159486a2dSAnders Carlsson //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
259486a2dSAnders Carlsson //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
659486a2dSAnders Carlsson //
759486a2dSAnders Carlsson //===----------------------------------------------------------------------===//
859486a2dSAnders Carlsson //
959486a2dSAnders Carlsson // This contains code dealing with code generation of C++ expressions
1059486a2dSAnders Carlsson //
1159486a2dSAnders Carlsson //===----------------------------------------------------------------------===//
1259486a2dSAnders Carlsson
13fe883422SPeter Collingbourne #include "CGCUDARuntime.h"
145d865c32SJohn McCall #include "CGCXXABI.h"
1591bbb554SDevang Patel #include "CGDebugInfo.h"
163a02247dSChandler Carruth #include "CGObjCRuntime.h"
1788559637SMarco Antognini #include "CodeGenFunction.h"
18de0fe07eSJohn McCall #include "ConstantEmitter.h"
1988559637SMarco Antognini #include "TargetInfo.h"
206368818fSRichard Trieu #include "clang/Basic/CodeGenOptions.h"
21a8e7df36SMark Lacey #include "clang/CodeGen/CGFunctionInfo.h"
22ffd5551bSChandler Carruth #include "llvm/IR/Intrinsics.h"
23bbe277c4SAnders Carlsson
2459486a2dSAnders Carlsson using namespace clang;
2559486a2dSAnders Carlsson using namespace CodeGen;
2659486a2dSAnders Carlsson
27d0a9e807SGeorge Burgess IV namespace {
28d0a9e807SGeorge Burgess IV struct MemberCallInfo {
29d0a9e807SGeorge Burgess IV RequiredArgs ReqArgs;
30d0a9e807SGeorge Burgess IV // Number of prefix arguments for the call. Ignores the `this` pointer.
31d0a9e807SGeorge Burgess IV unsigned PrefixSize;
32d0a9e807SGeorge Burgess IV };
33d0a9e807SGeorge Burgess IV }
34d0a9e807SGeorge Burgess IV
35d0a9e807SGeorge Burgess IV static MemberCallInfo
commonEmitCXXMemberOrOperatorCall(CodeGenFunction & CGF,const CXXMethodDecl * MD,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,CallArgList & Args,CallArgList * RtlArgs)36efa956ceSAlexey Samsonov commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37efa956ceSAlexey Samsonov llvm::Value *This, llvm::Value *ImplicitParam,
38efa956ceSAlexey Samsonov QualType ImplicitParamTy, const CallExpr *CE,
39762672a7SRichard Smith CallArgList &Args, CallArgList *RtlArgs) {
40a5bf76bdSAlexey Samsonov assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41a5bf76bdSAlexey Samsonov isa<CXXOperatorCallExpr>(CE));
4227da15baSAnders Carlsson assert(MD->isInstance() &&
43a5bf76bdSAlexey Samsonov "Trying to emit a member or operator call expr on a static method!");
4427da15baSAnders Carlsson
4527da15baSAnders Carlsson // Push the this ptr.
46034e7270SReid Kleckner const CXXRecordDecl *RD =
47034e7270SReid Kleckner CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48b92d290eSJames Y Knight Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
4927da15baSAnders Carlsson
50ee6bc533STimur Iskhodzhanov // If there is an implicit parameter (e.g. VTT), emit it.
51ee6bc533STimur Iskhodzhanov if (ImplicitParam) {
52ee6bc533STimur Iskhodzhanov Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53e36a6b3eSAnders Carlsson }
54e36a6b3eSAnders Carlsson
55a729c62bSJohn McCall const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56916db651SJames Y Knight RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57d0a9e807SGeorge Burgess IV unsigned PrefixSize = Args.size() - 1;
58a729c62bSJohn McCall
59a729c62bSJohn McCall // And the rest of the call args.
60762672a7SRichard Smith if (RtlArgs) {
61762672a7SRichard Smith // Special case: if the caller emitted the arguments right-to-left already
62762672a7SRichard Smith // (prior to emitting the *this argument), we're done. This happens for
63762672a7SRichard Smith // assignment operators.
64762672a7SRichard Smith Args.addFrom(*RtlArgs);
65762672a7SRichard Smith } else if (CE) {
66a5bf76bdSAlexey Samsonov // Special case: skip first argument of CXXOperatorCall (it is "this").
678e1162c7SAlexey Samsonov unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68f05779e2SDavid Blaikie CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
698e1162c7SAlexey Samsonov CE->getDirectCallee());
70a5bf76bdSAlexey Samsonov } else {
718e1162c7SAlexey Samsonov assert(
728e1162c7SAlexey Samsonov FPT->getNumParams() == 0 &&
738e1162c7SAlexey Samsonov "No CallExpr specified for function with non-zero number of arguments");
74a5bf76bdSAlexey Samsonov }
75d0a9e807SGeorge Burgess IV return {required, PrefixSize};
760c0b6d9aSDavid Majnemer }
7727da15baSAnders Carlsson
EmitCXXMemberOrOperatorCall(const CXXMethodDecl * MD,const CGCallee & Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,CallArgList * RtlArgs)780c0b6d9aSDavid Majnemer RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79b92ab1afSJohn McCall const CXXMethodDecl *MD, const CGCallee &Callee,
80b92ab1afSJohn McCall ReturnValueSlot ReturnValue,
810c0b6d9aSDavid Majnemer llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82762672a7SRichard Smith const CallExpr *CE, CallArgList *RtlArgs) {
830c0b6d9aSDavid Majnemer const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
840c0b6d9aSDavid Majnemer CallArgList Args;
85d0a9e807SGeorge Burgess IV MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86762672a7SRichard Smith *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87d0a9e807SGeorge Burgess IV auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88d0a9e807SGeorge Burgess IV Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
8909b5bfddSVedant Kumar return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
9083446759SJoshua Haberman CE && CE == MustTailCall,
9109b5bfddSVedant Kumar CE ? CE->getExprLoc() : SourceLocation());
9227da15baSAnders Carlsson }
9327da15baSAnders Carlsson
EmitCXXDestructorCall(GlobalDecl Dtor,const CGCallee & Callee,llvm::Value * This,QualType ThisTy,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE)94ae81bbb4SAlexey Samsonov RValue CodeGenFunction::EmitCXXDestructorCall(
9588559637SMarco Antognini GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
96d1c5b28cSPeter Collingbourne llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
9788559637SMarco Antognini const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
9888559637SMarco Antognini
9988559637SMarco Antognini assert(!ThisTy.isNull());
10088559637SMarco Antognini assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
10188559637SMarco Antognini "Pointer/Object mixup");
10288559637SMarco Antognini
10388559637SMarco Antognini LangAS SrcAS = ThisTy.getAddressSpace();
10488559637SMarco Antognini LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
10588559637SMarco Antognini if (SrcAS != DstAS) {
10688559637SMarco Antognini QualType DstTy = DtorDecl->getThisType();
10788559637SMarco Antognini llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
10888559637SMarco Antognini This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
10988559637SMarco Antognini NewType);
11088559637SMarco Antognini }
11188559637SMarco Antognini
1120c0b6d9aSDavid Majnemer CallArgList Args;
11388559637SMarco Antognini commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
11488559637SMarco Antognini ImplicitParamTy, CE, Args, nullptr);
115d1c5b28cSPeter Collingbourne return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
11683446759SJoshua Haberman ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
11730588a73SErich Keane CE ? CE->getExprLoc() : SourceLocation{});
118b92ab1afSJohn McCall }
119b92ab1afSJohn McCall
EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)120b92ab1afSJohn McCall RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
121b92ab1afSJohn McCall const CXXPseudoDestructorExpr *E) {
122b92ab1afSJohn McCall QualType DestroyedType = E->getDestroyedType();
123b92ab1afSJohn McCall if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
124b92ab1afSJohn McCall // Automatic Reference Counting:
125b92ab1afSJohn McCall // If the pseudo-expression names a retainable object with weak or
126b92ab1afSJohn McCall // strong lifetime, the object shall be released.
127b92ab1afSJohn McCall Expr *BaseExpr = E->getBase();
128b92ab1afSJohn McCall Address BaseValue = Address::invalid();
129b92ab1afSJohn McCall Qualifiers BaseQuals;
130b92ab1afSJohn McCall
131b92ab1afSJohn McCall // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
132b92ab1afSJohn McCall if (E->isArrow()) {
133b92ab1afSJohn McCall BaseValue = EmitPointerWithAlignment(BaseExpr);
13416c53ffcSSimon Pilgrim const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
135b92ab1afSJohn McCall BaseQuals = PTy->getPointeeType().getQualifiers();
136b92ab1afSJohn McCall } else {
137b92ab1afSJohn McCall LValue BaseLV = EmitLValue(BaseExpr);
138f139ae3dSAkira Hatanaka BaseValue = BaseLV.getAddress(*this);
139b92ab1afSJohn McCall QualType BaseTy = BaseExpr->getType();
140b92ab1afSJohn McCall BaseQuals = BaseTy.getQualifiers();
141b92ab1afSJohn McCall }
142b92ab1afSJohn McCall
143b92ab1afSJohn McCall switch (DestroyedType.getObjCLifetime()) {
144b92ab1afSJohn McCall case Qualifiers::OCL_None:
145b92ab1afSJohn McCall case Qualifiers::OCL_ExplicitNone:
146b92ab1afSJohn McCall case Qualifiers::OCL_Autoreleasing:
147b92ab1afSJohn McCall break;
148b92ab1afSJohn McCall
149b92ab1afSJohn McCall case Qualifiers::OCL_Strong:
150b92ab1afSJohn McCall EmitARCRelease(Builder.CreateLoad(BaseValue,
151b92ab1afSJohn McCall DestroyedType.isVolatileQualified()),
152b92ab1afSJohn McCall ARCPreciseLifetime);
153b92ab1afSJohn McCall break;
154b92ab1afSJohn McCall
155b92ab1afSJohn McCall case Qualifiers::OCL_Weak:
156b92ab1afSJohn McCall EmitARCDestroyWeak(BaseValue);
157b92ab1afSJohn McCall break;
158b92ab1afSJohn McCall }
159b92ab1afSJohn McCall } else {
160b92ab1afSJohn McCall // C++ [expr.pseudo]p1:
161b92ab1afSJohn McCall // The result shall only be used as the operand for the function call
162b92ab1afSJohn McCall // operator (), and the result of such a call has type void. The only
163b92ab1afSJohn McCall // effect is the evaluation of the postfix-expression before the dot or
164b92ab1afSJohn McCall // arrow.
165b92ab1afSJohn McCall EmitIgnoredExpr(E->getBase());
166b92ab1afSJohn McCall }
167b92ab1afSJohn McCall
168b92ab1afSJohn McCall return RValue::get(nullptr);
1690c0b6d9aSDavid Majnemer }
1700c0b6d9aSDavid Majnemer
getCXXRecord(const Expr * E)1713b33c4ecSRafael Espindola static CXXRecordDecl *getCXXRecord(const Expr *E) {
1723b33c4ecSRafael Espindola QualType T = E->getType();
1733b33c4ecSRafael Espindola if (const PointerType *PTy = T->getAs<PointerType>())
1743b33c4ecSRafael Espindola T = PTy->getPointeeType();
1753b33c4ecSRafael Espindola const RecordType *Ty = T->castAs<RecordType>();
1763b33c4ecSRafael Espindola return cast<CXXRecordDecl>(Ty->getDecl());
1773b33c4ecSRafael Espindola }
1783b33c4ecSRafael Espindola
17964225794SFrancois Pichet // Note: This function also emit constructor calls to support a MSVC
18064225794SFrancois Pichet // extensions allowing explicit constructor function call.
EmitCXXMemberCallExpr(const CXXMemberCallExpr * CE,ReturnValueSlot ReturnValue)18127da15baSAnders Carlsson RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
18227da15baSAnders Carlsson ReturnValueSlot ReturnValue) {
1832d2e8707SJohn McCall const Expr *callee = CE->getCallee()->IgnoreParens();
1842d2e8707SJohn McCall
1852d2e8707SJohn McCall if (isa<BinaryOperator>(callee))
18627da15baSAnders Carlsson return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
18727da15baSAnders Carlsson
1882d2e8707SJohn McCall const MemberExpr *ME = cast<MemberExpr>(callee);
18927da15baSAnders Carlsson const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
19027da15baSAnders Carlsson
19127da15baSAnders Carlsson if (MD->isStatic()) {
19227da15baSAnders Carlsson // The method is static, emit it as we would a regular call.
193de6480a3SErich Keane CGCallee callee =
194de6480a3SErich Keane CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
195b92ab1afSJohn McCall return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
19670b9c01bSAlexey Samsonov ReturnValue);
19727da15baSAnders Carlsson }
19827da15baSAnders Carlsson
199aad4af6dSNico Weber bool HasQualifier = ME->hasQualifier();
200aad4af6dSNico Weber NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
201aad4af6dSNico Weber bool IsArrow = ME->isArrow();
202ecbe2e97SRafael Espindola const Expr *Base = ME->getBase();
203aad4af6dSNico Weber
204aad4af6dSNico Weber return EmitCXXMemberOrOperatorMemberCallExpr(
205aad4af6dSNico Weber CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
206aad4af6dSNico Weber }
207aad4af6dSNico Weber
EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr * CE,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue,bool HasQualifier,NestedNameSpecifier * Qualifier,bool IsArrow,const Expr * Base)208aad4af6dSNico Weber RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
209aad4af6dSNico Weber const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
210aad4af6dSNico Weber bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
211aad4af6dSNico Weber const Expr *Base) {
212aad4af6dSNico Weber assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
213aad4af6dSNico Weber
214aad4af6dSNico Weber // Compute the object pointer.
215aad4af6dSNico Weber bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
216ecbe2e97SRafael Espindola
2178a13c418SCraig Topper const CXXMethodDecl *DevirtualizedMethod = nullptr;
21822461673SAkira Hatanaka if (CanUseVirtualCall &&
21922461673SAkira Hatanaka MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
2203b33c4ecSRafael Espindola const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2213b33c4ecSRafael Espindola DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
2223b33c4ecSRafael Espindola assert(DevirtualizedMethod);
2233b33c4ecSRafael Espindola const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
2241a7a2cd7SEduardo Caldas const Expr *Inner = Base->IgnoreParenBaseCasts();
2255bd68794SAlexey Bataev if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
2265bd68794SAlexey Bataev MD->getReturnType().getCanonicalType())
2275bd68794SAlexey Bataev // If the return types are not the same, this might be a case where more
2285bd68794SAlexey Bataev // code needs to run to compensate for it. For example, the derived
2295bd68794SAlexey Bataev // method might return a type that inherits form from the return
2305bd68794SAlexey Bataev // type of MD and has a prefix.
2315bd68794SAlexey Bataev // For now we just avoid devirtualizing these covariant cases.
2325bd68794SAlexey Bataev DevirtualizedMethod = nullptr;
2335bd68794SAlexey Bataev else if (getCXXRecord(Inner) == DevirtualizedClass)
2343b33c4ecSRafael Espindola // If the class of the Inner expression is where the dynamic method
2353b33c4ecSRafael Espindola // is defined, build the this pointer from it.
2363b33c4ecSRafael Espindola Base = Inner;
2373b33c4ecSRafael Espindola else if (getCXXRecord(Base) != DevirtualizedClass) {
2383b33c4ecSRafael Espindola // If the method is defined in a class that is not the best dynamic
2393b33c4ecSRafael Espindola // one or the one of the full expression, we would have to build
2403b33c4ecSRafael Espindola // a derived-to-base cast to compute the correct this pointer, but
2413b33c4ecSRafael Espindola // we don't have support for that yet, so do a virtual call.
2428a13c418SCraig Topper DevirtualizedMethod = nullptr;
2433b33c4ecSRafael Espindola }
2443b33c4ecSRafael Espindola }
245ecbe2e97SRafael Espindola
2463ced2397SRichard Smith bool TrivialForCodegen =
2473ced2397SRichard Smith MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
2483ced2397SRichard Smith bool TrivialAssignment =
2493ced2397SRichard Smith TrivialForCodegen &&
2503ced2397SRichard Smith (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
2513ced2397SRichard Smith !MD->getParent()->mayInsertExtraPadding();
2523ced2397SRichard Smith
253762672a7SRichard Smith // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
254762672a7SRichard Smith // operator before the LHS.
255762672a7SRichard Smith CallArgList RtlArgStorage;
256762672a7SRichard Smith CallArgList *RtlArgs = nullptr;
2573ced2397SRichard Smith LValue TrivialAssignmentRHS;
258762672a7SRichard Smith if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
259762672a7SRichard Smith if (OCE->isAssignmentOp()) {
2603ced2397SRichard Smith if (TrivialAssignment) {
2613ced2397SRichard Smith TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
2623ced2397SRichard Smith } else {
263762672a7SRichard Smith RtlArgs = &RtlArgStorage;
264762672a7SRichard Smith EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
265762672a7SRichard Smith drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
266a560ccf2SRichard Smith /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
267762672a7SRichard Smith }
268762672a7SRichard Smith }
2693ced2397SRichard Smith }
270762672a7SRichard Smith
2711860b520SIvan A. Kosarev LValue This;
2721860b520SIvan A. Kosarev if (IsArrow) {
2731860b520SIvan A. Kosarev LValueBaseInfo BaseInfo;
2741860b520SIvan A. Kosarev TBAAAccessInfo TBAAInfo;
2751860b520SIvan A. Kosarev Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
2761860b520SIvan A. Kosarev This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
2771860b520SIvan A. Kosarev } else {
2781860b520SIvan A. Kosarev This = EmitLValue(Base);
2791860b520SIvan A. Kosarev }
280ecbe2e97SRafael Espindola
281ab4f7f14SJames Y Knight if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
282ab4f7f14SJames Y Knight // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
283ab4f7f14SJames Y Knight // constructing a new complete object of type Ctor.
284ab4f7f14SJames Y Knight assert(!RtlArgs);
285ab4f7f14SJames Y Knight assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
286ab4f7f14SJames Y Knight CallArgList Args;
287ab4f7f14SJames Y Knight commonEmitCXXMemberOrOperatorCall(
288f139ae3dSAkira Hatanaka *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr,
289ab4f7f14SJames Y Knight /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
290ab4f7f14SJames Y Knight
291ab4f7f14SJames Y Knight EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
292f139ae3dSAkira Hatanaka /*Delegating=*/false, This.getAddress(*this), Args,
293ab4f7f14SJames Y Knight AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
294ab4f7f14SJames Y Knight /*NewPointerIsChecked=*/false);
295ab4f7f14SJames Y Knight return RValue::get(nullptr);
296ab4f7f14SJames Y Knight }
29727da15baSAnders Carlsson
2983ced2397SRichard Smith if (TrivialForCodegen) {
2993ced2397SRichard Smith if (isa<CXXDestructorDecl>(MD))
3003ced2397SRichard Smith return RValue::get(nullptr);
3013ced2397SRichard Smith
3023ced2397SRichard Smith if (TrivialAssignment) {
30322653bacSSebastian Redl // We don't like to generate the trivial copy/move assignment operator
30422653bacSSebastian Redl // when it isn't necessary; just produce the proper effect here.
