1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   /// We want to use 'dest' as the return slot except under two
39   /// conditions:
40   ///   - The destination slot requires garbage collection, so we
41   ///     need to use the GC API.
42   ///   - The destination slot is potentially aliased.
43   bool shouldUseDestForReturnSlot() const {
44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45   }
46 
47   ReturnValueSlot getReturnValueSlot() const {
48     if (!shouldUseDestForReturnSlot())
49       return ReturnValueSlot();
50 
51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52   }
53 
54   AggValueSlot EnsureSlot(QualType T) {
55     if (!Dest.isIgnored()) return Dest;
56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
61                  bool ignore)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63       IgnoreResult(ignore) {
64   }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
76   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
77   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
78 
79   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
80 
81   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
82     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
83       return AggValueSlot::NeedsGCBarriers;
84     return AggValueSlot::DoesNotNeedGCBarriers;
85   }
86 
87   bool TypeRequiresGCollection(QualType T);
88 
89   //===--------------------------------------------------------------------===//
90   //                            Visitor Methods
91   //===--------------------------------------------------------------------===//
92 
93   void VisitStmt(Stmt *S) {
94     CGF.ErrorUnsupported(S, "aggregate expression");
95   }
96   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
97   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
98     Visit(GE->getResultExpr());
99   }
100   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
101   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
102     return Visit(E->getReplacement());
103   }
104 
105   // l-values.
106   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
107   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
108   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
109   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
110   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
111   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
112     EmitAggLoadOfLValue(E);
113   }
114   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
115     EmitAggLoadOfLValue(E);
116   }
117   void VisitPredefinedExpr(const PredefinedExpr *E) {
118     EmitAggLoadOfLValue(E);
119   }
120 
121   // Operators.
122   void VisitCastExpr(CastExpr *E);
123   void VisitCallExpr(const CallExpr *E);
124   void VisitStmtExpr(const StmtExpr *E);
125   void VisitBinaryOperator(const BinaryOperator *BO);
126   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
127   void VisitBinAssign(const BinaryOperator *E);
128   void VisitBinComma(const BinaryOperator *E);
129 
130   void VisitObjCMessageExpr(ObjCMessageExpr *E);
131   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
132     EmitAggLoadOfLValue(E);
133   }
134 
135   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
136   void VisitChooseExpr(const ChooseExpr *CE);
137   void VisitInitListExpr(InitListExpr *E);
138   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
139   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
140     Visit(DAE->getExpr());
141   }
142   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
143   void VisitCXXConstructExpr(const CXXConstructExpr *E);
144   void VisitExprWithCleanups(ExprWithCleanups *E);
145   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
146   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
147   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
148   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
149 
150   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
151     if (E->isGLValue()) {
152       LValue LV = CGF.EmitPseudoObjectLValue(E);
153       return EmitFinalDestCopy(E, LV);
154     }
155 
156     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
157   }
158 
159   void VisitVAArgExpr(VAArgExpr *E);
160 
161   void EmitInitializationToLValue(Expr *E, LValue Address);
162   void EmitNullInitializationToLValue(LValue Address);
163   //  case Expr::ChooseExprClass:
164   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
165   void VisitAtomicExpr(AtomicExpr *E) {
166     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
167   }
168 };
169 }  // end anonymous namespace.
170 
171 //===----------------------------------------------------------------------===//
172 //                                Utilities
173 //===----------------------------------------------------------------------===//
174 
175 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
176 /// represents a value lvalue, this method emits the address of the lvalue,
177 /// then loads the result into DestPtr.
178 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
179   LValue LV = CGF.EmitLValue(E);
180   EmitFinalDestCopy(E, LV);
181 }
182 
183 /// \brief True if the given aggregate type requires special GC API calls.
184 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
185   // Only record types have members that might require garbage collection.
186   const RecordType *RecordTy = T->getAs<RecordType>();
187   if (!RecordTy) return false;
188 
189   // Don't mess with non-trivial C++ types.
