1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 61 bool ignore) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IgnoreResult(ignore) { 64 } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 76 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 77 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false, 78 unsigned Alignment = 0); 79 80 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 81 82 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 83 if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T)) 84 return AggValueSlot::NeedsGCBarriers; 85 return AggValueSlot::DoesNotNeedGCBarriers; 86 } 87 88 bool TypeRequiresGCollection(QualType T); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 void VisitStmt(Stmt *S) { 95 CGF.ErrorUnsupported(S, "aggregate expression"); 96 } 97 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 98 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 99 Visit(GE->getResultExpr()); 100 } 101 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 102 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 103 return Visit(E->getReplacement()); 104 } 105 106 // l-values. 107 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 108 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 109 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 110 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 111 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 112 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 113 EmitAggLoadOfLValue(E); 114 } 115 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 116 EmitAggLoadOfLValue(E); 117 } 118 void VisitPredefinedExpr(const PredefinedExpr *E) { 119 EmitAggLoadOfLValue(E); 120 } 121 122 // Operators. 123 void VisitCastExpr(CastExpr *E); 124 void VisitCallExpr(const CallExpr *E); 125 void VisitStmtExpr(const StmtExpr *E); 126 void VisitBinaryOperator(const BinaryOperator *BO); 127 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 128 void VisitBinAssign(const BinaryOperator *E); 129 void VisitBinComma(const BinaryOperator *E); 130 131 void VisitObjCMessageExpr(ObjCMessageExpr *E); 132 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 133 EmitAggLoadOfLValue(E); 134 } 135 136 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 137 void VisitChooseExpr(const ChooseExpr *CE); 138 void VisitInitListExpr(InitListExpr *E); 139 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 140 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 141 Visit(DAE->getExpr()); 142 } 143 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 144 void VisitCXXConstructExpr(const CXXConstructExpr *E); 145 void VisitExprWithCleanups(ExprWithCleanups *E); 146 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 147 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 148 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 149 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 150 151 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 152 if (E->isGLValue()) { 153 LValue LV = CGF.EmitPseudoObjectLValue(E); 154 return EmitFinalDestCopy(E, LV); 155 } 156 157 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 158 } 159 160 void VisitVAArgExpr(VAArgExpr *E); 161 162 void EmitInitializationToLValue(Expr *E, LValue Address); 163 void EmitNullInitializationToLValue(LValue Address); 164 // case Expr::ChooseExprClass: 165 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 166 void VisitAtomicExpr(AtomicExpr *E) { 167 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 168 } 169 }; 170 } // end anonymous namespace. 171 172 //===----------------------------------------------------------------------===// 173 // Utilities 174 //===----------------------------------------------------------------------===// 175 176 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 177 /// represents a value lvalue, this method emits the address of the lvalue, 178 /// then loads the result into DestPtr. 179 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 180 LValue LV = CGF.EmitLValue(E); 181 EmitFinalDestCopy(E, LV); 182 } 183 184 /// \brief True if the given aggregate type requires special GC API calls. 185 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 186 // Only record types have members that might require garbage collection. 187 const RecordType *RecordTy = T->getAs<RecordType>(); 188 if (!RecordTy) return false; 189 190 // Don't mess with non-trivial C++ types. 191 RecordDecl *Record = RecordTy->getDecl(); 192 if (isa<CXXRecordDecl>(Record) && 193 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 194 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 195 return false; 196 197 // Check whether the type has an object member. 198 return Record->hasObjectMember(); 199 } 200 201 /// \brief Perform the final move to DestPtr if for some reason 202 /// getReturnValueSlot() didn't use it directly. 