1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   /// We want to use 'dest' as the return slot except under two
39   /// conditions:
40   ///   - The destination slot requires garbage collection, so we
41   ///     need to use the GC API.
42   ///   - The destination slot is potentially aliased.
43   bool shouldUseDestForReturnSlot() const {
44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45   }
46 
47   ReturnValueSlot getReturnValueSlot() const {
48     if (!shouldUseDestForReturnSlot())
49       return ReturnValueSlot();
50 
51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52   }
53 
54   AggValueSlot EnsureSlot(QualType T) {
55     if (!Dest.isIgnored()) return Dest;
56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
61                  bool ignore)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63       IgnoreResult(ignore) {
64   }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
76   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
77   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
78 
79   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
80 
81   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
82     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
83       return AggValueSlot::NeedsGCBarriers;
84     return AggValueSlot::DoesNotNeedGCBarriers;
85   }
86 
87   bool TypeRequiresGCollection(QualType T);
88 
89   //===--------------------------------------------------------------------===//
90   //                            Visitor Methods
91   //===--------------------------------------------------------------------===//
92 
93   void VisitStmt(Stmt *S) {
94     CGF.ErrorUnsupported(S, "aggregate expression");
95   }
96   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
97   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
98     Visit(GE->getResultExpr());
99   }
100   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
101   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
102     return Visit(E->getReplacement());
103   }
104 
105   // l-values.
106   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
107   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
108   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
109   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
110   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
111   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
112     EmitAggLoadOfLValue(E);
113   }
114   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
115     EmitAggLoadOfLValue(E);
116   }
117   void VisitPredefinedExpr(const PredefinedExpr *E) {
118     EmitAggLoadOfLValue(E);
119   }
120 
121   // Operators.
122   void VisitCastExpr(CastExpr *E);
123   void VisitCallExpr(const CallExpr *E);
124   void VisitStmtExpr(const StmtExpr *E);
125   void VisitBinaryOperator(const BinaryOperator *BO);
126   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
127   void VisitBinAssign(const BinaryOperator *E);
128   void VisitBinComma(const BinaryOperator *E);
129 
130   void VisitObjCMessageExpr(ObjCMessageExpr *E);
131   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
132     EmitAggLoadOfLValue(E);
133   }
134   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
135 
136   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
137   void VisitChooseExpr(const ChooseExpr *CE);
138   void VisitInitListExpr(InitListExpr *E);
139   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
140   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
141     Visit(DAE->getExpr());
142   }
143   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
144   void VisitCXXConstructExpr(const CXXConstructExpr *E);
145   void VisitExprWithCleanups(ExprWithCleanups *E);
146   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
147   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
148   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
149   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
150 
151   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
152     if (E->isGLValue()) {
153       LValue LV = CGF.EmitPseudoObjectLValue(E);
154       return EmitFinalDestCopy(E, LV);
155     }
156 
157     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
158   }
159 
160   void VisitVAArgExpr(VAArgExpr *E);
161 
162   void EmitInitializationToLValue(Expr *E, LValue Address);
163   void EmitNullInitializationToLValue(LValue Address);
164   //  case Expr::ChooseExprClass:
165   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
166   void VisitAtomicExpr(AtomicExpr *E) {
167     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
168   }
169 };
170 }  // end anonymous namespace.
171 
172 //===----------------------------------------------------------------------===//
173 //                                Utilities
174 //===----------------------------------------------------------------------===//
175 
176 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
177 /// represents a value lvalue, this method emits the address of the lvalue,
178 /// then loads the result into DestPtr.
179 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
180   LValue LV = CGF.EmitLValue(E);
181   EmitFinalDestCopy(E, LV);
182 }
183 
184 /// \brief True if the given aggregate type requires special GC API calls.
185 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
186   // Only record types have members that might require garbage collection.
187   const RecordType *RecordTy = T->getAs<RecordType>();
188   if (!RecordTy) return false;
189 
190   // Don't mess with non-trivial C++ types.
191   RecordDecl *Record = RecordTy->getDecl();
192   if (isa<CXXRecordDecl>(Record) &&
193       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
194        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
195     return false;
196 
197   // Check whether the type has an object member.
198   return Record->hasObjectMember();
199 }
200 
201 /// \brief Perform the final move to DestPtr if for some reason
202 /// getReturnValueSlot() didn't use it directly.
