1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                        Aggregate Expression Emitter
33 //===----------------------------------------------------------------------===//
34 
35 namespace  {
36 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
37   CodeGenFunction &CGF;
38   CGBuilderTy &Builder;
39   AggValueSlot Dest;
40   bool IsResultUnused;
41 
42   AggValueSlot EnsureSlot(QualType T) {
43     if (!Dest.isIgnored()) return Dest;
44     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
45   }
46   void EnsureDest(QualType T) {
47     if (!Dest.isIgnored()) return;
48     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
49   }
50 
51   // Calls `Fn` with a valid return value slot, potentially creating a temporary
52   // to do so. If a temporary is created, an appropriate copy into `Dest` will
53   // be emitted, as will lifetime markers.
54   //
55   // The given function should take a ReturnValueSlot, and return an RValue that
56   // points to said slot.
57   void withReturnValueSlot(const Expr *E,
58                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
59 
60 public:
61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63     IsResultUnused(IsResultUnused) { }
64 
65   //===--------------------------------------------------------------------===//
66   //                               Utilities
67   //===--------------------------------------------------------------------===//
68 
69   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
70   /// represents a value lvalue, this method emits the address of the lvalue,
71   /// then loads the result into DestPtr.
72   void EmitAggLoadOfLValue(const Expr *E);
73 
74   enum ExprValueKind {
75     EVK_RValue,
76     EVK_NonRValue
77   };
78 
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   /// SrcIsRValue is true if source comes from an RValue.
81   void EmitFinalDestCopy(QualType type, const LValue &src,
82                          ExprValueKind SrcValueKind = EVK_NonRValue);
83   void EmitFinalDestCopy(QualType type, RValue src);
84   void EmitCopy(QualType type, const AggValueSlot &dest,
85                 const AggValueSlot &src);
86 
87   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
88 
89   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
90                      QualType ArrayQTy, InitListExpr *E);
91 
92   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
93     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
94       return AggValueSlot::NeedsGCBarriers;
95     return AggValueSlot::DoesNotNeedGCBarriers;
96   }
97 
98   bool TypeRequiresGCollection(QualType T);
99 
100   //===--------------------------------------------------------------------===//
101   //                            Visitor Methods
102   //===--------------------------------------------------------------------===//
103 
104   void Visit(Expr *E) {
105     ApplyDebugLocation DL(CGF, E);
106     StmtVisitor<AggExprEmitter>::Visit(E);
107   }
108 
109   void VisitStmt(Stmt *S) {
110     CGF.ErrorUnsupported(S, "aggregate expression");
111   }
112   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
113   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
114     Visit(GE->getResultExpr());
115   }
116   void VisitCoawaitExpr(CoawaitExpr *E) {
117     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
118   }
119   void VisitCoyieldExpr(CoyieldExpr *E) {
120     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
121   }
122   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
124   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
125     return Visit(E->getReplacement());
126   }
127 
128   void VisitConstantExpr(ConstantExpr *E) {
129     return Visit(E->getSubExpr());
130   }
131 
132   // l-values.
133   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
134   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
135   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
136   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
137   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
138   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
139     EmitAggLoadOfLValue(E);
140   }
141   void VisitPredefinedExpr(const PredefinedExpr *E) {
142     EmitAggLoadOfLValue(E);
143   }
144 
145   // Operators.
146   void VisitCastExpr(CastExpr *E);
147   void VisitCallExpr(const CallExpr *E);
148   void VisitStmtExpr(const StmtExpr *E);
149   void VisitBinaryOperator(const BinaryOperator *BO);
150   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
151   void VisitBinAssign(const BinaryOperator *E);
152   void VisitBinComma(const BinaryOperator *E);
153   void VisitBinCmp(const BinaryOperator *E);
154   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
155     Visit(E->getSemanticForm());
156   }
157 
158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160     EmitAggLoadOfLValue(E);
161   }
162 
163   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165   void VisitChooseExpr(const ChooseExpr *CE);
166   void VisitInitListExpr(InitListExpr *E);
167   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
168                               llvm::Value *outerBegin = nullptr);
169   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
170   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
171   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
172     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
173     Visit(DAE->getExpr());
174   }
175   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
176     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
177     Visit(DIE->getExpr());
178   }
179   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
180   void VisitCXXConstructExpr(const CXXConstructExpr *E);
181   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
182   void VisitLambdaExpr(LambdaExpr *E);
183   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
184   void VisitExprWithCleanups(ExprWithCleanups *E);
185   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
186   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
187   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
188   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
189 
190   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
191     if (E->isGLValue()) {
192       LValue LV = CGF.EmitPseudoObjectLValue(E);
193       return EmitFinalDestCopy(E->getType(), LV);
194     }
195 
196     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
197   }
198 
199   void VisitVAArgExpr(VAArgExpr *E);
200 
201   void EmitInitializationToLValue(Expr *E, LValue Address);
202   void EmitNullInitializationToLValue(LValue Address);
203   //  case Expr::ChooseExprClass:
204   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
205   void VisitAtomicExpr(AtomicExpr *E) {
206     RValue Res = CGF.EmitAtomicExpr(E);
207     EmitFinalDestCopy(E->getType(), Res);
208   }
209 };
210 }  // end anonymous namespace.
211 
212 //===----------------------------------------------------------------------===//
213 //                                Utilities
214 //===----------------------------------------------------------------------===//
215 
216 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
217 /// represents a value lvalue, this method emits the address of the lvalue,
218 /// then loads the result into DestPtr.
219 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
220   LValue LV = CGF.EmitLValue(E);
221 
222   // If the type of the l-value is atomic, then do an atomic load.
223   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
224     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
225     return;
226   }
227 
228   EmitFinalDestCopy(E->getType(), LV);
229 }
230 
231 /// True if the given aggregate type requires special GC API calls.
232 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
233   // Only record types have members that might require garbage collection.
234   const RecordType *RecordTy = T->getAs<RecordType>();
235   if (!RecordTy) return false;
236 
237   // Don't mess with non-trivial C++ types.
238   RecordDecl *Record = RecordTy->getDecl();
239   if (isa<CXXRecordDecl>(Record) &&
240       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
241        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
242     return false;
243 
244   // Check whether the type has an object member.
245   return Record->hasObjectMember();
246 }
247 
248 void AggExprEmitter::withReturnValueSlot(
249     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
250   QualType RetTy = E->getType();
251   bool RequiresDestruction =
252       !Dest.isExternallyDestructed() &&
253       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
254 
255   // If it makes no observable difference, save a memcpy + temporary.
256   //
257   // We need to always provide our own temporary if destruction is required.
258   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
259   // its lifetime before we have the chance to emit a proper destructor call.
260   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
261                  (RequiresDestruction && !Dest.getAddress().isValid());
262 
263   Address RetAddr = Address::invalid();
264   Address RetAllocaAddr = Address::invalid();
265 
266   EHScopeStack::stable_iterator LifetimeEndBlock;
267   llvm::Value *LifetimeSizePtr = nullptr;
268   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
269   if (!UseTemp) {
270     RetAddr = Dest.getAddress();
271   } else {
272     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
273     uint64_t Size =
274         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
275     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
276     if (LifetimeSizePtr) {
277       LifetimeStartInst =
278           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
279       assert(LifetimeStartInst->getIntrinsicID() ==
280                  llvm::Intrinsic::lifetime_start &&
281              "Last insertion wasn't a lifetime.start?");
282 
283       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
284           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
285       LifetimeEndBlock = CGF.EHStack.stable_begin();
286     }
287   }
288 
289   RValue Src =
290       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
291                                Dest.isExternallyDestructed()));
292 
293   if (!UseTemp)
294     return;
295 
296   assert(Dest.getPointer() != Src.getAggregatePointer());
297   EmitFinalDestCopy(E->getType(), Src);
298 
299   if (!RequiresDestruction && LifetimeStartInst) {
300     // If there's no dtor to run, the copy was the last use of our temporary.
