1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Aggregate Expression Emitter 33 //===----------------------------------------------------------------------===// 34 35 namespace { 36 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 37 CodeGenFunction &CGF; 38 CGBuilderTy &Builder; 39 AggValueSlot Dest; 40 bool IsResultUnused; 41 42 AggValueSlot EnsureSlot(QualType T) { 43 if (!Dest.isIgnored()) return Dest; 44 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 45 } 46 void EnsureDest(QualType T) { 47 if (!Dest.isIgnored()) return; 48 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 49 } 50 51 // Calls `Fn` with a valid return value slot, potentially creating a temporary 52 // to do so. If a temporary is created, an appropriate copy into `Dest` will 53 // be emitted, as will lifetime markers. 54 // 55 // The given function should take a ReturnValueSlot, and return an RValue that 56 // points to said slot. 57 void withReturnValueSlot(const Expr *E, 58 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 59 60 public: 61 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IsResultUnused(IsResultUnused) { } 64 65 //===--------------------------------------------------------------------===// 66 // Utilities 67 //===--------------------------------------------------------------------===// 68 69 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 70 /// represents a value lvalue, this method emits the address of the lvalue, 71 /// then loads the result into DestPtr. 72 void EmitAggLoadOfLValue(const Expr *E); 73 74 enum ExprValueKind { 75 EVK_RValue, 76 EVK_NonRValue 77 }; 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 /// SrcIsRValue is true if source comes from an RValue. 81 void EmitFinalDestCopy(QualType type, const LValue &src, 82 ExprValueKind SrcValueKind = EVK_NonRValue); 83 void EmitFinalDestCopy(QualType type, RValue src); 84 void EmitCopy(QualType type, const AggValueSlot &dest, 85 const AggValueSlot &src); 86 87 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 88 89 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 90 QualType ArrayQTy, InitListExpr *E); 91 92 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 93 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 94 return AggValueSlot::NeedsGCBarriers; 95 return AggValueSlot::DoesNotNeedGCBarriers; 96 } 97 98 bool TypeRequiresGCollection(QualType T); 99 100 //===--------------------------------------------------------------------===// 101 // Visitor Methods 102 //===--------------------------------------------------------------------===// 103 104 void Visit(Expr *E) { 105 ApplyDebugLocation DL(CGF, E); 106 StmtVisitor<AggExprEmitter>::Visit(E); 107 } 108 109 void VisitStmt(Stmt *S) { 110 CGF.ErrorUnsupported(S, "aggregate expression"); 111 } 112 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 113 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 114 Visit(GE->getResultExpr()); 115 } 116 void VisitCoawaitExpr(CoawaitExpr *E) { 117 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 118 } 119 void VisitCoyieldExpr(CoyieldExpr *E) { 120 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 121 } 122 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 125 return Visit(E->getReplacement()); 126 } 127 128 void VisitConstantExpr(ConstantExpr *E) { 129 return Visit(E->getSubExpr()); 130 } 131 132 // l-values. 133 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 134 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 135 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 136 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 137 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 138 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 139 EmitAggLoadOfLValue(E); 140 } 141 void VisitPredefinedExpr(const PredefinedExpr *E) { 142 EmitAggLoadOfLValue(E); 143 } 144 145 // Operators. 146 void VisitCastExpr(CastExpr *E); 147 void VisitCallExpr(const CallExpr *E); 148 void VisitStmtExpr(const StmtExpr *E); 149 void VisitBinaryOperator(const BinaryOperator *BO); 150 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 151 void VisitBinAssign(const BinaryOperator *E); 152 void VisitBinComma(const BinaryOperator *E); 153 void VisitBinCmp(const BinaryOperator *E); 154 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 155 Visit(E->getSemanticForm()); 156 } 157 158 void VisitObjCMessageExpr(ObjCMessageExpr *E); 159 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 160 EmitAggLoadOfLValue(E); 161 } 162 163 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 164 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 165 void VisitChooseExpr(const ChooseExpr *CE); 166 void VisitInitListExpr(InitListExpr *E); 167 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 168 llvm::Value *outerBegin = nullptr); 169 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 170 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 171 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 172 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 173 Visit(DAE->getExpr()); 174 } 175 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 176 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 177 Visit(DIE->getExpr()); 178 } 179 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 180 void VisitCXXConstructExpr(const CXXConstructExpr *E); 181 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 182 void VisitLambdaExpr(LambdaExpr *E); 183 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 184 void VisitExprWithCleanups(ExprWithCleanups *E); 185 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 186 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 187 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 188 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 189 190 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 191 if (E->isGLValue()) { 192 LValue LV = CGF.EmitPseudoObjectLValue(E); 193 return EmitFinalDestCopy(E->getType(), LV); 194 } 195 196 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 197 } 198 199 void VisitVAArgExpr(VAArgExpr *E); 200 201 void EmitInitializationToLValue(Expr *E, LValue Address); 202 void EmitNullInitializationToLValue(LValue Address); 203 // case Expr::ChooseExprClass: 204 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 205 void VisitAtomicExpr(AtomicExpr *E) { 206 RValue Res = CGF.EmitAtomicExpr(E); 207 EmitFinalDestCopy(E->getType(), Res); 208 } 209 }; 210 } // end anonymous namespace. 211 212 //===----------------------------------------------------------------------===// 213 // Utilities 214 //===----------------------------------------------------------------------===// 215 216 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 217 /// represents a value lvalue, this method emits the address of the lvalue, 218 /// then loads the result into DestPtr. 219 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 220 LValue LV = CGF.EmitLValue(E); 221 222 // If the type of the l-value is atomic, then do an atomic load. 223 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 224 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 225 return; 226 } 227 228 EmitFinalDestCopy(E->getType(), LV); 229 } 230 231 /// True if the given aggregate type requires special GC API calls. 232 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 233 // Only record types have members that might require garbage collection. 234 const RecordType *RecordTy = T->getAs<RecordType>(); 235 if (!RecordTy) return false; 236 237 // Don't mess with non-trivial C++ types. 238 RecordDecl *Record = RecordTy->getDecl(); 239 if (isa<CXXRecordDecl>(Record) && 240 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 241 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 242 return false; 243 244 // Check whether the type has an object member. 245 return Record->hasObjectMember(); 246 } 247 248 void AggExprEmitter::withReturnValueSlot( 249 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 250 QualType RetTy = E->getType(); 251 bool RequiresDestruction = 252 !Dest.isExternallyDestructed() && 253 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 254 255 // If it makes no observable difference, save a memcpy + temporary. 256 // 257 // We need to always provide our own temporary if destruction is required. 258 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 259 // its lifetime before we have the chance to emit a proper destructor call. 260 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 261 (RequiresDestruction && !Dest.getAddress().isValid()); 262 263 Address RetAddr = Address::invalid(); 264 Address RetAllocaAddr = Address::invalid(); 265 266 EHScopeStack::stable_iterator LifetimeEndBlock; 267 llvm::Value *LifetimeSizePtr = nullptr; 268 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 269 if (!UseTemp) { 270 RetAddr = Dest.getAddress(); 271 } else { 272 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 273 uint64_t Size = 274 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 275 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 276 if (LifetimeSizePtr) { 277 LifetimeStartInst = 278 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 279 assert(LifetimeStartInst->getIntrinsicID() == 280 llvm::Intrinsic::lifetime_start && 281 "Last insertion wasn't a lifetime.start?"); 282 283 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 284 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 285 LifetimeEndBlock = CGF.EHStack.stable_begin(); 286 } 287 } 288 289 RValue Src = 290 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused, 291 Dest.isExternallyDestructed())); 292 293 if (!UseTemp) 294 return; 295 296 assert(Dest.getPointer() != Src.getAggregatePointer()); 297 EmitFinalDestCopy(E->getType(), Src); 298 299 if (!RequiresDestruction && LifetimeStartInst) { 300 // If there's no dtor to run, the copy was the last use of our temporary. 