1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
85     Visit(GE->getResultExpr());
86   }
87   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
88 
89   // l-values.
90   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
91   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
92   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
93   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
94   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
95   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
96     EmitAggLoadOfLValue(E);
97   }
98   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
99     EmitAggLoadOfLValue(E);
100   }
101   void VisitPredefinedExpr(const PredefinedExpr *E) {
102     EmitAggLoadOfLValue(E);
103   }
104 
105   // Operators.
106   void VisitCastExpr(CastExpr *E);
107   void VisitCallExpr(const CallExpr *E);
108   void VisitStmtExpr(const StmtExpr *E);
109   void VisitBinaryOperator(const BinaryOperator *BO);
110   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
111   void VisitBinAssign(const BinaryOperator *E);
112   void VisitBinComma(const BinaryOperator *E);
113 
114   void VisitObjCMessageExpr(ObjCMessageExpr *E);
115   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
116     EmitAggLoadOfLValue(E);
117   }
118   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
119 
120   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
121   void VisitChooseExpr(const ChooseExpr *CE);
122   void VisitInitListExpr(InitListExpr *E);
123   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
124   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
125     Visit(DAE->getExpr());
126   }
127   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
128   void VisitCXXConstructExpr(const CXXConstructExpr *E);
129   void VisitExprWithCleanups(ExprWithCleanups *E);
130   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
131   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
132   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
133   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
134 
135   void VisitVAArgExpr(VAArgExpr *E);
136 
137   void EmitInitializationToLValue(Expr *E, LValue Address);
138   void EmitNullInitializationToLValue(LValue Address);
139   //  case Expr::ChooseExprClass:
140   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
141 };
142 }  // end anonymous namespace.
143 
144 //===----------------------------------------------------------------------===//
145 //                                Utilities
146 //===----------------------------------------------------------------------===//
147 
148 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
149 /// represents a value lvalue, this method emits the address of the lvalue,
150 /// then loads the result into DestPtr.
151 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
152   LValue LV = CGF.EmitLValue(E);
153   EmitFinalDestCopy(E, LV);
154 }
155 
156 /// \brief True if the given aggregate type requires special GC API calls.
157 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
158   // Only record types have members that might require garbage collection.
159   const RecordType *RecordTy = T->getAs<RecordType>();
160   if (!RecordTy) return false;
161 
162   // Don't mess with non-trivial C++ types.
163   RecordDecl *Record = RecordTy->getDecl();
164   if (isa<CXXRecordDecl>(Record) &&
165       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
166        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
167     return false;
168 
169   // Check whether the type has an object member.
170   return Record->hasObjectMember();
171 }
172 
173 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
174 ///
175 /// The idea is that you do something like this:
176 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
177 ///   EmitGCMove(E, Result);
178 /// If GC doesn't interfere, this will cause the result to be emitted
179 /// directly into the return value slot.  If GC does interfere, a final
180 /// move will be performed.
181 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
182   if (Dest.requiresGCollection()) {
183     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
184     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
185     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
186     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
187                                                     Src.getAggregateAddr(),
188                                                     SizeVal);
189   }
190 }
191 
192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
194   assert(Src.isAggregate() && "value must be aggregate value!");
195 
196   // If Dest is ignored, then we're evaluating an aggregate expression
197   // in a context (like an expression statement) that doesn't care
198   // about the result.  C says that an lvalue-to-rvalue conversion is
199   // performed in these cases; C++ says that it is not.  In either
200   // case, we don't actually need to do anything unless the value is
201   // volatile.
202   if (Dest.isIgnored()) {
203     if (!Src.isVolatileQualified() ||
204         CGF.CGM.getLangOptions().CPlusPlus ||
205         (IgnoreResult && Ignore))
206       return;
207 
208     // If the source is volatile, we must read from it; to do that, we need
209     // some place to put it.
210     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
211   }
212 
213   if (Dest.requiresGCollection()) {
214     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
215     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
216     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
217     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
218                                                       Dest.getAddr(),
219                                                       Src.getAggregateAddr(),
220                                                       SizeVal);
221     return;
222   }
223   // If the result of the assignment is used, copy the LHS there also.