301     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
302     // eagerly.
303     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
304     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
305   }
306 }
307 
308 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
309 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
310   assert(src.isAggregate() && "value must be aggregate value!");
311   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
312   EmitFinalDestCopy(type, srcLV, EVK_RValue);
313 }
314 
315 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
316 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
317                                        ExprValueKind SrcValueKind) {
318   // If Dest is ignored, then we're evaluating an aggregate expression
319   // in a context that doesn't care about the result.  Note that loads
320   // from volatile l-values force the existence of a non-ignored
321   // destination.
322   if (Dest.isIgnored())
323     return;
324 
325   // Copy non-trivial C structs here.
326   LValue DstLV = CGF.MakeAddrLValue(
327       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
328 
329   if (SrcValueKind == EVK_RValue) {
330     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
331       if (Dest.isPotentiallyAliased())
332         CGF.callCStructMoveAssignmentOperator(DstLV, src);
333       else
334         CGF.callCStructMoveConstructor(DstLV, src);
335       return;
336     }
337   } else {
338     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
339       if (Dest.isPotentiallyAliased())
340         CGF.callCStructCopyAssignmentOperator(DstLV, src);
341       else
342         CGF.callCStructCopyConstructor(DstLV, src);
343       return;
344     }
345   }
346 
347   AggValueSlot srcAgg = AggValueSlot::forLValue(
348       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
349       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
350   EmitCopy(type, Dest, srcAgg);
351 }
352 
353 /// Perform a copy from the source into the destination.
354 ///
355 /// \param type - the type of the aggregate being copied; qualifiers are
356 ///   ignored
357 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
358                               const AggValueSlot &src) {
359   if (dest.requiresGCollection()) {
360     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
361     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
362     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
363                                                       dest.getAddress(),
364                                                       src.getAddress(),
365                                                       size);
366     return;
367   }
368 
369   // If the result of the assignment is used, copy the LHS there also.
370   // It's volatile if either side is.  Use the minimum alignment of
371   // the two sides.
372   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
373   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
374   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
375                         dest.isVolatile() || src.isVolatile());
376 }
377 
378 /// Emit the initializer for a std::initializer_list initialized with a
379 /// real initializer list.
380 void
381 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
382   // Emit an array containing the elements.  The array is externally destructed
383   // if the std::initializer_list object is.
384   ASTContext &Ctx = CGF.getContext();
385   LValue Array = CGF.EmitLValue(E->getSubExpr());
386   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
387   Address ArrayPtr = Array.getAddress(CGF);
388 
389   const ConstantArrayType *ArrayType =
390       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
391   assert(ArrayType && "std::initializer_list constructed from non-array");
392 
393   // FIXME: Perform the checks on the field types in SemaInit.
394   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
395   RecordDecl::field_iterator Field = Record->field_begin();
396   if (Field == Record->field_end()) {
397     CGF.ErrorUnsupported(E, "weird std::initializer_list");
398     return;
399   }
400 
401   // Start pointer.
402   if (!Field->getType()->isPointerType() ||
403       !Ctx.hasSameType(Field->getType()->getPointeeType(),
404                        ArrayType->getElementType())) {
405     CGF.ErrorUnsupported(E, "weird std::initializer_list");
406     return;
407   }
408 
409   AggValueSlot Dest = EnsureSlot(E->getType());
410   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
411   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
412   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
413   llvm::Value *IdxStart[] = { Zero, Zero };
414   llvm::Value *ArrayStart =
415       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
416   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
417   ++Field;
418 
419   if (Field == Record->field_end()) {
420     CGF.ErrorUnsupported(E, "weird std::initializer_list");
421     return;
422   }
423 
424   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
425   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
426   if (Field->getType()->isPointerType() &&
427       Ctx.hasSameType(Field->getType()->getPointeeType(),
428                       ArrayType->getElementType())) {
429     // End pointer.
430     llvm::Value *IdxEnd[] = { Zero, Size };
431     llvm::Value *ArrayEnd =
432         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
433     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
434   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
435     // Length.
436     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
437   } else {
438     CGF.ErrorUnsupported(E, "weird std::initializer_list");
439     return;
440   }
441 }
442 
443 /// Determine if E is a trivial array filler, that is, one that is
444 /// equivalent to zero-initialization.
445 static bool isTrivialFiller(Expr *E) {
446   if (!E)
447     return true;
448 
449   if (isa<ImplicitValueInitExpr>(E))
450     return true;
451 
452   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
453     if (ILE->getNumInits())
454       return false;
455     return isTrivialFiller(ILE->getArrayFiller());
456   }
457 
458   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
459     return Cons->getConstructor()->isDefaultConstructor() &&
460            Cons->getConstructor()->isTrivial();
461 
462   // FIXME: Are there other cases where we can avoid emitting an initializer?
463   return false;
464 }
465 
466 /// Emit initialization of an array from an initializer list.
467 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
468                                    QualType ArrayQTy, InitListExpr *E) {
469   uint64_t NumInitElements = E->getNumInits();
470 
471   uint64_t NumArrayElements = AType->getNumElements();
472   assert(NumInitElements <= NumArrayElements);
473 
474   QualType elementType =
475       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
476 
477   // DestPtr is an array*.  Construct an elementType* by drilling
478   // down a level.
479   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
480   llvm::Value *indices[] = { zero, zero };
481   llvm::Value *begin =
482     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
483 
484   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
485   CharUnits elementAlign =
486     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
487 
488   // Consider initializing the array by copying from a global. For this to be
489   // more efficient than per-element initialization, the size of the elements
490   // with explicit initializers should be large enough.
491   if (NumInitElements * elementSize.getQuantity() > 16 &&
492       elementType.isTriviallyCopyableType(CGF.getContext())) {
493     CodeGen::CodeGenModule &CGM = CGF.CGM;
494     ConstantEmitter Emitter(CGF);
495     LangAS AS = ArrayQTy.getAddressSpace();
496     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
497       auto GV = new llvm::GlobalVariable(
498           CGM.getModule(), C->getType(),
499           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
500           llvm::GlobalValue::PrivateLinkage, C, "constinit",
501           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
502           CGM.getContext().getTargetAddressSpace(AS));
503       Emitter.finalize(GV);
504       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
505       GV->setAlignment(Align.getAsAlign());
506       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
507       return;
508     }
509   }
510 
511   // Exception safety requires us to destroy all the
512   // already-constructed members if an initializer throws.
513   // For that, we'll need an EH cleanup.
514   QualType::DestructionKind dtorKind = elementType.isDestructedType();
515   Address endOfInit = Address::invalid();
516   EHScopeStack::stable_iterator cleanup;
517   llvm::Instruction *cleanupDominator = nullptr;
518   if (CGF.needsEHCleanup(dtorKind)) {
519     // In principle we could tell the cleanup where we are more
520     // directly, but the control flow can get so varied here that it
521     // would actually be quite complex.  Therefore we go through an
522     // alloca.
523     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
524                                      "arrayinit.endOfInit");
525     cleanupDominator = Builder.CreateStore(begin, endOfInit);
526     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
527                                          elementAlign,
528                                          CGF.getDestroyer(dtorKind));
529     cleanup = CGF.EHStack.stable_begin();
530 
531   // Otherwise, remember that we didn't need a cleanup.
532   } else {
533     dtorKind = QualType::DK_none;
534   }
535 
536   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
537 
538   // The 'current element to initialize'.  The invariants on this
539   // variable are complicated.  Essentially, after each iteration of
540   // the loop, it points to the last initialized element, except
541   // that it points to the beginning of the array before any
542   // elements have been initialized.
