1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 85 Visit(GE->getResultExpr()); 86 } 87 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 88 89 // l-values. 90 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 91 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 92 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 93 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 94 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 95 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 96 EmitAggLoadOfLValue(E); 97 } 98 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 99 EmitAggLoadOfLValue(E); 100 } 101 void VisitPredefinedExpr(const PredefinedExpr *E) { 102 EmitAggLoadOfLValue(E); 103 } 104 105 // Operators. 106 void VisitCastExpr(CastExpr *E); 107 void VisitCallExpr(const CallExpr *E); 108 void VisitStmtExpr(const StmtExpr *E); 109 void VisitBinaryOperator(const BinaryOperator *BO); 110 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 111 void VisitBinAssign(const BinaryOperator *E); 112 void VisitBinComma(const BinaryOperator *E); 113 114 void VisitObjCMessageExpr(ObjCMessageExpr *E); 115 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 116 EmitAggLoadOfLValue(E); 117 } 118 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 119 120 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 121 void VisitChooseExpr(const ChooseExpr *CE); 122 void VisitInitListExpr(InitListExpr *E); 123 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 124 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 125 Visit(DAE->getExpr()); 126 } 127 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 128 void VisitCXXConstructExpr(const CXXConstructExpr *E); 129 void VisitExprWithCleanups(ExprWithCleanups *E); 130 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 131 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 132 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 133 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 134 135 void VisitVAArgExpr(VAArgExpr *E); 136 137 void EmitInitializationToLValue(Expr *E, LValue Address); 138 void EmitNullInitializationToLValue(LValue Address); 139 // case Expr::ChooseExprClass: 140 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 141 }; 142 } // end anonymous namespace. 143 144 //===----------------------------------------------------------------------===// 145 // Utilities 146 //===----------------------------------------------------------------------===// 147 148 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 149 /// represents a value lvalue, this method emits the address of the lvalue, 150 /// then loads the result into DestPtr. 151 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 152 LValue LV = CGF.EmitLValue(E); 153 EmitFinalDestCopy(E, LV); 154 } 155 156 /// \brief True if the given aggregate type requires special GC API calls. 157 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 158 // Only record types have members that might require garbage collection. 159 const RecordType *RecordTy = T->getAs<RecordType>(); 160 if (!RecordTy) return false; 161 162 // Don't mess with non-trivial C++ types. 163 RecordDecl *Record = RecordTy->getDecl(); 164 if (isa<CXXRecordDecl>(Record) && 165 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 166 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 167 return false; 168 169 // Check whether the type has an object member. 170 return Record->hasObjectMember(); 171 } 172 173 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 174 /// 175 /// The idea is that you do something like this: 176 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 177 /// EmitGCMove(E, Result); 178 /// If GC doesn't interfere, this will cause the result to be emitted 179 /// directly into the return value slot. If GC does interfere, a final 180 /// move will be performed. 181 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 182 if (Dest.requiresGCollection()) { 183 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 184 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 185 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 186 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 187 Src.getAggregateAddr(), 188 SizeVal); 189 } 190 } 191 192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 194 assert(Src.isAggregate() && "value must be aggregate value!"); 195 196 // If Dest is ignored, then we're evaluating an aggregate expression 197 // in a context (like an expression statement) that doesn't care 198 // about the result. C says that an lvalue-to-rvalue conversion is 199 // performed in these cases; C++ says that it is not. In either 200 // case, we don't actually need to do anything unless the value is 201 // volatile. 