3053ced2397SRichard Smith // It's important that we use the result of EmitLValue here rather than
3063ced2397SRichard Smith // emitting call arguments, in order to preserve TBAA information from
3073ced2397SRichard Smith // the RHS.
308762672a7SRichard Smith LValue RHS = isa<CXXOperatorCallExpr>(CE)
3093ced2397SRichard Smith ? TrivialAssignmentRHS
310762672a7SRichard Smith : EmitLValue(*CE->arg_begin());
3111860b520SIvan A. Kosarev EmitAggregateAssign(This, RHS, CE->getType());
312f139ae3dSAkira Hatanaka return RValue::get(This.getPointer(*this));
31327da15baSAnders Carlsson }
3143ced2397SRichard Smith
3153ced2397SRichard Smith assert(MD->getParent()->mayInsertExtraPadding() &&
3163ced2397SRichard Smith "unknown trivial member function");
317aad4af6dSNico Weber }
31864225794SFrancois Pichet
3190d635f53SJohn McCall // Compute the function type we're calling.
3203abfe958SNico Weber const CXXMethodDecl *CalleeDecl =
3213abfe958SNico Weber DevirtualizedMethod ? DevirtualizedMethod : MD;
3228a13c418SCraig Topper const CGFunctionInfo *FInfo = nullptr;
3233abfe958SNico Weber if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
3248d2a19b4SRafael Espindola FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
325d1c5b28cSPeter Collingbourne GlobalDecl(Dtor, Dtor_Complete));
32664225794SFrancois Pichet else
327ade60977SEli Friedman FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
3280d635f53SJohn McCall
329e7de47efSReid Kleckner llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
3300d635f53SJohn McCall
331d98f5d78SIvan Krasin // C++11 [class.mfct.non-static]p2:
332d98f5d78SIvan Krasin // If a non-static member function of a class X is called for an object that
333d98f5d78SIvan Krasin // is not of type X, or of a type derived from X, the behavior is undefined.
334d98f5d78SIvan Krasin SourceLocation CallLoc;
335d98f5d78SIvan Krasin ASTContext &C = getContext();
336d98f5d78SIvan Krasin if (CE)
337d98f5d78SIvan Krasin CallLoc = CE->getExprLoc();
338d98f5d78SIvan Krasin
33934b1fd6aSVedant Kumar SanitizerSet SkippedChecks;
340ffd7c887SVedant Kumar if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
341ffd7c887SVedant Kumar auto *IOA = CMCE->getImplicitObjectArgument();
342ffd7c887SVedant Kumar bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
343ffd7c887SVedant Kumar if (IsImplicitObjectCXXThis)
344ffd7c887SVedant Kumar SkippedChecks.set(SanitizerKind::Alignment, true);
345ffd7c887SVedant Kumar if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
34634b1fd6aSVedant Kumar SkippedChecks.set(SanitizerKind::Null, true);
347ffd7c887SVedant Kumar }
348f139ae3dSAkira Hatanaka EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
349f139ae3dSAkira Hatanaka This.getPointer(*this),
350ab4f7f14SJames Y Knight C.getRecordType(CalleeDecl->getParent()),
35134b1fd6aSVedant Kumar /*Alignment=*/CharUnits::Zero(), SkippedChecks);
352d98f5d78SIvan Krasin
35327da15baSAnders Carlsson // C++ [class.virtual]p12:
35427da15baSAnders Carlsson // Explicit qualification with the scope operator (5.1) suppresses the
35527da15baSAnders Carlsson // virtual call mechanism.
35627da15baSAnders Carlsson //
35727da15baSAnders Carlsson // We also don't emit a virtual call if the base expression has a record type
35827da15baSAnders Carlsson // because then we know what the type is.
3593b33c4ecSRafael Espindola bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
3609dc6eef7SStephen Lin
361b92d290eSJames Y Knight if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
36219cee187SStephen Lin assert(CE->arg_begin() == CE->arg_end() &&
3639dc6eef7SStephen Lin "Destructor shouldn't have explicit parameters");
3649dc6eef7SStephen Lin assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
3659dc6eef7SStephen Lin if (UseVirtualCall) {
366f139ae3dSAkira Hatanaka CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
367f139ae3dSAkira Hatanaka This.getAddress(*this),
3681860b520SIvan A. Kosarev cast<CXXMemberCallExpr>(CE));
36927da15baSAnders Carlsson } else {
370d1c5b28cSPeter Collingbourne GlobalDecl GD(Dtor, Dtor_Complete);
371b92ab1afSJohn McCall CGCallee Callee;
372b92d290eSJames Y Knight if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
373b92d290eSJames Y Knight Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
3743b33c4ecSRafael Espindola else if (!DevirtualizedMethod)
375d1c5b28cSPeter Collingbourne Callee =
376d1c5b28cSPeter Collingbourne CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
37749e860b2SRafael Espindola else {
378d1c5b28cSPeter Collingbourne Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
37949e860b2SRafael Espindola }
380b92d290eSJames Y Knight
38188559637SMarco Antognini QualType ThisTy =
38288559637SMarco Antognini IsArrow ? Base->getType()->getPointeeType() : Base->getType();
383f139ae3dSAkira Hatanaka EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
384b92d290eSJames Y Knight /*ImplicitParam=*/nullptr,
38530588a73SErich Keane /*ImplicitParamTy=*/QualType(), CE);
38627da15baSAnders Carlsson }
3878a13c418SCraig Topper return RValue::get(nullptr);
3889dc6eef7SStephen Lin }
3899dc6eef7SStephen Lin
390b92d290eSJames Y Knight // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
391b92d290eSJames Y Knight // 'CalleeDecl' instead.
392b92d290eSJames Y Knight
393b92ab1afSJohn McCall CGCallee Callee;
394ab4f7f14SJames Y Knight if (UseVirtualCall) {
395f139ae3dSAkira Hatanaka Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
39627da15baSAnders Carlsson } else {
3971a7488afSPeter Collingbourne if (SanOpts.has(SanitizerKind::CFINVCall) &&
3981a7488afSPeter Collingbourne MD->getParent()->isDynamicClass()) {
3996010880bSPeter Collingbourne llvm::Value *VTable;
4006010880bSPeter Collingbourne const CXXRecordDecl *RD;
401f139ae3dSAkira Hatanaka std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
402f139ae3dSAkira Hatanaka *this, This.getAddress(*this), CalleeDecl->getParent());
403f2ceec48SStephen Kelly EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
4041a7488afSPeter Collingbourne }
4051a7488afSPeter Collingbourne
406aad4af6dSNico Weber if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
407aad4af6dSNico Weber Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
4083b33c4ecSRafael Espindola else if (!DevirtualizedMethod)
409de6480a3SErich Keane Callee =
410de6480a3SErich Keane CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
41149e860b2SRafael Espindola else {
412de6480a3SErich Keane Callee =
413de6480a3SErich Keane CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
414de6480a3SErich Keane GlobalDecl(DevirtualizedMethod));
41549e860b2SRafael Espindola }
41627da15baSAnders Carlsson }
41727da15baSAnders Carlsson
418f1749427STimur Iskhodzhanov if (MD->isVirtual()) {
4191860b520SIvan A. Kosarev Address NewThisAddr =
4201860b520SIvan A. Kosarev CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
421f139ae3dSAkira Hatanaka *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
4221860b520SIvan A. Kosarev This.setAddress(NewThisAddr);
423f1749427STimur Iskhodzhanov }
42488fd439aSTimur Iskhodzhanov
425018f266bSVedant Kumar return EmitCXXMemberOrOperatorCall(
426f139ae3dSAkira Hatanaka CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
427018f266bSVedant Kumar /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
42827da15baSAnders Carlsson }
42927da15baSAnders Carlsson
43027da15baSAnders Carlsson RValue
EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr * E,ReturnValueSlot ReturnValue)43127da15baSAnders Carlsson CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
43227da15baSAnders Carlsson ReturnValueSlot ReturnValue) {
43327da15baSAnders Carlsson const BinaryOperator *BO =
43427da15baSAnders Carlsson cast<BinaryOperator>(E->getCallee()->IgnoreParens());
43527da15baSAnders Carlsson const Expr *BaseExpr = BO->getLHS();
43627da15baSAnders Carlsson const Expr *MemFnExpr = BO->getRHS();
43727da15baSAnders Carlsson
4381cd399c9SSimon Pilgrim const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
4391cd399c9SSimon Pilgrim const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
4401cd399c9SSimon Pilgrim const auto *RD =
4411cd399c9SSimon Pilgrim cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
44227da15baSAnders Carlsson
44327da15baSAnders Carlsson // Emit the 'this' pointer.
4447f416cc4SJohn McCall Address This = Address::invalid();
445e302792bSJohn McCall if (BO->getOpcode() == BO_PtrMemI)
4467f416cc4SJohn McCall This = EmitPointerWithAlignment(BaseExpr);
44727da15baSAnders Carlsson else
448f139ae3dSAkira Hatanaka This = EmitLValue(BaseExpr).getAddress(*this);
44927da15baSAnders Carlsson
4507f416cc4SJohn McCall EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
451e30752c9SRichard Smith QualType(MPT->getClass(), 0));
45269d0d262SRichard Smith
453bde62d78SRichard Smith // Get the member function pointer.
454bde62d78SRichard Smith llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
455bde62d78SRichard Smith
456475999dcSJohn McCall // Ask the ABI to load the callee. Note that This is modified.
4577f416cc4SJohn McCall llvm::Value *ThisPtrForCall = nullptr;
458b92ab1afSJohn McCall CGCallee Callee =
4597f416cc4SJohn McCall CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
4607f416cc4SJohn McCall ThisPtrForCall, MemFnPtr, MPT);
46127da15baSAnders Carlsson
46227da15baSAnders Carlsson CallArgList Args;
46327da15baSAnders Carlsson
46427da15baSAnders Carlsson QualType ThisType =
46527da15baSAnders Carlsson getContext().getPointerType(getContext().getTagDeclType(RD));
46627da15baSAnders Carlsson
46727da15baSAnders Carlsson // Push the this ptr.
4687f416cc4SJohn McCall Args.add(RValue::get(ThisPtrForCall), ThisType);
46927da15baSAnders Carlsson
470916db651SJames Y Knight RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
4718dda7b27SJohn McCall
47227da15baSAnders Carlsson // And the rest of the call args
473419996ccSGeorge Burgess IV EmitCallArgs(Args, FPT, E->arguments());
474d0a9e807SGeorge Burgess IV return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
475d0a9e807SGeorge Burgess IV /*PrefixSize=*/0),
47683446759SJoshua Haberman Callee, ReturnValue, Args, nullptr, E == MustTailCall,
47783446759SJoshua Haberman E->getExprLoc());
47827da15baSAnders Carlsson }
47927da15baSAnders Carlsson
48027da15baSAnders Carlsson RValue
EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue)48127da15baSAnders Carlsson CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
48227da15baSAnders Carlsson const CXXMethodDecl *MD,
48327da15baSAnders Carlsson ReturnValueSlot ReturnValue) {
48427da15baSAnders Carlsson assert(MD->isInstance() &&
48527da15baSAnders Carlsson "Trying to emit a member call expr on a static method!");
486aad4af6dSNico Weber return EmitCXXMemberOrOperatorMemberCallExpr(
487aad4af6dSNico Weber E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
488aad4af6dSNico Weber /*IsArrow=*/false, E->getArg(0));
48927da15baSAnders Carlsson }
49027da15baSAnders Carlsson
EmitCUDAKernelCallExpr(const CUDAKernelCallExpr * E,ReturnValueSlot ReturnValue)491fe883422SPeter Collingbourne RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
492fe883422SPeter Collingbourne ReturnValueSlot ReturnValue) {
493fe883422SPeter Collingbourne return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
494fe883422SPeter Collingbourne }
495fe883422SPeter Collingbourne
EmitNullBaseClassInitialization(CodeGenFunction & CGF,Address DestPtr,const CXXRecordDecl * Base)496fde961dbSEli Friedman static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
4977f416cc4SJohn McCall Address DestPtr,
498fde961dbSEli Friedman const CXXRecordDecl *Base) {
499fde961dbSEli Friedman if (Base->isEmpty())
500fde961dbSEli Friedman return;
501fde961dbSEli Friedman
5027f416cc4SJohn McCall DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
503fde961dbSEli Friedman
504fde961dbSEli Friedman const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
5058671c6e0SDavid Majnemer CharUnits NVSize = Layout.getNonVirtualSize();
5068671c6e0SDavid Majnemer
5078671c6e0SDavid Majnemer // We cannot simply zero-initialize the entire base sub-object if vbptrs are
5088671c6e0SDavid Majnemer // present, they are initialized by the most derived class before calling the
5098671c6e0SDavid Majnemer // constructor.
5108671c6e0SDavid Majnemer SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
5118671c6e0SDavid Majnemer Stores.emplace_back(CharUnits::Zero(), NVSize);
5128671c6e0SDavid Majnemer
5138671c6e0SDavid Majnemer // Each store is split by the existence of a vbptr.
5148671c6e0SDavid Majnemer CharUnits VBPtrWidth = CGF.getPointerSize();
5158671c6e0SDavid Majnemer std::vector<CharUnits> VBPtrOffsets =
5168671c6e0SDavid Majnemer CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
5178671c6e0SDavid Majnemer for (CharUnits VBPtrOffset : VBPtrOffsets) {
5187f980d84SDavid Majnemer // Stop before we hit any virtual base pointers located in virtual bases.
5197f980d84SDavid Majnemer if (VBPtrOffset >= NVSize)
5207f980d84SDavid Majnemer break;
5218671c6e0SDavid Majnemer std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
5228671c6e0SDavid Majnemer CharUnits LastStoreOffset = LastStore.first;
5238671c6e0SDavid Majnemer CharUnits LastStoreSize = LastStore.second;
5248671c6e0SDavid Majnemer
5258671c6e0SDavid Majnemer CharUnits SplitBeforeOffset = LastStoreOffset;
5268671c6e0SDavid Majnemer CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
5278671c6e0SDavid Majnemer assert(!SplitBeforeSize.isNegative() && "negative store size!");
5288671c6e0SDavid Majnemer if (!SplitBeforeSize.isZero())
5298671c6e0SDavid Majnemer Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
5308671c6e0SDavid Majnemer
5318671c6e0SDavid Majnemer CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
5328671c6e0SDavid Majnemer CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
5338671c6e0SDavid Majnemer assert(!SplitAfterSize.isNegative() && "negative store size!");
5348671c6e0SDavid Majnemer if (!SplitAfterSize.isZero())
5358671c6e0SDavid Majnemer Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
5368671c6e0SDavid Majnemer }
537fde961dbSEli Friedman
538fde961dbSEli Friedman // If the type contains a pointer to data member we can't memset it to zero.
539fde961dbSEli Friedman // Instead, create a null constant and copy it to the destination.
540fde961dbSEli Friedman // TODO: there are other patterns besides zero that we can usefully memset,
541fde961dbSEli Friedman // like -1, which happens to be the pattern used by member-pointers.
542fde961dbSEli Friedman // TODO: isZeroInitializable can be over-conservative in the case where a
543fde961dbSEli Friedman // virtual base contains a member pointer.
5448671c6e0SDavid Majnemer llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
5458671c6e0SDavid Majnemer if (!NullConstantForBase->isNullValue()) {
5468671c6e0SDavid Majnemer llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
5478671c6e0SDavid Majnemer CGF.CGM.getModule(), NullConstantForBase->getType(),
5488671c6e0SDavid Majnemer /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
5498671c6e0SDavid Majnemer NullConstantForBase, Twine());
5507f416cc4SJohn McCall
55150650766SNikita Popov CharUnits Align =
55250650766SNikita Popov std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
553c79099e0SGuillaume Chatelet NullVariable->setAlignment(Align.getAsAlign());
5547f416cc4SJohn McCall
55550650766SNikita Popov Address SrcPtr =
55650650766SNikita Popov Address(CGF.EmitCastToVoidPtr(NullVariable), CGF.Int8Ty, Align);
557fde961dbSEli Friedman
558fde961dbSEli Friedman // Get and call the appropriate llvm.memcpy overload.
5598671c6e0SDavid Majnemer for (std::pair<CharUnits, CharUnits> Store : Stores) {
5608671c6e0SDavid Majnemer CharUnits StoreOffset = Store.first;
5618671c6e0SDavid Majnemer CharUnits StoreSize = Store.second;
5628671c6e0SDavid Majnemer llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
5638671c6e0SDavid Majnemer CGF.Builder.CreateMemCpy(
5648671c6e0SDavid Majnemer CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
5658671c6e0SDavid Majnemer CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
5668671c6e0SDavid Majnemer StoreSizeVal);
567fde961dbSEli Friedman }
568fde961dbSEli Friedman
569fde961dbSEli Friedman // Otherwise, just memset the whole thing to zero. This is legal
570fde961dbSEli Friedman // because in LLVM, all default initializers (other than the ones we just
571fde961dbSEli Friedman // handled above) are guaranteed to have a bit pattern of all zeros.
5728671c6e0SDavid Majnemer } else {
5738671c6e0SDavid Majnemer for (std::pair<CharUnits, CharUnits> Store : Stores) {
5748671c6e0SDavid Majnemer CharUnits StoreOffset = Store.first;
5758671c6e0SDavid Majnemer CharUnits StoreSize = Store.second;
5768671c6e0SDavid Majnemer llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
5778671c6e0SDavid Majnemer CGF.Builder.CreateMemSet(
5788671c6e0SDavid Majnemer CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
5798671c6e0SDavid Majnemer CGF.Builder.getInt8(0), StoreSizeVal);
5808671c6e0SDavid Majnemer }
5818671c6e0SDavid Majnemer }
582fde961dbSEli Friedman }
583fde961dbSEli Friedman
58427da15baSAnders Carlsson void
EmitCXXConstructExpr(const CXXConstructExpr * E,AggValueSlot Dest)5857a626f63SJohn McCall CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
5867a626f63SJohn McCall AggValueSlot Dest) {
5877a626f63SJohn McCall assert(!Dest.isIgnored() && "Must have a destination!");
58827da15baSAnders Carlsson const CXXConstructorDecl *CD = E->getConstructor();
589630c76efSDouglas Gregor
590630c76efSDouglas Gregor // If we require zero initialization before (or instead of) calling the
591630c76efSDouglas Gregor // constructor, as can be the case with a non-user-provided default
59203535265SArgyrios Kyrtzidis // constructor, emit the zero initialization now, unless destination is
59303535265SArgyrios Kyrtzidis // already zeroed.