203 /// 204 /// The idea is that you do something like this: 205 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 206 /// EmitMoveFromReturnSlot(E, Result); 207 /// 208 /// If nothing interferes, this will cause the result to be emitted 209 /// directly into the return value slot. Otherwise, a final move 210 /// will be performed. 211 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) { 212 if (shouldUseDestForReturnSlot()) { 213 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 214 // The possibility of undef rvalues complicates that a lot, 215 // though, so we can't really assert. 216 return; 217 } 218 219 // Otherwise, do a final copy, 220 assert(Dest.getAddr() != Src.getAggregateAddr()); 221 EmitFinalDestCopy(E, Src, /*Ignore*/ true); 222 } 223 224 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 225 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore, 226 unsigned Alignment) { 227 assert(Src.isAggregate() && "value must be aggregate value!"); 228 229 // If Dest is ignored, then we're evaluating an aggregate expression 230 // in a context (like an expression statement) that doesn't care 231 // about the result. C says that an lvalue-to-rvalue conversion is 232 // performed in these cases; C++ says that it is not. In either 233 // case, we don't actually need to do anything unless the value is 234 // volatile. 235 if (Dest.isIgnored()) { 236 if (!Src.isVolatileQualified() || 237 CGF.CGM.getLangOptions().CPlusPlus || 238 (IgnoreResult && Ignore)) 239 return; 240 241 // If the source is volatile, we must read from it; to do that, we need 242 // some place to put it. 243 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 244 } 245 246 if (Dest.requiresGCollection()) { 247 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 248 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 249 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 250 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 251 Dest.getAddr(), 252 Src.getAggregateAddr(), 253 SizeVal); 254 return; 255 } 256 // If the result of the assignment is used, copy the LHS there also. 257 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 258 // from the source as well, as we can't eliminate it if either operand 259 // is volatile, unless copy has volatile for both source and destination.. 260 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 261 Dest.isVolatile()|Src.isVolatileQualified(), 262 Alignment); 263 } 264 265 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 266 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 267 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 268 269 CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment()); 270 EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity()); 271 } 272 273 //===----------------------------------------------------------------------===// 274 // Visitor Methods 275 //===----------------------------------------------------------------------===// 276 277 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 278 Visit(E->GetTemporaryExpr()); 279 } 280 281 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 282 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 283 } 284 285 void 286 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 287 if (E->getType().isPODType(CGF.getContext())) { 288 // For a POD type, just emit a load of the lvalue + a copy, because our 289 // compound literal might alias the destination. 290 // FIXME: This is a band-aid; the real problem appears to be in our handling 291 // of assignments, where we store directly into the LHS without checking 292 // whether anything in the RHS aliases. 293 EmitAggLoadOfLValue(E); 294 return; 295 } 296 297 AggValueSlot Slot = EnsureSlot(E->getType()); 298 CGF.EmitAggExpr(E->getInitializer(), Slot); 299 } 300 301 302 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 303 switch (E->getCastKind()) { 304 case CK_Dynamic: { 305 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 306 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 307 // FIXME: Do we also need to handle property references here? 308 if (LV.isSimple()) 309 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 310 else 311 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 312 313 if (!Dest.isIgnored()) 314 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 315 break; 316 } 317 318 case CK_ToUnion: { 319 if (Dest.isIgnored()) break; 320 321 // GCC union extension 322 QualType Ty = E->getSubExpr()->getType(); 323 QualType PtrTy = CGF.getContext().getPointerType(Ty); 324 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 325 CGF.ConvertType(PtrTy)); 326 EmitInitializationToLValue(E->getSubExpr(), 327 CGF.MakeAddrLValue(CastPtr, Ty)); 328 break; 329 } 330 331 case CK_DerivedToBase: 332 case CK_BaseToDerived: 333 case CK_UncheckedDerivedToBase: { 334 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 335 "should have been unpacked before we got here"); 336 } 337 338 case CK_LValueToRValue: // hope for downstream optimization 339 case