202 if (Dest.isIgnored()) { 203 if (!Src.isVolatileQualified() || 204 CGF.CGM.getLangOptions().CPlusPlus || 205 (IgnoreResult && Ignore)) 206 return; 207 208 // If the source is volatile, we must read from it; to do that, we need 209 // some place to put it. 210 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 211 } 212 213 if (Dest.requiresGCollection()) { 214 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 215 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 216 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 217 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 218 Dest.getAddr(), 219 Src.getAggregateAddr(), 220 SizeVal); 221 return; 222 } 223 // If the result of the assignment is used, copy the LHS there also. 224 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 225 // from the source as well, as we can't eliminate it if either operand 226 // is volatile, unless copy has volatile for both source and destination.. 227 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 228 Dest.isVolatile()|Src.isVolatileQualified()); 229 } 230 231 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 232 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 233 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 234 235 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 236 Src.isVolatileQualified()), 237 Ignore); 238 } 239 240 //===----------------------------------------------------------------------===// 241 // Visitor Methods 242 //===----------------------------------------------------------------------===// 243 244 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 245 Visit(E->GetTemporaryExpr()); 246 } 247 248 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 249 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 250 } 251 252 void 253 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 254 if (E->getType().isPODType(CGF.getContext())) { 255 // For a POD type, just emit a load of the lvalue + a copy, because our 256 // compound literal might alias the destination. 257 // FIXME: This is a band-aid; the real problem appears to be in our handling 258 // of assignments, where we store directly into the LHS without checking 259 // whether anything in the RHS aliases. 260 EmitAggLoadOfLValue(E); 261 return; 262 } 263 264 AggValueSlot Slot = EnsureSlot(E->getType()); 265 CGF.EmitAggExpr(E->getInitializer(), Slot); 266 } 267 268 269 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 270 switch (E->getCastKind()) { 271 case CK_Dynamic: { 272 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 273 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 274 // FIXME: Do we also need to handle property references here? 275 if (LV.isSimple()) 276 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 277 else 278 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 279 280 if (!Dest.isIgnored()) 281 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 282 break; 283 } 284 285 case CK_ToUnion: { 286 if (Dest.isIgnored()) break; 287 288 // GCC union extension 289 QualType Ty = E->getSubExpr()->getType(); 290 QualType PtrTy = CGF.getContext().getPointerType(Ty); 291 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 292 CGF.ConvertType(PtrTy)); 293 EmitInitializationToLValue(E->getSubExpr(), 294 CGF.MakeAddrLValue(CastPtr, Ty)); 295 break; 296 } 297 298 case CK_DerivedToBase: 299 case CK_BaseToDerived: 300 case CK_UncheckedDerivedToBase: { 301 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 302 "should have been unpacked before we got here"); 303 break; 304 } 305 306 case CK_GetObjCProperty: { 307 LValue LV = CGF.EmitLValue(E->getSubExpr()); 308 assert(LV.isPropertyRef()); 309 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 310 EmitGCMove(E, RV); 311 break; 312 } 313 314 case CK_LValueToRValue: // hope for downstream optimization 315 case CK_NoOp: 316 case CK_UserDefinedConversion: 317 case CK_ConstructorConversion: 318 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 319 E->getType()) && 320 "Implicit cast types must be compatible"); 321 Visit(E->getSubExpr()); 322 break; 323 324 case CK_LValueBitCast: 325 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 326 break; 327 328 case CK_Dependent: 329 case CK_BitCast: 330 case CK_ArrayToPointerDecay: 331 case CK_FunctionToPointerDecay: 332 case CK_NullToPointer: 333 case CK_NullToMemberPointer: 334 case CK_BaseToDerivedMemberPointer: 335 case CK_DerivedToBaseMemberPointer: 336 case CK_MemberPointerToBoolean: 337 case CK_IntegralToPointer: 338 case CK_PointerToIntegral: 339 case CK_PointerToBoolean: 340 case CK_ToVoid: 341 case CK_VectorSplat: 342 case CK_IntegralCast: 343 case CK_IntegralToBoolean: 344 case CK_IntegralToFloating: 345 case CK_FloatingToIntegral: 346 case CK_FloatingToBoolean: 347 case CK_FloatingCast: 348 case CK_AnyPointerToObjCPointerCast: 349 case CK_AnyPointerToBlockPointerCast: 350 case