594fde961dbSEli Friedman if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
595fde961dbSEli Friedman switch (E->getConstructionKind()) {
596fde961dbSEli Friedman case CXXConstructExpr::CK_Delegating:
597fde961dbSEli Friedman case CXXConstructExpr::CK_Complete:
5987f416cc4SJohn McCall EmitNullInitialization(Dest.getAddress(), E->getType());
599fde961dbSEli Friedman break;
600fde961dbSEli Friedman case CXXConstructExpr::CK_VirtualBase:
601fde961dbSEli Friedman case CXXConstructExpr::CK_NonVirtualBase:
6027f416cc4SJohn McCall EmitNullBaseClassInitialization(*this, Dest.getAddress(),
6037f416cc4SJohn McCall CD->getParent());
604fde961dbSEli Friedman break;
605fde961dbSEli Friedman }
606fde961dbSEli Friedman }
607630c76efSDouglas Gregor
608630c76efSDouglas Gregor // If this is a call to a trivial default constructor, do nothing.
609630c76efSDouglas Gregor if (CD->isTrivial() && CD->isDefaultConstructor())
61027da15baSAnders Carlsson return;
611630c76efSDouglas Gregor
6128ea46b66SJohn McCall // Elide the constructor if we're constructing from a temporary.
6139c6890a7SRichard Smith if (getLangOpts().ElideConstructors && E->isElidable()) {
614d9308aa3SMatheus Izvekov // FIXME: This only handles the simplest case, where the source object
615d9308aa3SMatheus Izvekov // is passed directly as the first argument to the constructor.
616d9308aa3SMatheus Izvekov // This should also handle stepping though implicit casts and
617d9308aa3SMatheus Izvekov // conversion sequences which involve two steps, with a
618d9308aa3SMatheus Izvekov // conversion operator followed by a converting constructor.
619d9308aa3SMatheus Izvekov const Expr *SrcObj = E->getArg(0);
620d9308aa3SMatheus Izvekov assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
621d9308aa3SMatheus Izvekov assert(
622d9308aa3SMatheus Izvekov getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
623d9308aa3SMatheus Izvekov EmitAggExpr(SrcObj, Dest);
62427da15baSAnders Carlsson return;
62527da15baSAnders Carlsson }
626630c76efSDouglas Gregor
627e7545b33SAlexey Bataev if (const ArrayType *arrayType
628e7545b33SAlexey Bataev = getContext().getAsArrayType(E->getType())) {
62937605182SSerge Pavlov EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
63037605182SSerge Pavlov Dest.isSanitizerChecked());
631f677a8e9SJohn McCall } else {
632bceca20aSCameron Esfahani CXXCtorType Type = Ctor_Complete;
633271c3681SAlexis Hunt bool ForVirtualBase = false;
63461535005SDouglas Gregor bool Delegating = false;
635271c3681SAlexis Hunt
636271c3681SAlexis Hunt switch (E->getConstructionKind()) {
637271c3681SAlexis Hunt case CXXConstructExpr::CK_Delegating:
63861bc1737SAlexis Hunt // We should be emitting a constructor; GlobalDecl will assert this
63961bc1737SAlexis Hunt Type = CurGD.getCtorType();
64061535005SDouglas Gregor Delegating = true;
641271c3681SAlexis Hunt break;
64261bc1737SAlexis Hunt
643271c3681SAlexis Hunt case CXXConstructExpr::CK_Complete:
644271c3681SAlexis Hunt Type = Ctor_Complete;
645271c3681SAlexis Hunt break;
646271c3681SAlexis Hunt
647271c3681SAlexis Hunt case CXXConstructExpr::CK_VirtualBase:
648271c3681SAlexis Hunt ForVirtualBase = true;
649f3b3ccdaSAdrian Prantl LLVM_FALLTHROUGH;
650271c3681SAlexis Hunt
651271c3681SAlexis Hunt case CXXConstructExpr::CK_NonVirtualBase:
652271c3681SAlexis Hunt Type = Ctor_Base;
653271c3681SAlexis Hunt }
654e11f9ce9SAnders Carlsson
65527da15baSAnders Carlsson // Call the constructor.
656094c7266SAnastasia Stulova EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
65727da15baSAnders Carlsson }
658e11f9ce9SAnders Carlsson }
65927da15baSAnders Carlsson
EmitSynthesizedCXXCopyCtor(Address Dest,Address Src,const Expr * Exp)6607f416cc4SJohn McCall void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
66150198098SFariborz Jahanian const Expr *Exp) {
6625d413781SJohn McCall if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
663e988bdacSFariborz Jahanian Exp = E->getSubExpr();
664e988bdacSFariborz Jahanian assert(isa<CXXConstructExpr>(Exp) &&
665e988bdacSFariborz Jahanian "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
666e988bdacSFariborz Jahanian const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
667e988bdacSFariborz Jahanian const CXXConstructorDecl *CD = E->getConstructor();
668e988bdacSFariborz Jahanian RunCleanupsScope Scope(*this);
669e988bdacSFariborz Jahanian
670e988bdacSFariborz Jahanian // If we require zero initialization before (or instead of) calling the
671e988bdacSFariborz Jahanian // constructor, as can be the case with a non-user-provided default
672e988bdacSFariborz Jahanian // constructor, emit the zero initialization now.
673e988bdacSFariborz Jahanian // FIXME. Do I still need this for a copy ctor synthesis?
674e988bdacSFariborz Jahanian if (E->requiresZeroInitialization())
675e988bdacSFariborz Jahanian EmitNullInitialization(Dest, E->getType());
676e988bdacSFariborz Jahanian
67799da11cfSChandler Carruth assert(!getContext().getAsConstantArrayType(E->getType())
67899da11cfSChandler Carruth && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
679525bf650SAlexey Samsonov EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
680e988bdacSFariborz Jahanian }
681e988bdacSFariborz Jahanian
CalculateCookiePadding(CodeGenFunction & CGF,const CXXNewExpr * E)6828ed55a54SJohn McCall static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
6838ed55a54SJohn McCall const CXXNewExpr *E) {
68421122cf6SAnders Carlsson if (!E->isArray())
6853eb55cfeSKen Dyck return CharUnits::Zero();
68621122cf6SAnders Carlsson
6877ec4b434SJohn McCall // No cookie is required if the operator new[] being used is the
6887ec4b434SJohn McCall // reserved placement operator new[].
6897ec4b434SJohn McCall if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
6903eb55cfeSKen Dyck return CharUnits::Zero();
691399f499fSAnders Carlsson
692284c48ffSJohn McCall return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
69359486a2dSAnders Carlsson }
69459486a2dSAnders Carlsson
EmitCXXNewAllocSize(CodeGenFunction & CGF,const CXXNewExpr * e,unsigned minElements,llvm::Value * & numElements,llvm::Value * & sizeWithoutCookie)695036f2f6bSJohn McCall static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
696036f2f6bSJohn McCall const CXXNewExpr *e,
697f862eb6aSSebastian Redl unsigned minElements,
698036f2f6bSJohn McCall llvm::Value *&numElements,
699036f2f6bSJohn McCall llvm::Value *&sizeWithoutCookie) {
700036f2f6bSJohn McCall QualType type = e->getAllocatedType();
70159486a2dSAnders Carlsson
702036f2f6bSJohn McCall if (!e->isArray()) {
703036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
704036f2f6bSJohn McCall sizeWithoutCookie
705036f2f6bSJohn McCall = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
706036f2f6bSJohn McCall return sizeWithoutCookie;
70705fc5be3SDouglas Gregor }
70859486a2dSAnders Carlsson
709036f2f6bSJohn McCall // The width of size_t.
710036f2f6bSJohn McCall unsigned sizeWidth = CGF.SizeTy->getBitWidth();
711036f2f6bSJohn McCall
7128ed55a54SJohn McCall // Figure out the cookie size.
713036f2f6bSJohn McCall llvm::APInt cookieSize(sizeWidth,
714036f2f6bSJohn McCall CalculateCookiePadding(CGF, e).getQuantity());
7158ed55a54SJohn McCall
71659486a2dSAnders Carlsson // Emit the array size expression.
7177648fb46SArgyrios Kyrtzidis // We multiply the size of all dimensions for NumElements.
7187648fb46SArgyrios Kyrtzidis // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
719de0fe07eSJohn McCall numElements =
720b9fb121aSRichard Smith ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
72107527621SNick Lewycky if (!numElements)
722b9fb121aSRichard Smith numElements = CGF.EmitScalarExpr(*e->getArraySize());
723036f2f6bSJohn McCall assert(isa<llvm::IntegerType>(numElements->getType()));
7248ed55a54SJohn McCall
725036f2f6bSJohn McCall // The number of elements can be have an arbitrary integer type;
726036f2f6bSJohn McCall // essentially, we need to multiply it by a constant factor, add a
727036f2f6bSJohn McCall // cookie size, and verify that the result is representable as a
728036f2f6bSJohn McCall // size_t. That's just a gloss, though, and it's wrong in one
729036f2f6bSJohn McCall // important way: if the count is negative, it's an error even if
730036f2f6bSJohn McCall // the cookie size would bring the total size >= 0.
7316ab2fa8fSDouglas Gregor bool isSigned
732b9fb121aSRichard Smith = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
7332192fe50SChris Lattner llvm::IntegerType *numElementsType
734036f2f6bSJohn McCall = cast<llvm::IntegerType>(numElements->getType());
735036f2f6bSJohn McCall unsigned numElementsWidth = numElementsType->getBitWidth();
736036f2f6bSJohn McCall
737036f2f6bSJohn McCall // Compute the constant factor.
738036f2f6bSJohn McCall llvm::APInt arraySizeMultiplier(sizeWidth, 1);
7397648fb46SArgyrios Kyrtzidis while (const ConstantArrayType *CAT
740036f2f6bSJohn McCall = CGF.getContext().getAsConstantArrayType(type)) {
741036f2f6bSJohn McCall type = CAT->getElementType();
742036f2f6bSJohn McCall arraySizeMultiplier *= CAT->getSize();
7437648fb46SArgyrios Kyrtzidis }
74459486a2dSAnders Carlsson
745036f2f6bSJohn McCall CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
746036f2f6bSJohn McCall llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
747036f2f6bSJohn McCall typeSizeMultiplier *= arraySizeMultiplier;
748036f2f6bSJohn McCall
749036f2f6bSJohn McCall // This will be a size_t.
750036f2f6bSJohn McCall llvm::Value *size;
75132ac583dSChris Lattner
75232ac583dSChris Lattner // If someone is doing 'new int[42]' there is no need to do a dynamic check.
75332ac583dSChris Lattner // Don't bloat the -O0 code.
754036f2f6bSJohn McCall if (llvm::ConstantInt *numElementsC =
755036f2f6bSJohn McCall dyn_cast<llvm::ConstantInt>(numElements)) {
756036f2f6bSJohn McCall const llvm::APInt &count = numElementsC->getValue();
75732ac583dSChris Lattner
758036f2f6bSJohn McCall bool hasAnyOverflow = false;
75932ac583dSChris Lattner
760036f2f6bSJohn McCall // If 'count' was a negative number, it's an overflow.
761036f2f6bSJohn McCall if (isSigned && count.isNegative())
762036f2f6bSJohn McCall hasAnyOverflow = true;
7638ed55a54SJohn McCall
764036f2f6bSJohn McCall // We want to do all this arithmetic in size_t. If numElements is
765036f2f6bSJohn McCall // wider than that, check whether it's already too big, and if so,
766036f2f6bSJohn McCall // overflow.
767036f2f6bSJohn McCall else if (numElementsWidth > sizeWidth &&
768036f2f6bSJohn McCall numElementsWidth - sizeWidth > count.countLeadingZeros())
769036f2f6bSJohn McCall hasAnyOverflow = true;
770036f2f6bSJohn McCall
771036f2f6bSJohn McCall // Okay, compute a count at the right width.
772036f2f6bSJohn McCall llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
773036f2f6bSJohn McCall
774f862eb6aSSebastian Redl // If there is a brace-initializer, we cannot allocate fewer elements than
775f862eb6aSSebastian Redl // there are initializers. If we do, that's treated like an overflow.
776f862eb6aSSebastian Redl if (adjustedCount.ult(minElements))
777f862eb6aSSebastian Redl hasAnyOverflow = true;
778f862eb6aSSebastian Redl
779036f2f6bSJohn McCall // Scale numElements by that. This might overflow, but we don't
780036f2f6bSJohn McCall // care because it only overflows if allocationSize does, too, and
781036f2f6bSJohn McCall // if that overflows then we shouldn't use this.
782036f2f6bSJohn McCall numElements = llvm::ConstantInt::get(CGF.SizeTy,
783036f2f6bSJohn McCall adjustedCount * arraySizeMultiplier);
784036f2f6bSJohn McCall
785036f2f6bSJohn McCall // Compute the size before cookie, and track whether it overflowed.
786036f2f6bSJohn McCall bool overflow;
787036f2f6bSJohn McCall llvm::APInt allocationSize
788036f2f6bSJohn McCall = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
789036f2f6bSJohn McCall hasAnyOverflow |= overflow;
790036f2f6bSJohn McCall
791036f2f6bSJohn McCall // Add in the cookie, and check whether it's overflowed.
792036f2f6bSJohn McCall if (cookieSize != 0) {
793036f2f6bSJohn McCall // Save the current size without a cookie. This shouldn't be
794036f2f6bSJohn McCall // used if there was overflow.
795036f2f6bSJohn McCall sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
796036f2f6bSJohn McCall
797036f2f6bSJohn McCall allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
798036f2f6bSJohn McCall hasAnyOverflow |= overflow;
7998ed55a54SJohn McCall }
8008ed55a54SJohn McCall
801036f2f6bSJohn McCall // On overflow, produce a -1 so operator new will fail.
802455f42c9SAaron Ballman if (hasAnyOverflow) {
803455f42c9SAaron Ballman size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
804455f42c9SAaron Ballman } else {
805036f2f6bSJohn McCall size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
806455f42c9SAaron Ballman }
80732ac583dSChris Lattner
808036f2f6bSJohn McCall // Otherwise, we might need to use the overflow intrinsics.
8098ed55a54SJohn McCall } else {
810f862eb6aSSebastian Redl // There are up to five conditions we need to test for:
811036f2f6bSJohn McCall // 1) if isSigned, we need to check whether numElements is negative;
812036f2f6bSJohn McCall // 2) if numElementsWidth > sizeWidth, we need to check whether
813036f2f6bSJohn McCall // numElements is larger than something representable in size_t;
814f862eb6aSSebastian Redl // 3) if minElements > 0, we need to check whether numElements is smaller
815f862eb6aSSebastian Redl // than that.
816f862eb6aSSebastian Redl // 4) we need to compute
817036f2f6bSJohn McCall // sizeWithoutCookie := numElements * typeSizeMultiplier
818036f2f6bSJohn McCall // and check whether it overflows; and
819f862eb6aSSebastian Redl // 5) if we need a cookie, we need to compute
820036f2f6bSJohn McCall // size := sizeWithoutCookie + cookieSize
821036f2f6bSJohn McCall // and check whether it overflows.
8228ed55a54SJohn McCall
8238a13c418SCraig Topper llvm::Value *hasOverflow = nullptr;
8248ed55a54SJohn McCall
825036f2f6bSJohn McCall // If numElementsWidth > sizeWidth, then one way or another, we're
826036f2f6bSJohn McCall // going to have to do a comparison for (2), and this happens to
827036f2f6bSJohn McCall // take care of (1), too.
828036f2f6bSJohn McCall if (numElementsWidth > sizeWidth) {
829036f2f6bSJohn McCall llvm::APInt threshold(numElementsWidth, 1);
830036f2f6bSJohn McCall threshold <<= sizeWidth;
8318ed55a54SJohn McCall
832036f2f6bSJohn McCall llvm::Value *thresholdV
833036f2f6bSJohn McCall = llvm::ConstantInt::get(numElementsType, threshold);
834036f2f6bSJohn McCall
835036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
836036f2f6bSJohn McCall numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
837036f2f6bSJohn McCall
838036f2f6bSJohn McCall // Otherwise, if we're signed, we want to sext up to size_t.
839036f2f6bSJohn McCall } else if (isSigned) {
840036f2f6bSJohn McCall if (numElementsWidth < sizeWidth)
841036f2f6bSJohn McCall numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
842036f2f6bSJohn McCall
843036f2f6bSJohn McCall // If there's a non-1 type size multiplier, then we can do the
844036f2f6bSJohn McCall // signedness check at the same time as we do the multiply
845036f2f6bSJohn McCall // because a negative number times anything will cause an
846f862eb6aSSebastian Redl // unsigned overflow. Otherwise, we have to do it here. But at least
847f862eb6aSSebastian Redl // in this case, we can subsume the >= minElements check.
848036f2f6bSJohn McCall if (typeSizeMultiplier == 1)
849036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
850f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements));
851036f2f6bSJohn McCall
852036f2f6bSJohn McCall // Otherwise, zext up to size_t if necessary.
853036f2f6bSJohn McCall } else if (numElementsWidth < sizeWidth) {
854036f2f6bSJohn McCall numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
855036f2f6bSJohn McCall }
856036f2f6bSJohn McCall
857036f2f6bSJohn McCall assert(numElements->getType() == CGF.SizeTy);
858036f2f6bSJohn McCall
859f862eb6aSSebastian Redl if (minElements) {
860f862eb6aSSebastian Redl // Don't allow allocation of fewer elements than we have initializers.
861f862eb6aSSebastian Redl if (!hasOverflow) {
862f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateICmpULT(numElements,
863f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements));
864f862eb6aSSebastian Redl } else if (numElementsWidth > sizeWidth) {
865f862eb6aSSebastian Redl // The other existing overflow subsumes this check.
866f862eb6aSSebastian Redl // We do an unsigned comparison, since any signed value < -1 is
867f862eb6aSSebastian Redl // taken care of either above or below.