CK_NoOp: 340 case CK_AtomicToNonAtomic: 341 case CK_NonAtomicToAtomic: 342 case CK_UserDefinedConversion: 343 case CK_ConstructorConversion: 344 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 345 E->getType()) && 346 "Implicit cast types must be compatible"); 347 Visit(E->getSubExpr()); 348 break; 349 350 case CK_LValueBitCast: 351 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 352 break; 353 354 case CK_Dependent: 355 case CK_BitCast: 356 case CK_ArrayToPointerDecay: 357 case CK_FunctionToPointerDecay: 358 case CK_NullToPointer: 359 case CK_NullToMemberPointer: 360 case CK_BaseToDerivedMemberPointer: 361 case CK_DerivedToBaseMemberPointer: 362 case CK_MemberPointerToBoolean: 363 case CK_IntegralToPointer: 364 case CK_PointerToIntegral: 365 case CK_PointerToBoolean: 366 case CK_ToVoid: 367 case CK_VectorSplat: 368 case CK_IntegralCast: 369 case CK_IntegralToBoolean: 370 case CK_IntegralToFloating: 371 case CK_FloatingToIntegral: 372 case CK_FloatingToBoolean: 373 case CK_FloatingCast: 374 case CK_CPointerToObjCPointerCast: 375 case CK_BlockPointerToObjCPointerCast: 376 case CK_AnyPointerToBlockPointerCast: 377 case CK_ObjCObjectLValueCast: 378 case CK_FloatingRealToComplex: 379 case CK_FloatingComplexToReal: 380 case CK_FloatingComplexToBoolean: 381 case CK_FloatingComplexCast: 382 case CK_FloatingComplexToIntegralComplex: 383 case CK_IntegralRealToComplex: 384 case CK_IntegralComplexToReal: 385 case CK_IntegralComplexToBoolean: 386 case CK_IntegralComplexCast: 387 case CK_IntegralComplexToFloatingComplex: 388 case CK_ARCProduceObject: 389 case CK_ARCConsumeObject: 390 case CK_ARCReclaimReturnedObject: 391 case CK_ARCExtendBlockObject: 392 llvm_unreachable("cast kind invalid for aggregate types"); 393 } 394 } 395 396 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 397 if (E->getCallReturnType()->isReferenceType()) { 398 EmitAggLoadOfLValue(E); 399 return; 400 } 401 402 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 403 EmitMoveFromReturnSlot(E, RV); 404 } 405 406 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 407 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 408 EmitMoveFromReturnSlot(E, RV); 409 } 410 411 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 412 CGF.EmitIgnoredExpr(E->getLHS()); 413 Visit(E->getRHS()); 414 } 415 416 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 417 CodeGenFunction::StmtExprEvaluation eval(CGF); 418 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 419 } 420 421 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 422 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 423 VisitPointerToDataMemberBinaryOperator(E); 424 else 425 CGF.ErrorUnsupported(E, "aggregate binary expression"); 426 } 427 428 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 429 const BinaryOperator *E) { 430 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 431 EmitFinalDestCopy(E, LV); 432 } 433 434 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 435 // For an assignment to work, the value on the right has 436 // to be compatible with the value on the left. 437 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 438 E->getRHS()->getType()) 439 && "Invalid assignment"); 440 441 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 442 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 443 if (VD->hasAttr<BlocksAttr>() && 444 E->getRHS()->HasSideEffects(CGF.getContext())) { 445 // When __block variable on LHS, the RHS must be evaluated first 446 // as it may change the 'forwarding' field via call to Block_copy. 447 LValue RHS = CGF.EmitLValue(E->getRHS()); 448 LValue LHS = CGF.EmitLValue(E->getLHS()); 449 Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 450 needsGC(E->getLHS()->getType()), 451 AggValueSlot::IsAliased); 452 EmitFinalDestCopy(E, RHS, true); 453 return; 454 } 455 456 LValue LHS = CGF.EmitLValue(E->getLHS()); 457 458 // Codegen the RHS so that it stores directly into the LHS. 459 AggValueSlot LHSSlot = 460 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 461 needsGC(E->getLHS()->getType()), 462 AggValueSlot::IsAliased); 463 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 464 EmitFinalDestCopy(E, LHS, true); 465 } 466 467 void AggExprEmitter:: 468 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 469 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 470 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 471 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 472 473 // Bind the common expression if necessary. 474 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 475 476 CodeGenFunction::ConditionalEvaluation eval(CGF); 477 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 478 479 // Save whether the destination's lifetime is externally managed. 