203 ///
204 /// The idea is that you do something like this:
205 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
206 ///   EmitMoveFromReturnSlot(E, Result);
207 ///
208 /// If nothing interferes, this will cause the result to be emitted
209 /// directly into the return value slot.  Otherwise, a final move
210 /// will be performed.
211 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
212   if (shouldUseDestForReturnSlot()) {
213     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
214     // The possibility of undef rvalues complicates that a lot,
215     // though, so we can't really assert.
216     return;
217   }
218 
219   // Otherwise, do a final copy,
220   assert(Dest.getAddr() != Src.getAggregateAddr());
221   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
222 }
223 
224 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
225 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
226   assert(Src.isAggregate() && "value must be aggregate value!");
227 
228   // If Dest is ignored, then we're evaluating an aggregate expression
229   // in a context (like an expression statement) that doesn't care
230   // about the result.  C says that an lvalue-to-rvalue conversion is
231   // performed in these cases; C++ says that it is not.  In either
232   // case, we don't actually need to do anything unless the value is
233   // volatile.
234   if (Dest.isIgnored()) {
235     if (!Src.isVolatileQualified() ||
236         CGF.CGM.getLangOptions().CPlusPlus ||
237         (IgnoreResult && Ignore))
238       return;
239 
240     // If the source is volatile, we must read from it; to do that, we need
241     // some place to put it.
242     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
243   }
244 
245   if (Dest.requiresGCollection()) {
246     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
247     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
248     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
249     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
250                                                       Dest.getAddr(),
251                                                       Src.getAggregateAddr(),
252                                                       SizeVal);
253     return;
254   }
255   // If the result of the assignment is used, copy the LHS there also.
256   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
257   // from the source as well, as we can't eliminate it if either operand
258   // is volatile, unless copy has volatile for both source and destination..
259   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
260                         Dest.isVolatile()|Src.isVolatileQualified());
261 }
262 
263 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
264 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
265   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
266 
267   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
268                                             Src.isVolatileQualified()),
269                     Ignore);
270 }
271 
272 //===----------------------------------------------------------------------===//
273 //                            Visitor Methods
274 //===----------------------------------------------------------------------===//
275 
276 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
277   Visit(E->GetTemporaryExpr());
278 }
279 
280 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
281   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
282 }
283 
284 void
285 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
286   if (E->getType().isPODType(CGF.getContext())) {
287     // For a POD type, just emit a load of the lvalue + a copy, because our
288     // compound literal might alias the destination.
289     // FIXME: This is a band-aid; the real problem appears to be in our handling
290     // of assignments, where we store directly into the LHS without checking
291     // whether anything in the RHS aliases.
292     EmitAggLoadOfLValue(E);
293     return;
294   }
295 
296   AggValueSlot Slot = EnsureSlot(E->getType());
297   CGF.EmitAggExpr(E->getInitializer(), Slot);
298 }
299 
300 
301 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
302   switch (E->getCastKind()) {
303   case CK_Dynamic: {
304     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
305     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
306     // FIXME: Do we also need to handle property references here?
307     if (LV.isSimple())
308       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
309     else
310       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
311 
312     if (!Dest.isIgnored())
313       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
314     break;
315   }
316 
317   case CK_ToUnion: {
318     if (Dest.isIgnored()) break;
319 
320     // GCC union extension
321     QualType Ty = E->getSubExpr()->getType();
322     QualType PtrTy = CGF.getContext().getPointerType(Ty);
323     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
324                                                  CGF.ConvertType(PtrTy));
325     EmitInitializationToLValue(E->getSubExpr(),
326                                CGF.MakeAddrLValue(CastPtr, Ty));
327     break;
328   }
329 
330   case CK_DerivedToBase:
331   case CK_BaseToDerived:
332   case CK_UncheckedDerivedToBase: {
333     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
334                 "should have been unpacked before we got here");
335   }
336 
337   case CK_GetObjCProperty: {