868f862eb6aSSebastian Redl hasOverflow = CGF.Builder.CreateOr(hasOverflow,
869f862eb6aSSebastian Redl CGF.Builder.CreateICmpULT(numElements,
870f862eb6aSSebastian Redl llvm::ConstantInt::get(CGF.SizeTy, minElements)));
871f862eb6aSSebastian Redl }
872f862eb6aSSebastian Redl }
873f862eb6aSSebastian Redl
874036f2f6bSJohn McCall size = numElements;
875036f2f6bSJohn McCall
876036f2f6bSJohn McCall // Multiply by the type size if necessary. This multiplier
877036f2f6bSJohn McCall // includes all the factors for nested arrays.
8788ed55a54SJohn McCall //
879036f2f6bSJohn McCall // This step also causes numElements to be scaled up by the
880036f2f6bSJohn McCall // nested-array factor if necessary. Overflow on this computation
881036f2f6bSJohn McCall // can be ignored because the result shouldn't be used if
882036f2f6bSJohn McCall // allocation fails.
883036f2f6bSJohn McCall if (typeSizeMultiplier != 1) {
8848799caeeSJames Y Knight llvm::Function *umul_with_overflow
8858d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
8868ed55a54SJohn McCall
887036f2f6bSJohn McCall llvm::Value *tsmV =
888036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
889036f2f6bSJohn McCall llvm::Value *result =
89043f9bb73SDavid Blaikie CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
8918ed55a54SJohn McCall
892036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
893036f2f6bSJohn McCall if (hasOverflow)
894036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
8958ed55a54SJohn McCall else
896036f2f6bSJohn McCall hasOverflow = overflowed;
89759486a2dSAnders Carlsson
898036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0);
899036f2f6bSJohn McCall
900036f2f6bSJohn McCall // Also scale up numElements by the array size multiplier.
901036f2f6bSJohn McCall if (arraySizeMultiplier != 1) {
902036f2f6bSJohn McCall // If the base element type size is 1, then we can re-use the
903036f2f6bSJohn McCall // multiply we just did.
904036f2f6bSJohn McCall if (typeSize.isOne()) {
905036f2f6bSJohn McCall assert(arraySizeMultiplier == typeSizeMultiplier);
906036f2f6bSJohn McCall numElements = size;
907036f2f6bSJohn McCall
908036f2f6bSJohn McCall // Otherwise we need a separate multiply.
909036f2f6bSJohn McCall } else {
910036f2f6bSJohn McCall llvm::Value *asmV =
911036f2f6bSJohn McCall llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
912036f2f6bSJohn McCall numElements = CGF.Builder.CreateMul(numElements, asmV);
913036f2f6bSJohn McCall }
914036f2f6bSJohn McCall }
915036f2f6bSJohn McCall } else {
916036f2f6bSJohn McCall // numElements doesn't need to be scaled.
917036f2f6bSJohn McCall assert(arraySizeMultiplier == 1);
918036f2f6bSJohn McCall }
919036f2f6bSJohn McCall
920036f2f6bSJohn McCall // Add in the cookie size if necessary.
921036f2f6bSJohn McCall if (cookieSize != 0) {
922036f2f6bSJohn McCall sizeWithoutCookie = size;
923036f2f6bSJohn McCall
9248799caeeSJames Y Knight llvm::Function *uadd_with_overflow
9258d375cefSBenjamin Kramer = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
926036f2f6bSJohn McCall
927036f2f6bSJohn McCall llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
928036f2f6bSJohn McCall llvm::Value *result =
92943f9bb73SDavid Blaikie CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
930036f2f6bSJohn McCall
931036f2f6bSJohn McCall llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
932036f2f6bSJohn McCall if (hasOverflow)
933036f2f6bSJohn McCall hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
934036f2f6bSJohn McCall else
935036f2f6bSJohn McCall hasOverflow = overflowed;
936036f2f6bSJohn McCall
937036f2f6bSJohn McCall size = CGF.Builder.CreateExtractValue(result, 0);
938036f2f6bSJohn McCall }
939036f2f6bSJohn McCall
940036f2f6bSJohn McCall // If we had any possibility of dynamic overflow, make a select to
941036f2f6bSJohn McCall // overwrite 'size' with an all-ones value, which should cause
942036f2f6bSJohn McCall // operator new to throw.
943036f2f6bSJohn McCall if (hasOverflow)
944455f42c9SAaron Ballman size = CGF.Builder.CreateSelect(hasOverflow,
945455f42c9SAaron Ballman llvm::Constant::getAllOnesValue(CGF.SizeTy),
946036f2f6bSJohn McCall size);
947036f2f6bSJohn McCall }
948036f2f6bSJohn McCall
949036f2f6bSJohn McCall if (cookieSize == 0)
950036f2f6bSJohn McCall sizeWithoutCookie = size;
951036f2f6bSJohn McCall else
952036f2f6bSJohn McCall assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
953036f2f6bSJohn McCall
954036f2f6bSJohn McCall return size;
95559486a2dSAnders Carlsson }
95659486a2dSAnders Carlsson
StoreAnyExprIntoOneUnit(CodeGenFunction & CGF,const Expr * Init,QualType AllocType,Address NewPtr,AggValueSlot::Overlap_t MayOverlap)957f862eb6aSSebastian Redl static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
958e78fac51SRichard Smith QualType AllocType, Address NewPtr,
959e78fac51SRichard Smith AggValueSlot::Overlap_t MayOverlap) {
9601c96bc5dSRichard Smith // FIXME: Refactor with EmitExprAsInit.
96147fb9508SJohn McCall switch (CGF.getEvaluationKind(AllocType)) {
96247fb9508SJohn McCall case TEK_Scalar:
963a2c1124fSDavid Blaikie CGF.EmitScalarInit(Init, nullptr,
9647f416cc4SJohn McCall CGF.MakeAddrLValue(NewPtr, AllocType), false);
96547fb9508SJohn McCall return;
96647fb9508SJohn McCall case TEK_Complex:
9677f416cc4SJohn McCall CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
96847fb9508SJohn McCall /*isInit*/ true);
96947fb9508SJohn McCall return;
97047fb9508SJohn McCall case TEK_Aggregate: {
9717a626f63SJohn McCall AggValueSlot Slot
9727f416cc4SJohn McCall = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
9738d6fc958SJohn McCall AggValueSlot::IsDestructed,
97446759f4fSJohn McCall AggValueSlot::DoesNotNeedGCBarriers,
975e78fac51SRichard Smith AggValueSlot::IsNotAliased,
97637605182SSerge Pavlov MayOverlap, AggValueSlot::IsNotZeroed,
97737605182SSerge Pavlov AggValueSlot::IsSanitizerChecked);
9787a626f63SJohn McCall CGF.EmitAggExpr(Init, Slot);
97947fb9508SJohn McCall return;
9807a626f63SJohn McCall }
981d5202e09SFariborz Jahanian }
98247fb9508SJohn McCall llvm_unreachable("bad evaluation kind");
98347fb9508SJohn McCall }
984d5202e09SFariborz Jahanian
EmitNewArrayInitializer(const CXXNewExpr * E,QualType ElementType,llvm::Type * ElementTy,Address BeginPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)985fb901c7aSDavid Blaikie void CodeGenFunction::EmitNewArrayInitializer(
986fb901c7aSDavid Blaikie const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
9877f416cc4SJohn McCall Address BeginPtr, llvm::Value *NumElements,
98806a67e2cSRichard Smith llvm::Value *AllocSizeWithoutCookie) {
98906a67e2cSRichard Smith // If we have a type with trivial initialization and no initializer,
99006a67e2cSRichard Smith // there's nothing to do.
9916047f07eSSebastian Redl if (!E->hasInitializer())
99206a67e2cSRichard Smith return;
993b66b08efSFariborz Jahanian
9947f416cc4SJohn McCall Address CurPtr = BeginPtr;
995d5202e09SFariborz Jahanian
99606a67e2cSRichard Smith unsigned InitListElements = 0;
997f862eb6aSSebastian Redl
998f862eb6aSSebastian Redl const Expr *Init = E->getInitializer();
9997f416cc4SJohn McCall Address EndOfInit = Address::invalid();
100006a67e2cSRichard Smith QualType::DestructionKind DtorKind = ElementType.isDestructedType();
100106a67e2cSRichard Smith EHScopeStack::stable_iterator Cleanup;
100206a67e2cSRichard Smith llvm::Instruction *CleanupDominator = nullptr;
10031c96bc5dSRichard Smith
10047f416cc4SJohn McCall CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
10057f416cc4SJohn McCall CharUnits ElementAlign =
10067f416cc4SJohn McCall BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
10077f416cc4SJohn McCall
10080511d23aSRichard Smith // Attempt to perform zero-initialization using memset.
10090511d23aSRichard Smith auto TryMemsetInitialization = [&]() -> bool {
10100511d23aSRichard Smith // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
10110511d23aSRichard Smith // we can initialize with a memset to -1.
10120511d23aSRichard Smith if (!CGM.getTypes().isZeroInitializable(ElementType))
10130511d23aSRichard Smith return false;
10140511d23aSRichard Smith
10150511d23aSRichard Smith // Optimization: since zero initialization will just set the memory
10160511d23aSRichard Smith // to all zeroes, generate a single memset to do it in one shot.
10170511d23aSRichard Smith
10180511d23aSRichard Smith // Subtract out the size of any elements we've already initialized.
10190511d23aSRichard Smith auto *RemainingSize = AllocSizeWithoutCookie;
10200511d23aSRichard Smith if (InitListElements) {
10210511d23aSRichard Smith // We know this can't overflow; we check this when doing the allocation.
10220511d23aSRichard Smith auto *InitializedSize = llvm::ConstantInt::get(
10230511d23aSRichard Smith RemainingSize->getType(),
10240511d23aSRichard Smith getContext().getTypeSizeInChars(ElementType).getQuantity() *
10250511d23aSRichard Smith InitListElements);
10260511d23aSRichard Smith RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
10270511d23aSRichard Smith }
10280511d23aSRichard Smith
10290511d23aSRichard Smith // Create the memset.
10300511d23aSRichard Smith Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
10310511d23aSRichard Smith return true;
10320511d23aSRichard Smith };
10330511d23aSRichard Smith
1034f862eb6aSSebastian Redl // If the initializer is an initializer list, first do the explicit elements.
1035f862eb6aSSebastian Redl if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
10360511d23aSRichard Smith // Initializing from a (braced) string literal is a special case; the init
10370511d23aSRichard Smith // list element does not initialize a (single) array element.
10380511d23aSRichard Smith if (ILE->isStringLiteralInit()) {
10390511d23aSRichard Smith // Initialize the initial portion of length equal to that of the string
10400511d23aSRichard Smith // literal. The allocation must be for at least this much; we emitted a
10410511d23aSRichard Smith // check for that earlier.
10420511d23aSRichard Smith AggValueSlot Slot =
10430511d23aSRichard Smith AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
10440511d23aSRichard Smith AggValueSlot::IsDestructed,
10450511d23aSRichard Smith AggValueSlot::DoesNotNeedGCBarriers,
1046e78fac51SRichard Smith AggValueSlot::IsNotAliased,
104737605182SSerge Pavlov AggValueSlot::DoesNotOverlap,
104837605182SSerge Pavlov AggValueSlot::IsNotZeroed,
104937605182SSerge Pavlov AggValueSlot::IsSanitizerChecked);
10500511d23aSRichard Smith EmitAggExpr(ILE->getInit(0), Slot);
10510511d23aSRichard Smith
10520511d23aSRichard Smith // Move past these elements.
10530511d23aSRichard Smith InitListElements =
10540511d23aSRichard Smith cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
10550511d23aSRichard Smith ->getSize().getZExtValue();
1056bf2b5551SNikita Popov CurPtr = Builder.CreateConstInBoundsGEP(
1057bf2b5551SNikita Popov CurPtr, InitListElements, "string.init.end");
10580511d23aSRichard Smith
10590511d23aSRichard Smith // Zero out the rest, if any remain.
10600511d23aSRichard Smith llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
10610511d23aSRichard Smith if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
10620511d23aSRichard Smith bool OK = TryMemsetInitialization();
10630511d23aSRichard Smith (void)OK;
10640511d23aSRichard Smith assert(OK && "couldn't memset character type?");
10650511d23aSRichard Smith }
10660511d23aSRichard Smith return;
10670511d23aSRichard Smith }
10680511d23aSRichard Smith
106906a67e2cSRichard Smith InitListElements = ILE->getNumInits();
1070f62290a1SChad Rosier
10711c96bc5dSRichard Smith // If this is a multi-dimensional array new, we will initialize multiple
10721c96bc5dSRichard Smith // elements with each init list element.
10731c96bc5dSRichard Smith QualType AllocType = E->getAllocatedType();
10741c96bc5dSRichard Smith if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
10751c96bc5dSRichard Smith AllocType->getAsArrayTypeUnsafe())) {
1076fb901c7aSDavid Blaikie ElementTy = ConvertTypeForMem(AllocType);
10777f416cc4SJohn McCall CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
107806a67e2cSRichard Smith InitListElements *= getContext().getConstantArrayElementCount(CAT);
10791c96bc5dSRichard Smith }
10801c96bc5dSRichard Smith
108106a67e2cSRichard Smith // Enter a partial-destruction Cleanup if necessary.
108206a67e2cSRichard Smith if (needsEHCleanup(DtorKind)) {
108306a67e2cSRichard Smith // In principle we could tell the Cleanup where we are more
1084f62290a1SChad Rosier // directly, but the control flow can get so varied here that it
1085f62290a1SChad Rosier // would actually be quite complex. Therefore we go through an
1086f62290a1SChad Rosier // alloca.
10877f416cc4SJohn McCall EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
10887f416cc4SJohn McCall "array.init.end");
10897f416cc4SJohn McCall CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
10907f416cc4SJohn McCall pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
10917f416cc4SJohn McCall ElementType, ElementAlign,
109206a67e2cSRichard Smith getDestroyer(DtorKind));
109306a67e2cSRichard Smith Cleanup = EHStack.stable_begin();
1094f62290a1SChad Rosier }
1095f62290a1SChad Rosier
10967f416cc4SJohn McCall CharUnits StartAlign = CurPtr.getAlignment();
1097f862eb6aSSebastian Redl for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1098f62290a1SChad Rosier // Tell the cleanup that it needs to destroy up to this
1099f62290a1SChad Rosier // element. TODO: some of these stores can be trivially
1100f62290a1SChad Rosier // observed to be unnecessary.
11017f416cc4SJohn McCall if (EndOfInit.isValid()) {
11027f416cc4SJohn McCall auto FinishedPtr =
11037f416cc4SJohn McCall Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
11047f416cc4SJohn McCall Builder.CreateStore(FinishedPtr, EndOfInit);
11057f416cc4SJohn McCall }
110606a67e2cSRichard Smith // FIXME: If the last initializer is an incomplete initializer list for
110706a67e2cSRichard Smith // an array, and we have an array filler, we can fold together the two
110806a67e2cSRichard Smith // initialization loops.
11091c96bc5dSRichard Smith StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1110e78fac51SRichard Smith ILE->getInit(i)->getType(), CurPtr,
1111e78fac51SRichard Smith AggValueSlot::DoesNotOverlap);
111263cf2063SArthur Eubanks CurPtr = Address(Builder.CreateInBoundsGEP(
111363cf2063SArthur Eubanks CurPtr.getElementType(), CurPtr.getPointer(),
111463cf2063SArthur Eubanks Builder.getSize(1), "array.exp.next"),
111563cf2063SArthur Eubanks CurPtr.getElementType(),
11167f416cc4SJohn McCall StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1117f862eb6aSSebastian Redl }
1118f862eb6aSSebastian Redl
1119f862eb6aSSebastian Redl // The remaining elements are filled with the array filler expression.
1120f862eb6aSSebastian Redl Init = ILE->getArrayFiller();
11211c96bc5dSRichard Smith
112206a67e2cSRichard Smith // Extract the initializer for the individual array elements by pulling
112306a67e2cSRichard Smith // out the array filler from all the nested initializer lists. This avoids
112406a67e2cSRichard Smith // generating a nested loop for the initialization.
112506a67e2cSRichard Smith while (Init && Init->getType()->isConstantArrayType()) {
112606a67e2cSRichard Smith auto *SubILE = dyn_cast<InitListExpr>(Init);
112706a67e2cSRichard Smith if (!SubILE)
112806a67e2cSRichard Smith break;
112906a67e2cSRichard Smith assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
113006a67e2cSRichard Smith Init = SubILE->getArrayFiller();
1131f862eb6aSSebastian Redl }
1132f862eb6aSSebastian Redl
113306a67e2cSRichard Smith // Switch back to initializing one base element at a time.
1134481de0edSNikita Popov CurPtr = Builder.CreateElementBitCast(CurPtr, BeginPtr.getElementType());
1135f62290a1SChad Rosier }
1136e6c980c4SChandler Carruth
1137454a7cdfSRichard Smith // If all elements have already been initialized, skip any further
1138454a7cdfSRichard Smith // initialization.
1139454a7cdfSRichard Smith llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1140454a7cdfSRichard Smith if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1141454a7cdfSRichard Smith // If there was a Cleanup, deactivate it.
1142454a7cdfSRichard Smith if (CleanupDominator)
1143454a7cdfSRichard Smith DeactivateCleanupBlock(Cleanup, CleanupDominator);
1144454a7cdfSRichard Smith return;
1145454a7cdfSRichard Smith }
1146454a7cdfSRichard Smith
1147454a7cdfSRichard Smith assert(Init && "have trailing elements to initialize but no initializer");
1148454a7cdfSRichard Smith
114906a67e2cSRichard Smith // If this is a constructor call, try to optimize it out, and failing that
115006a67e2cSRichard Smith // emit a single loop to initialize all remaining elements.
1151454a7cdfSRichard Smith if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
11526047f07eSSebastian Redl CXXConstructorDecl *Ctor = CCE->getConstructor();
1153d153103cSDouglas Gregor if (Ctor->isTrivial()) {
115405fc5be3SDouglas Gregor // If new expression did not specify value-initialization, then there
115505fc5be3SDouglas Gregor // is no initialization.
11566047f07eSSebastian Redl if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
115705fc5be3SDouglas Gregor return;
115805fc5be3SDouglas Gregor
115906a67e2cSRichard Smith if (TryMemsetInitialization())
11603a202f60SAnders Carlsson return;
11613a202f60SAnders Carlsson }
116205fc5be3SDouglas Gregor
116306a67e2cSRichard Smith // Store the new Cleanup position for irregular Cleanups.
116406a67e2cSRichard Smith //
116506a67e2cSRichard Smith // FIXME: Share this cleanup with the constructor call emission rather than
116606a67e2cSRichard Smith // having it create a cleanup of its own.
11677f416cc4SJohn McCall if (EndOfInit.isValid())
11687f416cc4SJohn McCall Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
116906a67e2cSRichard Smith
117006a67e2cSRichard Smith // Emit a constructor call loop to initialize the remaining elements.
