1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "llvm/Constants.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   llvm::Value *DestPtr;
36   bool VolatileDest;
37   bool IgnoreResult;
38 
39 public:
40   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
41                  bool ignore)
42     : CGF(cgf), Builder(CGF.Builder),
43       DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore) {
44   }
45 
46   //===--------------------------------------------------------------------===//
47   //                               Utilities
48   //===--------------------------------------------------------------------===//
49 
50   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
51   /// represents a value lvalue, this method emits the address of the lvalue,
52   /// then loads the result into DestPtr.
53   void EmitAggLoadOfLValue(const Expr *E);
54 
55   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
56   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
57   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
58 
59   //===--------------------------------------------------------------------===//
60   //                            Visitor Methods
61   //===--------------------------------------------------------------------===//
62 
63   void VisitStmt(Stmt *S) {
64     CGF.ErrorUnsupported(S, "aggregate expression");
65   }
66   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
67   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
68 
69   // l-values.
70   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
71   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
72   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
73   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
74   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
75     EmitAggLoadOfLValue(E);
76   }
77   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
78     EmitAggLoadOfLValue(E);
79   }
80   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
81     EmitAggLoadOfLValue(E);
82   }
83   void VisitPredefinedExpr(const PredefinedExpr *E) {
84     EmitAggLoadOfLValue(E);
85   }
86 
87   // Operators.
88   void VisitCStyleCastExpr(CStyleCastExpr *E);
89   void VisitImplicitCastExpr(ImplicitCastExpr *E);
90   void VisitCallExpr(const CallExpr *E);
91   void VisitStmtExpr(const StmtExpr *E);
92   void VisitBinaryOperator(const BinaryOperator *BO);
93   void VisitBinAssign(const BinaryOperator *E);
94   void VisitBinComma(const BinaryOperator *E);
95 
96   void VisitObjCMessageExpr(ObjCMessageExpr *E);
97   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
101   void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
102 
103   void VisitConditionalOperator(const ConditionalOperator *CO);
104   void VisitInitListExpr(InitListExpr *E);
105   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
106     Visit(DAE->getExpr());
107   }
108   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
109   void VisitCXXConstructExpr(const CXXConstructExpr *E);
110   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
111 
112   void VisitVAArgExpr(VAArgExpr *E);
113 
114   void EmitInitializationToLValue(Expr *E, LValue Address);
115   void EmitNullInitializationToLValue(LValue Address, QualType T);
116   //  case Expr::ChooseExprClass:
117 
118 };
119 }  // end anonymous namespace.
120 
121 //===----------------------------------------------------------------------===//
122 //                                Utilities
123 //===----------------------------------------------------------------------===//
124 
125 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
126 /// represents a value lvalue, this method emits the address of the lvalue,
127 /// then loads the result into DestPtr.
128 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
129   LValue LV = CGF.EmitLValue(E);
130   EmitFinalDestCopy(E, LV);
131 }
132 
133 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
134 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
135   assert(Src.isAggregate() && "value must be aggregate value!");
136 
137   // If the result is ignored, don't copy from the value.
138   if (DestPtr == 0) {
139     if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
140       return;
141     // If the source is volatile, we must read from it; to do that, we need
142     // some place to put it.
143     DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp");
144   }
145 
146   // If the result of the assignment is used, copy the LHS there also.
147   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
148   // from the source as well, as we can't eliminate it if either operand
149   // is volatile, unless copy has volatile for both source and destination..
150   CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
151                         VolatileDest|Src.isVolatileQualified());
152 }
153 
154 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
155 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
156   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
157 
158   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
159                                             Src.isVolatileQualified()),
160                     Ignore);
161 }
162 
163 //===----------------------------------------------------------------------===//
164 //                            Visitor Methods
165 //===----------------------------------------------------------------------===//
166 
167 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) {
168   // GCC union extension
169   if (E->getType()->isUnionType()) {
170     RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
171     LValue FieldLoc = CGF.EmitLValueForField(DestPtr,
172                                              *SD->field_begin(CGF.getContext()),
173                                              true, 0);
174     EmitInitializationToLValue(E->getSubExpr(), FieldLoc);
175     return;
176   }
177 
178   Visit(E->getSubExpr());
179 }
180 
181 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
182   assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
183                                                  E->getType()) &&
184          "Implicit cast types must be compatible");
185   Visit(E->getSubExpr());
186 }
187 
188 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
189   if (E->getCallReturnType()->isReferenceType()) {
190     EmitAggLoadOfLValue(E);
191     return;
192   }
193 
194   RValue RV = CGF.EmitCallExpr(E);
195   EmitFinalDestCopy(E, RV);
196 }
197 
198 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
199   RValue RV = CGF.EmitObjCMessageExpr(E);
200   EmitFinalDestCopy(E, RV);
201 }
202 
203 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
204   RValue RV = CGF.EmitObjCPropertyGet(E);
205   EmitFinalDestCopy(E, RV);
206 }
207 
208 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
209   RValue RV = CGF.EmitObjCPropertyGet(E);
210   EmitFinalDestCopy(E, RV);
211 }
212 
213 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
214   CGF.EmitAnyExpr(E->getLHS(), 0, false, true);
215   CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest);
216 }
217 
218 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
219   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
220 }
221 
222 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
223   CGF.ErrorUnsupported(E, "aggregate binary expression");
224 }
225 
226 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
227   // For an assignment to work, the value on the right has
228   // to be compatible with the value on the left.