CK_ObjCObjectLValueCast: 351 case CK_FloatingRealToComplex: 352 case CK_FloatingComplexToReal: 353 case CK_FloatingComplexToBoolean: 354 case CK_FloatingComplexCast: 355 case CK_FloatingComplexToIntegralComplex: 356 case CK_IntegralRealToComplex: 357 case CK_IntegralComplexToReal: 358 case CK_IntegralComplexToBoolean: 359 case CK_IntegralComplexCast: 360 case CK_IntegralComplexToFloatingComplex: 361 case CK_ObjCProduceObject: 362 case CK_ObjCConsumeObject: 363 llvm_unreachable("cast kind invalid for aggregate types"); 364 } 365 } 366 367 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 368 if (E->getCallReturnType()->isReferenceType()) { 369 EmitAggLoadOfLValue(E); 370 return; 371 } 372 373 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 374 EmitGCMove(E, RV); 375 } 376 377 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 378 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 379 EmitGCMove(E, RV); 380 } 381 382 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 383 llvm_unreachable("direct property access not surrounded by " 384 "lvalue-to-rvalue cast"); 385 } 386 387 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 388 CGF.EmitIgnoredExpr(E->getLHS()); 389 Visit(E->getRHS()); 390 } 391 392 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 393 CodeGenFunction::StmtExprEvaluation eval(CGF); 394 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 395 } 396 397 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 398 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 399 VisitPointerToDataMemberBinaryOperator(E); 400 else 401 CGF.ErrorUnsupported(E, "aggregate binary expression"); 402 } 403 404 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 405 const BinaryOperator *E) { 406 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 407 EmitFinalDestCopy(E, LV); 408 } 409 410 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 411 // For an assignment to work, the value on the right has 412 // to be compatible with the value on the left. 413 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 414 E->getRHS()->getType()) 415 && "Invalid assignment"); 416 417 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 418 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 419 if (VD->hasAttr<BlocksAttr>() && 420 E->getRHS()->HasSideEffects(CGF.getContext())) { 421 // When __block variable on LHS, the RHS must be evaluated first 422 // as it may change the 'forwarding' field via call to Block_copy. 423 LValue RHS = CGF.EmitLValue(E->getRHS()); 424 LValue LHS = CGF.EmitLValue(E->getLHS()); 425 bool GCollection = false; 426 if (CGF.getContext().getLangOptions().getGCMode()) 427 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 428 Dest = AggValueSlot::forLValue(LHS, true, GCollection); 429 EmitFinalDestCopy(E, RHS, true); 430 return; 431 } 432 433 LValue LHS = CGF.EmitLValue(E->getLHS()); 434 435 // We have to special case property setters, otherwise we must have 436 // a simple lvalue (no aggregates inside vectors, bitfields). 437 if (LHS.isPropertyRef()) { 438 const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr(); 439 QualType ArgType = RE->getSetterArgType(); 440 RValue Src; 441 if (ArgType->isReferenceType()) 442 Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0); 443 else { 444 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 445 CGF.EmitAggExpr(E->getRHS(), Slot); 446 Src = Slot.asRValue(); 447 } 448 CGF.EmitStoreThroughPropertyRefLValue(Src, LHS); 449 } else { 450 bool GCollection = false; 451 if (CGF.getContext().getLangOptions().getGCMode()) 452 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 453 454 // Codegen the RHS so that it stores directly into the LHS. 455 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 456 GCollection); 457 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 458 EmitFinalDestCopy(E, LHS, true); 459 } 460 } 461 462 void AggExprEmitter:: 463 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 464 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 465 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 466 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 467 468 // Bind the common expression if necessary. 469 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 470 471 CodeGenFunction::ConditionalEvaluation eval(CGF); 472 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 473 474 // Save whether the destination's lifetime is externally managed. 475 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 476 477 eval.begin(CGF); 478 CGF.EmitBlock(LHSBlock); 479 Visit(E->getTrueExpr()); 480 eval.end(CGF); 481 482 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 483 CGF.Builder.CreateBr(ContBlock); 484 485 // If the result of an agg expression is unused, then the emission 486 // of the LHS might need to create a destination slot. That's fine 487 // with us, and we can safely emit the RHS into the same slot, but 488 // we shouldn't claim that its lifetime is externally managed. 