543   llvm::Value *element = begin;
544 
545   // Emit the explicit initializers.
546   for (uint64_t i = 0; i != NumInitElements; ++i) {
547     // Advance to the next element.
548     if (i > 0) {
549       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
550 
551       // Tell the cleanup that it needs to destroy up to this
552       // element.  TODO: some of these stores can be trivially
553       // observed to be unnecessary.
554       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
555     }
556 
557     LValue elementLV =
558       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
559     EmitInitializationToLValue(E->getInit(i), elementLV);
560   }
561 
562   // Check whether there's a non-trivial array-fill expression.
563   Expr *filler = E->getArrayFiller();
564   bool hasTrivialFiller = isTrivialFiller(filler);
565 
566   // Any remaining elements need to be zero-initialized, possibly
567   // using the filler expression.  We can skip this if the we're
568   // emitting to zeroed memory.
569   if (NumInitElements != NumArrayElements &&
570       !(Dest.isZeroed() && hasTrivialFiller &&
571         CGF.getTypes().isZeroInitializable(elementType))) {
572 
573     // Use an actual loop.  This is basically
574     //   do { *array++ = filler; } while (array != end);
575 
576     // Advance to the start of the rest of the array.
577     if (NumInitElements) {
578       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
579       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
580     }
581 
582     // Compute the end of the array.
583     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
584                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
585                                                  "arrayinit.end");
586 
587     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
588     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
589 
590     // Jump into the body.
591     CGF.EmitBlock(bodyBB);
592     llvm::PHINode *currentElement =
593       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
594     currentElement->addIncoming(element, entryBB);
595 
596     // Emit the actual filler expression.
597     {
598       // C++1z [class.temporary]p5:
599       //   when a default constructor is called to initialize an element of
600       //   an array with no corresponding initializer [...] the destruction of
601       //   every temporary created in a default argument is sequenced before
602       //   the construction of the next array element, if any
603       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
604       LValue elementLV =
605         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
606       if (filler)
607         EmitInitializationToLValue(filler, elementLV);
608       else
609         EmitNullInitializationToLValue(elementLV);
610     }
611 
612     // Move on to the next element.
613     llvm::Value *nextElement =
614       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
615 
616     // Tell the EH cleanup that we finished with the last element.
617     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
618 
619     // Leave the loop if we're done.
620     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
621                                              "arrayinit.done");
622     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
623     Builder.CreateCondBr(done, endBB, bodyBB);
624     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
625 
626     CGF.EmitBlock(endBB);
627   }
628 
629   // Leave the partial-array cleanup if we entered one.
630   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
631 }
632 
633 //===----------------------------------------------------------------------===//
634 //                            Visitor Methods
635 //===----------------------------------------------------------------------===//
636 
637 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
638   Visit(E->getSubExpr());
639 }
640 
641 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
642   // If this is a unique OVE, just visit its source expression.
643   if (e->isUnique())
644     Visit(e->getSourceExpr());
645   else
646     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
647 }
648 
649 void
650 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
651   if (Dest.isPotentiallyAliased() &&
652       E->getType().isPODType(CGF.getContext())) {
653     // For a POD type, just emit a load of the lvalue + a copy, because our
654     // compound literal might alias the destination.
655     EmitAggLoadOfLValue(E);
656     return;
657   }
658 
659   AggValueSlot Slot = EnsureSlot(E->getType());
660 
661   // Block-scope compound literals are destroyed at the end of the enclosing
662   // scope in C.
663   bool Destruct =
664       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
665   if (Destruct)
666     Slot.setExternallyDestructed();
667 
668   CGF.EmitAggExpr(E->getInitializer(), Slot);
669 
670   if (Destruct)
671     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
672       CGF.pushLifetimeExtendedDestroy(
673           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
674           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
675 }
676 
677 /// Attempt to look through various unimportant expressions to find a
678 /// cast of the given kind.
679 static Expr *findPeephole(Expr *op, CastKind kind) {
680   while (true) {
681     op = op->IgnoreParens();
682     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
683       if (castE->getCastKind() == kind)
684         return castE->getSubExpr();
685       if (castE->getCastKind() == CK_NoOp)
686         continue;
687     }
688     return nullptr;
689   }
690 }
691 
692 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
693   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
694     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
695   switch (E->getCastKind()) {
696   case CK_Dynamic: {
697     // FIXME: Can this actually happen? We have no test coverage for it.
698     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
699     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
700                                       CodeGenFunction::TCK_Load);
701     // FIXME: Do we also need to handle property references here?
702     if (LV.isSimple())
703       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
704     else
705       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
706 
707     if (!Dest.isIgnored())
708       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
709     break;
710   }
711 
712   case CK_ToUnion: {
713     // Evaluate even if the destination is ignored.
714     if (Dest.isIgnored()) {
715       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
716                       /*ignoreResult=*/true);
717       break;
718     }
719 
720     // GCC union extension
721     QualType Ty = E->getSubExpr()->getType();
722     Address CastPtr =
723       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
724     EmitInitializationToLValue(E->getSubExpr(),
725                                CGF.MakeAddrLValue(CastPtr, Ty));
726     break;
727   }
728 
729   case CK_LValueToRValueBitCast: {
730     if (Dest.isIgnored()) {
731       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
732                       /*ignoreResult=*/true);
733       break;
734     }
735 
736     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
737     Address SourceAddress =
738         Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
739     Address DestAddress =
740         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
741     llvm::Value *SizeVal = llvm::ConstantInt::get(
742         CGF.SizeTy,
743         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
744     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
745     break;
746   }
747 
748   case CK_DerivedToBase:
749   case CK_BaseToDerived:
750   case CK_UncheckedDerivedToBase: {
751     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
752                 "should have been unpacked before we got here");
753   }
754 
755   case CK_NonAtomicToAtomic:
756   case CK_AtomicToNonAtomic: {
757     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
758 
759     // Determine the atomic and value types.
760     QualType atomicType = E->getSubExpr()->getType();
761     QualType valueType = E->getType();
762     if (isToAtomic) std::swap(atomicType, valueType);
763 
764     assert(atomicType->isAtomicType());
765     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
766                           atomicType->castAs<AtomicType>()->getValueType()));
767 
768     // Just recurse normally if we're ignoring the result or the
769     // atomic type doesn't change representation.
770     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
771       return Visit(E->getSubExpr());
772     }
773 
774     CastKind peepholeTarget =
775       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
776 
777     // These two cases are reverses of each other; try to peephole them.
778     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
779       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
780                                                      E->getType()) &&
781            "peephole significantly changed types?");
782       return Visit(op);
783     }
784 
785     // If we're converting an r-value of non-atomic type to an r-value
786     // of atomic type, just emit directly into the relevant sub-object.
787     if (isToAtomic) {
788       AggValueSlot valueDest = Dest;
789       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
790         // Zero-initialize.  (Strictly speaking, we only need to initialize
791         // the padding at the end, but this is simpler.)
792         if (!Dest.isZeroed())
793           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
794 
795         // Build a GEP to refer to the subobject.
796         Address valueAddr =
797             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
798         valueDest = AggValueSlot::forAddr(valueAddr,
799                                           valueDest.getQualifiers(),
800                                           valueDest.isExternallyDestructed(),
801                                           valueDest.requiresGCollection(),
802                                           valueDest.isPotentiallyAliased(),
803                                           AggValueSlot::DoesNotOverlap,
804                                           AggValueSlot::IsZeroed);
805       }
806 
807       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
808       return;
809     }
810 
811     // Otherwise, we're converting an atomic type to a non-atomic type.