480 bool isExternallyDestructed = Dest.isExternallyDestructed(); 481 482 eval.begin(CGF); 483 CGF.EmitBlock(LHSBlock); 484 Visit(E->getTrueExpr()); 485 eval.end(CGF); 486 487 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 488 CGF.Builder.CreateBr(ContBlock); 489 490 // If the result of an agg expression is unused, then the emission 491 // of the LHS might need to create a destination slot. That's fine 492 // with us, and we can safely emit the RHS into the same slot, but 493 // we shouldn't claim that it's already being destructed. 494 Dest.setExternallyDestructed(isExternallyDestructed); 495 496 eval.begin(CGF); 497 CGF.EmitBlock(RHSBlock); 498 Visit(E->getFalseExpr()); 499 eval.end(CGF); 500 501 CGF.EmitBlock(ContBlock); 502 } 503 504 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 505 Visit(CE->getChosenSubExpr(CGF.getContext())); 506 } 507 508 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 509 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 510 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 511 512 if (!ArgPtr) { 513 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 514 return; 515 } 516 517 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 518 } 519 520 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 521 // Ensure that we have a slot, but if we already do, remember 522 // whether it was externally destructed. 523 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 524 Dest = EnsureSlot(E->getType()); 525 526 // We're going to push a destructor if there isn't already one. 527 Dest.setExternallyDestructed(); 528 529 Visit(E->getSubExpr()); 530 531 // Push that destructor we promised. 532 if (!wasExternallyDestructed) 533 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 534 } 535 536 void 537 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 538 AggValueSlot Slot = EnsureSlot(E->getType()); 539 CGF.EmitCXXConstructExpr(E, Slot); 540 } 541 542 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 543 CGF.enterFullExpression(E); 544 CodeGenFunction::RunCleanupsScope cleanups(CGF); 545 Visit(E->getSubExpr()); 546 } 547 548 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 549 QualType T = E->getType(); 550 AggValueSlot Slot = EnsureSlot(T); 551 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 552 } 553 554 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 555 QualType T = E->getType(); 556 AggValueSlot Slot = EnsureSlot(T); 557 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 558 } 559 560 /// isSimpleZero - If emitting this value will obviously just cause a store of 561 /// zero to memory, return true. This can return false if uncertain, so it just 562 /// handles simple cases. 563 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 564 E = E->IgnoreParens(); 565 566 // 0 567 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 568 return IL->getValue() == 0; 569 // +0.0 570 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 571 return FL->getValue().isPosZero(); 572 // int() 573 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 574 CGF.getTypes().isZeroInitializable(E->getType())) 575 return true; 576 // (int*)0 - Null pointer expressions. 577 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 578 return ICE->getCastKind() == CK_NullToPointer; 579 // '\0' 580 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 581 return CL->getValue() == 0; 582 583 // Otherwise, hard case: conservatively return false. 584 return false; 585 } 586 587 588 void 589 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 590 QualType type = LV.getType(); 591 // FIXME: Ignore result? 592 // FIXME: Are initializers affected by volatile? 593 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 594 // Storing "i32 0" to a zero'd memory location is a noop. 595 } else if (isa<ImplicitValueInitExpr>(E)) { 596 EmitNullInitializationToLValue(LV); 597 } else if (type->isReferenceType()) { 598 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 599 CGF.EmitStoreThroughLValue(RV, LV); 600 } else if (type->isAnyComplexType()) { 601 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 602 } else if (CGF.hasAggregateLLVMType(type)) { 603 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 604 AggValueSlot::IsDestructed, 605 AggValueSlot::DoesNotNeedGCBarriers, 606 AggValueSlot::IsNotAliased, 607 Dest.isZeroed())); 608 } else if (LV.isSimple()) { 609 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 610 } else { 611 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 612 } 613 } 614 615 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 616 QualType type = lv.getType(); 617 618 // If the destination slot is already zeroed out before the aggregate is 619 // copied into it, we don't have to emit any zeros here. 620 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 621 return; 622 623 if (!CGF.hasAggregateLLVMType(type)) { 624 // For non-aggregates, we can store zero 625 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 626 CGF.EmitStoreThroughLValue(RValue::get(null), lv); 627 } else { 628 // There's a potential optimization opportunity in combining 629 // memsets; that would be easy for arrays, but relatively 630 // difficult for structures with the current code. 631 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 632 } 633 } 634 635 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 636 #if 0 637 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 638 // (Length of globals? Chunks of zeroed-out space?). 