489 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 490 491 eval.begin(CGF); 492 CGF.EmitBlock(RHSBlock); 493 Visit(E->getFalseExpr()); 494 eval.end(CGF); 495 496 CGF.EmitBlock(ContBlock); 497 } 498 499 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 500 Visit(CE->getChosenSubExpr(CGF.getContext())); 501 } 502 503 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 504 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 505 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 506 507 if (!ArgPtr) { 508 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 509 return; 510 } 511 512 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 513 } 514 515 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 516 // Ensure that we have a slot, but if we already do, remember 517 // whether its lifetime was externally managed. 518 bool WasManaged = Dest.isLifetimeExternallyManaged(); 519 Dest = EnsureSlot(E->getType()); 520 Dest.setLifetimeExternallyManaged(); 521 522 Visit(E->getSubExpr()); 523 524 // Set up the temporary's destructor if its lifetime wasn't already 525 // being managed. 526 if (!WasManaged) 527 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 528 } 529 530 void 531 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 532 AggValueSlot Slot = EnsureSlot(E->getType()); 533 CGF.EmitCXXConstructExpr(E, Slot); 534 } 535 536 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 537 CGF.EmitExprWithCleanups(E, Dest); 538 } 539 540 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 541 QualType T = E->getType(); 542 AggValueSlot Slot = EnsureSlot(T); 543 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 544 } 545 546 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 547 QualType T = E->getType(); 548 AggValueSlot Slot = EnsureSlot(T); 549 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 550 } 551 552 /// isSimpleZero - If emitting this value will obviously just cause a store of 553 /// zero to memory, return true. This can return false if uncertain, so it just 554 /// handles simple cases. 555 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 556 E = E->IgnoreParens(); 557 558 // 0 559 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 560 return IL->getValue() == 0; 561 // +0.0 562 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 563 return FL->getValue().isPosZero(); 564 // int() 565 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 566 CGF.getTypes().isZeroInitializable(E->getType())) 567 return true; 568 // (int*)0 - Null pointer expressions. 569 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 570 return ICE->getCastKind() == CK_NullToPointer; 571 // '\0' 572 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 573 return CL->getValue() == 0; 574 575 // Otherwise, hard case: conservatively return false. 576 return false; 577 } 578 579 580 void 581 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 582 QualType type = LV.getType(); 583 // FIXME: Ignore result? 584 // FIXME: Are initializers affected by volatile? 585 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 586 // Storing "i32 0" to a zero'd memory location is a noop. 587 } else if (isa<ImplicitValueInitExpr>(E)) { 588 EmitNullInitializationToLValue(LV); 589 } else if (type->isReferenceType()) { 590 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 591 CGF.EmitStoreThroughLValue(RV, LV, type); 592 } else if (type->isAnyComplexType()) { 593 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 594 } else if (CGF.hasAggregateLLVMType(type)) { 595 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, true, false, 596 Dest.isZeroed())); 597 } else if (LV.isSimple()) { 598 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 599 } else { 600 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, type); 601 } 602 } 603 604 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 605 QualType type = lv.getType(); 606 607 // If the destination slot is already zeroed out before the aggregate is 608 // copied into it, we don't have to emit any zeros here. 609 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 610 return; 611 612 if (!CGF.hasAggregateLLVMType(type)) { 613 // For non-aggregates, we can store zero 614 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 615 CGF.EmitStoreThroughLValue(RValue::get(null), lv, type); 616 } else { 617 // There's a potential optimization opportunity in combining 618 // memsets; that would be easy for arrays, but relatively 619 // difficult for structures with the current code. 620 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 621 } 622 } 623 624 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 625 #if 0 626 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 627 // (Length of globals? Chunks of zeroed-out space?). 