301 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 302 // eagerly. 303 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 304 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 305 } 306 } 307 308 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 309 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 310 assert(src.isAggregate() && "value must be aggregate value!"); 311 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 312 EmitFinalDestCopy(type, srcLV, EVK_RValue); 313 } 314 315 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 316 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 317 ExprValueKind SrcValueKind) { 318 // If Dest is ignored, then we're evaluating an aggregate expression 319 // in a context that doesn't care about the result. Note that loads 320 // from volatile l-values force the existence of a non-ignored 321 // destination. 322 if (Dest.isIgnored()) 323 return; 324 325 // Copy non-trivial C structs here. 326 LValue DstLV = CGF.MakeAddrLValue( 327 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 328 329 if (SrcValueKind == EVK_RValue) { 330 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 331 if (Dest.isPotentiallyAliased()) 332 CGF.callCStructMoveAssignmentOperator(DstLV, src); 333 else 334 CGF.callCStructMoveConstructor(DstLV, src); 335 return; 336 } 337 } else { 338 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 339 if (Dest.isPotentiallyAliased()) 340 CGF.callCStructCopyAssignmentOperator(DstLV, src); 341 else 342 CGF.callCStructCopyConstructor(DstLV, src); 343 return; 344 } 345 } 346 347 AggValueSlot srcAgg = AggValueSlot::forLValue( 348 src, CGF, AggValueSlot::IsDestructed, needsGC(type), 349 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 350 EmitCopy(type, Dest, srcAgg); 351 } 352 353 /// Perform a copy from the source into the destination. 354 /// 355 /// \param type - the type of the aggregate being copied; qualifiers are 356 /// ignored 357 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 358 const AggValueSlot &src) { 359 if (dest.requiresGCollection()) { 360 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 361 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 362 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 363 dest.getAddress(), 364 src.getAddress(), 365 size); 366 return; 367 } 368 369 // If the result of the assignment is used, copy the LHS there also. 370 // It's volatile if either side is. Use the minimum alignment of 371 // the two sides. 372 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 373 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 374 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 375 dest.isVolatile() || src.isVolatile()); 376 } 377 378 /// Emit the initializer for a std::initializer_list initialized with a 379 /// real initializer list. 380 void 381 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 382 // Emit an array containing the elements. The array is externally destructed 383 // if the std::initializer_list object is. 384 ASTContext &Ctx = CGF.getContext(); 385 LValue Array = CGF.EmitLValue(E->getSubExpr()); 386 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 387 Address ArrayPtr = Array.getAddress(CGF); 388 389 const ConstantArrayType *ArrayType = 390 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 391 assert(ArrayType && "std::initializer_list constructed from non-array"); 392 393 // FIXME: Perform the checks on the field types in SemaInit. 394 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 395 RecordDecl::field_iterator Field = Record->field_begin(); 396 if (Field == Record->field_end()) { 397 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 398 return; 399 } 400 401 // Start pointer. 402 if (!Field->getType()->isPointerType() || 403 !Ctx.hasSameType(Field->getType()->getPointeeType(), 404 ArrayType->getElementType())) { 405 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 406 return; 407 } 408 409 AggValueSlot Dest = EnsureSlot(E->getType()); 410 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 411 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 412 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 413 llvm::Value *IdxStart[] = { Zero, Zero }; 414 llvm::Value *ArrayStart = 415 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 416 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 417 ++Field; 418 419 if (Field == Record->field_end()) { 420 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 421 return; 422 } 423 424 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 425 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 426 if (Field->getType()->isPointerType() && 427 Ctx.hasSameType(Field->getType()->getPointeeType(), 428 ArrayType->getElementType())) { 429 // End pointer. 430 llvm::Value *IdxEnd[] = { Zero, Size }; 431 llvm::Value *ArrayEnd = 432 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 433 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 434 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 435 // Length. 436 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 437 } else { 438 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 439 return; 440 } 441 } 442 443 /// Determine if E is a trivial array filler, that is, one that is 444 /// equivalent to zero-initialization. 445 static bool isTrivialFiller(Expr *E) { 446 if (!E) 447 return true; 448 449 if (isa<ImplicitValueInitExpr>(E)) 450 return true; 451 452 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 453 if (ILE->getNumInits()) 454 return false; 455 return isTrivialFiller(ILE->getArrayFiller()); 456 } 457 458 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 459 return Cons->getConstructor()->isDefaultConstructor() && 460 Cons->getConstructor()->isTrivial(); 461 462 // FIXME: Are there other cases where we can avoid emitting an initializer? 463 return false; 464 } 465 466 /// Emit initialization of an array from an initializer list. 467 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 468 QualType ArrayQTy, InitListExpr *E) { 469 uint64_t NumInitElements = E->getNumInits(); 470 471 uint64_t NumArrayElements = AType->getNumElements(); 472 assert(NumInitElements <= NumArrayElements); 473 474 QualType elementType = 475 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 476 477 // DestPtr is an array*. Construct an elementType* by drilling 478 // down a level. 479 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 480 llvm::Value *indices[] = { zero, zero }; 481 llvm::Value *begin = 482 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 483 484 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 485 CharUnits elementAlign = 486 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 487 488 // Consider initializing the array by copying from a global. For this to be 489 // more efficient than per-element initialization, the size of the elements 490 // with explicit initializers should be large enough. 491 if (NumInitElements * elementSize.getQuantity() > 16 && 492 elementType.isTriviallyCopyableType(CGF.getContext())) { 493 CodeGen::CodeGenModule &CGM = CGF.CGM; 494 ConstantEmitter Emitter(CGF); 495 LangAS AS = ArrayQTy.getAddressSpace(); 496 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 497 auto GV = new llvm::GlobalVariable( 498 CGM.getModule(), C->getType(), 499 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 500 llvm::GlobalValue::PrivateLinkage, C, "constinit", 501 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 502 CGM.getContext().getTargetAddressSpace(AS)); 503 Emitter.finalize(GV); 504 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 505 GV->setAlignment(Align.getAsAlign()); 506 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 507 return; 508 } 509 } 510 511 // Exception safety requires us to destroy all the 512 // already-constructed members if an initializer throws. 513 // For that, we'll need an EH cleanup. 514 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 515 Address endOfInit = Address::invalid(); 516 EHScopeStack::stable_iterator cleanup; 517 llvm::Instruction *cleanupDominator = nullptr; 518 if (CGF.needsEHCleanup(dtorKind)) { 519 // In principle we could tell the cleanup where we are more 520 // directly, but the control flow can get so varied here that it 521 // would actually be quite complex. Therefore we go through an 522 // alloca. 