639 // 640 // If we can, prefer a copy from a global; this is a lot less code for long 641 // globals, and it's easier for the current optimizers to analyze. 642 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 643 llvm::GlobalVariable* GV = 644 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 645 llvm::GlobalValue::InternalLinkage, C, ""); 646 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 647 return; 648 } 649 #endif 650 if (E->hadArrayRangeDesignator()) 651 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 652 653 llvm::Value *DestPtr = Dest.getAddr(); 654 655 // Handle initialization of an array. 656 if (E->getType()->isArrayType()) { 657 llvm::PointerType *APType = 658 cast<llvm::PointerType>(DestPtr->getType()); 659 llvm::ArrayType *AType = 660 cast<llvm::ArrayType>(APType->getElementType()); 661 662 uint64_t NumInitElements = E->getNumInits(); 663 664 if (E->getNumInits() > 0) { 665 QualType T1 = E->getType(); 666 QualType T2 = E->getInit(0)->getType(); 667 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 668 EmitAggLoadOfLValue(E->getInit(0)); 669 return; 670 } 671 } 672 673 uint64_t NumArrayElements = AType->getNumElements(); 674 assert(NumInitElements <= NumArrayElements); 675 676 QualType elementType = E->getType().getCanonicalType(); 677 elementType = CGF.getContext().getQualifiedType( 678 cast<ArrayType>(elementType)->getElementType(), 679 elementType.getQualifiers() + Dest.getQualifiers()); 680 681 // DestPtr is an array*. Construct an elementType* by drilling 682 // down a level. 683 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 684 llvm::Value *indices[] = { zero, zero }; 685 llvm::Value *begin = 686 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 687 688 // Exception safety requires us to destroy all the 689 // already-constructed members if an initializer throws. 690 // For that, we'll need an EH cleanup. 691 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 692 llvm::AllocaInst *endOfInit = 0; 693 EHScopeStack::stable_iterator cleanup; 694 llvm::Instruction *cleanupDominator = 0; 695 if (CGF.needsEHCleanup(dtorKind)) { 696 // In principle we could tell the cleanup where we are more 697 // directly, but the control flow can get so varied here that it 698 // would actually be quite complex. Therefore we go through an 699 // alloca. 700 endOfInit = CGF.CreateTempAlloca(begin->getType(), 701 "arrayinit.endOfInit"); 702 cleanupDominator = Builder.CreateStore(begin, endOfInit); 703 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 704 CGF.getDestroyer(dtorKind)); 705 cleanup = CGF.EHStack.stable_begin(); 706 707 // Otherwise, remember that we didn't need a cleanup. 708 } else { 709 dtorKind = QualType::DK_none; 710 } 711 712 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 713 714 // The 'current element to initialize'. The invariants on this 715 // variable are complicated. Essentially, after each iteration of 716 // the loop, it points to the last initialized element, except 717 // that it points to the beginning of the array before any 718 // elements have been initialized. 719 llvm::Value *element = begin; 720 721 // Emit the explicit initializers. 722 for (uint64_t i = 0; i != NumInitElements; ++i) { 723 // Advance to the next element. 724 if (i > 0) { 725 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 726 727 // Tell the cleanup that it needs to destroy up to this 728 // element. TODO: some of these stores can be trivially 729 // observed to be unnecessary. 730 if (endOfInit) Builder.CreateStore(element, endOfInit); 731 } 732 733 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 734 EmitInitializationToLValue(E->getInit(i), elementLV); 735 } 736 737 // Check whether there's a non-trivial array-fill expression. 738 // Note that this will be a CXXConstructExpr even if the element 739 // type is an array (or array of array, etc.) of class type. 740 Expr *filler = E->getArrayFiller(); 741 bool hasTrivialFiller = true; 742 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 743 assert(cons->getConstructor()->isDefaultConstructor()); 744 hasTrivialFiller = cons->getConstructor()->isTrivial(); 745 } 746 747 // Any remaining elements need to be zero-initialized, possibly 748 // using the filler expression. We can skip this if the we're 749 // emitting to zeroed memory. 750 if (NumInitElements != NumArrayElements && 751 !(Dest.isZeroed() && hasTrivialFiller && 752 CGF.getTypes().isZeroInitializable(elementType))) { 753 754 // Use an actual loop. This is basically 755 // do { *array++ = filler; } while (array != end); 756 757 // Advance to the start of the rest of the array. 