190   RecordDecl *Record = RecordTy->getDecl();
191   if (isa<CXXRecordDecl>(Record) &&
192       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
193        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
194     return false;
195 
196   // Check whether the type has an object member.
197   return Record->hasObjectMember();
198 }
199 
200 /// \brief Perform the final move to DestPtr if for some reason
201 /// getReturnValueSlot() didn't use it directly.
202 ///
203 /// The idea is that you do something like this:
204 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
205 ///   EmitMoveFromReturnSlot(E, Result);
206 ///
207 /// If nothing interferes, this will cause the result to be emitted
208 /// directly into the return value slot.  Otherwise, a final move
209 /// will be performed.
210 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
211   if (shouldUseDestForReturnSlot()) {
212     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
213     // The possibility of undef rvalues complicates that a lot,
214     // though, so we can't really assert.
215     return;
216   }
217 
218   // Otherwise, do a final copy,
219   assert(Dest.getAddr() != Src.getAggregateAddr());
220   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
221 }
222 
223 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
224 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
225   assert(Src.isAggregate() && "value must be aggregate value!");
226 
227   // If Dest is ignored, then we're evaluating an aggregate expression
228   // in a context (like an expression statement) that doesn't care
229   // about the result.  C says that an lvalue-to-rvalue conversion is
230   // performed in these cases; C++ says that it is not.  In either
231   // case, we don't actually need to do anything unless the value is
232   // volatile.
233   if (Dest.isIgnored()) {
234     if (!Src.isVolatileQualified() ||
235         CGF.CGM.getLangOptions().CPlusPlus ||
236         (IgnoreResult && Ignore))
237       return;
238 
239     // If the source is volatile, we must read from it; to do that, we need
240     // some place to put it.
241     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
242   }
243 
244   if (Dest.requiresGCollection()) {
245     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
246     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
247     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
248     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
249                                                       Dest.getAddr(),
250                                                       Src.getAggregateAddr(),
251                                                       SizeVal);
252     return;
253   }
254   // If the result of the assignment is used, copy the LHS there also.
255   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
256   // from the source as well, as we can't eliminate it if either operand
257   // is volatile, unless copy has volatile for both source and destination..
258   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
259                         Dest.isVolatile()|Src.isVolatileQualified());
260 }
261 
262 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
263 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
264   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
265 
266   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
267                                             Src.isVolatileQualified()),
268                     Ignore);
269 }
270 
271 //===----------------------------------------------------------------------===//
272 //                            Visitor Methods
273 //===----------------------------------------------------------------------===//
274 
275 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
276   Visit(E->GetTemporaryExpr());
277 }
278 
279 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
280   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
281 }
282 
283 void
284 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
285   if (E->getType().isPODType(CGF.getContext())) {
286     // For a POD type, just emit a load of the lvalue + a copy, because our
287     // compound literal might alias the destination.
288     // FIXME: This is a band-aid; the real problem appears to be in our handling
289     // of assignments, where we store directly into the LHS without checking
290     // whether anything in the RHS aliases.
291     EmitAggLoadOfLValue(E);
292     return;
293   }
294 
295   AggValueSlot Slot = EnsureSlot(E->getType());
296   CGF.EmitAggExpr(E->getInitializer(), Slot);
297 }
298 
299 
300 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
301   switch (E->getCastKind()) {
302   case CK_Dynamic: {
303     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
304     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
305     // FIXME: Do we also need to handle property references here?