628 // 629 // If we can, prefer a copy from a global; this is a lot less code for long 630 // globals, and it's easier for the current optimizers to analyze. 631 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 632 llvm::GlobalVariable* GV = 633 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 634 llvm::GlobalValue::InternalLinkage, C, ""); 635 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 636 return; 637 } 638 #endif 639 if (E->hadArrayRangeDesignator()) 640 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 641 642 llvm::Value *DestPtr = Dest.getAddr(); 643 644 // Handle initialization of an array. 645 if (E->getType()->isArrayType()) { 646 const llvm::PointerType *APType = 647 cast<llvm::PointerType>(DestPtr->getType()); 648 const llvm::ArrayType *AType = 649 cast<llvm::ArrayType>(APType->getElementType()); 650 651 uint64_t NumInitElements = E->getNumInits(); 652 653 if (E->getNumInits() > 0) { 654 QualType T1 = E->getType(); 655 QualType T2 = E->getInit(0)->getType(); 656 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 657 EmitAggLoadOfLValue(E->getInit(0)); 658 return; 659 } 660 } 661 662 uint64_t NumArrayElements = AType->getNumElements(); 663 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 664 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 665 ElementType = CGF.getContext().getQualifiedType(ElementType, 666 Dest.getQualifiers()); 667 668 bool hasNonTrivialCXXConstructor = false; 669 if (CGF.getContext().getLangOptions().CPlusPlus) 670 if (const RecordType *RT = CGF.getContext() 671 .getBaseElementType(ElementType)->getAs<RecordType>()) { 672 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 673 hasNonTrivialCXXConstructor = !RD->hasTrivialDefaultConstructor(); 674 } 675 676 for (uint64_t i = 0; i != NumArrayElements; ++i) { 677 // If we're done emitting initializers and the destination is known-zeroed 678 // then we're done. 679 if (i == NumInitElements && 680 Dest.isZeroed() && 681 CGF.getTypes().isZeroInitializable(ElementType) && 682 !hasNonTrivialCXXConstructor) 683 break; 684 685 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 686 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 687 688 if (i < NumInitElements) 689 EmitInitializationToLValue(E->getInit(i), LV); 690 else if (Expr *filler = E->getArrayFiller()) 691 EmitInitializationToLValue(filler, LV); 692 else 693 EmitNullInitializationToLValue(LV); 694 695 // If the GEP didn't get used because of a dead zero init or something 696 // else, clean it up for -O0 builds and general tidiness. 697 if (llvm::GetElementPtrInst *GEP = 698 dyn_cast<llvm::GetElementPtrInst>(NextVal)) 699 if (GEP->use_empty()) 700 GEP->eraseFromParent(); 701 } 702 return; 703 } 704 705 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 706 707 // Do struct initialization; this code just sets each individual member 708 // to the approprate value. This makes bitfield support automatic; 709 // the disadvantage is that the generated code is more difficult for 710 // the optimizer, especially with bitfields. 711 unsigned NumInitElements = E->getNumInits(); 712 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 713 714 if (E->getType()->isUnionType()) { 715 // Only initialize one field of a union. The field itself is 716 // specified by the initializer list. 717 if (!E->getInitializedFieldInUnion()) { 718 // Empty union; we have nothing to do. 719 720 #ifndef NDEBUG 721 // Make sure that it's really an empty and not a failure of 722 // semantic analysis. 723 for (RecordDecl::field_iterator Field = SD->field_begin(), 724 FieldEnd = SD->field_end(); 725 Field != FieldEnd; ++Field) 726 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 727 #endif 728 return; 729 } 730 731 // FIXME: volatility 732 FieldDecl *Field = E->getInitializedFieldInUnion(); 733 734 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 735 if (NumInitElements) { 736 // Store the initializer into the field 737 EmitInitializationToLValue(E->getInit(0), FieldLoc); 738 } else { 739 // Default-initialize to null. 740 EmitNullInitializationToLValue(FieldLoc); 741 } 742 743 return; 744 } 745 746 // Here we iterate over the fields; this makes it simpler to both 747 // default-initialize fields and skip over unnamed fields. 748 unsigned CurInitVal = 0; 749 for (RecordDecl::field_iterator Field = SD->field_begin(), 750 FieldEnd = SD->field_end(); 751 Field != FieldEnd; ++Field) { 752 // We're done once we hit the flexible array member 753 if (Field->getType()->isIncompleteArrayType()) 754 break; 755 756 if (Field->isUnnamedBitfield()) 757 continue; 758 759 // Don't emit GEP before a noop store of zero. 760 if (CurInitVal == NumInitElements && Dest.isZeroed() && 761 CGF.getTypes().isZeroInitializable(E->getType())) 762 break; 763 764 // FIXME: volatility 765 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 766 // We never generate write-barries for initialized fields. 