523 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 524 "arrayinit.endOfInit"); 525 cleanupDominator = Builder.CreateStore(begin, endOfInit); 526 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 527 elementAlign, 528 CGF.getDestroyer(dtorKind)); 529 cleanup = CGF.EHStack.stable_begin(); 530 531 // Otherwise, remember that we didn't need a cleanup. 532 } else { 533 dtorKind = QualType::DK_none; 534 } 535 536 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 537 538 // The 'current element to initialize'. The invariants on this 539 // variable are complicated. Essentially, after each iteration of 540 // the loop, it points to the last initialized element, except 541 // that it points to the beginning of the array before any 542 // elements have been initialized. 543 llvm::Value *element = begin; 544 545 // Emit the explicit initializers. 546 for (uint64_t i = 0; i != NumInitElements; ++i) { 547 // Advance to the next element. 548 if (i > 0) { 549 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 550 551 // Tell the cleanup that it needs to destroy up to this 552 // element. TODO: some of these stores can be trivially 553 // observed to be unnecessary. 554 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 555 } 556 557 LValue elementLV = 558 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 559 EmitInitializationToLValue(E->getInit(i), elementLV); 560 } 561 562 // Check whether there's a non-trivial array-fill expression. 563 Expr *filler = E->getArrayFiller(); 564 bool hasTrivialFiller = isTrivialFiller(filler); 565 566 // Any remaining elements need to be zero-initialized, possibly 567 // using the filler expression. We can skip this if the we're 568 // emitting to zeroed memory. 569 if (NumInitElements != NumArrayElements && 570 !(Dest.isZeroed() && hasTrivialFiller && 571 CGF.getTypes().isZeroInitializable(elementType))) { 572 573 // Use an actual loop. This is basically 574 // do { *array++ = filler; } while (array != end); 575 576 // Advance to the start of the rest of the array. 577 if (NumInitElements) { 578 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 579 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 580 } 581 582 // Compute the end of the array. 583 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 584 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 585 "arrayinit.end"); 586 587 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 588 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 589 590 // Jump into the body. 591 CGF.EmitBlock(bodyBB); 592 llvm::PHINode *currentElement = 593 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 594 currentElement->addIncoming(element, entryBB); 595 596 // Emit the actual filler expression. 597 { 598 // C++1z [class.temporary]p5: 599 // when a default constructor is called to initialize an element of 600 // an array with no corresponding initializer [...] the destruction of 601 // every temporary created in a default argument is sequenced before 602 // the construction of the next array element, if any 603 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 604 LValue elementLV = 605 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 606 if (filler) 607 EmitInitializationToLValue(filler, elementLV); 608 else 609 EmitNullInitializationToLValue(elementLV); 610 } 611 612 // Move on to the next element. 613 llvm::Value *nextElement = 614 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 615 616 // Tell the EH cleanup that we finished with the last element. 617 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 618 619 // Leave the loop if we're done. 620 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 621 "arrayinit.done"); 622 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 623 Builder.CreateCondBr(done, endBB, bodyBB); 624 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 625 626 CGF.EmitBlock(endBB); 627 } 628 629 // Leave the partial-array cleanup if we entered one. 630 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 631 } 632 633 //===----------------------------------------------------------------------===// 634 // Visitor Methods 635 //===----------------------------------------------------------------------===// 636 637 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 638 Visit(E->getSubExpr()); 639 } 640 641 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 642 // If this is a unique OVE, just visit its source expression. 643 if (e->isUnique()) 644 Visit(e->getSourceExpr()); 645 else 646 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 647 } 648 649 void 650 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 651 if (Dest.isPotentiallyAliased() && 652 E->getType().isPODType(CGF.getContext())) { 653 // For a POD type, just emit a load of the lvalue + a copy, because our 654 // compound literal might alias the destination. 655 EmitAggLoadOfLValue(E); 656 return; 657 } 658 659 AggValueSlot Slot = EnsureSlot(E->getType()); 660 661 // Block-scope compound literals are destroyed at the end of the enclosing 662 // scope in C. 663 bool Destruct = 664 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed(); 665 if (Destruct) 666 Slot.setExternallyDestructed(); 667 668 CGF.EmitAggExpr(E->getInitializer(), Slot); 669 670 if (Destruct) 671 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 672 CGF.pushLifetimeExtendedDestroy( 673 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(), 674 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup); 675 } 676 677 /// Attempt to look through various unimportant expressions to find a 678 /// cast of the given kind. 679 static Expr *findPeephole(Expr *op, CastKind kind) { 680 while (true) { 681 op = op->IgnoreParens(); 682 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 683 if (castE->getCastKind() == kind) 684 return castE->getSubExpr(); 685 if (castE->getCastKind() == CK_NoOp) 686 continue; 687 } 688 return nullptr; 689 } 690 } 691 692 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 693 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 694 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 695 switch (E->getCastKind()) { 696 case CK_Dynamic: { 697 // FIXME: Can this actually happen? We have no test coverage for it. 698 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 699 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 700 CodeGenFunction::TCK_Load); 701 // FIXME: Do we also need to handle property references here? 702 if (LV.isSimple()) 703 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E)); 704 else 705 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 706 707 if (!Dest.isIgnored()) 708 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 709 break; 710 } 711 712 case CK_ToUnion: { 713 // Evaluate even if the destination is ignored. 714 if (Dest.isIgnored()) { 715 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 716 /*ignoreResult=*/true); 717 break; 718 } 719 720 // GCC union extension 721 QualType Ty = E->getSubExpr()->getType(); 722 Address CastPtr = 723 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 724 EmitInitializationToLValue(E->getSubExpr(), 725 CGF.MakeAddrLValue(CastPtr, Ty)); 726 break; 727 } 728 729 case CK_LValueToRValueBitCast: { 730 if (Dest.isIgnored()) { 731 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 732 /*ignoreResult=*/true); 733 break; 734 } 735 736 LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); 737 Address SourceAddress = 738 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty); 739 Address DestAddress = 740 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty); 741 llvm::Value *SizeVal = llvm::ConstantInt::get( 742 CGF.SizeTy, 743 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); 744 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); 745 break; 746 } 747 748 case CK_DerivedToBase: 749 case CK_BaseToDerived: 750 case CK_UncheckedDerivedToBase: { 751 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 752 "should have been unpacked before we got here"); 753 } 754 755 case CK_NonAtomicToAtomic: 756 case CK_AtomicToNonAtomic: { 757 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 758 759 // Determine the atomic and value types. 760 QualType atomicType = E->getSubExpr()->getType(); 761 QualType valueType = E->getType(); 762 if (isToAtomic) std::swap(atomicType, valueType); 763 764 assert(atomicType->isAtomicType()); 765 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 766 atomicType->castAs<AtomicType>()->getValueType())); 767 768 // Just recurse normally if we're ignoring the result or the 769 // atomic type doesn't change representation. 770 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 771 return Visit(E->getSubExpr()); 772 } 773 774 CastKind peepholeTarget = 775 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 776 777 // These two cases are reverses of each other; try to peephole them. 778 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 779 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 780 E->getType()) && 781 "peephole significantly changed types?"); 782 return Visit(op); 783 } 784 785 // If we're converting an r-value of non-atomic type to an r-value 786 // of atomic type, just emit directly into the relevant sub-object. 