224   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
225   // from the source as well, as we can't eliminate it if either operand
226   // is volatile, unless copy has volatile for both source and destination..
227   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
228                         Dest.isVolatile()|Src.isVolatileQualified());
229 }
230 
231 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
232 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
233   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
234 
235   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
236                                             Src.isVolatileQualified()),
237                     Ignore);
238 }
239 
240 //===----------------------------------------------------------------------===//
241 //                            Visitor Methods
242 //===----------------------------------------------------------------------===//
243 
244 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
245   Visit(E->GetTemporaryExpr());
246 }
247 
248 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
249   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
250 }
251 
252 void
253 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
254   if (E->getType().isPODType(CGF.getContext())) {
255     // For a POD type, just emit a load of the lvalue + a copy, because our
256     // compound literal might alias the destination.
257     // FIXME: This is a band-aid; the real problem appears to be in our handling
258     // of assignments, where we store directly into the LHS without checking
259     // whether anything in the RHS aliases.
260     EmitAggLoadOfLValue(E);
261     return;
262   }
263 
264   AggValueSlot Slot = EnsureSlot(E->getType());
265   CGF.EmitAggExpr(E->getInitializer(), Slot);
266 }
267 
268 
269 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
270   switch (E->getCastKind()) {
271   case CK_Dynamic: {
272     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
273     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
274     // FIXME: Do we also need to handle property references here?
275     if (LV.isSimple())
276       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
277     else
278       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
279 
280     if (!Dest.isIgnored())
281       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
282     break;
283   }
284 
285   case CK_ToUnion: {
286     if (Dest.isIgnored()) break;
287 
288     // GCC union extension
289     QualType Ty = E->getSubExpr()->getType();
290     QualType PtrTy = CGF.getContext().getPointerType(Ty);
291     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
292                                                  CGF.ConvertType(PtrTy));
293     EmitInitializationToLValue(E->getSubExpr(),
294                                CGF.MakeAddrLValue(CastPtr, Ty));
295     break;
296   }
297 
298   case CK_DerivedToBase:
299   case CK_BaseToDerived:
300   case CK_UncheckedDerivedToBase: {
301     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
302                 "should have been unpacked before we got here");
303     break;
304   }
305 
306   case CK_GetObjCProperty: {
307     LValue LV = CGF.EmitLValue(E->getSubExpr());
308     assert(LV.isPropertyRef());
309     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
310     EmitGCMove(E, RV);
311     break;
312   }
313 
314   case CK_LValueToRValue: // hope for downstream optimization
315   case CK_NoOp:
316   case CK_UserDefinedConversion:
317   case CK_ConstructorConversion:
318     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
319                                                    E->getType()) &&
320            "Implicit cast types must be compatible");
321     Visit(E->getSubExpr());
322     break;
323 
324   case CK_LValueBitCast:
325     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
326     break;
327 
328   case CK_Dependent:
329   case CK_BitCast:
330   case CK_ArrayToPointerDecay:
331   case CK_FunctionToPointerDecay:
332   case CK_NullToPointer:
333   case CK_NullToMemberPointer:
334   case CK_BaseToDerivedMemberPointer:
335   case CK_DerivedToBaseMemberPointer:
336   case CK_MemberPointerToBoolean:
337   case CK_IntegralToPointer:
338   case CK_PointerToIntegral:
339   case CK_PointerToBoolean:
340   case CK_ToVoid:
341   case CK_VectorSplat:
342   case CK_IntegralCast:
343   case CK_IntegralToBoolean:
344   case CK_IntegralToFloating:
345   case CK_FloatingToIntegral:
346   case CK_FloatingToBoolean:
347   case CK_FloatingCast:
348   case CK_AnyPointerToObjCPointerCast:
349   case CK_AnyPointerToBlockPointerCast:
350   case CK_ObjCObjectLValueCast:
351   case CK_FloatingRealToComplex:
352   case CK_FloatingComplexToReal:
353   case CK_FloatingComplexToBoolean:
354   case CK_FloatingComplexCast:
355   case CK_FloatingComplexToIntegralComplex:
356   case CK_IntegralRealToComplex:
357   case CK_IntegralComplexToReal:
358   case CK_IntegralComplexToBoolean:
359   case CK_IntegralComplexCast:
360   case CK_IntegralComplexToFloatingComplex:
361   case CK_ObjCProduceObject:
362   case CK_ObjCConsumeObject:
363     llvm_unreachable("cast kind invalid for aggregate types");
364   }
365 }
366 
367 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
368   if (E->getCallReturnType()->isReferenceType()) {
369     EmitAggLoadOfLValue(E);
370     return;
371   }
372 
373   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
374   EmitGCMove(E, RV);
375 }
376 
377 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
378   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
379   EmitGCMove(E, RV);
380 }
381 
382 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
383   llvm_unreachable("direct property access not surrounded by "
384                    "lvalue-to-rvalue cast");
385 }
386 
387 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
388   CGF.EmitIgnoredExpr(E->getLHS());
389   Visit(E->getRHS());
390 }
391 
392 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
393   CodeGenFunction::StmtExprEvaluation eval(CGF);
394   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
395 }
396 
397 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
398   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
399     VisitPointerToDataMemberBinaryOperator(E);
400   else
401     CGF.ErrorUnsupported(E, "aggregate binary expression");
402 }
403 
404 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
405                                                     const BinaryOperator *E) {
406   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
407   EmitFinalDestCopy(E, LV);
408 }
409 
410 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
411   // For an assignment to work, the value on the right has
412   // to be compatible with the value on the left.
413   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
414                                                  E->getRHS()->getType())
415          && "Invalid assignment");
416 
417   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
418     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
419       if (VD->hasAttr<BlocksAttr>() &&
420           E->getRHS()->HasSideEffects(CGF.getContext())) {
421         // When __block variable on LHS, the RHS must be evaluated first
422         // as it may change the 'forwarding' field via call to Block_copy.
423         LValue RHS = CGF.EmitLValue(E->getRHS());
424         LValue LHS = CGF.EmitLValue(E->getLHS());
425         bool GCollection = false;
426         if (CGF.getContext().getLangOptions().getGCMode())
427           GCollection = TypeRequiresGCollection(E->getLHS()->getType());
428         Dest = AggValueSlot::forLValue(LHS, true, GCollection);
429         EmitFinalDestCopy(E, RHS, true);
430         return;
431       }
432 
433   LValue LHS = CGF.EmitLValue(E->getLHS());
434 
435   // We have to special case property setters, otherwise we must have
436   // a simple lvalue (no aggregates inside vectors, bitfields).
437   if (LHS.isPropertyRef()) {
438     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
439     QualType ArgType = RE->getSetterArgType();
440     RValue Src;
441     if (ArgType->isReferenceType())
442       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
443     else {
444       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
445       CGF.EmitAggExpr(E->getRHS(), Slot);
446       Src = Slot.asRValue();
447     }
448     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
449   } else {
450     bool GCollection = false;
451     if (CGF.getContext().getLangOptions().getGCMode())
452       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
453 
454     // Codegen the RHS so that it stores directly into the LHS.
455     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
456                                                    GCollection);
457     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
458     EmitFinalDestCopy(E, LHS, true);
459   }
460 }
461 
462 void AggExprEmitter::
463 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
464   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
465   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
466   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
467 
468   // Bind the common expression if necessary.
469   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
470 
471   CodeGenFunction::ConditionalEvaluation eval(CGF);
472   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
473 
474   // Save whether the destination's lifetime is externally managed.
475   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
476 
477   eval.begin(CGF);
478   CGF.EmitBlock(LHSBlock);
479   Visit(E->getTrueExpr());
480   eval.end(CGF);
481 
482   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
483   CGF.Builder.CreateBr(ContBlock);
484 
485   // If the result of an agg expression is unused, then the emission
486   // of the LHS might need to create a destination slot.  That's fine
487   // with us, and we can safely emit the RHS into the same slot, but
488   // we shouldn't claim that its lifetime is externally managed.