338     LValue LV =
339       CGF.EmitObjCPropertyRefLValue(E->getSubExpr()->getObjCProperty());
340     assert(LV.isPropertyRef());
341     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
342     EmitMoveFromReturnSlot(E, RV);
343     break;
344   }
345 
346   case CK_LValueToRValue: // hope for downstream optimization
347   case CK_NoOp:
348   case CK_UserDefinedConversion:
349   case CK_ConstructorConversion:
350     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
351                                                    E->getType()) &&
352            "Implicit cast types must be compatible");
353     Visit(E->getSubExpr());
354     break;
355 
356   case CK_LValueBitCast:
357     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
358     break;
359 
360   case CK_Dependent:
361   case CK_BitCast:
362   case CK_ArrayToPointerDecay:
363   case CK_FunctionToPointerDecay:
364   case CK_NullToPointer:
365   case CK_NullToMemberPointer:
366   case CK_BaseToDerivedMemberPointer:
367   case CK_DerivedToBaseMemberPointer:
368   case CK_MemberPointerToBoolean:
369   case CK_IntegralToPointer:
370   case CK_PointerToIntegral:
371   case CK_PointerToBoolean:
372   case CK_ToVoid:
373   case CK_VectorSplat:
374   case CK_IntegralCast:
375   case CK_IntegralToBoolean:
376   case CK_IntegralToFloating:
377   case CK_FloatingToIntegral:
378   case CK_FloatingToBoolean:
379   case CK_FloatingCast:
380   case CK_CPointerToObjCPointerCast:
381   case CK_BlockPointerToObjCPointerCast:
382   case CK_AnyPointerToBlockPointerCast:
383   case CK_ObjCObjectLValueCast:
384   case CK_FloatingRealToComplex:
385   case CK_FloatingComplexToReal:
386   case CK_FloatingComplexToBoolean:
387   case CK_FloatingComplexCast:
388   case CK_FloatingComplexToIntegralComplex:
389   case CK_IntegralRealToComplex:
390   case CK_IntegralComplexToReal:
391   case CK_IntegralComplexToBoolean:
392   case CK_IntegralComplexCast:
393   case CK_IntegralComplexToFloatingComplex:
394   case CK_ARCProduceObject:
395   case CK_ARCConsumeObject:
396   case CK_ARCReclaimReturnedObject:
397   case CK_ARCExtendBlockObject:
398     llvm_unreachable("cast kind invalid for aggregate types");
399   }
400 }
401 
402 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
403   if (E->getCallReturnType()->isReferenceType()) {
404     EmitAggLoadOfLValue(E);
405     return;
406   }
407 
408   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
409   EmitMoveFromReturnSlot(E, RV);
410 }
411 
412 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
413   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
414   EmitMoveFromReturnSlot(E, RV);
415 }
416 
417 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
418   llvm_unreachable("direct property access not surrounded by "
419                    "lvalue-to-rvalue cast");
420 }
421 
422 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
423   CGF.EmitIgnoredExpr(E->getLHS());
424   Visit(E->getRHS());
425 }
426 
427 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
428   CodeGenFunction::StmtExprEvaluation eval(CGF);
429   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
430 }
431 
432 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
433   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
434     VisitPointerToDataMemberBinaryOperator(E);
435   else
436     CGF.ErrorUnsupported(E, "aggregate binary expression");
437 }
438 
439 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
440                                                     const BinaryOperator *E) {
441   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
442   EmitFinalDestCopy(E, LV);
443 }
444 
445 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
446   // For an assignment to work, the value on the right has
447   // to be compatible with the value on the left.
448   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
449                                                  E->getRHS()->getType())
450          && "Invalid assignment");
451 
452   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
453     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
454       if (VD->hasAttr<BlocksAttr>() &&
455           E->getRHS()->HasSideEffects(CGF.getContext())) {
456         // When __block variable on LHS, the RHS must be evaluated first
457         // as it may change the 'forwarding' field via call to Block_copy.
458         LValue RHS = CGF.EmitLValue(E->getRHS());
459         LValue LHS = CGF.EmitLValue(E->getLHS());
460         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
461                                        needsGC(E->getLHS()->getType()),
462                                        AggValueSlot::IsAliased);
463         EmitFinalDestCopy(E, RHS, true);
464         return;
465       }
466 
467   LValue LHS = CGF.EmitLValue(E->getLHS());
468 
469   // We have to special case property setters, otherwise we must have
470   // a simple lvalue (no aggregates inside vectors, bitfields).
471   if (LHS.isPropertyRef()) {
472     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
473     QualType ArgType = RE->getSetterArgType();
474     RValue Src;
475     if (ArgType->isReferenceType())
476       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
477     else {
478       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
479       CGF.EmitAggExpr(E->getRHS(), Slot);
480       Src = Slot.asRValue();
481     }
482     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
483   } else {
484     // Codegen the RHS so that it stores directly into the LHS.