117106a67e2cSRichard Smith if (InitListElements)
117206a67e2cSRichard Smith NumElements = Builder.CreateSub(
117306a67e2cSRichard Smith NumElements,
117406a67e2cSRichard Smith llvm::ConstantInt::get(NumElements->getType(), InitListElements));
117570b9c01bSAlexey Samsonov EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
117637605182SSerge Pavlov /*NewPointerIsChecked*/true,
117748ddcf2cSEli Friedman CCE->requiresZeroInitialization());
117805fc5be3SDouglas Gregor return;
11796047f07eSSebastian Redl }
118006a67e2cSRichard Smith
118106a67e2cSRichard Smith // If this is value-initialization, we can usually use memset.
118206a67e2cSRichard Smith ImplicitValueInitExpr IVIE(ElementType);
1183454a7cdfSRichard Smith if (isa<ImplicitValueInitExpr>(Init)) {
118406a67e2cSRichard Smith if (TryMemsetInitialization())
118506a67e2cSRichard Smith return;
118606a67e2cSRichard Smith
118706a67e2cSRichard Smith // Switch to an ImplicitValueInitExpr for the element type. This handles
118806a67e2cSRichard Smith // only one case: multidimensional array new of pointers to members. In
118906a67e2cSRichard Smith // all other cases, we already have an initializer for the array element.
119006a67e2cSRichard Smith Init = &IVIE;
119106a67e2cSRichard Smith }
119206a67e2cSRichard Smith
119306a67e2cSRichard Smith // At this point we should have found an initializer for the individual
119406a67e2cSRichard Smith // elements of the array.
119506a67e2cSRichard Smith assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
119606a67e2cSRichard Smith "got wrong type of element to initialize");
119706a67e2cSRichard Smith
1198454a7cdfSRichard Smith // If we have an empty initializer list, we can usually use memset.
1199454a7cdfSRichard Smith if (auto *ILE = dyn_cast<InitListExpr>(Init))
1200454a7cdfSRichard Smith if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1201d5202e09SFariborz Jahanian return;
120259486a2dSAnders Carlsson
1203cb77930dSYunzhong Gao // If we have a struct whose every field is value-initialized, we can
1204cb77930dSYunzhong Gao // usually use memset.
1205cb77930dSYunzhong Gao if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1206cb77930dSYunzhong Gao if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1207cb77930dSYunzhong Gao if (RType->getDecl()->isStruct()) {
1208872307e2SRichard Smith unsigned NumElements = 0;
1209872307e2SRichard Smith if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1210872307e2SRichard Smith NumElements = CXXRD->getNumBases();
1211cb77930dSYunzhong Gao for (auto *Field : RType->getDecl()->fields())
1212cb77930dSYunzhong Gao if (!Field->isUnnamedBitfield())
1213872307e2SRichard Smith ++NumElements;
1214872307e2SRichard Smith // FIXME: Recurse into nested InitListExprs.
1215872307e2SRichard Smith if (ILE->getNumInits() == NumElements)
1216cb77930dSYunzhong Gao for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1217cb77930dSYunzhong Gao if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1218872307e2SRichard Smith --NumElements;
1219872307e2SRichard Smith if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1220cb77930dSYunzhong Gao return;
1221cb77930dSYunzhong Gao }
1222cb77930dSYunzhong Gao }
1223cb77930dSYunzhong Gao }
1224cb77930dSYunzhong Gao
122506a67e2cSRichard Smith // Create the loop blocks.
122606a67e2cSRichard Smith llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
122706a67e2cSRichard Smith llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
122806a67e2cSRichard Smith llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
122959486a2dSAnders Carlsson
123006a67e2cSRichard Smith // Find the end of the array, hoisted out of the loop.
123106a67e2cSRichard Smith llvm::Value *EndPtr =
123242eb658fSNikita Popov Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
123342eb658fSNikita Popov NumElements, "array.end");
123406a67e2cSRichard Smith
123506a67e2cSRichard Smith // If the number of elements isn't constant, we have to now check if there is
123606a67e2cSRichard Smith // anything left to initialize.
123706a67e2cSRichard Smith if (!ConstNum) {
12387f416cc4SJohn McCall llvm::Value *IsEmpty =
12397f416cc4SJohn McCall Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
124006a67e2cSRichard Smith Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
124106a67e2cSRichard Smith }
124206a67e2cSRichard Smith
124306a67e2cSRichard Smith // Enter the loop.
124406a67e2cSRichard Smith EmitBlock(LoopBB);
124506a67e2cSRichard Smith
124606a67e2cSRichard Smith // Set up the current-element phi.
124706a67e2cSRichard Smith llvm::PHINode *CurPtrPhi =
12487f416cc4SJohn McCall Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
12497f416cc4SJohn McCall CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
12507f416cc4SJohn McCall
125150650766SNikita Popov CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
125206a67e2cSRichard Smith
125306a67e2cSRichard Smith // Store the new Cleanup position for irregular Cleanups.
12547f416cc4SJohn McCall if (EndOfInit.isValid())
12557f416cc4SJohn McCall Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
125606a67e2cSRichard Smith
125706a67e2cSRichard Smith // Enter a partial-destruction Cleanup if necessary.
125806a67e2cSRichard Smith if (!CleanupDominator && needsEHCleanup(DtorKind)) {
12597f416cc4SJohn McCall pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
12607f416cc4SJohn McCall ElementType, ElementAlign,
126106a67e2cSRichard Smith getDestroyer(DtorKind));
126206a67e2cSRichard Smith Cleanup = EHStack.stable_begin();
126306a67e2cSRichard Smith CleanupDominator = Builder.CreateUnreachable();
126406a67e2cSRichard Smith }
126506a67e2cSRichard Smith
126606a67e2cSRichard Smith // Emit the initializer into this element.
1267e78fac51SRichard Smith StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1268e78fac51SRichard Smith AggValueSlot::DoesNotOverlap);
126906a67e2cSRichard Smith
127006a67e2cSRichard Smith // Leave the Cleanup if we entered one.
127106a67e2cSRichard Smith if (CleanupDominator) {
127206a67e2cSRichard Smith DeactivateCleanupBlock(Cleanup, CleanupDominator);
127306a67e2cSRichard Smith CleanupDominator->eraseFromParent();
127406a67e2cSRichard Smith }
127506a67e2cSRichard Smith
127606a67e2cSRichard Smith // Advance to the next element by adjusting the pointer type as necessary.
127706a67e2cSRichard Smith llvm::Value *NextPtr =
12787f416cc4SJohn McCall Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
12797f416cc4SJohn McCall "array.next");
128006a67e2cSRichard Smith
128106a67e2cSRichard Smith // Check whether we've gotten to the end of the array and, if so,
128206a67e2cSRichard Smith // exit the loop.
128306a67e2cSRichard Smith llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
128406a67e2cSRichard Smith Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
128506a67e2cSRichard Smith CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
128606a67e2cSRichard Smith
128706a67e2cSRichard Smith EmitBlock(ContBB);
128806a67e2cSRichard Smith }
128906a67e2cSRichard Smith
EmitNewInitializer(CodeGenFunction & CGF,const CXXNewExpr * E,QualType ElementType,llvm::Type * ElementTy,Address NewPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)129006a67e2cSRichard Smith static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1291fb901c7aSDavid Blaikie QualType ElementType, llvm::Type *ElementTy,
12927f416cc4SJohn McCall Address NewPtr, llvm::Value *NumElements,
129306a67e2cSRichard Smith llvm::Value *AllocSizeWithoutCookie) {
12949b479666SDavid Blaikie ApplyDebugLocation DL(CGF, E);
129506a67e2cSRichard Smith if (E->isArray())
1296fb901c7aSDavid Blaikie CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
129706a67e2cSRichard Smith AllocSizeWithoutCookie);
129806a67e2cSRichard Smith else if (const Expr *Init = E->getInitializer())
1299e78fac51SRichard Smith StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1300e78fac51SRichard Smith AggValueSlot::DoesNotOverlap);
130159486a2dSAnders Carlsson }
130259486a2dSAnders Carlsson
13038d0dc31dSRichard Smith /// Emit a call to an operator new or operator delete function, as implicitly
13048d0dc31dSRichard Smith /// created by new-expressions and delete-expressions.
EmitNewDeleteCall(CodeGenFunction & CGF,const FunctionDecl * CalleeDecl,const FunctionProtoType * CalleeType,const CallArgList & Args)13058d0dc31dSRichard Smith static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1306b92ab1afSJohn McCall const FunctionDecl *CalleeDecl,
13078d0dc31dSRichard Smith const FunctionProtoType *CalleeType,
13088d0dc31dSRichard Smith const CallArgList &Args) {
13093933adddSJames Y Knight llvm::CallBase *CallOrInvoke;
1310b92ab1afSJohn McCall llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1311de6480a3SErich Keane CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
13128d0dc31dSRichard Smith RValue RV =
1313f770683fSPeter Collingbourne CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
131449a3ad21SRui Ueyama Args, CalleeType, /*ChainCall=*/false),
1315b92ab1afSJohn McCall Callee, ReturnValueSlot(), Args, &CallOrInvoke);
13168d0dc31dSRichard Smith
13178d0dc31dSRichard Smith /// C++1y [expr.new]p10:
13188d0dc31dSRichard Smith /// [In a new-expression,] an implementation is allowed to omit a call
13198d0dc31dSRichard Smith /// to a replaceable global allocation function.
13208d0dc31dSRichard Smith ///
13218d0dc31dSRichard Smith /// We model such elidable calls with the 'builtin' attribute.
1322b92ab1afSJohn McCall llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1323b92ab1afSJohn McCall if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
13246956d587SRafael Espindola Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
13253f4d00bcSArthur Eubanks CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
13268d0dc31dSRichard Smith }
13278d0dc31dSRichard Smith
13288d0dc31dSRichard Smith return RV;
13298d0dc31dSRichard Smith }
13308d0dc31dSRichard Smith
EmitBuiltinNewDeleteCall(const FunctionProtoType * Type,const CallExpr * TheCall,bool IsDelete)1331760520bcSRichard Smith RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1332fa752f23SEric Fiselier const CallExpr *TheCall,
1333760520bcSRichard Smith bool IsDelete) {
1334760520bcSRichard Smith CallArgList Args;
1335d7098ff2SReid Kleckner EmitCallArgs(Args, Type, TheCall->arguments());
1336760520bcSRichard Smith // Find the allocation or deallocation function that we're calling.
1337760520bcSRichard Smith ASTContext &Ctx = getContext();
1338760520bcSRichard Smith DeclarationName Name = Ctx.DeclarationNames
1339760520bcSRichard Smith .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1340fa752f23SEric Fiselier
1341760520bcSRichard Smith for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1342599bed75SRichard Smith if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1343599bed75SRichard Smith if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1344fa752f23SEric Fiselier return EmitNewDeleteCall(*this, FD, Type, Args);
1345760520bcSRichard Smith llvm_unreachable("predeclared global operator new/delete is missing");
1346760520bcSRichard Smith }
1347760520bcSRichard Smith
13485b34958bSRichard Smith namespace {
13495b34958bSRichard Smith /// The parameters to pass to a usual operator delete.
13505b34958bSRichard Smith struct UsualDeleteParams {
13515b34958bSRichard Smith bool DestroyingDelete = false;
13525b34958bSRichard Smith bool Size = false;
13535b34958bSRichard Smith bool Alignment = false;
13545b34958bSRichard Smith };
13555b34958bSRichard Smith }
13565b34958bSRichard Smith
getUsualDeleteParams(const FunctionDecl * FD)13575b34958bSRichard Smith static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
13585b34958bSRichard Smith UsualDeleteParams Params;
13595b34958bSRichard Smith
13605b34958bSRichard Smith const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1361b2f0f057SRichard Smith auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1362e9abe648SDaniel Jasper
1363b2f0f057SRichard Smith // The first argument is always a void*.
1364b2f0f057SRichard Smith ++AI;
1365b2f0f057SRichard Smith
13665b34958bSRichard Smith // The next parameter may be a std::destroying_delete_t.
13675b34958bSRichard Smith if (FD->isDestroyingOperatorDelete()) {
13685b34958bSRichard Smith Params.DestroyingDelete = true;
13695b34958bSRichard Smith assert(AI != AE);
13705b34958bSRichard Smith ++AI;
13715b34958bSRichard Smith }
1372b2f0f057SRichard Smith
13735b34958bSRichard Smith // Figure out what other parameters we should be implicitly passing.
1374b2f0f057SRichard Smith if (AI != AE && (*AI)->isIntegerType()) {
13755b34958bSRichard Smith Params.Size = true;
1376b2f0f057SRichard Smith ++AI;
1377b2f0f057SRichard Smith }
1378b2f0f057SRichard Smith
1379b2f0f057SRichard Smith if (AI != AE && (*AI)->isAlignValT()) {
13805b34958bSRichard Smith Params.Alignment = true;
1381b2f0f057SRichard Smith ++AI;
1382b2f0f057SRichard Smith }
1383b2f0f057SRichard Smith
1384b2f0f057SRichard Smith assert(AI == AE && "unexpected usual deallocation function parameter");
13855b34958bSRichard Smith return Params;
1386b2f0f057SRichard Smith }
1387b2f0f057SRichard Smith
1388b2f0f057SRichard Smith namespace {
1389b2f0f057SRichard Smith /// A cleanup to call the given 'operator delete' function upon abnormal
1390b2f0f057SRichard Smith /// exit from a new expression. Templated on a traits type that deals with
1391b2f0f057SRichard Smith /// ensuring that the arguments dominate the cleanup if necessary.
1392b2f0f057SRichard Smith template<typename Traits>
1393b2f0f057SRichard Smith class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1394b2f0f057SRichard Smith /// Type used to hold llvm::Value*s.
1395b2f0f057SRichard Smith typedef typename Traits::ValueTy ValueTy;
1396b2f0f057SRichard Smith /// Type used to hold RValues.
1397b2f0f057SRichard Smith typedef typename Traits::RValueTy RValueTy;
1398b2f0f057SRichard Smith struct PlacementArg {
1399b2f0f057SRichard Smith RValueTy ArgValue;
1400b2f0f057SRichard Smith QualType ArgType;
1401b2f0f057SRichard Smith };
1402b2f0f057SRichard Smith
1403b2f0f057SRichard Smith unsigned NumPlacementArgs : 31;
1404b2f0f057SRichard Smith unsigned PassAlignmentToPlacementDelete : 1;
1405b2f0f057SRichard Smith const FunctionDecl *OperatorDelete;
1406b2f0f057SRichard Smith ValueTy Ptr;
1407b2f0f057SRichard Smith ValueTy AllocSize;
1408b2f0f057SRichard Smith CharUnits AllocAlign;
1409b2f0f057SRichard Smith
getPlacementArgs()1410b2f0f057SRichard Smith PlacementArg *getPlacementArgs() {
1411b2f0f057SRichard Smith return reinterpret_cast<PlacementArg *>(this + 1);
1412b2f0f057SRichard Smith }
1413e9abe648SDaniel Jasper
1414e9abe648SDaniel Jasper public:
getExtraSize(size_t NumPlacementArgs)1415e9abe648SDaniel Jasper static size_t getExtraSize(size_t NumPlacementArgs) {
1416b2f0f057SRichard Smith return NumPlacementArgs * sizeof(PlacementArg);
1417e9abe648SDaniel Jasper }
1418e9abe648SDaniel Jasper
CallDeleteDuringNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,ValueTy Ptr,ValueTy AllocSize,bool PassAlignmentToPlacementDelete,CharUnits AllocAlign)1419e9abe648SDaniel Jasper CallDeleteDuringNew(size_t NumPlacementArgs,
1420b2f0f057SRichard Smith const FunctionDecl *OperatorDelete, ValueTy Ptr,
1421b2f0f057SRichard Smith ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1422b2f0f057SRichard Smith CharUnits AllocAlign)
1423b2f0f057SRichard Smith : NumPlacementArgs(NumPlacementArgs),
1424b2f0f057SRichard Smith PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1425b2f0f057SRichard Smith OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1426b2f0f057SRichard Smith AllocAlign(AllocAlign) {}
1427e9abe648SDaniel Jasper
setPlacementArg(unsigned I,RValueTy Arg,QualType Type)1428b2f0f057SRichard Smith void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1429e9abe648SDaniel Jasper assert(I < NumPlacementArgs && "index out of range");
1430b2f0f057SRichard Smith getPlacementArgs()[I] = {Arg, Type};
1431e9abe648SDaniel Jasper }
1432e9abe648SDaniel Jasper
Emit(CodeGenFunction & CGF,Flags flags)1433e9abe648SDaniel Jasper void Emit(CodeGenFunction &CGF, Flags flags) override {
143416c53ffcSSimon Pilgrim const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1435e9abe648SDaniel Jasper CallArgList DeleteArgs;
1436824c2f53SJohn McCall
14375b34958bSRichard Smith // The first argument is always a void* (or C* for a destroying operator
14385b34958bSRichard Smith // delete for class type C).
1439b2f0f057SRichard Smith DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1440189e52fcSRichard Smith
1441b2f0f057SRichard Smith // Figure out what other parameters we should be implicitly passing.
14425b34958bSRichard Smith UsualDeleteParams Params;
1443b2f0f057SRichard Smith if (NumPlacementArgs) {
1444b2f0f057SRichard Smith // A placement deallocation function is implicitly passed an alignment
1445b2f0f057SRichard Smith // if the placement allocation function was, but is never passed a size.
14465b34958bSRichard Smith Params.Alignment = PassAlignmentToPlacementDelete;
1447b2f0f057SRichard Smith } else {
1448b2f0f057SRichard Smith // For a non-placement new-expression, 'operator delete' can take a
1449b2f0f057SRichard Smith // size and/or an alignment if it has the right parameters.
14505b34958bSRichard Smith Params = getUsualDeleteParams(OperatorDelete);
1451189e52fcSRichard Smith }
1452824c2f53SJohn McCall
14535b34958bSRichard Smith assert(!Params.DestroyingDelete &&
14545b34958bSRichard Smith "should not call destroying delete in a new-expression");
14555b34958bSRichard Smith
1456b2f0f057SRichard Smith // The second argument can be a std::size_t (for non-placement delete).
14575b34958bSRichard Smith if (Params.Size)
1458b2f0f057SRichard Smith DeleteArgs.add(Traits::get(CGF, AllocSize),
1459b2f0f057SRichard Smith CGF.getContext().getSizeType());
1460824c2f53SJohn McCall
1461b2f0f057SRichard Smith // The next (second or third) argument can be a std::align_val_t, which
1462b2f0f057SRichard Smith // is an enum whose underlying type is std::size_t.