787 if (isToAtomic) { 788 AggValueSlot valueDest = Dest; 789 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 790 // Zero-initialize. (Strictly speaking, we only need to initialize 791 // the padding at the end, but this is simpler.) 792 if (!Dest.isZeroed()) 793 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 794 795 // Build a GEP to refer to the subobject. 796 Address valueAddr = 797 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 798 valueDest = AggValueSlot::forAddr(valueAddr, 799 valueDest.getQualifiers(), 800 valueDest.isExternallyDestructed(), 801 valueDest.requiresGCollection(), 802 valueDest.isPotentiallyAliased(), 803 AggValueSlot::DoesNotOverlap, 804 AggValueSlot::IsZeroed); 805 } 806 807 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 808 return; 809 } 810 811 // Otherwise, we're converting an atomic type to a non-atomic type. 812 // Make an atomic temporary, emit into that, and then copy the value out. 813 AggValueSlot atomicSlot = 814 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 815 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 816 817 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 818 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 819 return EmitFinalDestCopy(valueType, rvalue); 820 } 821 case CK_AddressSpaceConversion: 822 return Visit(E->getSubExpr()); 823 824 case CK_LValueToRValue: 825 // If we're loading from a volatile type, force the destination 826 // into existence. 827 if (E->getSubExpr()->getType().isVolatileQualified()) { 828 bool Destruct = 829 !Dest.isExternallyDestructed() && 830 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 831 if (Destruct) 832 Dest.setExternallyDestructed(); 833 EnsureDest(E->getType()); 834 Visit(E->getSubExpr()); 835 836 if (Destruct) 837 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 838 E->getType()); 839 840 return; 841 } 842 843 LLVM_FALLTHROUGH; 844 845 846 case CK_NoOp: 847 case CK_UserDefinedConversion: 848 case CK_ConstructorConversion: 849 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 850 E->getType()) && 851 "Implicit cast types must be compatible"); 852 Visit(E->getSubExpr()); 853 break; 854 855 case CK_LValueBitCast: 856 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 857 858 case CK_Dependent: 859 case CK_BitCast: 860 case CK_ArrayToPointerDecay: 861 case CK_FunctionToPointerDecay: 862 case CK_NullToPointer: 863 case CK_NullToMemberPointer: 864 case CK_BaseToDerivedMemberPointer: 865 case CK_DerivedToBaseMemberPointer: 866 case CK_MemberPointerToBoolean: 867 case CK_ReinterpretMemberPointer: 868 case CK_IntegralToPointer: 869 case CK_PointerToIntegral: 870 case CK_PointerToBoolean: 871 case CK_ToVoid: 872 case CK_VectorSplat: 873 case CK_IntegralCast: 874 case CK_BooleanToSignedIntegral: 875 case CK_IntegralToBoolean: 876 case CK_IntegralToFloating: 877 case CK_FloatingToIntegral: 878 case CK_FloatingToBoolean: 879 case CK_FloatingCast: 880 case CK_CPointerToObjCPointerCast: 881 case CK_BlockPointerToObjCPointerCast: 882 case CK_AnyPointerToBlockPointerCast: 883 case CK_ObjCObjectLValueCast: 884 case CK_FloatingRealToComplex: 885 case CK_FloatingComplexToReal: 886 case CK_FloatingComplexToBoolean: 887 case CK_FloatingComplexCast: 888 case CK_FloatingComplexToIntegralComplex: 889 case CK_IntegralRealToComplex: 890 case CK_IntegralComplexToReal: 891 case CK_IntegralComplexToBoolean: 892 case CK_IntegralComplexCast: 893 case CK_IntegralComplexToFloatingComplex: 894 case CK_ARCProduceObject: 895 case CK_ARCConsumeObject: 896 case CK_ARCReclaimReturnedObject: 897 case CK_ARCExtendBlockObject: 898 case CK_CopyAndAutoreleaseBlockObject: 899 case CK_BuiltinFnToFnPtr: 900 case CK_ZeroToOCLOpaqueType: 901 902 case CK_IntToOCLSampler: 903 case CK_FixedPointCast: 904 case CK_FixedPointToBoolean: 905 case CK_FixedPointToIntegral: 906 case CK_IntegralToFixedPoint: 907 llvm_unreachable("cast kind invalid for aggregate types"); 908 } 909 } 910 911 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 912 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 913 EmitAggLoadOfLValue(E); 914 return; 915 } 916 917 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 918 return CGF.EmitCallExpr(E, Slot); 919 }); 920 } 921 922 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 923 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 924 return CGF.EmitObjCMessageExpr(E, Slot); 925 }); 926 } 927 928 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 929 CGF.EmitIgnoredExpr(E->getLHS()); 930 Visit(E->getRHS()); 931 } 932 933 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 934 CodeGenFunction::StmtExprEvaluation eval(CGF); 935 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 936 } 937 938 enum CompareKind { 939 CK_Less, 940 CK_Greater, 941 CK_Equal, 942 }; 943 944 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 945 const BinaryOperator *E, llvm::Value *LHS, 946 llvm::Value *RHS, CompareKind Kind, 947 const char *NameSuffix = "") { 948 QualType ArgTy = E->getLHS()->getType(); 949 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 950 ArgTy = CT->getElementType(); 951 952 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 953 assert(Kind == CK_Equal && 954 "member pointers may only be compared for equality"); 955 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 956 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 957 } 958 959 // Compute the comparison instructions for the specified comparison kind. 960 struct CmpInstInfo { 961 const char *Name; 962 llvm::CmpInst::Predicate FCmp; 963 llvm::CmpInst::Predicate SCmp; 964 llvm::CmpInst::Predicate UCmp; 965 }; 966 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 967 using FI = llvm::FCmpInst; 968 using II = llvm::ICmpInst; 969 switch (Kind) { 970 case CK_Less: 971 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 972 case CK_Greater: 973 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 974 case CK_Equal: 975 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 976 } 977 llvm_unreachable("Unrecognised CompareKind enum"); 978 }(); 979 980 if (ArgTy->hasFloatingRepresentation()) 981 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 982 llvm::Twine(InstInfo.Name) + NameSuffix); 983 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 984 auto Inst = 985 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 986 return Builder.CreateICmp(Inst, LHS, RHS, 987 llvm::Twine(InstInfo.Name) + NameSuffix); 988 } 989 990 llvm_unreachable("unsupported aggregate binary expression should have " 991 "already been handled"); 992 } 993 994 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 995 using llvm::BasicBlock; 996 using llvm::PHINode; 997 using llvm::Value; 998 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 999 E->getRHS()->getType())); 1000 const ComparisonCategoryInfo &CmpInfo = 1001 CGF.getContext().CompCategories.getInfoForType(E->getType()); 1002 assert(CmpInfo.Record->isTriviallyCopyable() && 1003 "cannot copy non-trivially copyable aggregate"); 1004 1005 QualType ArgTy = E->getLHS()->getType(); 1006 1007 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 1008 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 1009 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 1010 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 1011 } 1012 bool IsComplex = ArgTy->isAnyComplexType(); 1013 1014 // Evaluate the operands to the expression and extract their values. 1015 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 1016 RValue RV = CGF.EmitAnyExpr(E); 1017 if (RV.isScalar()) 1018 return {RV.getScalarVal(), nullptr}; 1019 if (RV.isAggregate()) 1020 return {RV.getAggregatePointer(), nullptr}; 1021 assert(RV.isComplex()); 1022 return RV.getComplexVal(); 1023 }; 1024 auto LHSValues = EmitOperand(E->getLHS()), 1025 RHSValues = EmitOperand(E->getRHS()); 1026 1027 auto EmitCmp = [&](CompareKind K) { 1028 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 1029 K, IsComplex ? ".r" : ""); 1030 if (!IsComplex) 1031 return Cmp; 1032 assert(K == CompareKind::CK_Equal); 1033 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 1034 RHSValues.second, K, ".i"); 1035 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 1036 }; 1037 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 1038 return Builder.getInt(VInfo->getIntValue()); 1039 }; 1040 1041 Value *Select; 1042 if (ArgTy->isNullPtrType()) { 1043 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1044 } else if (!CmpInfo.isPartial()) { 1045 Value *SelectOne = 1046 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1047 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1048 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1049 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1050 SelectOne, "sel.eq"); 1051 } else { 1052 Value *SelectEq = Builder.CreateSelect( 1053 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1054 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1055 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1056 EmitCmpRes(CmpInfo.getGreater()), 1057 SelectEq, "sel.gt"); 1058 Select = Builder.CreateSelect( 1059 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1060 } 1061 // Create the return value in the destination slot. 1062 EnsureDest(E->getType()); 1063 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1064 1065 // Emit the address of the first (and only) field in the comparison category 1066 // type, and initialize it from the constant integer value selected above. 