485     AggValueSlot LHSSlot =
486       AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
487                               needsGC(E->getLHS()->getType()),
488                               AggValueSlot::IsAliased);
489     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
490     EmitFinalDestCopy(E, LHS, true);
491   }
492 }
493 
494 void AggExprEmitter::
495 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
496   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
497   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
498   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
499 
500   // Bind the common expression if necessary.
501   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
502 
503   CodeGenFunction::ConditionalEvaluation eval(CGF);
504   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
505 
506   // Save whether the destination's lifetime is externally managed.
507   bool isExternallyDestructed = Dest.isExternallyDestructed();
508 
509   eval.begin(CGF);
510   CGF.EmitBlock(LHSBlock);
511   Visit(E->getTrueExpr());
512   eval.end(CGF);
513 
514   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
515   CGF.Builder.CreateBr(ContBlock);
516 
517   // If the result of an agg expression is unused, then the emission
518   // of the LHS might need to create a destination slot.  That's fine
519   // with us, and we can safely emit the RHS into the same slot, but
520   // we shouldn't claim that it's already being destructed.
521   Dest.setExternallyDestructed(isExternallyDestructed);
522 
523   eval.begin(CGF);
524   CGF.EmitBlock(RHSBlock);
525   Visit(E->getFalseExpr());
526   eval.end(CGF);
527 
528   CGF.EmitBlock(ContBlock);
529 }
530 
531 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
532   Visit(CE->getChosenSubExpr(CGF.getContext()));
533 }
534 
535 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
536   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
537   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
538 
539   if (!ArgPtr) {
540     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
541     return;
542   }
543 
544   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
545 }
546 
547 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
548   // Ensure that we have a slot, but if we already do, remember
549   // whether it was externally destructed.
550   bool wasExternallyDestructed = Dest.isExternallyDestructed();
551   Dest = EnsureSlot(E->getType());
552 
553   // We're going to push a destructor if there isn't already one.
554   Dest.setExternallyDestructed();
555 
556   Visit(E->getSubExpr());
557 
558   // Push that destructor we promised.
559   if (!wasExternallyDestructed)
560     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
561 }
562 
563 void
564 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
565   AggValueSlot Slot = EnsureSlot(E->getType());
566   CGF.EmitCXXConstructExpr(E, Slot);
567 }
568 
569 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
570   CGF.EmitExprWithCleanups(E, Dest);
571 }
572 
573 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
574   QualType T = E->getType();
575   AggValueSlot Slot = EnsureSlot(T);
576   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
577 }
578 
579 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
580   QualType T = E->getType();
581   AggValueSlot Slot = EnsureSlot(T);
582   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
583 }
584 
585 /// isSimpleZero - If emitting this value will obviously just cause a store of
586 /// zero to memory, return true.  This can return false if uncertain, so it just
587 /// handles simple cases.
588 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
589   E = E->IgnoreParens();
590 
591   // 0
592   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
593     return IL->getValue() == 0;
594   // +0.0
595   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
596     return FL->getValue().isPosZero();
597   // int()
598   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
599       CGF.getTypes().isZeroInitializable(E->getType()))
600     return true;
601   // (int*)0 - Null pointer expressions.
602   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
603     return ICE->getCastKind() == CK_NullToPointer;
604   // '\0'
605   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
606     return CL->getValue() == 0;
607 
608   // Otherwise, hard case: conservatively return false.
609   return false;
610 }
611 
612 
613 void
614 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
615   QualType type = LV.getType();
616   // FIXME: Ignore result?
617   // FIXME: Are initializers affected by volatile?
618   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
619     // Storing "i32 0" to a zero'd memory location is a noop.
620   } else if (isa<ImplicitValueInitExpr>(E)) {
621     EmitNullInitializationToLValue(LV);
622   } else if (type->isReferenceType()) {
623     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
624     CGF.EmitStoreThroughLValue(RV, LV);
625   } else if (type->isAnyComplexType()) {
626     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
627   } else if (CGF.hasAggregateLLVMType(type)) {
628     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
629                                                AggValueSlot::IsDestructed,
630                                       AggValueSlot::DoesNotNeedGCBarriers,
631                                                AggValueSlot::IsNotAliased,
632                                                Dest.isZeroed()));
633   } else if (LV.isSimple()) {
634     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
635   } else {
636     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
637   }
638 }
639 
640 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
641   QualType type = lv.getType();
642 
643   // If the destination slot is already zeroed out before the aggregate is
644   // copied into it, we don't have to emit any zeros here.