812     // Make an atomic temporary, emit into that, and then copy the value out.
813     AggValueSlot atomicSlot =
814       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
815     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
816 
817     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
818     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
819     return EmitFinalDestCopy(valueType, rvalue);
820   }
821   case CK_AddressSpaceConversion:
822      return Visit(E->getSubExpr());
823 
824   case CK_LValueToRValue:
825     // If we're loading from a volatile type, force the destination
826     // into existence.
827     if (E->getSubExpr()->getType().isVolatileQualified()) {
828       bool Destruct =
829           !Dest.isExternallyDestructed() &&
830           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
831       if (Destruct)
832         Dest.setExternallyDestructed();
833       EnsureDest(E->getType());
834       Visit(E->getSubExpr());
835 
836       if (Destruct)
837         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
838                         E->getType());
839 
840       return;
841     }
842 
843     LLVM_FALLTHROUGH;
844 
845 
846   case CK_NoOp:
847   case CK_UserDefinedConversion:
848   case CK_ConstructorConversion:
849     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
850                                                    E->getType()) &&
851            "Implicit cast types must be compatible");
852     Visit(E->getSubExpr());
853     break;
854 
855   case CK_LValueBitCast:
856     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
857 
858   case CK_Dependent:
859   case CK_BitCast:
860   case CK_ArrayToPointerDecay:
861   case CK_FunctionToPointerDecay:
862   case CK_NullToPointer:
863   case CK_NullToMemberPointer:
864   case CK_BaseToDerivedMemberPointer:
865   case CK_DerivedToBaseMemberPointer:
866   case CK_MemberPointerToBoolean:
867   case CK_ReinterpretMemberPointer:
868   case CK_IntegralToPointer:
869   case CK_PointerToIntegral:
870   case CK_PointerToBoolean:
871   case CK_ToVoid:
872   case CK_VectorSplat:
873   case CK_IntegralCast:
874   case CK_BooleanToSignedIntegral:
875   case CK_IntegralToBoolean:
876   case CK_IntegralToFloating:
877   case CK_FloatingToIntegral:
878   case CK_FloatingToBoolean:
879   case CK_FloatingCast:
880   case CK_CPointerToObjCPointerCast:
881   case CK_BlockPointerToObjCPointerCast:
882   case CK_AnyPointerToBlockPointerCast:
883   case CK_ObjCObjectLValueCast:
884   case CK_FloatingRealToComplex:
885   case CK_FloatingComplexToReal:
886   case CK_FloatingComplexToBoolean:
887   case CK_FloatingComplexCast:
888   case CK_FloatingComplexToIntegralComplex:
889   case CK_IntegralRealToComplex:
890   case CK_IntegralComplexToReal:
891   case CK_IntegralComplexToBoolean:
892   case CK_IntegralComplexCast:
893   case CK_IntegralComplexToFloatingComplex:
894   case CK_ARCProduceObject:
895   case CK_ARCConsumeObject:
896   case CK_ARCReclaimReturnedObject:
897   case CK_ARCExtendBlockObject:
898   case CK_CopyAndAutoreleaseBlockObject:
899   case CK_BuiltinFnToFnPtr:
900   case CK_ZeroToOCLOpaqueType:
901 
902   case CK_IntToOCLSampler:
903   case CK_FixedPointCast:
904   case CK_FixedPointToBoolean:
905   case CK_FixedPointToIntegral:
906   case CK_IntegralToFixedPoint:
907     llvm_unreachable("cast kind invalid for aggregate types");
908   }
909 }
910 
911 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
912   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
913     EmitAggLoadOfLValue(E);
914     return;
915   }
916 
917   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
918     return CGF.EmitCallExpr(E, Slot);
919   });
920 }
921 
922 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
923   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
924     return CGF.EmitObjCMessageExpr(E, Slot);
925   });
926 }
927 
928 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
929   CGF.EmitIgnoredExpr(E->getLHS());
930   Visit(E->getRHS());
931 }
932 
933 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
934   CodeGenFunction::StmtExprEvaluation eval(CGF);
935   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
936 }
937 
938 enum CompareKind {
939   CK_Less,
940   CK_Greater,
941   CK_Equal,
942 };
943 
944 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
945                                 const BinaryOperator *E, llvm::Value *LHS,
946                                 llvm::Value *RHS, CompareKind Kind,
947                                 const char *NameSuffix = "") {
948   QualType ArgTy = E->getLHS()->getType();
949   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
950     ArgTy = CT->getElementType();
951 
952   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
953     assert(Kind == CK_Equal &&
954            "member pointers may only be compared for equality");
955     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
956         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
957   }
958 
959   // Compute the comparison instructions for the specified comparison kind.
960   struct CmpInstInfo {
961     const char *Name;
962     llvm::CmpInst::Predicate FCmp;
963     llvm::CmpInst::Predicate SCmp;
964     llvm::CmpInst::Predicate UCmp;
965   };
966   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
967     using FI = llvm::FCmpInst;
968     using II = llvm::ICmpInst;
969     switch (Kind) {
970     case CK_Less:
971       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
972     case CK_Greater:
973       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
974     case CK_Equal:
975       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
976     }
977     llvm_unreachable("Unrecognised CompareKind enum");
978   }();
979 
980   if (ArgTy->hasFloatingRepresentation())
981     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
982                               llvm::Twine(InstInfo.Name) + NameSuffix);
983   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
984     auto Inst =
985         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
986     return Builder.CreateICmp(Inst, LHS, RHS,
987                               llvm::Twine(InstInfo.Name) + NameSuffix);
988   }
989 
990   llvm_unreachable("unsupported aggregate binary expression should have "
991                    "already been handled");
992 }
993 
994 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
995   using llvm::BasicBlock;
996   using llvm::PHINode;
997   using llvm::Value;
998   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
999                                       E->getRHS()->getType()));
1000   const ComparisonCategoryInfo &CmpInfo =
1001       CGF.getContext().CompCategories.getInfoForType(E->getType());
1002   assert(CmpInfo.Record->isTriviallyCopyable() &&
1003          "cannot copy non-trivially copyable aggregate");
1004 
1005   QualType ArgTy = E->getLHS()->getType();
1006 
1007   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1008       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1009       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1010     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1011   }
1012   bool IsComplex = ArgTy->isAnyComplexType();
1013 
1014   // Evaluate the operands to the expression and extract their values.
1015   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1016     RValue RV = CGF.EmitAnyExpr(E);
1017     if (RV.isScalar())
1018       return {RV.getScalarVal(), nullptr};
1019     if (RV.isAggregate())
1020       return {RV.getAggregatePointer(), nullptr};
1021     assert(RV.isComplex());
1022     return RV.getComplexVal();
1023   };
1024   auto LHSValues = EmitOperand(E->getLHS()),
1025        RHSValues = EmitOperand(E->getRHS());
1026 
1027   auto EmitCmp = [&](CompareKind K) {
1028     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1029                              K, IsComplex ? ".r" : "");
1030     if (!IsComplex)
1031       return Cmp;
1032     assert(K == CompareKind::CK_Equal);
1033     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1034                                  RHSValues.second, K, ".i");
1035     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1036   };
1037   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1038     return Builder.getInt(VInfo->getIntValue());
1039   };
1040 
1041   Value *Select;
1042   if (ArgTy->isNullPtrType()) {
1043     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1044   } else if (!CmpInfo.isPartial()) {
1045     Value *SelectOne =
1046         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1047                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1048     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1049                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1050                                   SelectOne, "sel.eq");
1051   } else {
1052     Value *SelectEq = Builder.CreateSelect(
1053         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1054         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1055     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1056                                            EmitCmpRes(CmpInfo.getGreater()),
1057                                            SelectEq, "sel.gt");
1058     Select = Builder.CreateSelect(
1059         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1060   }
1061   // Create the return value in the destination slot.