758 if (NumInitElements) { 759 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 760 if (endOfInit) Builder.CreateStore(element, endOfInit); 761 } 762 763 // Compute the end of the array. 764 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 765 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 766 "arrayinit.end"); 767 768 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 769 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 770 771 // Jump into the body. 772 CGF.EmitBlock(bodyBB); 773 llvm::PHINode *currentElement = 774 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 775 currentElement->addIncoming(element, entryBB); 776 777 // Emit the actual filler expression. 778 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 779 if (filler) 780 EmitInitializationToLValue(filler, elementLV); 781 else 782 EmitNullInitializationToLValue(elementLV); 783 784 // Move on to the next element. 785 llvm::Value *nextElement = 786 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 787 788 // Tell the EH cleanup that we finished with the last element. 789 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 790 791 // Leave the loop if we're done. 792 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 793 "arrayinit.done"); 794 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 795 Builder.CreateCondBr(done, endBB, bodyBB); 796 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 797 798 CGF.EmitBlock(endBB); 799 } 800 801 // Leave the partial-array cleanup if we entered one. 802 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 803 804 return; 805 } 806 807 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 808 809 // Do struct initialization; this code just sets each individual member 810 // to the approprate value. This makes bitfield support automatic; 811 // the disadvantage is that the generated code is more difficult for 812 // the optimizer, especially with bitfields. 813 unsigned NumInitElements = E->getNumInits(); 814 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 815 816 if (record->isUnion()) { 817 // Only initialize one field of a union. The field itself is 818 // specified by the initializer list. 819 if (!E->getInitializedFieldInUnion()) { 820 // Empty union; we have nothing to do. 821 822 #ifndef NDEBUG 823 // Make sure that it's really an empty and not a failure of 824 // semantic analysis. 825 for (RecordDecl::field_iterator Field = record->field_begin(), 826 FieldEnd = record->field_end(); 827 Field != FieldEnd; ++Field) 828 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 829 #endif 830 return; 831 } 832 833 // FIXME: volatility 834 FieldDecl *Field = E->getInitializedFieldInUnion(); 835 836 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 837 if (NumInitElements) { 838 // Store the initializer into the field 839 EmitInitializationToLValue(E->getInit(0), FieldLoc); 840 } else { 841 // Default-initialize to null. 842 EmitNullInitializationToLValue(FieldLoc); 843 } 844 845 return; 846 } 847 848 // We'll need to enter cleanup scopes in case any of the member 849 // initializers throw an exception. 850 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 851 llvm::Instruction *cleanupDominator = 0; 852 853 // Here we iterate over the fields; this makes it simpler to both 854 // default-initialize fields and skip over unnamed fields. 855 unsigned curInitIndex = 0; 856 for (RecordDecl::field_iterator field = record->field_begin(), 857 fieldEnd = record->field_end(); 858 field != fieldEnd; ++field) { 859 // We're done once we hit the flexible array member. 860 if (field->getType()->isIncompleteArrayType()) 861 break; 862 863 // Always skip anonymous bitfields. 864 if (field->isUnnamedBitfield()) 865 continue; 866 867 // We're done if we reach the end of the explicit initializers, we 868 // have a zeroed object, and the rest of the fields are 869 // zero-initializable. 870 if (curInitIndex == NumInitElements && Dest.isZeroed() && 871 CGF.getTypes().isZeroInitializable(E->getType())) 872 break; 873 874 // FIXME: volatility 875 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 876 // We never generate write-barries for initialized fields. 877 LV.setNonGC(true); 878 879 if (curInitIndex < NumInitElements) { 880 // Store the initializer into the field. 881 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 882 } else { 883 // We're out of initalizers; default-initialize to null 884 EmitNullInitializationToLValue(LV); 885 } 886 887 // Push a destructor if necessary. 888 // FIXME: if we have an array of structures, all explicitly 889 // initialized, we can end up pushing a linear number of cleanups. 890 bool pushedCleanup = false; 891 if (QualType::DestructionKind dtorKind 892 = field->getType().isDestructedType()) { 893 assert(LV.isSimple()); 894 if (CGF.needsEHCleanup(dtorKind)) { 895 if (!cleanupDominator) 896 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 897 898 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 899 CGF.getDestroyer(dtorKind), false); 900 cleanups.push_back(CGF.EHStack.stable_begin()); 901 pushedCleanup = true; 902 } 903 } 904 905 // If the GEP didn't get used because of a dead zero init or something 906 // else, clean it up for -O0 builds and general tidiness. 