645   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
646     return;
647 
648   if (!CGF.hasAggregateLLVMType(type)) {
649     // For non-aggregates, we can store zero
650     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
651     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
652   } else {
653     // There's a potential optimization opportunity in combining
654     // memsets; that would be easy for arrays, but relatively
655     // difficult for structures with the current code.
656     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
657   }
658 }
659 
660 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
661 #if 0
662   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
663   // (Length of globals? Chunks of zeroed-out space?).
664   //
665   // If we can, prefer a copy from a global; this is a lot less code for long
666   // globals, and it's easier for the current optimizers to analyze.
667   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
668     llvm::GlobalVariable* GV =
669     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
670                              llvm::GlobalValue::InternalLinkage, C, "");
671     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
672     return;
673   }
674 #endif
675   if (E->hadArrayRangeDesignator())
676     CGF.ErrorUnsupported(E, "GNU array range designator extension");
677 
678   llvm::Value *DestPtr = Dest.getAddr();
679 
680   // Handle initialization of an array.
681   if (E->getType()->isArrayType()) {
682     llvm::PointerType *APType =
683       cast<llvm::PointerType>(DestPtr->getType());
684     llvm::ArrayType *AType =
685       cast<llvm::ArrayType>(APType->getElementType());
686 
687     uint64_t NumInitElements = E->getNumInits();
688 
689     if (E->getNumInits() > 0) {
690       QualType T1 = E->getType();
691       QualType T2 = E->getInit(0)->getType();
692       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
693         EmitAggLoadOfLValue(E->getInit(0));
694         return;
695       }
696     }
697 
698     uint64_t NumArrayElements = AType->getNumElements();
699     assert(NumInitElements <= NumArrayElements);
700 
701     QualType elementType = E->getType().getCanonicalType();
702     elementType = CGF.getContext().getQualifiedType(
703                     cast<ArrayType>(elementType)->getElementType(),
704                     elementType.getQualifiers() + Dest.getQualifiers());
705 
706     // DestPtr is an array*.  Construct an elementType* by drilling
707     // down a level.
708     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
709     llvm::Value *indices[] = { zero, zero };
710     llvm::Value *begin =
711       Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
712 
713     // Exception safety requires us to destroy all the
714     // already-constructed members if an initializer throws.
715     // For that, we'll need an EH cleanup.
716     QualType::DestructionKind dtorKind = elementType.isDestructedType();
717     llvm::AllocaInst *endOfInit = 0;
718     EHScopeStack::stable_iterator cleanup;
719     if (CGF.needsEHCleanup(dtorKind)) {
720       // In principle we could tell the cleanup where we are more
721       // directly, but the control flow can get so varied here that it
722       // would actually be quite complex.  Therefore we go through an
723       // alloca.
724       endOfInit = CGF.CreateTempAlloca(begin->getType(),
725                                        "arrayinit.endOfInit");
726       Builder.CreateStore(begin, endOfInit);
727       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
728                                            CGF.getDestroyer(dtorKind));
729       cleanup = CGF.EHStack.stable_begin();
730 
731     // Otherwise, remember that we didn't need a cleanup.
732     } else {
733       dtorKind = QualType::DK_none;
734     }
735 
736     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
737 
738     // The 'current element to initialize'.  The invariants on this
739     // variable are complicated.  Essentially, after each iteration of
740     // the loop, it points to the last initialized element, except
741     // that it points to the beginning of the array before any
742     // elements have been initialized.
743     llvm::Value *element = begin;
744 
745     // Emit the explicit initializers.
746     for (uint64_t i = 0; i != NumInitElements; ++i) {
747       // Advance to the next element.
748       if (i > 0) {
749         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
750 
751         // Tell the cleanup that it needs to destroy up to this
752         // element.  TODO: some of these stores can be trivially
753         // observed to be unnecessary.
754         if (endOfInit) Builder.CreateStore(element, endOfInit);
755       }
756 
757       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
758       EmitInitializationToLValue(E->getInit(i), elementLV);
759     }
760 
761     // Check whether there's a non-trivial array-fill expression.