1463b2f0f057SRichard Smith // FIXME: Use the right type as the parameter type. Note that in a call
1464b2f0f057SRichard Smith // to operator delete(size_t, ...), we may not have it available.
14655b34958bSRichard Smith if (Params.Alignment)
1466b2f0f057SRichard Smith DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1467b2f0f057SRichard Smith CGF.SizeTy, AllocAlign.getQuantity())),
1468b2f0f057SRichard Smith CGF.getContext().getSizeType());
14697f9c92a9SJohn McCall
14707f9c92a9SJohn McCall // Pass the rest of the arguments, which must match exactly.
14717f9c92a9SJohn McCall for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1472b2f0f057SRichard Smith auto Arg = getPlacementArgs()[I];
1473b2f0f057SRichard Smith DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
14747f9c92a9SJohn McCall }
14757f9c92a9SJohn McCall
14767f9c92a9SJohn McCall // Call 'operator delete'.
14778d0dc31dSRichard Smith EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
14787f9c92a9SJohn McCall }
14797f9c92a9SJohn McCall };
1480ab9db510SAlexander Kornienko }
14817f9c92a9SJohn McCall
14827f9c92a9SJohn McCall /// Enter a cleanup to call 'operator delete' if the initializer in a
14837f9c92a9SJohn McCall /// new-expression throws.
EnterNewDeleteCleanup(CodeGenFunction & CGF,const CXXNewExpr * E,Address NewPtr,llvm::Value * AllocSize,CharUnits AllocAlign,const CallArgList & NewArgs)14847f9c92a9SJohn McCall static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
14857f9c92a9SJohn McCall const CXXNewExpr *E,
14867f416cc4SJohn McCall Address NewPtr,
14877f9c92a9SJohn McCall llvm::Value *AllocSize,
1488b2f0f057SRichard Smith CharUnits AllocAlign,
14897f9c92a9SJohn McCall const CallArgList &NewArgs) {
1490b2f0f057SRichard Smith unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1491b2f0f057SRichard Smith
14927f9c92a9SJohn McCall // If we're not inside a conditional branch, then the cleanup will
14937f9c92a9SJohn McCall // dominate and we can do the easier (and more efficient) thing.
14947f9c92a9SJohn McCall if (!CGF.isInConditionalBranch()) {
1495b2f0f057SRichard Smith struct DirectCleanupTraits {
1496b2f0f057SRichard Smith typedef llvm::Value *ValueTy;
1497b2f0f057SRichard Smith typedef RValue RValueTy;
1498b2f0f057SRichard Smith static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1499b2f0f057SRichard Smith static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1500b2f0f057SRichard Smith };
1501b2f0f057SRichard Smith
1502b2f0f057SRichard Smith typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1503b2f0f057SRichard Smith
1504b2f0f057SRichard Smith DirectCleanup *Cleanup = CGF.EHStack
1505b2f0f057SRichard Smith .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
15067f9c92a9SJohn McCall E->getNumPlacementArgs(),
15077f9c92a9SJohn McCall E->getOperatorDelete(),
15087f416cc4SJohn McCall NewPtr.getPointer(),
1509b2f0f057SRichard Smith AllocSize,
1510b2f0f057SRichard Smith E->passAlignment(),
1511b2f0f057SRichard Smith AllocAlign);
1512b2f0f057SRichard Smith for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1513b2f0f057SRichard Smith auto &Arg = NewArgs[I + NumNonPlacementArgs];
15145b330e8dSYaxun Liu Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1515b2f0f057SRichard Smith }
15167f9c92a9SJohn McCall
15177f9c92a9SJohn McCall return;
15187f9c92a9SJohn McCall }
15197f9c92a9SJohn McCall
15207f9c92a9SJohn McCall // Otherwise, we need to save all this stuff.
1521cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedNewPtr =
15227f416cc4SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1523cb5f77f0SJohn McCall DominatingValue<RValue>::saved_type SavedAllocSize =
1524cb5f77f0SJohn McCall DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
15257f9c92a9SJohn McCall
1526b2f0f057SRichard Smith struct ConditionalCleanupTraits {
1527b2f0f057SRichard Smith typedef DominatingValue<RValue>::saved_type ValueTy;
1528b2f0f057SRichard Smith typedef DominatingValue<RValue>::saved_type RValueTy;
1529b2f0f057SRichard Smith static RValue get(CodeGenFunction &CGF, ValueTy V) {
1530b2f0f057SRichard Smith return V.restore(CGF);
1531b2f0f057SRichard Smith }
1532b2f0f057SRichard Smith };
1533b2f0f057SRichard Smith typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1534b2f0f057SRichard Smith
1535b2f0f057SRichard Smith ConditionalCleanup *Cleanup = CGF.EHStack
1536b2f0f057SRichard Smith .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
15377f9c92a9SJohn McCall E->getNumPlacementArgs(),
15387f9c92a9SJohn McCall E->getOperatorDelete(),
15397f9c92a9SJohn McCall SavedNewPtr,
1540b2f0f057SRichard Smith SavedAllocSize,
1541b2f0f057SRichard Smith E->passAlignment(),
1542b2f0f057SRichard Smith AllocAlign);
1543b2f0f057SRichard Smith for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1544b2f0f057SRichard Smith auto &Arg = NewArgs[I + NumNonPlacementArgs];
15455b330e8dSYaxun Liu Cleanup->setPlacementArg(
15465b330e8dSYaxun Liu I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1547b2f0f057SRichard Smith }
15487f9c92a9SJohn McCall
1549f4beacd0SJohn McCall CGF.initFullExprCleanup();
1550824c2f53SJohn McCall }
1551824c2f53SJohn McCall
EmitCXXNewExpr(const CXXNewExpr * E)155259486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
155375f9498aSJohn McCall // The element type being allocated.
155475f9498aSJohn McCall QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
15558ed55a54SJohn McCall
155675f9498aSJohn McCall // 1. Build a call to the allocation function.
155775f9498aSJohn McCall FunctionDecl *allocator = E->getOperatorNew();
155859486a2dSAnders Carlsson
1559f862eb6aSSebastian Redl // If there is a brace-initializer, cannot allocate fewer elements than inits.
1560f862eb6aSSebastian Redl unsigned minElements = 0;
1561f862eb6aSSebastian Redl if (E->isArray() && E->hasInitializer()) {
15620511d23aSRichard Smith const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
15630511d23aSRichard Smith if (ILE && ILE->isStringLiteralInit())
15640511d23aSRichard Smith minElements =
15650511d23aSRichard Smith cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
15660511d23aSRichard Smith ->getSize().getZExtValue();
15670511d23aSRichard Smith else if (ILE)
1568f862eb6aSSebastian Redl minElements = ILE->getNumInits();
1569f862eb6aSSebastian Redl }
1570f862eb6aSSebastian Redl
15718a13c418SCraig Topper llvm::Value *numElements = nullptr;
15728a13c418SCraig Topper llvm::Value *allocSizeWithoutCookie = nullptr;
157375f9498aSJohn McCall llvm::Value *allocSize =
1574f862eb6aSSebastian Redl EmitCXXNewAllocSize(*this, E, minElements, numElements,
1575f862eb6aSSebastian Redl allocSizeWithoutCookie);
1576*93a8225dSDaniel Bertalan CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
157759486a2dSAnders Carlsson
15787f416cc4SJohn McCall // Emit the allocation call. If the allocator is a global placement
15797f416cc4SJohn McCall // operator, just "inline" it directly.
15807f416cc4SJohn McCall Address allocation = Address::invalid();
15817f416cc4SJohn McCall CallArgList allocatorArgs;
15827f416cc4SJohn McCall if (allocator->isReservedGlobalPlacementOperator()) {
158353dcf94dSJohn McCall assert(E->getNumPlacementArgs() == 1);
158453dcf94dSJohn McCall const Expr *arg = *E->placement_arguments().begin();
158553dcf94dSJohn McCall
15868f248234SKrzysztof Parzyszek LValueBaseInfo BaseInfo;
15878f248234SKrzysztof Parzyszek allocation = EmitPointerWithAlignment(arg, &BaseInfo);
15887f416cc4SJohn McCall
15897f416cc4SJohn McCall // The pointer expression will, in many cases, be an opaque void*.
15907f416cc4SJohn McCall // In these cases, discard the computed alignment and use the
15917f416cc4SJohn McCall // formal alignment of the allocated type.
15928f248234SKrzysztof Parzyszek if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1593e751d978SNikita Popov allocation = allocation.withAlignment(allocAlign);
15947f416cc4SJohn McCall
159553dcf94dSJohn McCall // Set up allocatorArgs for the call to operator delete if it's not
159653dcf94dSJohn McCall // the reserved global operator.
159753dcf94dSJohn McCall if (E->getOperatorDelete() &&
159853dcf94dSJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
159953dcf94dSJohn McCall allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
160053dcf94dSJohn McCall allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
160153dcf94dSJohn McCall }
160253dcf94dSJohn McCall
16037f416cc4SJohn McCall } else {
16047f416cc4SJohn McCall const FunctionProtoType *allocatorType =
16057f416cc4SJohn McCall allocator->getType()->castAs<FunctionProtoType>();
1606b2f0f057SRichard Smith unsigned ParamsToSkip = 0;
16077f416cc4SJohn McCall
16087f416cc4SJohn McCall // The allocation size is the first argument.
16097f416cc4SJohn McCall QualType sizeType = getContext().getSizeType();
161043dca6a8SEli Friedman allocatorArgs.add(RValue::get(allocSize), sizeType);
1611b2f0f057SRichard Smith ++ParamsToSkip;
161259486a2dSAnders Carlsson
1613b2f0f057SRichard Smith if (allocSize != allocSizeWithoutCookie) {
1614b2f0f057SRichard Smith CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1615b2f0f057SRichard Smith allocAlign = std::max(allocAlign, cookieAlign);
1616b2f0f057SRichard Smith }
1617b2f0f057SRichard Smith
1618b2f0f057SRichard Smith // The allocation alignment may be passed as the second argument.
1619b2f0f057SRichard Smith if (E->passAlignment()) {
1620b2f0f057SRichard Smith QualType AlignValT = sizeType;
1621b2f0f057SRichard Smith if (allocatorType->getNumParams() > 1) {
1622b2f0f057SRichard Smith AlignValT = allocatorType->getParamType(1);
1623b2f0f057SRichard Smith assert(getContext().hasSameUnqualifiedType(
1624b2f0f057SRichard Smith AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1625b2f0f057SRichard Smith sizeType) &&
1626b2f0f057SRichard Smith "wrong type for alignment parameter");
1627b2f0f057SRichard Smith ++ParamsToSkip;
1628b2f0f057SRichard Smith } else {
1629b2f0f057SRichard Smith // Corner case, passing alignment to 'operator new(size_t, ...)'.
1630b2f0f057SRichard Smith assert(allocator->isVariadic() && "can't pass alignment to allocator");
1631b2f0f057SRichard Smith }
1632b2f0f057SRichard Smith allocatorArgs.add(
1633b2f0f057SRichard Smith RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1634b2f0f057SRichard Smith AlignValT);
1635b2f0f057SRichard Smith }
1636b2f0f057SRichard Smith
1637b2f0f057SRichard Smith // FIXME: Why do we not pass a CalleeDecl here?
1638f05779e2SDavid Blaikie EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1639ed00ea08SVedant Kumar /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
164059486a2dSAnders Carlsson
16417f416cc4SJohn McCall RValue RV =
16427f416cc4SJohn McCall EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
16437f416cc4SJohn McCall
1644ce7d3e1cSArthur Eubanks // Set !heapallocsite metadata on the call to operator new.
1645bc387938SArthur Eubanks if (getDebugInfo())
1646ce7d3e1cSArthur Eubanks if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1647ce7d3e1cSArthur Eubanks getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1648ce7d3e1cSArthur Eubanks E->getExprLoc());
1649ce7d3e1cSArthur Eubanks
1650b2f0f057SRichard Smith // If this was a call to a global replaceable allocation function that does
1651b2f0f057SRichard Smith // not take an alignment argument, the allocator is known to produce
1652b2f0f057SRichard Smith // storage that's suitably aligned for any object that fits, up to a known
1653b2f0f057SRichard Smith // threshold. Otherwise assume it's suitably aligned for the allocated type.
1654b2f0f057SRichard Smith CharUnits allocationAlign = allocAlign;
1655b2f0f057SRichard Smith if (!E->passAlignment() &&
1656b2f0f057SRichard Smith allocator->isReplaceableGlobalAllocationFunction()) {
1657b2f0f057SRichard Smith unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1658b2f0f057SRichard Smith Target.getNewAlign(), getContext().getTypeSize(allocType)));
1659b2f0f057SRichard Smith allocationAlign = std::max(
1660b2f0f057SRichard Smith allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
16617f416cc4SJohn McCall }
16627f416cc4SJohn McCall
1663e751d978SNikita Popov allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
16647ec4b434SJohn McCall }
166559486a2dSAnders Carlsson
166675f9498aSJohn McCall // Emit a null check on the allocation result if the allocation
166775f9498aSJohn McCall // function is allowed to return null (because it has a non-throwing
1668902a0238SRichard Smith // exception spec or is the reserved placement new) and we have an
16692f72a752SRichard Smith // interesting initializer will be running sanitizers on the initialization.
16709b6dfac5SBruno Ricci bool nullCheck = E->shouldNullCheckAllocation() &&
16712f72a752SRichard Smith (!allocType.isPODType(getContext()) || E->hasInitializer() ||
16722f72a752SRichard Smith sanitizePerformTypeCheck());
167359486a2dSAnders Carlsson
16748a13c418SCraig Topper llvm::BasicBlock *nullCheckBB = nullptr;
16758a13c418SCraig Topper llvm::BasicBlock *contBB = nullptr;
167659486a2dSAnders Carlsson
1677f7dcf320SJohn McCall // The null-check means that the initializer is conditionally
1678f7dcf320SJohn McCall // evaluated.
1679f7dcf320SJohn McCall ConditionalEvaluation conditional(*this);
1680f7dcf320SJohn McCall
168175f9498aSJohn McCall if (nullCheck) {
1682f7dcf320SJohn McCall conditional.begin(*this);
168375f9498aSJohn McCall
168475f9498aSJohn McCall nullCheckBB = Builder.GetInsertBlock();
168575f9498aSJohn McCall llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
168675f9498aSJohn McCall contBB = createBasicBlock("new.cont");
168775f9498aSJohn McCall
16887f416cc4SJohn McCall llvm::Value *isNull =
16897f416cc4SJohn McCall Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
169075f9498aSJohn McCall Builder.CreateCondBr(isNull, contBB, notNullBB);
169175f9498aSJohn McCall EmitBlock(notNullBB);
169259486a2dSAnders Carlsson }
169359486a2dSAnders Carlsson
1694824c2f53SJohn McCall // If there's an operator delete, enter a cleanup to call it if an
1695824c2f53SJohn McCall // exception is thrown.
169675f9498aSJohn McCall EHScopeStack::stable_iterator operatorDeleteCleanup;
16978a13c418SCraig Topper llvm::Instruction *cleanupDominator = nullptr;
16987ec4b434SJohn McCall if (E->getOperatorDelete() &&
16997ec4b434SJohn McCall !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1700b2f0f057SRichard Smith EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1701b2f0f057SRichard Smith allocatorArgs);
170275f9498aSJohn McCall operatorDeleteCleanup = EHStack.stable_begin();
1703f4beacd0SJohn McCall cleanupDominator = Builder.CreateUnreachable();
1704824c2f53SJohn McCall }
1705824c2f53SJohn McCall
1706cf9b1f65SEli Friedman assert((allocSize == allocSizeWithoutCookie) ==
1707cf9b1f65SEli Friedman CalculateCookiePadding(*this, E).isZero());
1708cf9b1f65SEli Friedman if (allocSize != allocSizeWithoutCookie) {
1709cf9b1f65SEli Friedman assert(E->isArray());
1710cf9b1f65SEli Friedman allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1711cf9b1f65SEli Friedman numElements,
1712cf9b1f65SEli Friedman E, allocType);
1713cf9b1f65SEli Friedman }
1714cf9b1f65SEli Friedman
1715fb901c7aSDavid Blaikie llvm::Type *elementTy = ConvertTypeForMem(allocType);
17167f416cc4SJohn McCall Address result = Builder.CreateElementBitCast(allocation, elementTy);
1717824c2f53SJohn McCall
17185dde8094SPiotr Padlewski // Passing pointer through launder.invariant.group to avoid propagation of
1719338c9d0aSPiotr Padlewski // vptrs information which may be included in previous type.
172031fd99cfSPiotr Padlewski // To not break LTO with different optimizations levels, we do it regardless
172131fd99cfSPiotr Padlewski // of optimization level.
1722338c9d0aSPiotr Padlewski if (CGM.getCodeGenOpts().StrictVTablePointers &&
1723338c9d0aSPiotr Padlewski allocator->isReservedGlobalPlacementOperator())
17249a05a7b0SNikita Popov result = Builder.CreateLaunderInvariantGroup(result);
1725338c9d0aSPiotr Padlewski
172637605182SSerge Pavlov // Emit sanitizer checks for pointer value now, so that in the case of an
1727cfa79b27SRichard Smith // array it was checked only once and not at each constructor call. We may
1728cfa79b27SRichard Smith // have already checked that the pointer is non-null.
1729cfa79b27SRichard Smith // FIXME: If we have an array cookie and a potentially-throwing allocator,
1730cfa79b27SRichard Smith // we'll null check the wrong pointer here.
1731cfa79b27SRichard Smith SanitizerSet SkippedChecks;
1732cfa79b27SRichard Smith SkippedChecks.set(SanitizerKind::Null, nullCheck);
173337605182SSerge Pavlov EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
173437605182SSerge Pavlov E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1735cfa79b27SRichard Smith result.getPointer(), allocType, result.getAlignment(),
1736cfa79b27SRichard Smith SkippedChecks, numElements);
173737605182SSerge Pavlov
1738fb901c7aSDavid Blaikie EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
173999210dc9SJohn McCall allocSizeWithoutCookie);
1740f208644eSNikita Popov llvm::Value *resultPtr = result.getPointer();
17418ed55a54SJohn McCall if (E->isArray()) {
17428ed55a54SJohn McCall // NewPtr is a pointer to the base element type. If we're
17438ed55a54SJohn McCall // allocating an array of arrays, we'll need to cast back to the
17448ed55a54SJohn McCall // array pointer type.