907 if (!pushedCleanup && LV.isSimple()) 908 if (llvm::GetElementPtrInst *GEP = 909 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 910 if (GEP->use_empty()) 911 GEP->eraseFromParent(); 912 } 913 914 // Deactivate all the partial cleanups in reverse order, which 915 // generally means popping them. 916 for (unsigned i = cleanups.size(); i != 0; --i) 917 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 918 919 // Destroy the placeholder if we made one. 920 if (cleanupDominator) 921 cleanupDominator->eraseFromParent(); 922 } 923 924 //===----------------------------------------------------------------------===// 925 // Entry Points into this File 926 //===----------------------------------------------------------------------===// 927 928 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 929 /// non-zero bytes that will be stored when outputting the initializer for the 930 /// specified initializer expression. 931 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 932 E = E->IgnoreParens(); 933 934 // 0 and 0.0 won't require any non-zero stores! 935 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 936 937 // If this is an initlist expr, sum up the size of sizes of the (present) 938 // elements. If this is something weird, assume the whole thing is non-zero. 939 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 940 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 941 return CGF.getContext().getTypeSizeInChars(E->getType()); 942 943 // InitListExprs for structs have to be handled carefully. If there are 944 // reference members, we need to consider the size of the reference, not the 945 // referencee. InitListExprs for unions and arrays can't have references. 946 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 947 if (!RT->isUnionType()) { 948 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 949 CharUnits NumNonZeroBytes = CharUnits::Zero(); 950 951 unsigned ILEElement = 0; 952 for (RecordDecl::field_iterator Field = SD->field_begin(), 953 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 954 // We're done once we hit the flexible array member or run out of 955 // InitListExpr elements. 956 if (Field->getType()->isIncompleteArrayType() || 957 ILEElement == ILE->getNumInits()) 958 break; 959 if (Field->isUnnamedBitfield()) 960 continue; 961 962 const Expr *E = ILE->getInit(ILEElement++); 963 964 // Reference values are always non-null and have the width of a pointer. 965 if (Field->getType()->isReferenceType()) 966 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 967 CGF.getContext().getTargetInfo().getPointerWidth(0)); 968 else 969 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 970 } 971 972 return NumNonZeroBytes; 973 } 974 } 975 976 977 CharUnits NumNonZeroBytes = CharUnits::Zero(); 978 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 979 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 980 return NumNonZeroBytes; 981 } 982 983 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 984 /// zeros in it, emit a memset and avoid storing the individual zeros. 985 /// 986 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 987 CodeGenFunction &CGF) { 988 // If the slot is already known to be zeroed, nothing to do. Don't mess with 989 // volatile stores. 990 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 991 992 // C++ objects with a user-declared constructor don't need zero'ing. 993 if (CGF.getContext().getLangOptions().CPlusPlus) 994 if (const RecordType *RT = CGF.getContext() 995 .getBaseElementType(E->getType())->getAs<RecordType>()) { 996 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 997 if (RD->hasUserDeclaredConstructor()) 998 return; 999 } 1000 1001 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1002 std::pair<CharUnits, CharUnits> TypeInfo = 1003 CGF.getContext().getTypeInfoInChars(E->getType()); 1004 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1005 return; 1006 1007 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1008 // we prefer to emit memset + individual stores for the rest. 1009 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1010 if (NumNonZeroBytes*4 > TypeInfo.first) 1011 return; 1012 1013 // Okay, it seems like a good idea to use an initial memset, emit the call. 1014 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1015 CharUnits Align = TypeInfo.second; 1016 1017 llvm::Value *Loc = Slot.getAddr(); 1018 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1019 1020 Loc = CGF.Builder.CreateBitCast(Loc, BP); 1021 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1022 Align.getQuantity(), false); 1023 1024 // Tell the AggExprEmitter that the slot is known zero. 1025 Slot.setZeroed(); 1026 } 1027 1028 1029 1030 1031 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1032 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1033 /// the value of the aggregate expression is not needed. If VolatileDest is 1034 /// true, DestPtr cannot be 0. 