1067 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1068 DestLV, *CmpInfo.Record->field_begin()); 1069 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1070 1071 // All done! The result is in the Dest slot. 1072 } 1073 1074 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1075 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1076 VisitPointerToDataMemberBinaryOperator(E); 1077 else 1078 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1079 } 1080 1081 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1082 const BinaryOperator *E) { 1083 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1084 EmitFinalDestCopy(E->getType(), LV); 1085 } 1086 1087 /// Is the value of the given expression possibly a reference to or 1088 /// into a __block variable? 1089 static bool isBlockVarRef(const Expr *E) { 1090 // Make sure we look through parens. 1091 E = E->IgnoreParens(); 1092 1093 // Check for a direct reference to a __block variable. 1094 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1095 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1096 return (var && var->hasAttr<BlocksAttr>()); 1097 } 1098 1099 // More complicated stuff. 1100 1101 // Binary operators. 1102 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1103 // For an assignment or pointer-to-member operation, just care 1104 // about the LHS. 1105 if (op->isAssignmentOp() || op->isPtrMemOp()) 1106 return isBlockVarRef(op->getLHS()); 1107 1108 // For a comma, just care about the RHS. 1109 if (op->getOpcode() == BO_Comma) 1110 return isBlockVarRef(op->getRHS()); 1111 1112 // FIXME: pointer arithmetic? 1113 return false; 1114 1115 // Check both sides of a conditional operator. 1116 } else if (const AbstractConditionalOperator *op 1117 = dyn_cast<AbstractConditionalOperator>(E)) { 1118 return isBlockVarRef(op->getTrueExpr()) 1119 || isBlockVarRef(op->getFalseExpr()); 1120 1121 // OVEs are required to support BinaryConditionalOperators. 1122 } else if (const OpaqueValueExpr *op 1123 = dyn_cast<OpaqueValueExpr>(E)) { 1124 if (const Expr *src = op->getSourceExpr()) 1125 return isBlockVarRef(src); 1126 1127 // Casts are necessary to get things like (*(int*)&var) = foo(). 1128 // We don't really care about the kind of cast here, except 1129 // we don't want to look through l2r casts, because it's okay 1130 // to get the *value* in a __block variable. 1131 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1132 if (cast->getCastKind() == CK_LValueToRValue) 1133 return false; 1134 return isBlockVarRef(cast->getSubExpr()); 1135 1136 // Handle unary operators. Again, just aggressively look through 1137 // it, ignoring the operation. 1138 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1139 return isBlockVarRef(uop->getSubExpr()); 1140 1141 // Look into the base of a field access. 1142 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1143 return isBlockVarRef(mem->getBase()); 1144 1145 // Look into the base of a subscript. 1146 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1147 return isBlockVarRef(sub->getBase()); 1148 } 1149 1150 return false; 1151 } 1152 1153 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1154 // For an assignment to work, the value on the right has 1155 // to be compatible with the value on the left. 1156 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1157 E->getRHS()->getType()) 1158 && "Invalid assignment"); 1159 1160 // If the LHS might be a __block variable, and the RHS can 1161 // potentially cause a block copy, we need to evaluate the RHS first 1162 // so that the assignment goes the right place. 1163 // This is pretty semantically fragile. 1164 if (isBlockVarRef(E->getLHS()) && 1165 E->getRHS()->HasSideEffects(CGF.getContext())) { 1166 // Ensure that we have a destination, and evaluate the RHS into that. 1167 EnsureDest(E->getRHS()->getType()); 1168 Visit(E->getRHS()); 1169 1170 // Now emit the LHS and copy into it. 1171 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1172 1173 // That copy is an atomic copy if the LHS is atomic. 1174 if (LHS.getType()->isAtomicType() || 1175 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1176 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1177 return; 1178 } 1179 1180 EmitCopy(E->getLHS()->getType(), 1181 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed, 1182 needsGC(E->getLHS()->getType()), 1183 AggValueSlot::IsAliased, 1184 AggValueSlot::MayOverlap), 1185 Dest); 1186 return; 1187 } 1188 1189 LValue LHS = CGF.EmitLValue(E->getLHS()); 1190 1191 // If we have an atomic type, evaluate into the destination and then 1192 // do an atomic copy. 1193 if (LHS.getType()->isAtomicType() || 1194 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1195 EnsureDest(E->getRHS()->getType()); 1196 Visit(E->getRHS()); 1197 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1198 return; 1199 } 1200 1201 // Codegen the RHS so that it stores directly into the LHS. 1202 AggValueSlot LHSSlot = AggValueSlot::forLValue( 1203 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()), 1204 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 1205 // A non-volatile aggregate destination might have volatile member. 1206 if (!LHSSlot.isVolatile() && 1207 CGF.hasVolatileMember(E->getLHS()->getType())) 1208 LHSSlot.setVolatile(true); 1209 1210 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1211 1212 // Copy into the destination if the assignment isn't ignored. 1213 EmitFinalDestCopy(E->getType(), LHS); 1214 } 1215 1216 void AggExprEmitter:: 1217 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1218 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1219 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1220 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1221 1222 // Bind the common expression if necessary. 1223 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1224 1225 CodeGenFunction::ConditionalEvaluation eval(CGF); 1226 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1227 CGF.getProfileCount(E)); 1228 1229 // Save whether the destination's lifetime is externally managed. 1230 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1231 1232 eval.begin(CGF); 1233 CGF.EmitBlock(LHSBlock); 1234 CGF.incrementProfileCounter(E); 1235 Visit(E->getTrueExpr()); 1236 eval.end(CGF); 1237 1238 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1239 CGF.Builder.CreateBr(ContBlock); 1240 1241 // If the result of an agg expression is unused, then the emission 1242 // of the LHS might need to create a destination slot. That's fine 1243 // with us, and we can safely emit the RHS into the same slot, but 1244 // we shouldn't claim that it's already being destructed. 1245 Dest.setExternallyDestructed(isExternallyDestructed); 1246 1247 eval.begin(CGF); 1248 CGF.EmitBlock(RHSBlock); 1249 Visit(E->getFalseExpr()); 1250 eval.end(CGF); 1251 1252 CGF.EmitBlock(ContBlock); 1253 } 1254 1255 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1256 Visit(CE->getChosenSubExpr()); 1257 } 1258 1259 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1260 Address ArgValue = Address::invalid(); 1261 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1262 1263 // If EmitVAArg fails, emit an error. 1264 if (!ArgPtr.isValid()) { 1265 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1266 return; 1267 } 1268 1269 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1270 } 1271 1272 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1273 // Ensure that we have a slot, but if we already do, remember 1274 // whether it was externally destructed. 1275 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1276 EnsureDest(E->getType()); 1277 1278 // We're going to push a destructor if there isn't already one. 1279 Dest.setExternallyDestructed(); 1280 1281 Visit(E->getSubExpr()); 1282 1283 // Push that destructor we promised. 1284 if (!wasExternallyDestructed) 1285 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1286 } 1287 1288 void 1289 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1290 AggValueSlot Slot = EnsureSlot(E->getType()); 1291 CGF.EmitCXXConstructExpr(E, Slot); 1292 } 1293 1294 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1295 const CXXInheritedCtorInitExpr *E) { 1296 AggValueSlot Slot = EnsureSlot(E->getType()); 1297 CGF.EmitInheritedCXXConstructorCall( 1298 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1299 E->inheritedFromVBase(), E); 1300 } 1301 1302 void 1303 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1304 AggValueSlot Slot = EnsureSlot(E->getType()); 1305 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1306 1307 // We'll need to enter cleanup scopes in case any of the element 1308 // initializers throws an exception. 