17452192fe50SChris Lattner llvm::Type *resultType = ConvertTypeForMem(E->getType());
1746f208644eSNikita Popov if (resultPtr->getType() != resultType)
1747f208644eSNikita Popov resultPtr = Builder.CreateBitCast(resultPtr, resultType);
174847b4629bSFariborz Jahanian }
174959486a2dSAnders Carlsson
1750824c2f53SJohn McCall // Deactivate the 'operator delete' cleanup if we finished
1751824c2f53SJohn McCall // initialization.
1752f4beacd0SJohn McCall if (operatorDeleteCleanup.isValid()) {
1753f4beacd0SJohn McCall DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1754f4beacd0SJohn McCall cleanupDominator->eraseFromParent();
1755f4beacd0SJohn McCall }
1756824c2f53SJohn McCall
175775f9498aSJohn McCall if (nullCheck) {
1758f7dcf320SJohn McCall conditional.end(*this);
1759f7dcf320SJohn McCall
176075f9498aSJohn McCall llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
176175f9498aSJohn McCall EmitBlock(contBB);
176259486a2dSAnders Carlsson
17637f416cc4SJohn McCall llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
17647f416cc4SJohn McCall PHI->addIncoming(resultPtr, notNullBB);
17657f416cc4SJohn McCall PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
176675f9498aSJohn McCall nullCheckBB);
176759486a2dSAnders Carlsson
17687f416cc4SJohn McCall resultPtr = PHI;
176959486a2dSAnders Carlsson }
177059486a2dSAnders Carlsson
17717f416cc4SJohn McCall return resultPtr;
177259486a2dSAnders Carlsson }
177359486a2dSAnders Carlsson
EmitDeleteCall(const FunctionDecl * DeleteFD,llvm::Value * Ptr,QualType DeleteTy,llvm::Value * NumElements,CharUnits CookieSize)177459486a2dSAnders Carlsson void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1775b2f0f057SRichard Smith llvm::Value *Ptr, QualType DeleteTy,
1776b2f0f057SRichard Smith llvm::Value *NumElements,
1777b2f0f057SRichard Smith CharUnits CookieSize) {
1778b2f0f057SRichard Smith assert((!NumElements && CookieSize.isZero()) ||
1779b2f0f057SRichard Smith DeleteFD->getOverloadedOperator() == OO_Array_Delete);
17808ed55a54SJohn McCall
178116c53ffcSSimon Pilgrim const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
178259486a2dSAnders Carlsson CallArgList DeleteArgs;
178359486a2dSAnders Carlsson
17845b34958bSRichard Smith auto Params = getUsualDeleteParams(DeleteFD);
1785b2f0f057SRichard Smith auto ParamTypeIt = DeleteFTy->param_type_begin();
1786b2f0f057SRichard Smith
1787b2f0f057SRichard Smith // Pass the pointer itself.
1788b2f0f057SRichard Smith QualType ArgTy = *ParamTypeIt++;
178959486a2dSAnders Carlsson llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
179043dca6a8SEli Friedman DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
179159486a2dSAnders Carlsson
17925b34958bSRichard Smith // Pass the std::destroying_delete tag if present.
17931e7f026cSRichard Smith llvm::AllocaInst *DestroyingDeleteTag = nullptr;
17945b34958bSRichard Smith if (Params.DestroyingDelete) {
17955b34958bSRichard Smith QualType DDTag = *ParamTypeIt++;
17961e7f026cSRichard Smith llvm::Type *Ty = getTypes().ConvertType(DDTag);
17971e7f026cSRichard Smith CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
17981e7f026cSRichard Smith DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
17991e7f026cSRichard Smith DestroyingDeleteTag->setAlignment(Align.getAsAlign());
180050650766SNikita Popov DeleteArgs.add(
180150650766SNikita Popov RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
18025b34958bSRichard Smith }
18035b34958bSRichard Smith
1804b2f0f057SRichard Smith // Pass the size if the delete function has a size_t parameter.
18055b34958bSRichard Smith if (Params.Size) {
1806b2f0f057SRichard Smith QualType SizeType = *ParamTypeIt++;
1807b2f0f057SRichard Smith CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1808b2f0f057SRichard Smith llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1809b2f0f057SRichard Smith DeleteTypeSize.getQuantity());
1810b2f0f057SRichard Smith
1811b2f0f057SRichard Smith // For array new, multiply by the number of elements.
1812b2f0f057SRichard Smith if (NumElements)
1813b2f0f057SRichard Smith Size = Builder.CreateMul(Size, NumElements);
1814b2f0f057SRichard Smith
1815b2f0f057SRichard Smith // If there is a cookie, add the cookie size.
1816b2f0f057SRichard Smith if (!CookieSize.isZero())
1817b2f0f057SRichard Smith Size = Builder.CreateAdd(
1818b2f0f057SRichard Smith Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1819b2f0f057SRichard Smith
1820b2f0f057SRichard Smith DeleteArgs.add(RValue::get(Size), SizeType);
1821b2f0f057SRichard Smith }
1822b2f0f057SRichard Smith
1823b2f0f057SRichard Smith // Pass the alignment if the delete function has an align_val_t parameter.
18245b34958bSRichard Smith if (Params.Alignment) {
1825b2f0f057SRichard Smith QualType AlignValType = *ParamTypeIt++;
18263a7487f9SXiangling Liao CharUnits DeleteTypeAlign =
18273a7487f9SXiangling Liao getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
18283a7487f9SXiangling Liao DeleteTy, true /* NeedsPreferredAlignment */));
1829b2f0f057SRichard Smith llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1830b2f0f057SRichard Smith DeleteTypeAlign.getQuantity());
1831b2f0f057SRichard Smith DeleteArgs.add(RValue::get(Align), AlignValType);
1832b2f0f057SRichard Smith }
1833b2f0f057SRichard Smith
1834b2f0f057SRichard Smith assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1835b2f0f057SRichard Smith "unknown parameter to usual delete function");
183659486a2dSAnders Carlsson
183759486a2dSAnders Carlsson // Emit the call to delete.
18388d0dc31dSRichard Smith EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
18391e7f026cSRichard Smith
18401e7f026cSRichard Smith // If call argument lowering didn't use the destroying_delete_t alloca,
18411e7f026cSRichard Smith // remove it again.
18421e7f026cSRichard Smith if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
18431e7f026cSRichard Smith DestroyingDeleteTag->eraseFromParent();
184459486a2dSAnders Carlsson }
184559486a2dSAnders Carlsson
18468ed55a54SJohn McCall namespace {
18478ed55a54SJohn McCall /// Calls the given 'operator delete' on a single object.
18487e70d680SDavid Blaikie struct CallObjectDelete final : EHScopeStack::Cleanup {
18498ed55a54SJohn McCall llvm::Value *Ptr;
18508ed55a54SJohn McCall const FunctionDecl *OperatorDelete;
18518ed55a54SJohn McCall QualType ElementType;
18528ed55a54SJohn McCall
CallObjectDelete__anon3478caaa0511::CallObjectDelete18538ed55a54SJohn McCall CallObjectDelete(llvm::Value *Ptr,
18548ed55a54SJohn McCall const FunctionDecl *OperatorDelete,
18558ed55a54SJohn McCall QualType ElementType)
18568ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
18578ed55a54SJohn McCall
Emit__anon3478caaa0511::CallObjectDelete18584f12f10dSCraig Topper void Emit(CodeGenFunction &CGF, Flags flags) override {
18598ed55a54SJohn McCall CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
18608ed55a54SJohn McCall }
18618ed55a54SJohn McCall };
1862ab9db510SAlexander Kornienko }
18638ed55a54SJohn McCall
18640c0b6d9aSDavid Majnemer void
pushCallObjectDeleteCleanup(const FunctionDecl * OperatorDelete,llvm::Value * CompletePtr,QualType ElementType)18650c0b6d9aSDavid Majnemer CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
18660c0b6d9aSDavid Majnemer llvm::Value *CompletePtr,
18670c0b6d9aSDavid Majnemer QualType ElementType) {
18680c0b6d9aSDavid Majnemer EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
18690c0b6d9aSDavid Majnemer OperatorDelete, ElementType);
18700c0b6d9aSDavid Majnemer }
18710c0b6d9aSDavid Majnemer
18725b34958bSRichard Smith /// Emit the code for deleting a single object with a destroying operator
18735b34958bSRichard Smith /// delete. If the element type has a non-virtual destructor, Ptr has already
18745b34958bSRichard Smith /// been converted to the type of the parameter of 'operator delete'. Otherwise
18755b34958bSRichard Smith /// Ptr points to an object of the static type.
EmitDestroyingObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,Address Ptr,QualType ElementType)18765b34958bSRichard Smith static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
18775b34958bSRichard Smith const CXXDeleteExpr *DE, Address Ptr,
18785b34958bSRichard Smith QualType ElementType) {
18795b34958bSRichard Smith auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
18805b34958bSRichard Smith if (Dtor && Dtor->isVirtual())
18815b34958bSRichard Smith CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
18825b34958bSRichard Smith Dtor);
18835b34958bSRichard Smith else
18845b34958bSRichard Smith CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
18855b34958bSRichard Smith }
18865b34958bSRichard Smith
18878ed55a54SJohn McCall /// Emit the code for deleting a single object.
1888f39e12a0SRichard Smith /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1889f39e12a0SRichard Smith /// if not.
EmitObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,Address Ptr,QualType ElementType,llvm::BasicBlock * UnconditionalDeleteBlock)1890f39e12a0SRichard Smith static bool EmitObjectDelete(CodeGenFunction &CGF,
18910868137aSDavid Majnemer const CXXDeleteExpr *DE,
18927f416cc4SJohn McCall Address Ptr,
1893f39e12a0SRichard Smith QualType ElementType,
1894f39e12a0SRichard Smith llvm::BasicBlock *UnconditionalDeleteBlock) {
1895d98f5d78SIvan Krasin // C++11 [expr.delete]p3:
1896d98f5d78SIvan Krasin // If the static type of the object to be deleted is different from its
1897d98f5d78SIvan Krasin // dynamic type, the static type shall be a base class of the dynamic type
1898d98f5d78SIvan Krasin // of the object to be deleted and the static type shall have a virtual
1899d98f5d78SIvan Krasin // destructor or the behavior is undefined.
1900d98f5d78SIvan Krasin CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1901d98f5d78SIvan Krasin DE->getExprLoc(), Ptr.getPointer(),
1902d98f5d78SIvan Krasin ElementType);
1903d98f5d78SIvan Krasin
19045b34958bSRichard Smith const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
19055b34958bSRichard Smith assert(!OperatorDelete->isDestroyingOperatorDelete());
19065b34958bSRichard Smith
19078ed55a54SJohn McCall // Find the destructor for the type, if applicable. If the
19088ed55a54SJohn McCall // destructor is virtual, we'll just emit the vcall and return.
19098a13c418SCraig Topper const CXXDestructorDecl *Dtor = nullptr;
19108ed55a54SJohn McCall if (const RecordType *RT = ElementType->getAs<RecordType>()) {
19118ed55a54SJohn McCall CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1912b23533dbSEli Friedman if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
19138ed55a54SJohn McCall Dtor = RD->getDestructor();
19148ed55a54SJohn McCall
19158ed55a54SJohn McCall if (Dtor->isVirtual()) {
1916cb30590dSHiroshi Yamauchi bool UseVirtualCall = true;
1917cb30590dSHiroshi Yamauchi const Expr *Base = DE->getArgument();
1918cb30590dSHiroshi Yamauchi if (auto *DevirtualizedDtor =
1919cb30590dSHiroshi Yamauchi dyn_cast_or_null<const CXXDestructorDecl>(
1920cb30590dSHiroshi Yamauchi Dtor->getDevirtualizedMethod(
1921cb30590dSHiroshi Yamauchi Base, CGF.CGM.getLangOpts().AppleKext))) {
1922cb30590dSHiroshi Yamauchi UseVirtualCall = false;
1923cb30590dSHiroshi Yamauchi const CXXRecordDecl *DevirtualizedClass =
1924cb30590dSHiroshi Yamauchi DevirtualizedDtor->getParent();
1925cb30590dSHiroshi Yamauchi if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1926cb30590dSHiroshi Yamauchi // Devirtualized to the class of the base type (the type of the
1927cb30590dSHiroshi Yamauchi // whole expression).
1928cb30590dSHiroshi Yamauchi Dtor = DevirtualizedDtor;
1929cb30590dSHiroshi Yamauchi } else {
1930cb30590dSHiroshi Yamauchi // Devirtualized to some other type. Would need to cast the this
1931cb30590dSHiroshi Yamauchi // pointer to that type but we don't have support for that yet, so
1932cb30590dSHiroshi Yamauchi // do a virtual call. FIXME: handle the case where it is
1933cb30590dSHiroshi Yamauchi // devirtualized to the derived type (the type of the inner
1934cb30590dSHiroshi Yamauchi // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1935cb30590dSHiroshi Yamauchi UseVirtualCall = true;
1936cb30590dSHiroshi Yamauchi }
1937cb30590dSHiroshi Yamauchi }
1938cb30590dSHiroshi Yamauchi if (UseVirtualCall) {
19390868137aSDavid Majnemer CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
19400868137aSDavid Majnemer Dtor);
1941f39e12a0SRichard Smith return false;
19428ed55a54SJohn McCall }
19438ed55a54SJohn McCall }
19448ed55a54SJohn McCall }
1945cb30590dSHiroshi Yamauchi }
19468ed55a54SJohn McCall
19478ed55a54SJohn McCall // Make sure that we call delete even if the dtor throws.
1948e4df6c8dSJohn McCall // This doesn't have to a conditional cleanup because we're going
1949e4df6c8dSJohn McCall // to pop it off in a second.
19508ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
19517f416cc4SJohn McCall Ptr.getPointer(),
19527f416cc4SJohn McCall OperatorDelete, ElementType);
19538ed55a54SJohn McCall
19548ed55a54SJohn McCall if (Dtor)
19558ed55a54SJohn McCall CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
195661535005SDouglas Gregor /*ForVirtualBase=*/false,
195761535005SDouglas Gregor /*Delegating=*/false,
195888559637SMarco Antognini Ptr, ElementType);
1959460ce58fSJohn McCall else if (auto Lifetime = ElementType.getObjCLifetime()) {
1960460ce58fSJohn McCall switch (Lifetime) {
196131168b07SJohn McCall case Qualifiers::OCL_None:
196231168b07SJohn McCall case Qualifiers::OCL_ExplicitNone:
196331168b07SJohn McCall case Qualifiers::OCL_Autoreleasing:
196431168b07SJohn McCall break;
196531168b07SJohn McCall
19667f416cc4SJohn McCall case Qualifiers::OCL_Strong:
19677f416cc4SJohn McCall CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
196831168b07SJohn McCall break;
196931168b07SJohn McCall
197031168b07SJohn McCall case Qualifiers::OCL_Weak:
197131168b07SJohn McCall CGF.EmitARCDestroyWeak(Ptr);
197231168b07SJohn McCall break;
197331168b07SJohn McCall }
197431168b07SJohn McCall }
19758ed55a54SJohn McCall
1976f39e12a0SRichard Smith // When optimizing for size, call 'operator delete' unconditionally.
1977f39e12a0SRichard Smith if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
1978f39e12a0SRichard Smith CGF.EmitBlock(UnconditionalDeleteBlock);
19798ed55a54SJohn McCall CGF.PopCleanupBlock();
1980f39e12a0SRichard Smith return true;
1981f39e12a0SRichard Smith }
1982f39e12a0SRichard Smith
1983f39e12a0SRichard Smith CGF.PopCleanupBlock();
1984f39e12a0SRichard Smith return false;
19858ed55a54SJohn McCall }
19868ed55a54SJohn McCall
19878ed55a54SJohn McCall namespace {
19888ed55a54SJohn McCall /// Calls the given 'operator delete' on an array of objects.
19897e70d680SDavid Blaikie struct CallArrayDelete final : EHScopeStack::Cleanup {
19908ed55a54SJohn McCall llvm::Value *Ptr;
19918ed55a54SJohn McCall const FunctionDecl *OperatorDelete;
19928ed55a54SJohn McCall llvm::Value *NumElements;
19938ed55a54SJohn McCall QualType ElementType;
19948ed55a54SJohn McCall CharUnits CookieSize;
19958ed55a54SJohn McCall
CallArrayDelete__anon3478caaa0611::CallArrayDelete19968ed55a54SJohn McCall CallArrayDelete(llvm::Value *Ptr,
19978ed55a54SJohn McCall const FunctionDecl *OperatorDelete,
19988ed55a54SJohn McCall llvm::Value *NumElements,
19998ed55a54SJohn McCall QualType ElementType,
20008ed55a54SJohn McCall CharUnits CookieSize)
20018ed55a54SJohn McCall : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
20028ed55a54SJohn McCall ElementType(ElementType), CookieSize(CookieSize) {}
20038ed55a54SJohn McCall
Emit__anon3478caaa0611::CallArrayDelete20044f12f10dSCraig Topper void Emit(CodeGenFunction &CGF, Flags flags) override {
2005b2f0f057SRichard Smith CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2006b2f0f057SRichard Smith CookieSize);
20078ed55a54SJohn McCall }
20088ed55a54SJohn McCall };
2009ab9db510SAlexander Kornienko }
20108ed55a54SJohn McCall
20118ed55a54SJohn McCall /// Emit the code for deleting an array of objects.
EmitArrayDelete(CodeGenFunction & CGF,const CXXDeleteExpr * E,Address deletedPtr,QualType elementType)20128ed55a54SJohn McCall static void EmitArrayDelete(CodeGenFunction &CGF,
2013284c48ffSJohn McCall const CXXDeleteExpr *E,
20147f416cc4SJohn McCall Address deletedPtr,
2015ca2c56f2SJohn McCall QualType elementType) {
20168a13c418SCraig Topper llvm::Value *numElements = nullptr;
20178a13c418SCraig Topper llvm::Value *allocatedPtr = nullptr;
2018ca2c56f2SJohn McCall CharUnits cookieSize;
2019ca2c56f2SJohn McCall CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2020ca2c56f2SJohn McCall numElements, allocatedPtr, cookieSize);
20218ed55a54SJohn McCall
2022ca2c56f2SJohn McCall assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
20238ed55a54SJohn McCall
20248ed55a54SJohn McCall // Make sure that we call delete even if one of the dtors throws.
2025ca2c56f2SJohn McCall const FunctionDecl *operatorDelete = E->getOperatorDelete();
20268ed55a54SJohn McCall CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2027ca2c56f2SJohn McCall allocatedPtr, operatorDelete,
2028ca2c56f2SJohn McCall numElements, elementType,
2029ca2c56f2SJohn McCall cookieSize);
20308ed55a54SJohn McCall
2031ca2c56f2SJohn McCall // Destroy the elements.