489   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
490 
491   eval.begin(CGF);
492   CGF.EmitBlock(RHSBlock);
493   Visit(E->getFalseExpr());
494   eval.end(CGF);
495 
496   CGF.EmitBlock(ContBlock);
497 }
498 
499 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
500   Visit(CE->getChosenSubExpr(CGF.getContext()));
501 }
502 
503 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
504   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
505   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
506 
507   if (!ArgPtr) {
508     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
509     return;
510   }
511 
512   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
513 }
514 
515 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
516   // Ensure that we have a slot, but if we already do, remember
517   // whether its lifetime was externally managed.
518   bool WasManaged = Dest.isLifetimeExternallyManaged();
519   Dest = EnsureSlot(E->getType());
520   Dest.setLifetimeExternallyManaged();
521 
522   Visit(E->getSubExpr());
523 
524   // Set up the temporary's destructor if its lifetime wasn't already
525   // being managed.
526   if (!WasManaged)
527     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
528 }
529 
530 void
531 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
532   AggValueSlot Slot = EnsureSlot(E->getType());
533   CGF.EmitCXXConstructExpr(E, Slot);
534 }
535 
536 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
537   CGF.EmitExprWithCleanups(E, Dest);
538 }
539 
540 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
541   QualType T = E->getType();
542   AggValueSlot Slot = EnsureSlot(T);
543   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
544 }
545 
546 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
547   QualType T = E->getType();
548   AggValueSlot Slot = EnsureSlot(T);
549   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
550 }
551 
552 /// isSimpleZero - If emitting this value will obviously just cause a store of
553 /// zero to memory, return true.  This can return false if uncertain, so it just
554 /// handles simple cases.
555 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
556   E = E->IgnoreParens();
557 
558   // 0
559   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
560     return IL->getValue() == 0;
561   // +0.0
562   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
563     return FL->getValue().isPosZero();
564   // int()
565   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
566       CGF.getTypes().isZeroInitializable(E->getType()))
567     return true;
568   // (int*)0 - Null pointer expressions.
569   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
570     return ICE->getCastKind() == CK_NullToPointer;
571   // '\0'
572   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
573     return CL->getValue() == 0;
574 
575   // Otherwise, hard case: conservatively return false.
576   return false;
577 }
578 
579 
580 void
581 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
582   QualType type = LV.getType();
583   // FIXME: Ignore result?
584   // FIXME: Are initializers affected by volatile?
585   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
586     // Storing "i32 0" to a zero'd memory location is a noop.
587   } else if (isa<ImplicitValueInitExpr>(E)) {
588     EmitNullInitializationToLValue(LV);
589   } else if (type->isReferenceType()) {
590     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
591     CGF.EmitStoreThroughLValue(RV, LV, type);
592   } else if (type->isAnyComplexType()) {
593     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
594   } else if (CGF.hasAggregateLLVMType(type)) {
595     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, true, false,
596                                                Dest.isZeroed()));
597   } else if (LV.isSimple()) {
598     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
599   } else {
600     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, type);
601   }
602 }
603 
604 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
605   QualType type = lv.getType();
606 
607   // If the destination slot is already zeroed out before the aggregate is
608   // copied into it, we don't have to emit any zeros here.
609   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
610     return;
611 
612   if (!CGF.hasAggregateLLVMType(type)) {
613     // For non-aggregates, we can store zero
614     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
615     CGF.EmitStoreThroughLValue(RValue::get(null), lv, type);
616   } else {
617     // There's a potential optimization opportunity in combining
618     // memsets; that would be easy for arrays, but relatively
619     // difficult for structures with the current code.
620     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
621   }
622 }
623 
624 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
625 #if 0
626   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
627   // (Length of globals? Chunks of zeroed-out space?).
628   //
629   // If we can, prefer a copy from a global; this is a lot less code for long
630   // globals, and it's easier for the current optimizers to analyze.
631   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
632     llvm::GlobalVariable* GV =
633     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
634                              llvm::GlobalValue::InternalLinkage, C, "");
635     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
636     return;
637   }
638 #endif
639   if (E->hadArrayRangeDesignator())
640     CGF.ErrorUnsupported(E, "GNU array range designator extension");
641 
642   llvm::Value *DestPtr = Dest.getAddr();
643 
644   // Handle initialization of an array.