1062   EnsureDest(E->getType());
1063   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1064 
1065   // Emit the address of the first (and only) field in the comparison category
1066   // type, and initialize it from the constant integer value selected above.
1067   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1068       DestLV, *CmpInfo.Record->field_begin());
1069   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1070 
1071   // All done! The result is in the Dest slot.
1072 }
1073 
1074 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1075   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1076     VisitPointerToDataMemberBinaryOperator(E);
1077   else
1078     CGF.ErrorUnsupported(E, "aggregate binary expression");
1079 }
1080 
1081 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1082                                                     const BinaryOperator *E) {
1083   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1084   EmitFinalDestCopy(E->getType(), LV);
1085 }
1086 
1087 /// Is the value of the given expression possibly a reference to or
1088 /// into a __block variable?
1089 static bool isBlockVarRef(const Expr *E) {
1090   // Make sure we look through parens.
1091   E = E->IgnoreParens();
1092 
1093   // Check for a direct reference to a __block variable.
1094   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1095     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1096     return (var && var->hasAttr<BlocksAttr>());
1097   }
1098 
1099   // More complicated stuff.
1100 
1101   // Binary operators.
1102   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1103     // For an assignment or pointer-to-member operation, just care
1104     // about the LHS.
1105     if (op->isAssignmentOp() || op->isPtrMemOp())
1106       return isBlockVarRef(op->getLHS());
1107 
1108     // For a comma, just care about the RHS.
1109     if (op->getOpcode() == BO_Comma)
1110       return isBlockVarRef(op->getRHS());
1111 
1112     // FIXME: pointer arithmetic?
1113     return false;
1114 
1115   // Check both sides of a conditional operator.
1116   } else if (const AbstractConditionalOperator *op
1117                = dyn_cast<AbstractConditionalOperator>(E)) {
1118     return isBlockVarRef(op->getTrueExpr())
1119         || isBlockVarRef(op->getFalseExpr());
1120 
1121   // OVEs are required to support BinaryConditionalOperators.
1122   } else if (const OpaqueValueExpr *op
1123                = dyn_cast<OpaqueValueExpr>(E)) {
1124     if (const Expr *src = op->getSourceExpr())
1125       return isBlockVarRef(src);
1126 
1127   // Casts are necessary to get things like (*(int*)&var) = foo().
1128   // We don't really care about the kind of cast here, except
1129   // we don't want to look through l2r casts, because it's okay
1130   // to get the *value* in a __block variable.
1131   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1132     if (cast->getCastKind() == CK_LValueToRValue)
1133       return false;
1134     return isBlockVarRef(cast->getSubExpr());
1135 
1136   // Handle unary operators.  Again, just aggressively look through
1137   // it, ignoring the operation.
1138   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1139     return isBlockVarRef(uop->getSubExpr());
1140 
1141   // Look into the base of a field access.
1142   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1143     return isBlockVarRef(mem->getBase());
1144 
1145   // Look into the base of a subscript.
1146   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1147     return isBlockVarRef(sub->getBase());
1148   }
1149 
1150   return false;
1151 }
1152 
1153 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1154   // For an assignment to work, the value on the right has
1155   // to be compatible with the value on the left.
1156   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1157                                                  E->getRHS()->getType())
1158          && "Invalid assignment");
1159 
1160   // If the LHS might be a __block variable, and the RHS can
1161   // potentially cause a block copy, we need to evaluate the RHS first
1162   // so that the assignment goes the right place.
1163   // This is pretty semantically fragile.
1164   if (isBlockVarRef(E->getLHS()) &&
1165       E->getRHS()->HasSideEffects(CGF.getContext())) {
1166     // Ensure that we have a destination, and evaluate the RHS into that.
1167     EnsureDest(E->getRHS()->getType());
1168     Visit(E->getRHS());
1169 
1170     // Now emit the LHS and copy into it.
1171     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1172 
1173     // That copy is an atomic copy if the LHS is atomic.
1174     if (LHS.getType()->isAtomicType() ||
1175         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1176       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1177       return;
1178     }
1179 
1180     EmitCopy(E->getLHS()->getType(),
1181              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1182                                      needsGC(E->getLHS()->getType()),
1183                                      AggValueSlot::IsAliased,
1184                                      AggValueSlot::MayOverlap),
1185              Dest);
1186     return;
1187   }
1188 
1189   LValue LHS = CGF.EmitLValue(E->getLHS());
1190 
1191   // If we have an atomic type, evaluate into the destination and then
1192   // do an atomic copy.
1193   if (LHS.getType()->isAtomicType() ||
1194       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1195     EnsureDest(E->getRHS()->getType());
1196     Visit(E->getRHS());
1197     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1198     return;
1199   }
1200 
1201   // Codegen the RHS so that it stores directly into the LHS.
1202   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1203       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1204       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1205   // A non-volatile aggregate destination might have volatile member.
1206   if (!LHSSlot.isVolatile() &&
1207       CGF.hasVolatileMember(E->getLHS()->getType()))
1208     LHSSlot.setVolatile(true);
1209 
1210   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1211 
1212   // Copy into the destination if the assignment isn't ignored.
1213   EmitFinalDestCopy(E->getType(), LHS);
1214 }
1215 
1216 void AggExprEmitter::
1217 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1218   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1219   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1220   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1221 
1222   // Bind the common expression if necessary.
1223   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1224 
1225   CodeGenFunction::ConditionalEvaluation eval(CGF);
1226   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1227                            CGF.getProfileCount(E));
1228 
1229   // Save whether the destination's lifetime is externally managed.
1230   bool isExternallyDestructed = Dest.isExternallyDestructed();
1231 
1232   eval.begin(CGF);
1233   CGF.EmitBlock(LHSBlock);
1234   CGF.incrementProfileCounter(E);
1235   Visit(E->getTrueExpr());
1236   eval.end(CGF);
1237 
1238   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1239   CGF.Builder.CreateBr(ContBlock);
1240 
1241   // If the result of an agg expression is unused, then the emission
1242   // of the LHS might need to create a destination slot.  That's fine
1243   // with us, and we can safely emit the RHS into the same slot, but
1244   // we shouldn't claim that it's already being destructed.
1245   Dest.setExternallyDestructed(isExternallyDestructed);
1246 
1247   eval.begin(CGF);
1248   CGF.EmitBlock(RHSBlock);
1249   Visit(E->getFalseExpr());
1250   eval.end(CGF);
1251 
1252   CGF.EmitBlock(ContBlock);
1253 }
1254 
1255 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1256   Visit(CE->getChosenSubExpr());
1257 }
1258 
1259 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1260   Address ArgValue = Address::invalid();
1261   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1262 
1263   // If EmitVAArg fails, emit an error.
1264   if (!ArgPtr.isValid()) {
1265     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1266     return;
1267   }
1268 
1269   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1270 }
1271 
1272 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1273   // Ensure that we have a slot, but if we already do, remember
1274   // whether it was externally destructed.
1275   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1276   EnsureDest(E->getType());
1277 
1278   // We're going to push a destructor if there isn't already one.
1279   Dest.setExternallyDestructed();
1280 
1281   Visit(E->getSubExpr());
1282 
1283   // Push that destructor we promised.