1035 /// 1036 /// \param IsInitializer - true if this evaluation is initializing an 1037 /// object whose lifetime is already being managed. 1038 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1039 bool IgnoreResult) { 1040 assert(E && hasAggregateLLVMType(E->getType()) && 1041 "Invalid aggregate expression to emit"); 1042 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1043 "slot has bits but no address"); 1044 1045 // Optimize the slot if possible. 1046 CheckAggExprForMemSetUse(Slot, E, *this); 1047 1048 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1049 } 1050 1051 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1052 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1053 llvm::Value *Temp = CreateMemTemp(E->getType()); 1054 LValue LV = MakeAddrLValue(Temp, E->getType()); 1055 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1056 AggValueSlot::DoesNotNeedGCBarriers, 1057 AggValueSlot::IsNotAliased)); 1058 return LV; 1059 } 1060 1061 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1062 llvm::Value *SrcPtr, QualType Ty, 1063 bool isVolatile, unsigned Alignment) { 1064 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1065 1066 if (getContext().getLangOptions().CPlusPlus) { 1067 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1068 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1069 assert((Record->hasTrivialCopyConstructor() || 1070 Record->hasTrivialCopyAssignment() || 1071 Record->hasTrivialMoveConstructor() || 1072 Record->hasTrivialMoveAssignment()) && 1073 "Trying to aggregate-copy a type without a trivial copy " 1074 "constructor or assignment operator"); 1075 // Ignore empty classes in C++. 1076 if (Record->isEmpty()) 1077 return; 1078 } 1079 } 1080 1081 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1082 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1083 // read from another object that overlaps in anyway the storage of the first 1084 // object, then the overlap shall be exact and the two objects shall have 1085 // qualified or unqualified versions of a compatible type." 1086 // 1087 // memcpy is not defined if the source and destination pointers are exactly 1088 // equal, but other compilers do this optimization, and almost every memcpy 1089 // implementation handles this case safely. If there is a libc that does not 1090 // safely handle this, we can add a target hook. 1091 1092 // Get size and alignment info for this aggregate. 1093 std::pair<CharUnits, CharUnits> TypeInfo = 1094 getContext().getTypeInfoInChars(Ty); 1095 1096 if (!Alignment) 1097 Alignment = TypeInfo.second.getQuantity(); 1098 1099 // FIXME: Handle variable sized types. 1100 1101 // FIXME: If we have a volatile struct, the optimizer can remove what might 1102 // appear to be `extra' memory ops: 1103 // 1104 // volatile struct { int i; } a, b; 1105 // 1106 // int main() { 1107 // a = b; 1108 // a = b; 1109 // } 1110 // 1111 // we need to use a different call here. We use isVolatile to indicate when 1112 // either the source or the destination is volatile. 1113 1114 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1115 llvm::Type *DBP = 1116 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1117 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1118 1119 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1120 llvm::Type *SBP = 1121 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1122 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1123 1124 // Don't do any of the memmove_collectable tests if GC isn't set. 1125 if (CGM.getLangOptions().getGC() == LangOptions::NonGC) { 1126 // fall through 1127 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1128 RecordDecl *Record = RecordTy->getDecl(); 1129 if (Record->hasObjectMember()) { 1130 CharUnits size = TypeInfo.first; 1131 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1132 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1133 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1134 SizeVal); 1135 return; 1136 } 1137 } else if (Ty->isArrayType()) { 1138 QualType BaseType = getContext().getBaseElementType(Ty); 1139 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1140 if (RecordTy->getDecl()->hasObjectMember()) { 1141 CharUnits size = TypeInfo.first; 1142 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1143 llvm::Value *SizeVal = 1144 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1145 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1146 SizeVal); 1147 return; 1148 } 1149 } 1150 } 1151 1152 Builder.CreateMemCpy(DestPtr, SrcPtr, 1153 llvm::ConstantInt::get(IntPtrTy, 1154 TypeInfo.first.getQuantity()), 1155 Alignment, isVolatile); 1156 } 1157