645   if (E->getType()->isArrayType()) {
646     const llvm::PointerType *APType =
647       cast<llvm::PointerType>(DestPtr->getType());
648     const llvm::ArrayType *AType =
649       cast<llvm::ArrayType>(APType->getElementType());
650 
651     uint64_t NumInitElements = E->getNumInits();
652 
653     if (E->getNumInits() > 0) {
654       QualType T1 = E->getType();
655       QualType T2 = E->getInit(0)->getType();
656       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
657         EmitAggLoadOfLValue(E->getInit(0));
658         return;
659       }
660     }
661 
662     uint64_t NumArrayElements = AType->getNumElements();
663     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
664     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
665     ElementType = CGF.getContext().getQualifiedType(ElementType,
666                                                     Dest.getQualifiers());
667 
668     bool hasNonTrivialCXXConstructor = false;
669     if (CGF.getContext().getLangOptions().CPlusPlus)
670       if (const RecordType *RT = CGF.getContext()
671                         .getBaseElementType(ElementType)->getAs<RecordType>()) {
672         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
673         hasNonTrivialCXXConstructor = !RD->hasTrivialDefaultConstructor();
674       }
675 
676     for (uint64_t i = 0; i != NumArrayElements; ++i) {
677       // If we're done emitting initializers and the destination is known-zeroed
678       // then we're done.
679       if (i == NumInitElements &&
680           Dest.isZeroed() &&
681           CGF.getTypes().isZeroInitializable(ElementType) &&
682           !hasNonTrivialCXXConstructor)
683         break;
684 
685       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
686       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
687 
688       if (i < NumInitElements)
689         EmitInitializationToLValue(E->getInit(i), LV);
690       else if (Expr *filler = E->getArrayFiller())
691         EmitInitializationToLValue(filler, LV);
692       else
693         EmitNullInitializationToLValue(LV);
694 
695       // If the GEP didn't get used because of a dead zero init or something
696       // else, clean it up for -O0 builds and general tidiness.
697       if (llvm::GetElementPtrInst *GEP =
698             dyn_cast<llvm::GetElementPtrInst>(NextVal))
699         if (GEP->use_empty())
700           GEP->eraseFromParent();
701     }
702     return;
703   }
704 
705   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
706 
707   // Do struct initialization; this code just sets each individual member
708   // to the approprate value.  This makes bitfield support automatic;
709   // the disadvantage is that the generated code is more difficult for
710   // the optimizer, especially with bitfields.
711   unsigned NumInitElements = E->getNumInits();
712   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
713 
714   if (E->getType()->isUnionType()) {
715     // Only initialize one field of a union. The field itself is
716     // specified by the initializer list.
717     if (!E->getInitializedFieldInUnion()) {
718       // Empty union; we have nothing to do.
719 
720 #ifndef NDEBUG
721       // Make sure that it's really an empty and not a failure of
722       // semantic analysis.
723       for (RecordDecl::field_iterator Field = SD->field_begin(),
724                                    FieldEnd = SD->field_end();
725            Field != FieldEnd; ++Field)
726         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
727 #endif
728       return;
729     }
730 
731     // FIXME: volatility
732     FieldDecl *Field = E->getInitializedFieldInUnion();
733 
734     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
735     if (NumInitElements) {
736       // Store the initializer into the field
737       EmitInitializationToLValue(E->getInit(0), FieldLoc);
738     } else {
739       // Default-initialize to null.
740       EmitNullInitializationToLValue(FieldLoc);
741     }
742 
743     return;
744   }
745 
746   // Here we iterate over the fields; this makes it simpler to both
747   // default-initialize fields and skip over unnamed fields.
748   unsigned CurInitVal = 0;
749   for (RecordDecl::field_iterator Field = SD->field_begin(),
750                                FieldEnd = SD->field_end();
751        Field != FieldEnd; ++Field) {
752     // We're done once we hit the flexible array member
753     if (Field->getType()->isIncompleteArrayType())
754       break;
755 
756     if (Field->isUnnamedBitfield())
757       continue;
758 
759     // Don't emit GEP before a noop store of zero.