762     // Note that this will be a CXXConstructExpr even if the element
763     // type is an array (or array of array, etc.) of class type.
764     Expr *filler = E->getArrayFiller();
765     bool hasTrivialFiller = true;
766     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
767       assert(cons->getConstructor()->isDefaultConstructor());
768       hasTrivialFiller = cons->getConstructor()->isTrivial();
769     }
770 
771     // Any remaining elements need to be zero-initialized, possibly
772     // using the filler expression.  We can skip this if the we're
773     // emitting to zeroed memory.
774     if (NumInitElements != NumArrayElements &&
775         !(Dest.isZeroed() && hasTrivialFiller &&
776           CGF.getTypes().isZeroInitializable(elementType))) {
777 
778       // Use an actual loop.  This is basically
779       //   do { *array++ = filler; } while (array != end);
780 
781       // Advance to the start of the rest of the array.
782       if (NumInitElements) {
783         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
784         if (endOfInit) Builder.CreateStore(element, endOfInit);
785       }
786 
787       // Compute the end of the array.
788       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
789                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
790                                                    "arrayinit.end");
791 
792       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
793       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
794 
795       // Jump into the body.
796       CGF.EmitBlock(bodyBB);
797       llvm::PHINode *currentElement =
798         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
799       currentElement->addIncoming(element, entryBB);
800 
801       // Emit the actual filler expression.
802       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
803       if (filler)
804         EmitInitializationToLValue(filler, elementLV);
805       else
806         EmitNullInitializationToLValue(elementLV);
807 
808       // Move on to the next element.
809       llvm::Value *nextElement =
810         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
811 
812       // Tell the EH cleanup that we finished with the last element.
813       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
814 
815       // Leave the loop if we're done.
816       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
817                                                "arrayinit.done");
818       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
819       Builder.CreateCondBr(done, endBB, bodyBB);
820       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
821 
822       CGF.EmitBlock(endBB);
823     }
824 
825     // Leave the partial-array cleanup if we entered one.
826     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup);
827 
828     return;
829   }
830 
831   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
832 
833   // Do struct initialization; this code just sets each individual member
834   // to the approprate value.  This makes bitfield support automatic;
835   // the disadvantage is that the generated code is more difficult for
836   // the optimizer, especially with bitfields.
837   unsigned NumInitElements = E->getNumInits();
838   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
839 
840   if (record->isUnion()) {
841     // Only initialize one field of a union. The field itself is
842     // specified by the initializer list.
843     if (!E->getInitializedFieldInUnion()) {
844       // Empty union; we have nothing to do.
845 
846 #ifndef NDEBUG
847       // Make sure that it's really an empty and not a failure of
848       // semantic analysis.
849       for (RecordDecl::field_iterator Field = record->field_begin(),
850                                    FieldEnd = record->field_end();
851            Field != FieldEnd; ++Field)
852         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
853 #endif
854       return;
855     }
856 
857     // FIXME: volatility
858     FieldDecl *Field = E->getInitializedFieldInUnion();
859 
860     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
861     if (NumInitElements) {
862       // Store the initializer into the field
863       EmitInitializationToLValue(E->getInit(0), FieldLoc);
864     } else {
865       // Default-initialize to null.
866       EmitNullInitializationToLValue(FieldLoc);
867     }
868 
869     return;
870   }
871 
872   // We'll need to enter cleanup scopes in case any of the member
873   // initializers throw an exception.
874   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
875 
876   // Here we iterate over the fields; this makes it simpler to both
877   // default-initialize fields and skip over unnamed fields.
878   unsigned curInitIndex = 0;
879   for (RecordDecl::field_iterator field = record->field_begin(),
880                                fieldEnd = record->field_end();
881        field != fieldEnd; ++field) {
882     // We're done once we hit the flexible array member.
883     if (field->getType()->isIncompleteArrayType())
884       break;
885 
886     // Always skip anonymous bitfields.
887     if (field->isUnnamedBitfield())
888       continue;
889 
890     // We're done if we reach the end of the explicit initializers, we
891     // have a zeroed object, and the rest of the fields are
892     // zero-initializable.
893     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
894         CGF.getTypes().isZeroInitializable(E->getType()))
895       break;
896 
897     // FIXME: volatility
898     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
899     // We never generate write-barries for initialized fields.
900     LV.setNonGC(true);
901 
902     if (curInitIndex < NumInitElements) {
903       // Store the initializer into the field.