1284   if (!wasExternallyDestructed)
1285     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1286 }
1287 
1288 void
1289 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1290   AggValueSlot Slot = EnsureSlot(E->getType());
1291   CGF.EmitCXXConstructExpr(E, Slot);
1292 }
1293 
1294 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1295     const CXXInheritedCtorInitExpr *E) {
1296   AggValueSlot Slot = EnsureSlot(E->getType());
1297   CGF.EmitInheritedCXXConstructorCall(
1298       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1299       E->inheritedFromVBase(), E);
1300 }
1301 
1302 void
1303 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1304   AggValueSlot Slot = EnsureSlot(E->getType());
1305   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1306 
1307   // We'll need to enter cleanup scopes in case any of the element
1308   // initializers throws an exception.
1309   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1310   llvm::Instruction *CleanupDominator = nullptr;
1311 
1312   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1313   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1314                                                e = E->capture_init_end();
1315        i != e; ++i, ++CurField) {
1316     // Emit initialization
1317     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1318     if (CurField->hasCapturedVLAType()) {
1319       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1320       continue;
1321     }
1322 
1323     EmitInitializationToLValue(*i, LV);
1324 
1325     // Push a destructor if necessary.
1326     if (QualType::DestructionKind DtorKind =
1327             CurField->getType().isDestructedType()) {
1328       assert(LV.isSimple());
1329       if (CGF.needsEHCleanup(DtorKind)) {
1330         if (!CleanupDominator)
1331           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1332               CGF.Int8Ty,
1333               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1334               CharUnits::One()); // placeholder
1335 
1336         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1337                         CGF.getDestroyer(DtorKind), false);
1338         Cleanups.push_back(CGF.EHStack.stable_begin());
1339       }
1340     }
1341   }
1342 
1343   // Deactivate all the partial cleanups in reverse order, which
1344   // generally means popping them.
1345   for (unsigned i = Cleanups.size(); i != 0; --i)
1346     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1347 
1348   // Destroy the placeholder if we made one.
1349   if (CleanupDominator)
1350     CleanupDominator->eraseFromParent();
1351 }
1352 
1353 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1354   CGF.enterFullExpression(E);
1355   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1356   Visit(E->getSubExpr());
1357 }
1358 
1359 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1360   QualType T = E->getType();
1361   AggValueSlot Slot = EnsureSlot(T);
1362   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1363 }
1364 
1365 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1366   QualType T = E->getType();
1367   AggValueSlot Slot = EnsureSlot(T);
1368   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1369 }
1370 
1371 /// isSimpleZero - If emitting this value will obviously just cause a store of
1372 /// zero to memory, return true.  This can return false if uncertain, so it just
1373 /// handles simple cases.
1374 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1375   E = E->IgnoreParens();
1376 
1377   // 0
1378   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1379     return IL->getValue() == 0;
1380   // +0.0
1381   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1382     return FL->getValue().isPosZero();
1383   // int()
1384   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1385       CGF.getTypes().isZeroInitializable(E->getType()))
1386     return true;
1387   // (int*)0 - Null pointer expressions.
1388   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1389     return ICE->getCastKind() == CK_NullToPointer &&
1390            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1391            !E->HasSideEffects(CGF.getContext());
1392   // '\0'
1393   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1394     return CL->getValue() == 0;
1395 
1396   // Otherwise, hard case: conservatively return false.
1397   return false;
1398 }
1399 
1400 
1401 void
1402 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1403   QualType type = LV.getType();
1404   // FIXME: Ignore result?
1405   // FIXME: Are initializers affected by volatile?
1406   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1407     // Storing "i32 0" to a zero'd memory location is a noop.
1408     return;
1409   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1410     return EmitNullInitializationToLValue(LV);
1411   } else if (isa<NoInitExpr>(E)) {
1412     // Do nothing.
1413     return;
1414   } else if (type->isReferenceType()) {
1415     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1416     return CGF.EmitStoreThroughLValue(RV, LV);
1417   }
1418 
1419   switch (CGF.getEvaluationKind(type)) {
1420   case TEK_Complex:
1421     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1422     return;
1423   case TEK_Aggregate:
1424     CGF.EmitAggExpr(
1425         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1426                                    AggValueSlot::DoesNotNeedGCBarriers,
1427                                    AggValueSlot::IsNotAliased,
1428                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1429     return;
1430   case TEK_Scalar:
1431     if (LV.isSimple()) {
1432       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1433     } else {
1434       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1435     }
1436     return;
1437   }
1438   llvm_unreachable("bad evaluation kind");
1439 }
1440 
1441 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1442   QualType type = lv.getType();
1443 
1444   // If the destination slot is already zeroed out before the aggregate is
1445   // copied into it, we don't have to emit any zeros here.
1446   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1447     return;
1448 
1449   if (CGF.hasScalarEvaluationKind(type)) {
1450     // For non-aggregates, we can store the appropriate null constant.
1451     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1452     // Note that the following is not equivalent to
1453     // EmitStoreThroughBitfieldLValue for ARC types.
1454     if (lv.isBitField()) {
1455       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1456     } else {
1457       assert(lv.isSimple());
1458       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1459     }
1460   } else {
1461     // There's a potential optimization opportunity in combining
1462     // memsets; that would be easy for arrays, but relatively
1463     // difficult for structures with the current code.
1464     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1465   }
1466 }
1467 
1468 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1469 #if 0
1470   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1471   // (Length of globals? Chunks of zeroed-out space?).
1472   //
1473   // If we can, prefer a copy from a global; this is a lot less code for long
1474   // globals, and it's easier for the current optimizers to analyze.
1475   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1476     llvm::GlobalVariable* GV =
1477     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1478                              llvm::GlobalValue::InternalLinkage, C, "");
1479     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1480     return;
1481   }
1482 #endif
1483   if (E->hadArrayRangeDesignator())
1484     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1485 
1486   if (E->isTransparent())
1487     return Visit(E->getInit(0));
1488 
1489   AggValueSlot Dest = EnsureSlot(E->getType());
1490 
1491   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1492 
1493   // Handle initialization of an array.
1494   if (E->getType()->isArrayType()) {
1495     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1496     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1497     return;
1498   }
1499 
1500   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1501 
1502   // Do struct initialization; this code just sets each individual member
1503   // to the approprate value.  This makes bitfield support automatic;
1504   // the disadvantage is that the generated code is more difficult for
1505   // the optimizer, especially with bitfields.
1506   unsigned NumInitElements = E->getNumInits();
1507   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1508 
1509   // We'll need to enter cleanup scopes in case any of the element
1510   // initializers throws an exception.
1511   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1512   llvm::Instruction *cleanupDominator = nullptr;
1513   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1514     cleanups.push_back(cleanup);
1515     if (!cleanupDominator) // create placeholder once needed
1516       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1517           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1518           CharUnits::One());
1519   };
1520 
1521   unsigned curInitIndex = 0;
1522 
1523   // Emit initialization of base classes.
1524   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1525     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1526            "missing initializer for base class");
1527     for (auto &Base : CXXRD->bases()) {
1528       assert(!Base.isVirtual() && "should not see vbases here");
1529       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1530       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1531           Dest.getAddress(), CXXRD, BaseRD,
1532           /*isBaseVirtual*/ false);
1533       AggValueSlot AggSlot = AggValueSlot::forAddr(
1534           V, Qualifiers(),
1535           AggValueSlot::IsDestructed,
1536           AggValueSlot::DoesNotNeedGCBarriers,
1537           AggValueSlot::IsNotAliased,
1538           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1539       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1540 
1541       if (QualType::DestructionKind dtorKind =
1542               Base.getType().isDestructedType()) {
1543         CGF.pushDestroy(dtorKind, V, Base.getType());
1544         addCleanup(CGF.EHStack.stable_begin());
1545       }
1546     }
1547   }
1548 
1549   // Prepare a 'this' for CXXDefaultInitExprs.
1550   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1551 
1552   if (record->isUnion()) {
1553     // Only initialize one field of a union. The field itself is
1554     // specified by the initializer list.