1309 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1310 llvm::Instruction *CleanupDominator = nullptr; 1311 1312 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1313 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1314 e = E->capture_init_end(); 1315 i != e; ++i, ++CurField) { 1316 // Emit initialization 1317 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1318 if (CurField->hasCapturedVLAType()) { 1319 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1320 continue; 1321 } 1322 1323 EmitInitializationToLValue(*i, LV); 1324 1325 // Push a destructor if necessary. 1326 if (QualType::DestructionKind DtorKind = 1327 CurField->getType().isDestructedType()) { 1328 assert(LV.isSimple()); 1329 if (CGF.needsEHCleanup(DtorKind)) { 1330 if (!CleanupDominator) 1331 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1332 CGF.Int8Ty, 1333 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1334 CharUnits::One()); // placeholder 1335 1336 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(), 1337 CGF.getDestroyer(DtorKind), false); 1338 Cleanups.push_back(CGF.EHStack.stable_begin()); 1339 } 1340 } 1341 } 1342 1343 // Deactivate all the partial cleanups in reverse order, which 1344 // generally means popping them. 1345 for (unsigned i = Cleanups.size(); i != 0; --i) 1346 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1347 1348 // Destroy the placeholder if we made one. 1349 if (CleanupDominator) 1350 CleanupDominator->eraseFromParent(); 1351 } 1352 1353 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1354 CGF.enterFullExpression(E); 1355 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1356 Visit(E->getSubExpr()); 1357 } 1358 1359 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1360 QualType T = E->getType(); 1361 AggValueSlot Slot = EnsureSlot(T); 1362 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1363 } 1364 1365 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1366 QualType T = E->getType(); 1367 AggValueSlot Slot = EnsureSlot(T); 1368 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1369 } 1370 1371 /// isSimpleZero - If emitting this value will obviously just cause a store of 1372 /// zero to memory, return true. This can return false if uncertain, so it just 1373 /// handles simple cases. 1374 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1375 E = E->IgnoreParens(); 1376 1377 // 0 1378 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1379 return IL->getValue() == 0; 1380 // +0.0 1381 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1382 return FL->getValue().isPosZero(); 1383 // int() 1384 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1385 CGF.getTypes().isZeroInitializable(E->getType())) 1386 return true; 1387 // (int*)0 - Null pointer expressions. 1388 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1389 return ICE->getCastKind() == CK_NullToPointer && 1390 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1391 !E->HasSideEffects(CGF.getContext()); 1392 // '\0' 1393 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1394 return CL->getValue() == 0; 1395 1396 // Otherwise, hard case: conservatively return false. 1397 return false; 1398 } 1399 1400 1401 void 1402 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1403 QualType type = LV.getType(); 1404 // FIXME: Ignore result? 1405 // FIXME: Are initializers affected by volatile? 1406 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1407 // Storing "i32 0" to a zero'd memory location is a noop. 1408 return; 1409 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1410 return EmitNullInitializationToLValue(LV); 1411 } else if (isa<NoInitExpr>(E)) { 1412 // Do nothing. 1413 return; 1414 } else if (type->isReferenceType()) { 1415 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1416 return CGF.EmitStoreThroughLValue(RV, LV); 1417 } 1418 1419 switch (CGF.getEvaluationKind(type)) { 1420 case TEK_Complex: 1421 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1422 return; 1423 case TEK_Aggregate: 1424 CGF.EmitAggExpr( 1425 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed, 1426 AggValueSlot::DoesNotNeedGCBarriers, 1427 AggValueSlot::IsNotAliased, 1428 AggValueSlot::MayOverlap, Dest.isZeroed())); 1429 return; 1430 case TEK_Scalar: 1431 if (LV.isSimple()) { 1432 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1433 } else { 1434 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1435 } 1436 return; 1437 } 1438 llvm_unreachable("bad evaluation kind"); 1439 } 1440 1441 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1442 QualType type = lv.getType(); 1443 1444 // If the destination slot is already zeroed out before the aggregate is 1445 // copied into it, we don't have to emit any zeros here. 1446 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1447 return; 1448 1449 if (CGF.hasScalarEvaluationKind(type)) { 1450 // For non-aggregates, we can store the appropriate null constant. 1451 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1452 // Note that the following is not equivalent to 1453 // EmitStoreThroughBitfieldLValue for ARC types. 1454 if (lv.isBitField()) { 1455 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1456 } else { 1457 assert(lv.isSimple()); 1458 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1459 } 1460 } else { 1461 // There's a potential optimization opportunity in combining 1462 // memsets; that would be easy for arrays, but relatively 1463 // difficult for structures with the current code. 1464 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType()); 1465 } 1466 } 1467 1468 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1469 #if 0 1470 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1471 // (Length of globals? Chunks of zeroed-out space?). 1472 // 1473 // If we can, prefer a copy from a global; this is a lot less code for long 1474 // globals, and it's easier for the current optimizers to analyze. 1475 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1476 llvm::GlobalVariable* GV = 1477 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1478 llvm::GlobalValue::InternalLinkage, C, ""); 1479 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1480 return; 1481 } 1482 #endif 1483 if (E->hadArrayRangeDesignator()) 1484 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1485 1486 if (E->isTransparent()) 1487 return Visit(E->getInit(0)); 1488 1489 AggValueSlot Dest = EnsureSlot(E->getType()); 1490 1491 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1492 1493 // Handle initialization of an array. 1494 if (E->getType()->isArrayType()) { 1495 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1496 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1497 return; 1498 } 1499 1500 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1501 1502 // Do struct initialization; this code just sets each individual member 1503 // to the approprate value. This makes bitfield support automatic; 1504 // the disadvantage is that the generated code is more difficult for 1505 // the optimizer, especially with bitfields. 1506 unsigned NumInitElements = E->getNumInits(); 1507 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1508 1509 // We'll need to enter cleanup scopes in case any of the element 1510 // initializers throws an exception. 1511 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1512 llvm::Instruction *cleanupDominator = nullptr; 1513 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { 1514 cleanups.push_back(cleanup); 1515 if (!cleanupDominator) // create placeholder once needed 1516 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1517 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), 1518 CharUnits::One()); 1519 }; 1520 1521 unsigned curInitIndex = 0; 1522 1523 // Emit initialization of base classes. 1524 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1525 assert(E->getNumInits() >= CXXRD->getNumBases() && 1526 "missing initializer for base class"); 1527 for (auto &Base : CXXRD->bases()) { 1528 assert(!Base.isVirtual() && "should not see vbases here"); 1529 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1530 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1531 Dest.getAddress(), CXXRD, BaseRD, 1532 /*isBaseVirtual*/ false); 1533 AggValueSlot AggSlot = AggValueSlot::forAddr( 1534 V, Qualifiers(), 1535 AggValueSlot::IsDestructed, 1536 AggValueSlot::DoesNotNeedGCBarriers, 1537 AggValueSlot::IsNotAliased, 1538 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1539 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1540 1541 if (QualType::DestructionKind dtorKind = 1542 Base.getType().isDestructedType()) { 1543 CGF.pushDestroy(dtorKind, V, Base.getType()); 1544 addCleanup(CGF.EHStack.stable_begin()); 1545 } 1546 } 1547 } 1548 1549 // Prepare a 'this' for CXXDefaultInitExprs. 1550 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1551 1552 if (record->isUnion()) { 1553 // Only initialize one field of a union. The field itself is 1554 // specified by the initializer list. 1555 if (!E->getInitializedFieldInUnion()) { 1556 // Empty union; we have nothing to do. 1557 1558 #ifndef NDEBUG 1559 // Make sure that it's really an empty and not a failure of 1560 // semantic analysis. 