760     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
761         CGF.getTypes().isZeroInitializable(E->getType()))
762       break;
763 
764     // FIXME: volatility
765     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
766     // We never generate write-barries for initialized fields.
767     FieldLoc.setNonGC(true);
768 
769     if (CurInitVal < NumInitElements) {
770       // Store the initializer into the field.
771       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
772     } else {
773       // We're out of initalizers; default-initialize to null
774       EmitNullInitializationToLValue(FieldLoc);
775     }
776 
777     // If the GEP didn't get used because of a dead zero init or something
778     // else, clean it up for -O0 builds and general tidiness.
779     if (FieldLoc.isSimple())
780       if (llvm::GetElementPtrInst *GEP =
781             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
782         if (GEP->use_empty())
783           GEP->eraseFromParent();
784   }
785 }
786 
787 //===----------------------------------------------------------------------===//
788 //                        Entry Points into this File
789 //===----------------------------------------------------------------------===//
790 
791 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
792 /// non-zero bytes that will be stored when outputting the initializer for the
793 /// specified initializer expression.
794 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
795   E = E->IgnoreParens();
796 
797   // 0 and 0.0 won't require any non-zero stores!
798   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
799 
800   // If this is an initlist expr, sum up the size of sizes of the (present)
801   // elements.  If this is something weird, assume the whole thing is non-zero.
802   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
803   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
804     return CGF.getContext().getTypeSizeInChars(E->getType());
805 
806   // InitListExprs for structs have to be handled carefully.  If there are
807   // reference members, we need to consider the size of the reference, not the
808   // referencee.  InitListExprs for unions and arrays can't have references.
809   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
810     if (!RT->isUnionType()) {
811       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
812       CharUnits NumNonZeroBytes = CharUnits::Zero();
813 
814       unsigned ILEElement = 0;
815       for (RecordDecl::field_iterator Field = SD->field_begin(),
816            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
817         // We're done once we hit the flexible array member or run out of
818         // InitListExpr elements.
819         if (Field->getType()->isIncompleteArrayType() ||
820             ILEElement == ILE->getNumInits())
821           break;
822         if (Field->isUnnamedBitfield())
823           continue;
824 
825         const Expr *E = ILE->getInit(ILEElement++);
826 
827         // Reference values are always non-null and have the width of a pointer.
828         if (Field->getType()->isReferenceType())
829           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
830               CGF.getContext().Target.getPointerWidth(0));
831         else
832           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
833       }
834 
835       return NumNonZeroBytes;
836     }
837   }
838 
839 
840   CharUnits NumNonZeroBytes = CharUnits::Zero();
841   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
842     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
843   return NumNonZeroBytes;
844 }
845 
846 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
847 /// zeros in it, emit a memset and avoid storing the individual zeros.
848 ///
849 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
850                                      CodeGenFunction &CGF) {
851   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
852   // volatile stores.
853   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
854 
855   // C++ objects with a user-declared constructor don't need zero'ing.
856   if (CGF.getContext().getLangOptions().CPlusPlus)
857     if (const RecordType *RT = CGF.getContext()
858                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
859       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
860       if (RD->hasUserDeclaredConstructor())
861         return;
862     }
863 
864   // If the type is 16-bytes or smaller, prefer individual stores over memset.
865   std::pair<CharUnits, CharUnits> TypeInfo =
866     CGF.getContext().getTypeInfoInChars(E->getType());
867   if (TypeInfo.first <= CharUnits::fromQuantity(16))
868     return;
869 
870   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
871   // we prefer to emit memset + individual stores for the rest.
872   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
873   if (NumNonZeroBytes*4 > TypeInfo.first)
874     return;
875 
876   // Okay, it seems like a good idea to use an initial memset, emit the call.