306     if (LV.isSimple())
307       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
308     else
309       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
310 
311     if (!Dest.isIgnored())
312       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
313     break;
314   }
315 
316   case CK_ToUnion: {
317     if (Dest.isIgnored()) break;
318 
319     // GCC union extension
320     QualType Ty = E->getSubExpr()->getType();
321     QualType PtrTy = CGF.getContext().getPointerType(Ty);
322     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
323                                                  CGF.ConvertType(PtrTy));
324     EmitInitializationToLValue(E->getSubExpr(),
325                                CGF.MakeAddrLValue(CastPtr, Ty));
326     break;
327   }
328 
329   case CK_DerivedToBase:
330   case CK_BaseToDerived:
331   case CK_UncheckedDerivedToBase: {
332     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
333                 "should have been unpacked before we got here");
334   }
335 
336   case CK_LValueToRValue: // hope for downstream optimization
337   case CK_NoOp:
338   case CK_UserDefinedConversion:
339   case CK_ConstructorConversion:
340     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
341                                                    E->getType()) &&
342            "Implicit cast types must be compatible");
343     Visit(E->getSubExpr());
344     break;
345 
346   case CK_LValueBitCast:
347     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
348     break;
349 
350   case CK_Dependent:
351   case CK_BitCast:
352   case CK_ArrayToPointerDecay:
353   case CK_FunctionToPointerDecay:
354   case CK_NullToPointer:
355   case CK_NullToMemberPointer:
356   case CK_BaseToDerivedMemberPointer:
357   case CK_DerivedToBaseMemberPointer:
358   case CK_MemberPointerToBoolean:
359   case CK_IntegralToPointer:
360   case CK_PointerToIntegral:
361   case CK_PointerToBoolean:
362   case CK_ToVoid:
363   case CK_VectorSplat:
364   case CK_IntegralCast:
365   case CK_IntegralToBoolean:
366   case CK_IntegralToFloating:
367   case CK_FloatingToIntegral:
368   case CK_FloatingToBoolean:
369   case CK_FloatingCast:
370   case CK_CPointerToObjCPointerCast:
371   case CK_BlockPointerToObjCPointerCast:
372   case CK_AnyPointerToBlockPointerCast:
373   case CK_ObjCObjectLValueCast:
374   case CK_FloatingRealToComplex:
375   case CK_FloatingComplexToReal:
376   case CK_FloatingComplexToBoolean:
377   case CK_FloatingComplexCast:
378   case CK_FloatingComplexToIntegralComplex:
379   case CK_IntegralRealToComplex:
380   case CK_IntegralComplexToReal:
381   case CK_IntegralComplexToBoolean:
382   case CK_IntegralComplexCast:
383   case CK_IntegralComplexToFloatingComplex:
384   case CK_ARCProduceObject:
385   case CK_ARCConsumeObject:
386   case CK_ARCReclaimReturnedObject:
387   case CK_ARCExtendBlockObject:
388     llvm_unreachable("cast kind invalid for aggregate types");
389   }
390 }
391 
392 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
393   if (E->getCallReturnType()->isReferenceType()) {
394     EmitAggLoadOfLValue(E);
395     return;
396   }
397 
398   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
399   EmitMoveFromReturnSlot(E, RV);
400 }
401 
402 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
403   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
404   EmitMoveFromReturnSlot(E, RV);
405 }
406 
407 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
408   CGF.EmitIgnoredExpr(E->getLHS());
409   Visit(E->getRHS());
410 }
411 
412 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
413   CodeGenFunction::StmtExprEvaluation eval(CGF);
414   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
415 }
416 
417 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
418   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
419     VisitPointerToDataMemberBinaryOperator(E);
420   else
421     CGF.ErrorUnsupported(E, "aggregate binary expression");
422 }
423 
424 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
425                                                     const BinaryOperator *E) {
426   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
427   EmitFinalDestCopy(E, LV);
428 }
429 
430 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
431   // For an assignment to work, the value on the right has
432   // to be compatible with the value on the left.
433   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
434                                                  E->getRHS()->getType())
435          && "Invalid assignment");
436 
437   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
438     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
439       if (VD->hasAttr<BlocksAttr>() &&
440           E->getRHS()->HasSideEffects(CGF.getContext())) {
441         // When __block variable on LHS, the RHS must be evaluated first
442         // as it may change the 'forwarding' field via call to Block_copy.