1555     if (!E->getInitializedFieldInUnion()) {
1556       // Empty union; we have nothing to do.
1557 
1558 #ifndef NDEBUG
1559       // Make sure that it's really an empty and not a failure of
1560       // semantic analysis.
1561       for (const auto *Field : record->fields())
1562         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1563 #endif
1564       return;
1565     }
1566 
1567     // FIXME: volatility
1568     FieldDecl *Field = E->getInitializedFieldInUnion();
1569 
1570     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1571     if (NumInitElements) {
1572       // Store the initializer into the field
1573       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1574     } else {
1575       // Default-initialize to null.
1576       EmitNullInitializationToLValue(FieldLoc);
1577     }
1578 
1579     return;
1580   }
1581 
1582   // Here we iterate over the fields; this makes it simpler to both
1583   // default-initialize fields and skip over unnamed fields.
1584   for (const auto *field : record->fields()) {
1585     // We're done once we hit the flexible array member.
1586     if (field->getType()->isIncompleteArrayType())
1587       break;
1588 
1589     // Always skip anonymous bitfields.
1590     if (field->isUnnamedBitfield())
1591       continue;
1592 
1593     // We're done if we reach the end of the explicit initializers, we
1594     // have a zeroed object, and the rest of the fields are
1595     // zero-initializable.
1596     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1597         CGF.getTypes().isZeroInitializable(E->getType()))
1598       break;
1599 
1600 
1601     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1602     // We never generate write-barries for initialized fields.
1603     LV.setNonGC(true);
1604 
1605     if (curInitIndex < NumInitElements) {
1606       // Store the initializer into the field.
1607       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1608     } else {
1609       // We're out of initializers; default-initialize to null
1610       EmitNullInitializationToLValue(LV);
1611     }
1612 
1613     // Push a destructor if necessary.
1614     // FIXME: if we have an array of structures, all explicitly
1615     // initialized, we can end up pushing a linear number of cleanups.
1616     bool pushedCleanup = false;
1617     if (QualType::DestructionKind dtorKind
1618           = field->getType().isDestructedType()) {
1619       assert(LV.isSimple());
1620       if (CGF.needsEHCleanup(dtorKind)) {
1621         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1622                         CGF.getDestroyer(dtorKind), false);
1623         addCleanup(CGF.EHStack.stable_begin());
1624         pushedCleanup = true;
1625       }
1626     }
1627 
1628     // If the GEP didn't get used because of a dead zero init or something
1629     // else, clean it up for -O0 builds and general tidiness.
1630     if (!pushedCleanup && LV.isSimple())
1631       if (llvm::GetElementPtrInst *GEP =
1632               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1633         if (GEP->use_empty())
1634           GEP->eraseFromParent();
1635   }
1636 
1637   // Deactivate all the partial cleanups in reverse order, which
1638   // generally means popping them.
1639   assert((cleanupDominator || cleanups.empty()) &&
1640          "Missing cleanupDominator before deactivating cleanup blocks");
1641   for (unsigned i = cleanups.size(); i != 0; --i)
1642     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1643 
1644   // Destroy the placeholder if we made one.
1645   if (cleanupDominator)
1646     cleanupDominator->eraseFromParent();
1647 }
1648 
1649 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1650                                             llvm::Value *outerBegin) {
1651   // Emit the common subexpression.
1652   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1653 
1654   Address destPtr = EnsureSlot(E->getType()).getAddress();
1655   uint64_t numElements = E->getArraySize().getZExtValue();
1656 
1657   if (!numElements)
1658     return;
1659 
1660   // destPtr is an array*. Construct an elementType* by drilling down a level.
1661   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1662   llvm::Value *indices[] = {zero, zero};
1663   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1664                                                  "arrayinit.begin");
1665 
1666   // Prepare to special-case multidimensional array initialization: we avoid
1667   // emitting multiple destructor loops in that case.
1668   if (!outerBegin)
1669     outerBegin = begin;
1670   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1671 
1672   QualType elementType =
1673       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1674   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1675   CharUnits elementAlign =
1676       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1677 
1678   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1679   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1680 
1681   // Jump into the body.
1682   CGF.EmitBlock(bodyBB);
1683   llvm::PHINode *index =
1684       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1685   index->addIncoming(zero, entryBB);
1686   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1687 
1688   // Prepare for a cleanup.
1689   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1690   EHScopeStack::stable_iterator cleanup;
1691   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1692     if (outerBegin->getType() != element->getType())
1693       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1694     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1695                                        elementAlign,
1696                                        CGF.getDestroyer(dtorKind));
1697     cleanup = CGF.EHStack.stable_begin();
1698   } else {
1699     dtorKind = QualType::DK_none;
1700   }
1701 
1702   // Emit the actual filler expression.
1703   {
1704     // Temporaries created in an array initialization loop are destroyed
1705     // at the end of each iteration.
1706     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1707     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1708     LValue elementLV =
1709         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1710 
1711     if (InnerLoop) {
1712       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1713       auto elementSlot = AggValueSlot::forLValue(
1714           elementLV, CGF, AggValueSlot::IsDestructed,
1715           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1716           AggValueSlot::DoesNotOverlap);
1717       AggExprEmitter(CGF, elementSlot, false)
1718           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1719     } else
1720       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1721   }
1722 
1723   // Move on to the next element.
1724   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1725       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1726   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1727 
1728   // Leave the loop if we're done.
1729   llvm::Value *done = Builder.CreateICmpEQ(
1730       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1731       "arrayinit.done");
1732   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1733   Builder.CreateCondBr(done, endBB, bodyBB);
1734 
1735   CGF.EmitBlock(endBB);
1736 
1737   // Leave the partial-array cleanup if we entered one.
1738   if (dtorKind)
1739     CGF.DeactivateCleanupBlock(cleanup, index);
1740 }
1741 
1742 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1743   AggValueSlot Dest = EnsureSlot(E->getType());
1744 
1745   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1746   EmitInitializationToLValue(E->getBase(), DestLV);
1747   VisitInitListExpr(E->getUpdater());
1748 }
1749 
1750 //===----------------------------------------------------------------------===//
1751 //                        Entry Points into this File
1752 //===----------------------------------------------------------------------===//
1753 
1754 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1755 /// non-zero bytes that will be stored when outputting the initializer for the
1756 /// specified initializer expression.
1757 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1758   E = E->IgnoreParens();
1759 
1760   // 0 and 0.0 won't require any non-zero stores!
1761   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1762 
1763   // If this is an initlist expr, sum up the size of sizes of the (present)
1764   // elements.  If this is something weird, assume the whole thing is non-zero.
1765   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1766   while (ILE && ILE->isTransparent())
1767     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1768   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1769     return CGF.getContext().getTypeSizeInChars(E->getType());
1770 
1771   // InitListExprs for structs have to be handled carefully.  If there are
1772   // reference members, we need to consider the size of the reference, not the
1773   // referencee.  InitListExprs for unions and arrays can't have references.
1774   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1775     if (!RT->isUnionType()) {
1776       RecordDecl *SD = RT->getDecl();
1777       CharUnits NumNonZeroBytes = CharUnits::Zero();
1778 
1779       unsigned ILEElement = 0;
1780       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1781         while (ILEElement != CXXRD->getNumBases())
1782           NumNonZeroBytes +=
1783               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1784       for (const auto *Field : SD->fields()) {
1785         // We're done once we hit the flexible array member or run out of
1786         // InitListExpr elements.
1787         if (Field->getType()->isIncompleteArrayType() ||
1788             ILEElement == ILE->getNumInits())
1789           break;
1790         if (Field->isUnnamedBitfield())
1791           continue;
1792 
1793         const Expr *E = ILE->getInit(ILEElement++);
1794 
1795         // Reference values are always non-null and have the width of a pointer.