904       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
905     } else {
906       // We're out of initalizers; default-initialize to null
907       EmitNullInitializationToLValue(LV);
908     }
909 
910     // Push a destructor if necessary.
911     // FIXME: if we have an array of structures, all explicitly
912     // initialized, we can end up pushing a linear number of cleanups.
913     bool pushedCleanup = false;
914     if (QualType::DestructionKind dtorKind
915           = field->getType().isDestructedType()) {
916       assert(LV.isSimple());
917       if (CGF.needsEHCleanup(dtorKind)) {
918         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
919                         CGF.getDestroyer(dtorKind), false);
920         cleanups.push_back(CGF.EHStack.stable_begin());
921         pushedCleanup = true;
922       }
923     }
924 
925     // If the GEP didn't get used because of a dead zero init or something
926     // else, clean it up for -O0 builds and general tidiness.
927     if (!pushedCleanup && LV.isSimple())
928       if (llvm::GetElementPtrInst *GEP =
929             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
930         if (GEP->use_empty())
931           GEP->eraseFromParent();
932   }
933 
934   // Deactivate all the partial cleanups in reverse order, which
935   // generally means popping them.
936   for (unsigned i = cleanups.size(); i != 0; --i)
937     CGF.DeactivateCleanupBlock(cleanups[i-1]);
938 }
939 
940 //===----------------------------------------------------------------------===//
941 //                        Entry Points into this File
942 //===----------------------------------------------------------------------===//
943 
944 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
945 /// non-zero bytes that will be stored when outputting the initializer for the
946 /// specified initializer expression.
947 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
948   E = E->IgnoreParens();
949 
950   // 0 and 0.0 won't require any non-zero stores!
951   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
952 
953   // If this is an initlist expr, sum up the size of sizes of the (present)
954   // elements.  If this is something weird, assume the whole thing is non-zero.
955   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
956   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
957     return CGF.getContext().getTypeSizeInChars(E->getType());
958 
959   // InitListExprs for structs have to be handled carefully.  If there are
960   // reference members, we need to consider the size of the reference, not the
961   // referencee.  InitListExprs for unions and arrays can't have references.
962   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
963     if (!RT->isUnionType()) {
964       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
965       CharUnits NumNonZeroBytes = CharUnits::Zero();
966 
967       unsigned ILEElement = 0;
968       for (RecordDecl::field_iterator Field = SD->field_begin(),
969            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
970         // We're done once we hit the flexible array member or run out of
971         // InitListExpr elements.
972         if (Field->getType()->isIncompleteArrayType() ||
973             ILEElement == ILE->getNumInits())
974           break;
975         if (Field->isUnnamedBitfield())
976           continue;
977 
978         const Expr *E = ILE->getInit(ILEElement++);
979 
980         // Reference values are always non-null and have the width of a pointer.
981         if (Field->getType()->isReferenceType())
982           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
983               CGF.getContext().getTargetInfo().getPointerWidth(0));
984         else
985           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
986       }
987 
988       return NumNonZeroBytes;
989     }
990   }
991 
992 
993   CharUnits NumNonZeroBytes = CharUnits::Zero();
994   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
995     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
996   return NumNonZeroBytes;
997 }
998 
999 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1000 /// zeros in it, emit a memset and avoid storing the individual zeros.
1001 ///
1002 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1003                                      CodeGenFunction &CGF) {
1004   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1005   // volatile stores.
1006   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1007 
1008   // C++ objects with a user-declared constructor don't need zero'ing.
1009   if (CGF.getContext().getLangOptions().CPlusPlus)
1010     if (const RecordType *RT = CGF.getContext()
1011                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1012       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1013       if (RD->hasUserDeclaredConstructor())
1014         return;
1015     }
1016 
1017   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1018   std::pair<CharUnits, CharUnits> TypeInfo =
1019     CGF.getContext().getTypeInfoInChars(E->getType());
1020   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1021     return;
1022 
1023   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1024   // we prefer to emit memset + individual stores for the rest.
1025   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1026   if (NumNonZeroBytes*4 > TypeInfo.first)
1027     return;
1028 
1029   // Okay, it seems like a good idea to use an initial memset, emit the call.