767 FieldLoc.setNonGC(true); 768 769 if (CurInitVal < NumInitElements) { 770 // Store the initializer into the field. 771 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 772 } else { 773 // We're out of initalizers; default-initialize to null 774 EmitNullInitializationToLValue(FieldLoc); 775 } 776 777 // If the GEP didn't get used because of a dead zero init or something 778 // else, clean it up for -O0 builds and general tidiness. 779 if (FieldLoc.isSimple()) 780 if (llvm::GetElementPtrInst *GEP = 781 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) 782 if (GEP->use_empty()) 783 GEP->eraseFromParent(); 784 } 785 } 786 787 //===----------------------------------------------------------------------===// 788 // Entry Points into this File 789 //===----------------------------------------------------------------------===// 790 791 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 792 /// non-zero bytes that will be stored when outputting the initializer for the 793 /// specified initializer expression. 794 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 795 E = E->IgnoreParens(); 796 797 // 0 and 0.0 won't require any non-zero stores! 798 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 799 800 // If this is an initlist expr, sum up the size of sizes of the (present) 801 // elements. If this is something weird, assume the whole thing is non-zero. 802 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 803 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 804 return CGF.getContext().getTypeSizeInChars(E->getType()); 805 806 // InitListExprs for structs have to be handled carefully. If there are 807 // reference members, we need to consider the size of the reference, not the 808 // referencee. InitListExprs for unions and arrays can't have references. 809 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 810 if (!RT->isUnionType()) { 811 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 812 CharUnits NumNonZeroBytes = CharUnits::Zero(); 813 814 unsigned ILEElement = 0; 815 for (RecordDecl::field_iterator Field = SD->field_begin(), 816 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 817 // We're done once we hit the flexible array member or run out of 818 // InitListExpr elements. 819 if (Field->getType()->isIncompleteArrayType() || 820 ILEElement == ILE->getNumInits()) 821 break; 822 if (Field->isUnnamedBitfield()) 823 continue; 824 825 const Expr *E = ILE->getInit(ILEElement++); 826 827 // Reference values are always non-null and have the width of a pointer. 828 if (Field->getType()->isReferenceType()) 829 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 830 CGF.getContext().Target.getPointerWidth(0)); 831 else 832 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 833 } 834 835 return NumNonZeroBytes; 836 } 837 } 838 839 840 CharUnits NumNonZeroBytes = CharUnits::Zero(); 841 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 842 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 843 return NumNonZeroBytes; 844 } 845 846 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 847 /// zeros in it, emit a memset and avoid storing the individual zeros. 848 /// 849 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 850 CodeGenFunction &CGF) { 851 // If the slot is already known to be zeroed, nothing to do. Don't mess with 852 // volatile stores. 853 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 854 855 // C++ objects with a user-declared constructor don't need zero'ing. 856 if (CGF.getContext().getLangOptions().CPlusPlus) 857 if (const RecordType *RT = CGF.getContext() 858 .getBaseElementType(E->getType())->getAs<RecordType>()) { 859 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 860 if (RD->hasUserDeclaredConstructor()) 861 return; 862 } 863 864 // If the type is 16-bytes or smaller, prefer individual stores over memset. 865 std::pair<CharUnits, CharUnits> TypeInfo = 866 CGF.getContext().getTypeInfoInChars(E->getType()); 867 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 868 return; 869 870 // Check to see if over 3/4 of the initializer are known to be zero. If so, 871 // we prefer to emit memset + individual stores for the rest. 872 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 873 if (NumNonZeroBytes*4 > TypeInfo.first) 874 return; 875 876 // Okay, it seems like a good idea to use an initial memset, emit the call. 877 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 878 CharUnits Align = TypeInfo.second; 879 880 llvm::Value *Loc = Slot.getAddr(); 881 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 882 883 Loc = CGF.Builder.CreateBitCast(Loc, BP); 884 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 885 Align.getQuantity(), false); 886 887 // Tell the AggExprEmitter that the slot is known zero. 888 Slot.setZeroed(); 889 } 890 891 892 893 894 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 895 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 896 /// the value of the aggregate expression is not needed. If VolatileDest is 897 /// true, DestPtr cannot be 0. 