877   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
878   CharUnits Align = TypeInfo.second;
879 
880   llvm::Value *Loc = Slot.getAddr();
881   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
882 
883   Loc = CGF.Builder.CreateBitCast(Loc, BP);
884   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
885                            Align.getQuantity(), false);
886 
887   // Tell the AggExprEmitter that the slot is known zero.
888   Slot.setZeroed();
889 }
890 
891 
892 
893 
894 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
895 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
896 /// the value of the aggregate expression is not needed.  If VolatileDest is
897 /// true, DestPtr cannot be 0.
898 ///
899 /// \param IsInitializer - true if this evaluation is initializing an
900 /// object whose lifetime is already being managed.
901 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
902                                   bool IgnoreResult) {
903   assert(E && hasAggregateLLVMType(E->getType()) &&
904          "Invalid aggregate expression to emit");
905   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
906          "slot has bits but no address");
907 
908   // Optimize the slot if possible.
909   CheckAggExprForMemSetUse(Slot, E, *this);
910 
911   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
912 }
913 
914 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
915   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
916   llvm::Value *Temp = CreateMemTemp(E->getType());
917   LValue LV = MakeAddrLValue(Temp, E->getType());
918   EmitAggExpr(E, AggValueSlot::forLValue(LV, false));
919   return LV;
920 }
921 
922 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
923                                         llvm::Value *SrcPtr, QualType Ty,
924                                         bool isVolatile) {
925   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
926 
927   if (getContext().getLangOptions().CPlusPlus) {
928     if (const RecordType *RT = Ty->getAs<RecordType>()) {
929       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
930       assert((Record->hasTrivialCopyConstructor() ||
931               Record->hasTrivialCopyAssignment()) &&
932              "Trying to aggregate-copy a type without a trivial copy "
933              "constructor or assignment operator");
934       // Ignore empty classes in C++.
935       if (Record->isEmpty())
936         return;
937     }
938   }
939 
940   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
941   // C99 6.5.16.1p3, which states "If the value being stored in an object is
942   // read from another object that overlaps in anyway the storage of the first
943   // object, then the overlap shall be exact and the two objects shall have
944   // qualified or unqualified versions of a compatible type."
945   //
946   // memcpy is not defined if the source and destination pointers are exactly
947   // equal, but other compilers do this optimization, and almost every memcpy
948   // implementation handles this case safely.  If there is a libc that does not
949   // safely handle this, we can add a target hook.
950 
951   // Get size and alignment info for this aggregate.
952   std::pair<CharUnits, CharUnits> TypeInfo =
953     getContext().getTypeInfoInChars(Ty);
954 
955   // FIXME: Handle variable sized types.
956 
957   // FIXME: If we have a volatile struct, the optimizer can remove what might
958   // appear to be `extra' memory ops:
959   //
960   // volatile struct { int i; } a, b;
961   //
962   // int main() {
963   //   a = b;
964   //   a = b;
965   // }
966   //
967   // we need to use a different call here.  We use isVolatile to indicate when
968   // either the source or the destination is volatile.
969 
970   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
971   const llvm::Type *DBP =
972     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
973   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
974 
975   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
976   const llvm::Type *SBP =
977     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
978   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
979 
980   // Don't do any of the memmove_collectable tests if GC isn't set.
981   if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) {
982     // fall through
983   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
984     RecordDecl *Record = RecordTy->getDecl();
985     if (Record->hasObjectMember()) {
986       CharUnits size = TypeInfo.first;
987       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
988       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
989       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
990                                                     SizeVal);
991       return;
992     }
993   } else if (Ty->isArrayType()) {
994     QualType BaseType = getContext().getBaseElementType(Ty);
995     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
996       if (RecordTy->getDecl()->hasObjectMember()) {
997         CharUnits size = TypeInfo.first;
998         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
999         llvm::Value *SizeVal =
1000           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1001         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1002                                                       SizeVal);
1003         return;
1004       }
1005     }
1006   }
1007 
1008   Builder.CreateMemCpy(DestPtr, SrcPtr,
1009                        llvm::ConstantInt::get(IntPtrTy,
1010                                               TypeInfo.first.getQuantity()),
1011                        TypeInfo.second.getQuantity(), isVolatile);
1012 }
1013