1030   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1031   CharUnits Align = TypeInfo.second;
1032 
1033   llvm::Value *Loc = Slot.getAddr();
1034   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1035 
1036   Loc = CGF.Builder.CreateBitCast(Loc, BP);
1037   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1038                            Align.getQuantity(), false);
1039 
1040   // Tell the AggExprEmitter that the slot is known zero.
1041   Slot.setZeroed();
1042 }
1043 
1044 
1045 
1046 
1047 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1048 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1049 /// the value of the aggregate expression is not needed.  If VolatileDest is
1050 /// true, DestPtr cannot be 0.
1051 ///
1052 /// \param IsInitializer - true if this evaluation is initializing an
1053 /// object whose lifetime is already being managed.
1054 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1055                                   bool IgnoreResult) {
1056   assert(E && hasAggregateLLVMType(E->getType()) &&
1057          "Invalid aggregate expression to emit");
1058   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1059          "slot has bits but no address");
1060 
1061   // Optimize the slot if possible.
1062   CheckAggExprForMemSetUse(Slot, E, *this);
1063 
1064   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1065 }
1066 
1067 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1068   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1069   llvm::Value *Temp = CreateMemTemp(E->getType());
1070   LValue LV = MakeAddrLValue(Temp, E->getType());
1071   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1072                                          AggValueSlot::DoesNotNeedGCBarriers,
1073                                          AggValueSlot::IsNotAliased));
1074   return LV;
1075 }
1076 
1077 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1078                                         llvm::Value *SrcPtr, QualType Ty,
1079                                         bool isVolatile) {
1080   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1081 
1082   if (getContext().getLangOptions().CPlusPlus) {
1083     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1084       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1085       assert((Record->hasTrivialCopyConstructor() ||
1086               Record->hasTrivialCopyAssignment() ||
1087               Record->hasTrivialMoveConstructor() ||
1088               Record->hasTrivialMoveAssignment()) &&
1089              "Trying to aggregate-copy a type without a trivial copy "
1090              "constructor or assignment operator");
1091       // Ignore empty classes in C++.
1092       if (Record->isEmpty())
1093         return;
1094     }
1095   }
1096 
1097   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1098   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1099   // read from another object that overlaps in anyway the storage of the first
1100   // object, then the overlap shall be exact and the two objects shall have
1101   // qualified or unqualified versions of a compatible type."
1102   //
1103   // memcpy is not defined if the source and destination pointers are exactly
1104   // equal, but other compilers do this optimization, and almost every memcpy
1105   // implementation handles this case safely.  If there is a libc that does not
1106   // safely handle this, we can add a target hook.
1107 
1108   // Get size and alignment info for this aggregate.
1109   std::pair<CharUnits, CharUnits> TypeInfo =
1110     getContext().getTypeInfoInChars(Ty);
1111 
1112   // FIXME: Handle variable sized types.
1113 
1114   // FIXME: If we have a volatile struct, the optimizer can remove what might
1115   // appear to be `extra' memory ops:
1116   //
1117   // volatile struct { int i; } a, b;
1118   //
1119   // int main() {
1120   //   a = b;
1121   //   a = b;
1122   // }
1123   //
1124   // we need to use a different call here.  We use isVolatile to indicate when
1125   // either the source or the destination is volatile.
1126 
1127   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1128   llvm::Type *DBP =
1129     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1130   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1131 
1132   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1133   llvm::Type *SBP =
1134     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1135   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1136 
1137   // Don't do any of the memmove_collectable tests if GC isn't set.
1138   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1139     // fall through
1140   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1141     RecordDecl *Record = RecordTy->getDecl();
1142     if (Record->hasObjectMember()) {
1143       CharUnits size = TypeInfo.first;
1144       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1145       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1146       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1147                                                     SizeVal);
1148       return;
1149     }
1150   } else if (Ty->isArrayType()) {
1151     QualType BaseType = getContext().getBaseElementType(Ty);
1152     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1153       if (RecordTy->getDecl()->hasObjectMember()) {
1154         CharUnits size = TypeInfo.first;
1155         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1156         llvm::Value *SizeVal =
1157           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1158         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1159                                                       SizeVal);
1160         return;
1161       }
1162     }
1163   }
1164 
1165   Builder.CreateMemCpy(DestPtr, SrcPtr,
1166                        llvm::ConstantInt::get(IntPtrTy,
1167                                               TypeInfo.first.getQuantity()),
1168                        TypeInfo.second.getQuantity(), isVolatile);
1169 }
1170