1561 for (const auto *Field : record->fields()) 1562 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1563 #endif 1564 return; 1565 } 1566 1567 // FIXME: volatility 1568 FieldDecl *Field = E->getInitializedFieldInUnion(); 1569 1570 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1571 if (NumInitElements) { 1572 // Store the initializer into the field 1573 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1574 } else { 1575 // Default-initialize to null. 1576 EmitNullInitializationToLValue(FieldLoc); 1577 } 1578 1579 return; 1580 } 1581 1582 // Here we iterate over the fields; this makes it simpler to both 1583 // default-initialize fields and skip over unnamed fields. 1584 for (const auto *field : record->fields()) { 1585 // We're done once we hit the flexible array member. 1586 if (field->getType()->isIncompleteArrayType()) 1587 break; 1588 1589 // Always skip anonymous bitfields. 1590 if (field->isUnnamedBitfield()) 1591 continue; 1592 1593 // We're done if we reach the end of the explicit initializers, we 1594 // have a zeroed object, and the rest of the fields are 1595 // zero-initializable. 1596 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1597 CGF.getTypes().isZeroInitializable(E->getType())) 1598 break; 1599 1600 1601 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1602 // We never generate write-barries for initialized fields. 1603 LV.setNonGC(true); 1604 1605 if (curInitIndex < NumInitElements) { 1606 // Store the initializer into the field. 1607 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1608 } else { 1609 // We're out of initializers; default-initialize to null 1610 EmitNullInitializationToLValue(LV); 1611 } 1612 1613 // Push a destructor if necessary. 1614 // FIXME: if we have an array of structures, all explicitly 1615 // initialized, we can end up pushing a linear number of cleanups. 1616 bool pushedCleanup = false; 1617 if (QualType::DestructionKind dtorKind 1618 = field->getType().isDestructedType()) { 1619 assert(LV.isSimple()); 1620 if (CGF.needsEHCleanup(dtorKind)) { 1621 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(), 1622 CGF.getDestroyer(dtorKind), false); 1623 addCleanup(CGF.EHStack.stable_begin()); 1624 pushedCleanup = true; 1625 } 1626 } 1627 1628 // If the GEP didn't get used because of a dead zero init or something 1629 // else, clean it up for -O0 builds and general tidiness. 1630 if (!pushedCleanup && LV.isSimple()) 1631 if (llvm::GetElementPtrInst *GEP = 1632 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF))) 1633 if (GEP->use_empty()) 1634 GEP->eraseFromParent(); 1635 } 1636 1637 // Deactivate all the partial cleanups in reverse order, which 1638 // generally means popping them. 1639 assert((cleanupDominator || cleanups.empty()) && 1640 "Missing cleanupDominator before deactivating cleanup blocks"); 1641 for (unsigned i = cleanups.size(); i != 0; --i) 1642 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1643 1644 // Destroy the placeholder if we made one. 1645 if (cleanupDominator) 1646 cleanupDominator->eraseFromParent(); 1647 } 1648 1649 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1650 llvm::Value *outerBegin) { 1651 // Emit the common subexpression. 1652 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1653 1654 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1655 uint64_t numElements = E->getArraySize().getZExtValue(); 1656 1657 if (!numElements) 1658 return; 1659 1660 // destPtr is an array*. Construct an elementType* by drilling down a level. 1661 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1662 llvm::Value *indices[] = {zero, zero}; 1663 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1664 "arrayinit.begin"); 1665 1666 // Prepare to special-case multidimensional array initialization: we avoid 1667 // emitting multiple destructor loops in that case. 1668 if (!outerBegin) 1669 outerBegin = begin; 1670 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1671 1672 QualType elementType = 1673 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1674 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1675 CharUnits elementAlign = 1676 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1677 1678 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1679 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1680 1681 // Jump into the body. 1682 CGF.EmitBlock(bodyBB); 1683 llvm::PHINode *index = 1684 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1685 index->addIncoming(zero, entryBB); 1686 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1687 1688 // Prepare for a cleanup. 1689 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1690 EHScopeStack::stable_iterator cleanup; 1691 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1692 if (outerBegin->getType() != element->getType()) 1693 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1694 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1695 elementAlign, 1696 CGF.getDestroyer(dtorKind)); 1697 cleanup = CGF.EHStack.stable_begin(); 1698 } else { 1699 dtorKind = QualType::DK_none; 1700 } 1701 1702 // Emit the actual filler expression. 1703 { 1704 // Temporaries created in an array initialization loop are destroyed 1705 // at the end of each iteration. 1706 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1707 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1708 LValue elementLV = 1709 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1710 1711 if (InnerLoop) { 1712 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1713 auto elementSlot = AggValueSlot::forLValue( 1714 elementLV, CGF, AggValueSlot::IsDestructed, 1715 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1716 AggValueSlot::DoesNotOverlap); 1717 AggExprEmitter(CGF, elementSlot, false) 1718 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1719 } else 1720 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1721 } 1722 1723 // Move on to the next element. 1724 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1725 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1726 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1727 1728 // Leave the loop if we're done. 1729 llvm::Value *done = Builder.CreateICmpEQ( 1730 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1731 "arrayinit.done"); 1732 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1733 Builder.CreateCondBr(done, endBB, bodyBB); 1734 1735 CGF.EmitBlock(endBB); 1736 1737 // Leave the partial-array cleanup if we entered one. 1738 if (dtorKind) 1739 CGF.DeactivateCleanupBlock(cleanup, index); 1740 } 1741 1742 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1743 AggValueSlot Dest = EnsureSlot(E->getType()); 1744 1745 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1746 EmitInitializationToLValue(E->getBase(), DestLV); 1747 VisitInitListExpr(E->getUpdater()); 1748 } 1749 1750 //===----------------------------------------------------------------------===// 1751 // Entry Points into this File 1752 //===----------------------------------------------------------------------===// 1753 1754 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1755 /// non-zero bytes that will be stored when outputting the initializer for the 1756 /// specified initializer expression. 1757 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1758 E = E->IgnoreParens(); 1759 1760 // 0 and 0.0 won't require any non-zero stores! 1761 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1762 1763 // If this is an initlist expr, sum up the size of sizes of the (present) 1764 // elements. If this is something weird, assume the whole thing is non-zero. 1765 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1766 while (ILE && ILE->isTransparent()) 1767 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1768 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1769 return CGF.getContext().getTypeSizeInChars(E->getType()); 1770 1771 // InitListExprs for structs have to be handled carefully. If there are 1772 // reference members, we need to consider the size of the reference, not the 1773 // referencee. InitListExprs for unions and arrays can't have references. 1774 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1775 if (!RT->isUnionType()) { 1776 RecordDecl *SD = RT->getDecl(); 1777 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1778 1779 unsigned ILEElement = 0; 1780 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1781 while (ILEElement != CXXRD->getNumBases()) 1782 NumNonZeroBytes += 1783 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1784 for (const auto *Field : SD->fields()) { 1785 // We're done once we hit the flexible array member or run out of 1786 // InitListExpr elements. 1787 if (Field->getType()->isIncompleteArrayType() || 1788 ILEElement == ILE->getNumInits()) 1789 break; 1790 if (Field->isUnnamedBitfield()) 1791 continue; 1792 1793 const Expr *E = ILE->getInit(ILEElement++); 1794 1795 // Reference values are always non-null and have the width of a pointer. 