCE->getTypeAsWritten(); 19783f4336cbSAnders Carlsson 1979c1c9971cSAnders Carlsson if (DCE->isAlwaysNull()) 19801162d25cSDavid Majnemer if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 19811162d25cSDavid Majnemer return T; 1982c1c9971cSAnders Carlsson 1983c1c9971cSAnders Carlsson QualType SrcTy = DCE->getSubExpr()->getType(); 1984c1c9971cSAnders Carlsson 19851162d25cSDavid Majnemer // C++ [expr.dynamic.cast]p7: 19861162d25cSDavid Majnemer // If T is "pointer to cv void," then the result is a pointer to the most 19871162d25cSDavid Majnemer // derived object pointed to by v. 19881162d25cSDavid Majnemer const PointerType *DestPTy = DestTy->getAs<PointerType>(); 19891162d25cSDavid Majnemer 19901162d25cSDavid Majnemer bool isDynamicCastToVoid; 19911162d25cSDavid Majnemer QualType SrcRecordTy; 19921162d25cSDavid Majnemer QualType DestRecordTy; 19931162d25cSDavid Majnemer if (DestPTy) { 19941162d25cSDavid Majnemer isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 19951162d25cSDavid Majnemer SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 19961162d25cSDavid Majnemer DestRecordTy = DestPTy->getPointeeType(); 19971162d25cSDavid Majnemer } else { 19981162d25cSDavid Majnemer isDynamicCastToVoid = false; 19991162d25cSDavid Majnemer SrcRecordTy = SrcTy; 20001162d25cSDavid Majnemer DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 20011162d25cSDavid Majnemer } 20021162d25cSDavid Majnemer 20031162d25cSDavid Majnemer assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 20041162d25cSDavid Majnemer 2005882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p4: 2006882d790fSAnders Carlsson // If the value of v is a null pointer value in the pointer case, the result 2007882d790fSAnders Carlsson // is the null pointer value of type T. 20081162d25cSDavid Majnemer bool ShouldNullCheckSrcValue = 20091162d25cSDavid Majnemer CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 20101162d25cSDavid Majnemer SrcRecordTy); 201159486a2dSAnders Carlsson 20128a13c418SCraig Topper llvm::BasicBlock *CastNull = nullptr; 20138a13c418SCraig Topper llvm::BasicBlock *CastNotNull = nullptr; 2014882d790fSAnders Carlsson llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2015fa8b4955SDouglas Gregor 2016882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 2017882d790fSAnders Carlsson CastNull = createBasicBlock("dynamic_cast.null"); 2018882d790fSAnders Carlsson CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2019882d790fSAnders Carlsson 20207f416cc4SJohn McCall llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2021882d790fSAnders Carlsson Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2022882d790fSAnders Carlsson EmitBlock(CastNotNull); 202359486a2dSAnders Carlsson } 202459486a2dSAnders Carlsson 20257f416cc4SJohn McCall llvm::Value *Value; 20261162d25cSDavid Majnemer if (isDynamicCastToVoid) { 20277f416cc4SJohn McCall Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 20281162d25cSDavid Majnemer DestTy); 20291162d25cSDavid Majnemer } else { 20301162d25cSDavid Majnemer assert(DestRecordTy->isRecordType() && 20311162d25cSDavid Majnemer "destination type must be a record type!"); 20327f416cc4SJohn McCall Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 20331162d25cSDavid Majnemer DestTy, DestRecordTy, CastEnd); 203467528eaaSDavid Majnemer CastNotNull = Builder.GetInsertBlock(); 20351162d25cSDavid Majnemer } 20363f4336cbSAnders Carlsson 2037882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 2038882d790fSAnders Carlsson EmitBranch(CastEnd); 203959486a2dSAnders Carlsson 2040882d790fSAnders Carlsson EmitBlock(CastNull); 2041882d790fSAnders Carlsson EmitBranch(CastEnd); 204259486a2dSAnders Carlsson } 204359486a2dSAnders Carlsson 2044882d790fSAnders Carlsson EmitBlock(CastEnd); 204559486a2dSAnders Carlsson 2046882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) { 2047882d790fSAnders Carlsson llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2048882d790fSAnders Carlsson PHI->addIncoming(Value, CastNotNull); 2049882d790fSAnders Carlsson PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 205059486a2dSAnders Carlsson 2051882d790fSAnders Carlsson Value = PHI; 205259486a2dSAnders Carlsson } 205359486a2dSAnders Carlsson 2054882d790fSAnders Carlsson return Value; 205559486a2dSAnders Carlsson } 2056c370a7eeSEli Friedman 2057c370a7eeSEli Friedman void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 20588631f3e8SEli Friedman RunCleanupsScope Scope(*this); 20597f416cc4SJohn McCall LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 20608631f3e8SEli Friedman 2061c370a7eeSEli Friedman CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 206253c7616eSJames Y Knight for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 2063c370a7eeSEli Friedman e = E->capture_init_end(); 2064c370a7eeSEli Friedman i != e; ++i, ++CurField) { 2065c370a7eeSEli Friedman // Emit initialization 206640ed2973SDavid Blaikie LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 206739c81e28SAlexey Bataev if (CurField->hasCapturedVLAType()) { 206839c81e28SAlexey Bataev auto VAT = CurField->getCapturedVLAType(); 206939c81e28SAlexey Bataev EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 207039c81e28SAlexey Bataev } else { 20715f1a04ffSEli Friedman ArrayRef<VarDecl *> ArrayIndexes; 20725f1a04ffSEli Friedman if (CurField->getType()->isArrayType()) 20735f1a04ffSEli Friedman ArrayIndexes = E->getCaptureInitIndexVars(i); 207440ed2973SDavid Blaikie EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 2075c370a7eeSEli Friedman } 2076c370a7eeSEli Friedman } 207739c81e28SAlexey Bataev } 2078