229   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
230                                                  E->getRHS()->getType())
231          && "Invalid assignment");
232   LValue LHS = CGF.EmitLValue(E->getLHS());
233 
234   // We have to special case property setters, otherwise we must have
235   // a simple lvalue (no aggregates inside vectors, bitfields).
236   if (LHS.isPropertyRef()) {
237     llvm::Value *AggLoc = DestPtr;
238     if (!AggLoc)
239       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
240     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
241     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
242                             RValue::getAggregate(AggLoc, VolatileDest));
243   }
244   else if (LHS.isKVCRef()) {
245     llvm::Value *AggLoc = DestPtr;
246     if (!AggLoc)
247       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
248     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
249     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
250                             RValue::getAggregate(AggLoc, VolatileDest));
251   } else {
252     // Codegen the RHS so that it stores directly into the LHS.
253     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified());
254     EmitFinalDestCopy(E, LHS, true);
255   }
256 }
257 
258 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
259   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
260   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
261   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
262 
263   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
264   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
265 
266   CGF.EmitBlock(LHSBlock);
267 
268   // Handle the GNU extension for missing LHS.
269   assert(E->getLHS() && "Must have LHS for aggregate value");
270 
271   Visit(E->getLHS());
272   CGF.EmitBranch(ContBlock);
273 
274   CGF.EmitBlock(RHSBlock);
275 
276   Visit(E->getRHS());
277   CGF.EmitBranch(ContBlock);
278 
279   CGF.EmitBlock(ContBlock);
280 }
281 
282 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
283   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
284   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
285 
286   if (!ArgPtr) {
287     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
288     return;
289   }
290 
291   EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0));
292 }
293 
294 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
295   llvm::Value *Val = DestPtr;
296 
297   if (!Val) {
298     // Create a temporary variable.
299     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
300 
301     // FIXME: volatile
302     CGF.EmitAggExpr(E->getSubExpr(), Val, false);
303   } else
304     Visit(E->getSubExpr());
305 
306   // FIXME: Record the value and dest ptr.
307 }
308 
309 void
310 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
311   llvm::Value *Val = DestPtr;
312 
313   if (!Val) {
314     // Create a temporary variable.
315     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
316   }
317 
318   CGF.EmitCXXConstructExpr(Val, E);
319 }
320 
321 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
322   CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest);
323 }
324 
325 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
326   // FIXME: Ignore result?
327   // FIXME: Are initializers affected by volatile?
328   if (isa<ImplicitValueInitExpr>(E)) {
329     EmitNullInitializationToLValue(LV, E->getType());
330   } else if (E->getType()->isComplexType()) {
331     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
332   } else if (CGF.hasAggregateLLVMType(E->getType())) {
333     CGF.EmitAnyExpr(E, LV.getAddress(), false);
334   } else {
335     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
336   }
337 }
338 
339 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
340   if (!CGF.hasAggregateLLVMType(T)) {
341     // For non-aggregates, we can store zero
342     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
343     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
344   } else {
345     // Otherwise, just memset the whole thing to zero.  This is legal
346     // because in LLVM, all default initializers are guaranteed to have a
347     // bit pattern of all zeros.
348     // FIXME: That isn't true for member pointers!
349     // There's a potential optimization opportunity in combining
350     // memsets; that would be easy for arrays, but relatively
351     // difficult for structures with the current code.
352     CGF.EmitMemSetToZero(LV.getAddress(), T);
353   }
354 }
355 
356 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
357 #if 0
358   // FIXME: Disabled while we figure out what to do about
359   // test/CodeGen/bitfield.c
360   //
361   // If we can, prefer a copy from a global; this is a lot less code for long
362   // globals, and it's easier for the current optimizers to analyze.
363   // FIXME: Should we really be doing this? Should we try to avoid cases where
364   // we emit a global with a lot of zeros?  Should we try to avoid short
365   // globals?
366   if (E->isConstantInitializer(CGF.getContext(), 0)) {
367     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
368     llvm::GlobalVariable* GV =
369     new llvm::GlobalVariable(C->getType(), true,
370                              llvm::GlobalValue::InternalLinkage,
371                              C, "", &CGF.CGM.getModule(), 0);
372     EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0));
373     return;
374   }
375 #endif
376   if (E->hadArrayRangeDesignator()) {
377     CGF.ErrorUnsupported(E, "GNU array range designator extension");
378   }
379 
380   // Handle initialization of an array.