1796 if (Field->getType()->isReferenceType()) 1797 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1798 CGF.getTarget().getPointerWidth(0)); 1799 else 1800 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1801 } 1802 1803 return NumNonZeroBytes; 1804 } 1805 } 1806 1807 1808 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1809 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1810 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1811 return NumNonZeroBytes; 1812 } 1813 1814 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1815 /// zeros in it, emit a memset and avoid storing the individual zeros. 1816 /// 1817 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1818 CodeGenFunction &CGF) { 1819 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1820 // volatile stores. 1821 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1822 return; 1823 1824 // C++ objects with a user-declared constructor don't need zero'ing. 1825 if (CGF.getLangOpts().CPlusPlus) 1826 if (const RecordType *RT = CGF.getContext() 1827 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1828 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1829 if (RD->hasUserDeclaredConstructor()) 1830 return; 1831 } 1832 1833 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1834 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1835 if (Size <= CharUnits::fromQuantity(16)) 1836 return; 1837 1838 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1839 // we prefer to emit memset + individual stores for the rest. 1840 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1841 if (NumNonZeroBytes*4 > Size) 1842 return; 1843 1844 // Okay, it seems like a good idea to use an initial memset, emit the call. 1845 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1846 1847 Address Loc = Slot.getAddress(); 1848 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1849 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1850 1851 // Tell the AggExprEmitter that the slot is known zero. 1852 Slot.setZeroed(); 1853 } 1854 1855 1856 1857 1858 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1859 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1860 /// the value of the aggregate expression is not needed. If VolatileDest is 1861 /// true, DestPtr cannot be 0. 1862 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1863 assert(E && hasAggregateEvaluationKind(E->getType()) && 1864 "Invalid aggregate expression to emit"); 1865 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1866 "slot has bits but no address"); 1867 1868 // Optimize the slot if possible. 1869 CheckAggExprForMemSetUse(Slot, E, *this); 1870 1871 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1872 } 1873 1874 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1875 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1876 Address Temp = CreateMemTemp(E->getType()); 1877 LValue LV = MakeAddrLValue(Temp, E->getType()); 1878 EmitAggExpr(E, AggValueSlot::forLValue( 1879 LV, *this, AggValueSlot::IsNotDestructed, 1880 AggValueSlot::DoesNotNeedGCBarriers, 1881 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 1882 return LV; 1883 } 1884 1885 AggValueSlot::Overlap_t 1886 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { 1887 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) 1888 return AggValueSlot::DoesNotOverlap; 1889 1890 // If the field lies entirely within the enclosing class's nvsize, its tail 1891 // padding cannot overlap any already-initialized object. (The only subobjects 1892 // with greater addresses that might already be initialized are vbases.) 1893 const RecordDecl *ClassRD = FD->getParent(); 1894 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); 1895 if (Layout.getFieldOffset(FD->getFieldIndex()) + 1896 getContext().getTypeSize(FD->getType()) <= 1897 (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) 1898 return AggValueSlot::DoesNotOverlap; 1899 1900 // The tail padding may contain values we need to preserve. 1901 return AggValueSlot::MayOverlap; 1902 } 1903 1904 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( 1905 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 1906 // If the most-derived object is a field declared with [[no_unique_address]], 1907 // the tail padding of any virtual base could be reused for other subobjects 1908 // of that field's class. 1909 if (IsVirtual) 1910 return AggValueSlot::MayOverlap; 1911 1912 // If the base class is laid out entirely within the nvsize of the derived 1913 // class, its tail padding cannot yet be initialized, so we can issue 1914 // stores at the full width of the base class. 1915 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1916 if (Layout.getBaseClassOffset(BaseRD) + 1917 getContext().getASTRecordLayout(BaseRD).getSize() <= 1918 Layout.getNonVirtualSize()) 1919 return AggValueSlot::DoesNotOverlap; 1920 1921 // The tail padding may contain values we need to preserve. 1922 return AggValueSlot::MayOverlap; 1923 } 1924 1925 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 1926 AggValueSlot::Overlap_t MayOverlap, 1927 bool isVolatile) { 1928 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1929 1930 Address DestPtr = Dest.getAddress(*this); 1931 Address SrcPtr = Src.getAddress(*this); 1932 1933 if (getLangOpts().CPlusPlus) { 1934 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1935 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1936 assert((Record->hasTrivialCopyConstructor() || 1937 Record->hasTrivialCopyAssignment() || 1938 Record->hasTrivialMoveConstructor() || 1939 Record->hasTrivialMoveAssignment() || 1940 Record->isUnion()) && 1941 "Trying to aggregate-copy a type without a trivial copy/move " 1942 "constructor or assignment operator"); 1943 // Ignore empty classes in C++. 1944 if (Record->isEmpty()) 1945 return; 1946 } 1947 } 1948 1949 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1950 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1951 // read from another object that overlaps in anyway the storage of the first 1952 // object, then the overlap shall be exact and the two objects shall have 1953 // qualified or unqualified versions of a compatible type." 1954 // 1955 // memcpy is not defined if the source and destination pointers are exactly 1956 // equal, but other compilers do this optimization, and almost every memcpy 1957 // implementation handles this case safely. If there is a libc that does not 1958 // safely handle this, we can add a target hook. 1959 1960 // Get data size info for this aggregate. Don't copy the tail padding if this 1961 // might be a potentially-overlapping subobject, since the tail padding might 1962 // be occupied by a different object. Otherwise, copying it is fine. 1963 std::pair<CharUnits, CharUnits> TypeInfo; 1964 if (MayOverlap) 1965 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1966 else 1967 TypeInfo = getContext().getTypeInfoInChars(Ty); 1968 1969 llvm::Value *SizeVal = nullptr; 1970 if (TypeInfo.first.isZero()) { 1971 // But note that getTypeInfo returns 0 for a VLA. 1972 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1973 getContext().getAsArrayType(Ty))) { 1974 QualType BaseEltTy; 1975 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1976 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1977 assert(!TypeInfo.first.isZero()); 1978 SizeVal = Builder.CreateNUWMul( 1979 SizeVal, 1980 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1981 } 1982 } 1983 if (!SizeVal) { 1984 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1985 } 1986 1987 // FIXME: If we have a volatile struct, the optimizer can remove what might 1988 // appear to be `extra' memory ops: 1989 // 1990 // volatile struct { int i; } a, b; 1991 // 1992 // int main() { 1993 // a = b; 1994 // a = b; 1995 // } 1996 // 1997 // we need to use a different call here. We use isVolatile to indicate when 1998 // either the source or the destination is volatile. 1999 2000 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 2001 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 2002 2003 // Don't do any of the memmove_collectable tests if GC isn't set. 2004 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 2005 // fall through 2006 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 2007 RecordDecl *Record = RecordTy->getDecl(); 2008 if (Record->hasObjectMember()) { 2009 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2010 SizeVal); 2011 return; 2012 } 2013 } else if (Ty->isArrayType()) { 2014 QualType BaseType = getContext().getBaseElementType(Ty); 2015 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 2016 if (RecordTy->getDecl()->hasObjectMember()) { 2017 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2018 SizeVal); 2019 return; 2020 } 2021 } 2022 } 2023 2024 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 2025 2026 // Determine the metadata to describe the position of any padding in this 2027 // memcpy, as well as the TBAA tags for the members of the struct, in case 2028 // the optimizer wishes to expand it in to scalar memory operations. 2029 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 2030 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 2031 2032 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 2033 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 2034 Dest.getTBAAInfo(), Src.getTBAAInfo()); 2035 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 2036 } 2037 } 2038