1796         if (Field->getType()->isReferenceType())
1797           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1798               CGF.getTarget().getPointerWidth(0));
1799         else
1800           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1801       }
1802 
1803       return NumNonZeroBytes;
1804     }
1805   }
1806 
1807 
1808   CharUnits NumNonZeroBytes = CharUnits::Zero();
1809   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1810     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1811   return NumNonZeroBytes;
1812 }
1813 
1814 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1815 /// zeros in it, emit a memset and avoid storing the individual zeros.
1816 ///
1817 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1818                                      CodeGenFunction &CGF) {
1819   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1820   // volatile stores.
1821   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1822     return;
1823 
1824   // C++ objects with a user-declared constructor don't need zero'ing.
1825   if (CGF.getLangOpts().CPlusPlus)
1826     if (const RecordType *RT = CGF.getContext()
1827                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1828       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1829       if (RD->hasUserDeclaredConstructor())
1830         return;
1831     }
1832 
1833   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1834   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1835   if (Size <= CharUnits::fromQuantity(16))
1836     return;
1837 
1838   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1839   // we prefer to emit memset + individual stores for the rest.
1840   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1841   if (NumNonZeroBytes*4 > Size)
1842     return;
1843 
1844   // Okay, it seems like a good idea to use an initial memset, emit the call.
1845   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1846 
1847   Address Loc = Slot.getAddress();
1848   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1849   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1850 
1851   // Tell the AggExprEmitter that the slot is known zero.
1852   Slot.setZeroed();
1853 }
1854 
1855 
1856 
1857 
1858 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1859 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1860 /// the value of the aggregate expression is not needed.  If VolatileDest is
1861 /// true, DestPtr cannot be 0.
1862 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1863   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1864          "Invalid aggregate expression to emit");
1865   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1866          "slot has bits but no address");
1867 
1868   // Optimize the slot if possible.
1869   CheckAggExprForMemSetUse(Slot, E, *this);
1870 
1871   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1872 }
1873 
1874 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1875   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1876   Address Temp = CreateMemTemp(E->getType());
1877   LValue LV = MakeAddrLValue(Temp, E->getType());
1878   EmitAggExpr(E, AggValueSlot::forLValue(
1879                      LV, *this, AggValueSlot::IsNotDestructed,
1880                      AggValueSlot::DoesNotNeedGCBarriers,
1881                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
1882   return LV;
1883 }
1884 
1885 AggValueSlot::Overlap_t
1886 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1887   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1888     return AggValueSlot::DoesNotOverlap;
1889 
1890   // If the field lies entirely within the enclosing class's nvsize, its tail
1891   // padding cannot overlap any already-initialized object. (The only subobjects
1892   // with greater addresses that might already be initialized are vbases.)
1893   const RecordDecl *ClassRD = FD->getParent();
1894   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1895   if (Layout.getFieldOffset(FD->getFieldIndex()) +
1896           getContext().getTypeSize(FD->getType()) <=
1897       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1898     return AggValueSlot::DoesNotOverlap;
1899 
1900   // The tail padding may contain values we need to preserve.
1901   return AggValueSlot::MayOverlap;
1902 }
1903 
1904 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1905     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1906   // If the most-derived object is a field declared with [[no_unique_address]],
1907   // the tail padding of any virtual base could be reused for other subobjects
1908   // of that field's class.
1909   if (IsVirtual)
1910     return AggValueSlot::MayOverlap;
1911 
1912   // If the base class is laid out entirely within the nvsize of the derived
1913   // class, its tail padding cannot yet be initialized, so we can issue
1914   // stores at the full width of the base class.
1915   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1916   if (Layout.getBaseClassOffset(BaseRD) +
1917           getContext().getASTRecordLayout(BaseRD).getSize() <=
1918       Layout.getNonVirtualSize())
1919     return AggValueSlot::DoesNotOverlap;
1920 
1921   // The tail padding may contain values we need to preserve.
1922   return AggValueSlot::MayOverlap;
1923 }
1924 
1925 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1926                                         AggValueSlot::Overlap_t MayOverlap,
1927                                         bool isVolatile) {
1928   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1929 
1930   Address DestPtr = Dest.getAddress(*this);
1931   Address SrcPtr = Src.getAddress(*this);
1932 
1933   if (getLangOpts().CPlusPlus) {
1934     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1935       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1936       assert((Record->hasTrivialCopyConstructor() ||
1937               Record->hasTrivialCopyAssignment() ||
1938               Record->hasTrivialMoveConstructor() ||
1939               Record->hasTrivialMoveAssignment() ||
1940               Record->isUnion()) &&
1941              "Trying to aggregate-copy a type without a trivial copy/move "
1942              "constructor or assignment operator");
1943       // Ignore empty classes in C++.
1944       if (Record->isEmpty())
1945         return;
1946     }
1947   }
1948 
1949   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1950   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1951   // read from another object that overlaps in anyway the storage of the first
1952   // object, then the overlap shall be exact and the two objects shall have
1953   // qualified or unqualified versions of a compatible type."
1954   //
1955   // memcpy is not defined if the source and destination pointers are exactly
1956   // equal, but other compilers do this optimization, and almost every memcpy
1957   // implementation handles this case safely.  If there is a libc that does not
1958   // safely handle this, we can add a target hook.
1959 
1960   // Get data size info for this aggregate. Don't copy the tail padding if this
1961   // might be a potentially-overlapping subobject, since the tail padding might
1962   // be occupied by a different object. Otherwise, copying it is fine.
1963   std::pair<CharUnits, CharUnits> TypeInfo;
1964   if (MayOverlap)
1965     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1966   else
1967     TypeInfo = getContext().getTypeInfoInChars(Ty);
1968 
1969   llvm::Value *SizeVal = nullptr;
1970   if (TypeInfo.first.isZero()) {
1971     // But note that getTypeInfo returns 0 for a VLA.
1972     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1973             getContext().getAsArrayType(Ty))) {
1974       QualType BaseEltTy;
1975       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1976       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1977       assert(!TypeInfo.first.isZero());
1978       SizeVal = Builder.CreateNUWMul(
1979           SizeVal,
1980           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1981     }
1982   }
1983   if (!SizeVal) {
1984     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1985   }
1986 
1987   // FIXME: If we have a volatile struct, the optimizer can remove what might
1988   // appear to be `extra' memory ops:
1989   //
1990   // volatile struct { int i; } a, b;
1991   //
1992   // int main() {
1993   //   a = b;
1994   //   a = b;
1995   // }
1996   //
1997   // we need to use a different call here.  We use isVolatile to indicate when
1998   // either the source or the destination is volatile.
1999 
2000   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2001   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2002 
2003   // Don't do any of the memmove_collectable tests if GC isn't set.
2004   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2005     // fall through
2006   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2007     RecordDecl *Record = RecordTy->getDecl();
2008     if (Record->hasObjectMember()) {
2009       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2010                                                     SizeVal);
2011       return;
2012     }
2013   } else if (Ty->isArrayType()) {
2014     QualType BaseType = getContext().getBaseElementType(Ty);
2015     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2016       if (RecordTy->getDecl()->hasObjectMember()) {
2017         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2018                                                       SizeVal);
2019         return;
2020       }
2021     }
2022   }
2023 
2024   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2025 
2026   // Determine the metadata to describe the position of any padding in this
2027   // memcpy, as well as the TBAA tags for the members of the struct, in case
2028   // the optimizer wishes to expand it in to scalar memory operations.
2029   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2030     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2031 
2032   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2033     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2034         Dest.getTBAAInfo(), Src.getTBAAInfo());
2035     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2036   }
2037 }
2038