381   if (E->getType()->isArrayType()) {
382     const llvm::PointerType *APType =
383       cast<llvm::PointerType>(DestPtr->getType());
384     const llvm::ArrayType *AType =
385       cast<llvm::ArrayType>(APType->getElementType());
386 
387     uint64_t NumInitElements = E->getNumInits();
388 
389     if (E->getNumInits() > 0) {
390       QualType T1 = E->getType();
391       QualType T2 = E->getInit(0)->getType();
392       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
393         EmitAggLoadOfLValue(E->getInit(0));
394         return;
395       }
396     }
397 
398     uint64_t NumArrayElements = AType->getNumElements();
399     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
400     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
401 
402     unsigned CVRqualifier = ElementType.getCVRQualifiers();
403 
404     for (uint64_t i = 0; i != NumArrayElements; ++i) {
405       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
406       if (i < NumInitElements)
407         EmitInitializationToLValue(E->getInit(i),
408                                    LValue::MakeAddr(NextVal, CVRqualifier));
409       else
410         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
411                                        ElementType);
412     }
413     return;
414   }
415 
416   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
417 
418   // Do struct initialization; this code just sets each individual member
419   // to the approprate value.  This makes bitfield support automatic;
420   // the disadvantage is that the generated code is more difficult for
421   // the optimizer, especially with bitfields.
422   unsigned NumInitElements = E->getNumInits();
423   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
424   unsigned CurInitVal = 0;
425 
426   if (E->getType()->isUnionType()) {
427     // Only initialize one field of a union. The field itself is
428     // specified by the initializer list.
429     if (!E->getInitializedFieldInUnion()) {
430       // Empty union; we have nothing to do.
431 
432 #ifndef NDEBUG
433       // Make sure that it's really an empty and not a failure of
434       // semantic analysis.
435       for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()),
436                                    FieldEnd = SD->field_end(CGF.getContext());
437            Field != FieldEnd; ++Field)
438         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
439 #endif
440       return;
441     }
442 
443     // FIXME: volatility
444     FieldDecl *Field = E->getInitializedFieldInUnion();
445     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
446 
447     if (NumInitElements) {
448       // Store the initializer into the field
449       EmitInitializationToLValue(E->getInit(0), FieldLoc);
450     } else {
451       // Default-initialize to null
452       EmitNullInitializationToLValue(FieldLoc, Field->getType());
453     }
454 
455     return;
456   }
457 
458   // Here we iterate over the fields; this makes it simpler to both
459   // default-initialize fields and skip over unnamed fields.
460   for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()),
461                                FieldEnd = SD->field_end(CGF.getContext());
462        Field != FieldEnd; ++Field) {
463     // We're done once we hit the flexible array member
464     if (Field->getType()->isIncompleteArrayType())
465       break;
466 
467     if (Field->isUnnamedBitfield())
468       continue;
469 
470     // FIXME: volatility
471     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
472     // We never generate write-barries for initialized fields.
473     LValue::SetObjCNonGC(FieldLoc, true);
474     if (CurInitVal < NumInitElements) {
475       // Store the initializer into the field
476       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
477     } else {
478       // We're out of initalizers; default-initialize to null
479       EmitNullInitializationToLValue(FieldLoc, Field->getType());
480     }
481   }
482 }
483 
484 //===----------------------------------------------------------------------===//
485 //                        Entry Points into this File
486 //===----------------------------------------------------------------------===//
487 
488 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
489 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
490 /// the value of the aggregate expression is not needed.  If VolatileDest is
491 /// true, DestPtr cannot be 0.
492 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
493                                   bool VolatileDest, bool IgnoreResult) {
494   assert(E && hasAggregateLLVMType(E->getType()) &&
495          "Invalid aggregate expression to emit");
496   assert ((DestPtr != 0 || VolatileDest == false)
497           && "volatile aggregate can't be 0");
498 
499   AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult)
500     .Visit(const_cast<Expr*>(E));
501 }
502 
503 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
504   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
505 
506   EmitMemSetToZero(DestPtr, Ty);
507 }
508 
509 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
510                                         llvm::Value *SrcPtr, QualType Ty,
511                                         bool isVolatile) {
512   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
513 
514   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
515   // C99 6.5.16.1p3, which states "If the value being stored in an object is
516   // read from another object that overlaps in anyway the storage of the first
517   // object, then the overlap shall be exact and the two objects shall have
518   // qualified or unqualified versions of a compatible type."
519   //
520   // memcpy is not defined if the source and destination pointers are exactly
521   // equal, but other compilers do this optimization, and almost every memcpy
522   // implementation handles this case safely.  If there is a libc that does not
523   // safely handle this, we can add a target hook.
524   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
525   if (DestPtr->getType() != BP)
526     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
527   if (SrcPtr->getType() != BP)
528     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
529 
530   // Get size and alignment info for this aggregate.
531   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
532 
533   // FIXME: Handle variable sized types.
534   const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
535 
536   // FIXME: If we have a volatile struct, the optimizer can remove what might
537   // appear to be `extra' memory ops:
538   //
539   // volatile struct { int i; } a, b;
540   //
541   // int main() {
542   //   a = b;
543   //   a = b;
544   // }
545   //
546   // we need to use a differnt call here.  We use isVolatile to indicate when
547   // either the source or the destination is volatile.
548   Builder.CreateCall4(CGM.getMemCpyFn(),
549                       DestPtr, SrcPtr,
550                       // TypeInfo.first describes size in bits.
551                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
552                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
553                                              TypeInfo.second/8));
554 }
555