2032ca2c56f2SJohn McCall if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2033ca2c56f2SJohn McCall assert(numElements && "no element count for a type with a destructor!");
203431168b07SJohn McCall
20357f416cc4SJohn McCall CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
20367f416cc4SJohn McCall CharUnits elementAlign =
20377f416cc4SJohn McCall deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
20387f416cc4SJohn McCall
20397f416cc4SJohn McCall llvm::Value *arrayBegin = deletedPtr.getPointer();
204042eb658fSNikita Popov llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
204142eb658fSNikita Popov deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
204297eab0a2SJohn McCall
204397eab0a2SJohn McCall // Note that it is legal to allocate a zero-length array, and we
204497eab0a2SJohn McCall // can never fold the check away because the length should always
204597eab0a2SJohn McCall // come from a cookie.
20467f416cc4SJohn McCall CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2047ca2c56f2SJohn McCall CGF.getDestroyer(dtorKind),
204897eab0a2SJohn McCall /*checkZeroLength*/ true,
2049ca2c56f2SJohn McCall CGF.needsEHCleanup(dtorKind));
20508ed55a54SJohn McCall }
20518ed55a54SJohn McCall
2052ca2c56f2SJohn McCall // Pop the cleanup block.
20538ed55a54SJohn McCall CGF.PopCleanupBlock();
20548ed55a54SJohn McCall }
20558ed55a54SJohn McCall
EmitCXXDeleteExpr(const CXXDeleteExpr * E)205659486a2dSAnders Carlsson void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
205759486a2dSAnders Carlsson const Expr *Arg = E->getArgument();
20587f416cc4SJohn McCall Address Ptr = EmitPointerWithAlignment(Arg);
205959486a2dSAnders Carlsson
206059486a2dSAnders Carlsson // Null check the pointer.
2061f39e12a0SRichard Smith //
2062f39e12a0SRichard Smith // We could avoid this null check if we can determine that the object
2063f39e12a0SRichard Smith // destruction is trivial and doesn't require an array cookie; we can
2064f39e12a0SRichard Smith // unconditionally perform the operator delete call in that case. For now, we
2065f39e12a0SRichard Smith // assume that deleted pointers are null rarely enough that it's better to
2066f39e12a0SRichard Smith // keep the branch. This might be worth revisiting for a -O0 code size win.
206759486a2dSAnders Carlsson llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
206859486a2dSAnders Carlsson llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
206959486a2dSAnders Carlsson
20707f416cc4SJohn McCall llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
207159486a2dSAnders Carlsson
207259486a2dSAnders Carlsson Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
207359486a2dSAnders Carlsson EmitBlock(DeleteNotNull);
207459486a2dSAnders Carlsson
20755b34958bSRichard Smith QualType DeleteTy = E->getDestroyedType();
20765b34958bSRichard Smith
20775b34958bSRichard Smith // A destroying operator delete overrides the entire operation of the
20785b34958bSRichard Smith // delete expression.
20795b34958bSRichard Smith if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
20805b34958bSRichard Smith EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
20815b34958bSRichard Smith EmitBlock(DeleteEnd);
20825b34958bSRichard Smith return;
20835b34958bSRichard Smith }
20845b34958bSRichard Smith
20858ed55a54SJohn McCall // We might be deleting a pointer to array. If so, GEP down to the
20868ed55a54SJohn McCall // first non-array element.
20878ed55a54SJohn McCall // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
20888ed55a54SJohn McCall if (DeleteTy->isConstantArrayType()) {
20898ed55a54SJohn McCall llvm::Value *Zero = Builder.getInt32(0);
20900e62c1ccSChris Lattner SmallVector<llvm::Value*,8> GEP;
209159486a2dSAnders Carlsson
20928ed55a54SJohn McCall GEP.push_back(Zero); // point at the outermost array
20938ed55a54SJohn McCall
20948ed55a54SJohn McCall // For each layer of array type we're pointing at:
20958ed55a54SJohn McCall while (const ConstantArrayType *Arr
20968ed55a54SJohn McCall = getContext().getAsConstantArrayType(DeleteTy)) {
20978ed55a54SJohn McCall // 1. Unpeel the array type.
20988ed55a54SJohn McCall DeleteTy = Arr->getElementType();
20998ed55a54SJohn McCall
21008ed55a54SJohn McCall // 2. GEP to the first element of the array.
21018ed55a54SJohn McCall GEP.push_back(Zero);
21028ed55a54SJohn McCall }
21038ed55a54SJohn McCall
21040e219af4SArthur Eubanks Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
21050e219af4SArthur Eubanks Ptr.getPointer(), GEP, "del.first"),
21060e219af4SArthur Eubanks ConvertTypeForMem(DeleteTy), Ptr.getAlignment());
21078ed55a54SJohn McCall }
21088ed55a54SJohn McCall
21097f416cc4SJohn McCall assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
21108ed55a54SJohn McCall
21117270ef57SReid Kleckner if (E->isArrayForm()) {
21127270ef57SReid Kleckner EmitArrayDelete(*this, E, Ptr, DeleteTy);
211359486a2dSAnders Carlsson EmitBlock(DeleteEnd);
2114f39e12a0SRichard Smith } else {
2115f39e12a0SRichard Smith if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2116f39e12a0SRichard Smith EmitBlock(DeleteEnd);
2117f39e12a0SRichard Smith }
211859486a2dSAnders Carlsson }
211959486a2dSAnders Carlsson
isGLValueFromPointerDeref(const Expr * E)21201c3d95ebSDavid Majnemer static bool isGLValueFromPointerDeref(const Expr *E) {
21211c3d95ebSDavid Majnemer E = E->IgnoreParens();
21221c3d95ebSDavid Majnemer
21231c3d95ebSDavid Majnemer if (const auto *CE = dyn_cast<CastExpr>(E)) {
21241c3d95ebSDavid Majnemer if (!CE->getSubExpr()->isGLValue())
21251c3d95ebSDavid Majnemer return false;
21261c3d95ebSDavid Majnemer return isGLValueFromPointerDeref(CE->getSubExpr());
21271c3d95ebSDavid Majnemer }
21281c3d95ebSDavid Majnemer
21291c3d95ebSDavid Majnemer if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
21301c3d95ebSDavid Majnemer return isGLValueFromPointerDeref(OVE->getSourceExpr());
21311c3d95ebSDavid Majnemer
21321c3d95ebSDavid Majnemer if (const auto *BO = dyn_cast<BinaryOperator>(E))
21331c3d95ebSDavid Majnemer if (BO->getOpcode() == BO_Comma)
21341c3d95ebSDavid Majnemer return isGLValueFromPointerDeref(BO->getRHS());
21351c3d95ebSDavid Majnemer
21361c3d95ebSDavid Majnemer if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
21371c3d95ebSDavid Majnemer return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
21381c3d95ebSDavid Majnemer isGLValueFromPointerDeref(ACO->getFalseExpr());
21391c3d95ebSDavid Majnemer
21401c3d95ebSDavid Majnemer // C++11 [expr.sub]p1:
21411c3d95ebSDavid Majnemer // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
21421c3d95ebSDavid Majnemer if (isa<ArraySubscriptExpr>(E))
21431c3d95ebSDavid Majnemer return true;
21441c3d95ebSDavid Majnemer
21451c3d95ebSDavid Majnemer if (const auto *UO = dyn_cast<UnaryOperator>(E))
21461c3d95ebSDavid Majnemer if (UO->getOpcode() == UO_Deref)
21471c3d95ebSDavid Majnemer return true;
21481c3d95ebSDavid Majnemer
21491c3d95ebSDavid Majnemer return false;
21501c3d95ebSDavid Majnemer }
21511c3d95ebSDavid Majnemer
EmitTypeidFromVTable(CodeGenFunction & CGF,const Expr * E,llvm::Type * StdTypeInfoPtrTy)2152747e301eSWarren Hunt static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
21532192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy) {
2154940f02d2SAnders Carlsson // Get the vtable pointer.
2155f139ae3dSAkira Hatanaka Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2156940f02d2SAnders Carlsson
2157d71ad177SStephan Bergmann QualType SrcRecordTy = E->getType();
2158d71ad177SStephan Bergmann
2159d71ad177SStephan Bergmann // C++ [class.cdtor]p4:
2160d71ad177SStephan Bergmann // If the operand of typeid refers to the object under construction or
2161d71ad177SStephan Bergmann // destruction and the static type of the operand is neither the constructor
2162d71ad177SStephan Bergmann // or destructor’s class nor one of its bases, the behavior is undefined.
2163d71ad177SStephan Bergmann CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2164d71ad177SStephan Bergmann ThisPtr.getPointer(), SrcRecordTy);
2165d71ad177SStephan Bergmann
2166940f02d2SAnders Carlsson // C++ [expr.typeid]p2:
2167940f02d2SAnders Carlsson // If the glvalue expression is obtained by applying the unary * operator to
2168940f02d2SAnders Carlsson // a pointer and the pointer is a null pointer value, the typeid expression
2169940f02d2SAnders Carlsson // throws the std::bad_typeid exception.
21701c3d95ebSDavid Majnemer //
21711c3d95ebSDavid Majnemer // However, this paragraph's intent is not clear. We choose a very generous
21721c3d95ebSDavid Majnemer // interpretation which implores us to consider comma operators, conditional
21731c3d95ebSDavid Majnemer // operators, parentheses and other such constructs.
21741c3d95ebSDavid Majnemer if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
21751c3d95ebSDavid Majnemer isGLValueFromPointerDeref(E), SrcRecordTy)) {
2176940f02d2SAnders Carlsson llvm::BasicBlock *BadTypeidBlock =
2177940f02d2SAnders Carlsson CGF.createBasicBlock("typeid.bad_typeid");
21781162d25cSDavid Majnemer llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2179940f02d2SAnders Carlsson
21807f416cc4SJohn McCall llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2181940f02d2SAnders Carlsson CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2182940f02d2SAnders Carlsson
2183940f02d2SAnders Carlsson CGF.EmitBlock(BadTypeidBlock);
21841162d25cSDavid Majnemer CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2185940f02d2SAnders Carlsson CGF.EmitBlock(EndBlock);
2186940f02d2SAnders Carlsson }
2187940f02d2SAnders Carlsson
21881162d25cSDavid Majnemer return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
21891162d25cSDavid Majnemer StdTypeInfoPtrTy);
2190940f02d2SAnders Carlsson }
2191940f02d2SAnders Carlsson
EmitCXXTypeidExpr(const CXXTypeidExpr * E)219259486a2dSAnders Carlsson llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
21932192fe50SChris Lattner llvm::Type *StdTypeInfoPtrTy =
2194940f02d2SAnders Carlsson ConvertType(E->getType())->getPointerTo();
2195fd7dfeb7SAnders Carlsson
21963f4336cbSAnders Carlsson if (E->isTypeOperand()) {
21973f4336cbSAnders Carlsson llvm::Constant *TypeInfo =
2198143c55eaSDavid Majnemer CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2199940f02d2SAnders Carlsson return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
22003f4336cbSAnders Carlsson }
2201fd7dfeb7SAnders Carlsson
2202940f02d2SAnders Carlsson // C++ [expr.typeid]p2:
2203940f02d2SAnders Carlsson // When typeid is applied to a glvalue expression whose type is a
2204940f02d2SAnders Carlsson // polymorphic class type, the result refers to a std::type_info object
2205940f02d2SAnders Carlsson // representing the type of the most derived object (that is, the dynamic
2206940f02d2SAnders Carlsson // type) to which the glvalue refers.
2207f975ae48SZequan Wu // If the operand is already most derived object, no need to look up vtable.
2208f975ae48SZequan Wu if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2209940f02d2SAnders Carlsson return EmitTypeidFromVTable(*this, E->getExprOperand(),
2210940f02d2SAnders Carlsson StdTypeInfoPtrTy);
2211940f02d2SAnders Carlsson
2212940f02d2SAnders Carlsson QualType OperandTy = E->getExprOperand()->getType();
2213940f02d2SAnders Carlsson return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2214940f02d2SAnders Carlsson StdTypeInfoPtrTy);
221559486a2dSAnders Carlsson }
221659486a2dSAnders Carlsson
EmitDynamicCastToNull(CodeGenFunction & CGF,QualType DestTy)2217c1c9971cSAnders Carlsson static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2218c1c9971cSAnders Carlsson QualType DestTy) {
22192192fe50SChris Lattner llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2220c1c9971cSAnders Carlsson if (DestTy->isPointerType())
2221c1c9971cSAnders Carlsson return llvm::Constant::getNullValue(DestLTy);
2222c1c9971cSAnders Carlsson
2223c1c9971cSAnders Carlsson /// C++ [expr.dynamic.cast]p9:
2224c1c9971cSAnders Carlsson /// A failed cast to reference type throws std::bad_cast
22251162d25cSDavid Majnemer if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
22261162d25cSDavid Majnemer return nullptr;
2227c1c9971cSAnders Carlsson
2228c1c9971cSAnders Carlsson CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2229c1c9971cSAnders Carlsson return llvm::UndefValue::get(DestLTy);
2230c1c9971cSAnders Carlsson }
2231c1c9971cSAnders Carlsson
EmitDynamicCast(Address ThisAddr,const CXXDynamicCastExpr * DCE)22327f416cc4SJohn McCall llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
223359486a2dSAnders Carlsson const CXXDynamicCastExpr *DCE) {
22342bf9b4c0SAlexey Bataev CGM.EmitExplicitCastExprType(DCE, this);
22353f4336cbSAnders Carlsson QualType DestTy = DCE->getTypeAsWritten();
22363f4336cbSAnders Carlsson
2237c1c9971cSAnders Carlsson QualType SrcTy = DCE->getSubExpr()->getType();
2238c1c9971cSAnders Carlsson
22391162d25cSDavid Majnemer // C++ [expr.dynamic.cast]p7:
22401162d25cSDavid Majnemer // If T is "pointer to cv void," then the result is a pointer to the most
22411162d25cSDavid Majnemer // derived object pointed to by v.
22421162d25cSDavid Majnemer const PointerType *DestPTy = DestTy->getAs<PointerType>();
22431162d25cSDavid Majnemer
22441162d25cSDavid Majnemer bool isDynamicCastToVoid;
22451162d25cSDavid Majnemer QualType SrcRecordTy;
22461162d25cSDavid Majnemer QualType DestRecordTy;
22471162d25cSDavid Majnemer if (DestPTy) {
22481162d25cSDavid Majnemer isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
22491162d25cSDavid Majnemer SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
22501162d25cSDavid Majnemer DestRecordTy = DestPTy->getPointeeType();
22511162d25cSDavid Majnemer } else {
22521162d25cSDavid Majnemer isDynamicCastToVoid = false;
22531162d25cSDavid Majnemer SrcRecordTy = SrcTy;
22541162d25cSDavid Majnemer DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
22551162d25cSDavid Majnemer }
22561162d25cSDavid Majnemer
2257d71ad177SStephan Bergmann // C++ [class.cdtor]p5:
2258d71ad177SStephan Bergmann // If the operand of the dynamic_cast refers to the object under
2259d71ad177SStephan Bergmann // construction or destruction and the static type of the operand is not a
2260d71ad177SStephan Bergmann // pointer to or object of the constructor or destructor’s own class or one
2261d71ad177SStephan Bergmann // of its bases, the dynamic_cast results in undefined behavior.
2262d71ad177SStephan Bergmann EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2263d71ad177SStephan Bergmann SrcRecordTy);
2264d71ad177SStephan Bergmann
2265d71ad177SStephan Bergmann if (DCE->isAlwaysNull())
2266d71ad177SStephan Bergmann if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2267d71ad177SStephan Bergmann return T;
2268d71ad177SStephan Bergmann
22691162d25cSDavid Majnemer assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
22701162d25cSDavid Majnemer
2271882d790fSAnders Carlsson // C++ [expr.dynamic.cast]p4:
2272882d790fSAnders Carlsson // If the value of v is a null pointer value in the pointer case, the result
2273882d790fSAnders Carlsson // is the null pointer value of type T.
22741162d25cSDavid Majnemer bool ShouldNullCheckSrcValue =
22751162d25cSDavid Majnemer CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
22761162d25cSDavid Majnemer SrcRecordTy);
227759486a2dSAnders Carlsson
22788a13c418SCraig Topper llvm::BasicBlock *CastNull = nullptr;
22798a13c418SCraig Topper llvm::BasicBlock *CastNotNull = nullptr;
2280882d790fSAnders Carlsson llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2281fa8b4955SDouglas Gregor
2282882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) {
2283882d790fSAnders Carlsson CastNull = createBasicBlock("dynamic_cast.null");
2284882d790fSAnders Carlsson CastNotNull = createBasicBlock("dynamic_cast.notnull");
2285882d790fSAnders Carlsson
22867f416cc4SJohn McCall llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2287882d790fSAnders Carlsson Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2288882d790fSAnders Carlsson EmitBlock(CastNotNull);
228959486a2dSAnders Carlsson }
229059486a2dSAnders Carlsson
22917f416cc4SJohn McCall llvm::Value *Value;
22921162d25cSDavid Majnemer if (isDynamicCastToVoid) {
22937f416cc4SJohn McCall Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
22941162d25cSDavid Majnemer DestTy);
22951162d25cSDavid Majnemer } else {
22961162d25cSDavid Majnemer assert(DestRecordTy->isRecordType() &&
22971162d25cSDavid Majnemer "destination type must be a record type!");
22987f416cc4SJohn McCall Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
22991162d25cSDavid Majnemer DestTy, DestRecordTy, CastEnd);
230067528eaaSDavid Majnemer CastNotNull = Builder.GetInsertBlock();
23011162d25cSDavid Majnemer }
23023f4336cbSAnders Carlsson
2303882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) {
2304882d790fSAnders Carlsson EmitBranch(CastEnd);
230559486a2dSAnders Carlsson
2306882d790fSAnders Carlsson EmitBlock(CastNull);
2307882d790fSAnders Carlsson EmitBranch(CastEnd);
230859486a2dSAnders Carlsson }
230959486a2dSAnders Carlsson
2310882d790fSAnders Carlsson EmitBlock(CastEnd);
231159486a2dSAnders Carlsson
2312882d790fSAnders Carlsson if (ShouldNullCheckSrcValue) {
2313882d790fSAnders Carlsson llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2314882d790fSAnders Carlsson PHI->addIncoming(Value, CastNotNull);
2315882d790fSAnders Carlsson PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
231659486a2dSAnders Carlsson
2317882d790fSAnders Carlsson Value = PHI;
231859486a2dSAnders Carlsson }
231959486a2dSAnders Carlsson
2320882d790fSAnders Carlsson return Value;
232159486a2dSAnders Carlsson }
2322