898 /// 899 /// \param IsInitializer - true if this evaluation is initializing an 900 /// object whose lifetime is already being managed. 901 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 902 bool IgnoreResult) { 903 assert(E && hasAggregateLLVMType(E->getType()) && 904 "Invalid aggregate expression to emit"); 905 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 906 "slot has bits but no address"); 907 908 // Optimize the slot if possible. 909 CheckAggExprForMemSetUse(Slot, E, *this); 910 911 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 912 } 913 914 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 915 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 916 llvm::Value *Temp = CreateMemTemp(E->getType()); 917 LValue LV = MakeAddrLValue(Temp, E->getType()); 918 EmitAggExpr(E, AggValueSlot::forLValue(LV, false)); 919 return LV; 920 } 921 922 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 923 llvm::Value *SrcPtr, QualType Ty, 924 bool isVolatile) { 925 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 926 927 if (getContext().getLangOptions().CPlusPlus) { 928 if (const RecordType *RT = Ty->getAs<RecordType>()) { 929 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 930 assert((Record->hasTrivialCopyConstructor() || 931 Record->hasTrivialCopyAssignment()) && 932 "Trying to aggregate-copy a type without a trivial copy " 933 "constructor or assignment operator"); 934 // Ignore empty classes in C++. 935 if (Record->isEmpty()) 936 return; 937 } 938 } 939 940 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 941 // C99 6.5.16.1p3, which states "If the value being stored in an object is 942 // read from another object that overlaps in anyway the storage of the first 943 // object, then the overlap shall be exact and the two objects shall have 944 // qualified or unqualified versions of a compatible type." 945 // 946 // memcpy is not defined if the source and destination pointers are exactly 947 // equal, but other compilers do this optimization, and almost every memcpy 948 // implementation handles this case safely. If there is a libc that does not 949 // safely handle this, we can add a target hook. 950 951 // Get size and alignment info for this aggregate. 952 std::pair<CharUnits, CharUnits> TypeInfo = 953 getContext().getTypeInfoInChars(Ty); 954 955 // FIXME: Handle variable sized types. 956 957 // FIXME: If we have a volatile struct, the optimizer can remove what might 958 // appear to be `extra' memory ops: 959 // 960 // volatile struct { int i; } a, b; 961 // 962 // int main() { 963 // a = b; 964 // a = b; 965 // } 966 // 967 // we need to use a different call here. We use isVolatile to indicate when 968 // either the source or the destination is volatile. 969 970 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 971 const llvm::Type *DBP = 972 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 973 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 974 975 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 976 const llvm::Type *SBP = 977 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 978 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 979 980 // Don't do any of the memmove_collectable tests if GC isn't set. 981 if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) { 982 // fall through 983 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 984 RecordDecl *Record = RecordTy->getDecl(); 985 if (Record->hasObjectMember()) { 986 CharUnits size = TypeInfo.first; 987 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 988 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 989 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 990 SizeVal); 991 return; 992 } 993 } else if (Ty->isArrayType()) { 994 QualType BaseType = getContext().getBaseElementType(Ty); 995 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 996 if (RecordTy->getDecl()->hasObjectMember()) { 997 CharUnits size = TypeInfo.first; 998 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 999 llvm::Value *SizeVal = 1000 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1001 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1002 SizeVal); 1003 return; 1004 } 1005 } 1006 } 1007 1008 Builder.CreateMemCpy(DestPtr, SrcPtr, 1009 llvm::ConstantInt::get(IntPtrTy, 1010 TypeInfo.first.getQuantity()), 1011 TypeInfo.second.getQuantity(), isVolatile); 1012 } 1013