443         LValue RHS = CGF.EmitLValue(E->getRHS());
444         LValue LHS = CGF.EmitLValue(E->getLHS());
445         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
446                                        needsGC(E->getLHS()->getType()),
447                                        AggValueSlot::IsAliased);
448         EmitFinalDestCopy(E, RHS, true);
449         return;
450       }
451 
452   LValue LHS = CGF.EmitLValue(E->getLHS());
453 
454   // Codegen the RHS so that it stores directly into the LHS.
455   AggValueSlot LHSSlot =
456     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
457                             needsGC(E->getLHS()->getType()),
458                             AggValueSlot::IsAliased);
459   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
460   EmitFinalDestCopy(E, LHS, true);
461 }
462 
463 void AggExprEmitter::
464 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
465   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
466   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
467   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
468 
469   // Bind the common expression if necessary.
470   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
471 
472   CodeGenFunction::ConditionalEvaluation eval(CGF);
473   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
474 
475   // Save whether the destination's lifetime is externally managed.
476   bool isExternallyDestructed = Dest.isExternallyDestructed();
477 
478   eval.begin(CGF);
479   CGF.EmitBlock(LHSBlock);
480   Visit(E->getTrueExpr());
481   eval.end(CGF);
482 
483   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
484   CGF.Builder.CreateBr(ContBlock);
485 
486   // If the result of an agg expression is unused, then the emission
487   // of the LHS might need to create a destination slot.  That's fine
488   // with us, and we can safely emit the RHS into the same slot, but
489   // we shouldn't claim that it's already being destructed.
490   Dest.setExternallyDestructed(isExternallyDestructed);
491 
492   eval.begin(CGF);
493   CGF.EmitBlock(RHSBlock);
494   Visit(E->getFalseExpr());
495   eval.end(CGF);
496 
497   CGF.EmitBlock(ContBlock);
498 }
499 
500 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
501   Visit(CE->getChosenSubExpr(CGF.getContext()));
502 }
503 
504 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
505   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
506   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
507 
508   if (!ArgPtr) {
509     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
510     return;
511   }
512 
513   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
514 }
515 
516 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
517   // Ensure that we have a slot, but if we already do, remember
518   // whether it was externally destructed.
519   bool wasExternallyDestructed = Dest.isExternallyDestructed();
520   Dest = EnsureSlot(E->getType());
521 
522   // We're going to push a destructor if there isn't already one.
523   Dest.setExternallyDestructed();
524 
525   Visit(E->getSubExpr());
526 
527   // Push that destructor we promised.
528   if (!wasExternallyDestructed)
529     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
530 }
531 
532 void
533 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
534   AggValueSlot Slot = EnsureSlot(E->getType());
535   CGF.EmitCXXConstructExpr(E, Slot);
536 }
537 
538 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
539   CGF.enterFullExpression(E);
540   CodeGenFunction::RunCleanupsScope cleanups(CGF);
541   Visit(E->getSubExpr());
542 }
543 
544 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
545   QualType T = E->getType();
546   AggValueSlot Slot = EnsureSlot(T);
547   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
548 }
549 
550 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
551   QualType T = E->getType();
552   AggValueSlot Slot = EnsureSlot(T);
553   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
554 }
555 
556 /// isSimpleZero - If emitting this value will obviously just cause a store of
557 /// zero to memory, return true.  This can return false if uncertain, so it just
558 /// handles simple cases.
559 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
560   E = E->IgnoreParens();
561 
562   // 0
563   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
564     return IL->getValue() == 0;
565   // +0.0
566   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
567     return FL->getValue().isPosZero();
568   // int()
569   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
570       CGF.getTypes().isZeroInitializable(E->getType()))
571     return true;
572   // (int*)0 - Null pointer expressions.
573   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
574     return ICE->getCastKind() == CK_NullToPointer;
575   // '\0'
576   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
577     return CL->getValue() == 0;
578 
579   // Otherwise, hard case: conservatively return false.
580   return false;
581 }
582 
583 
584 void
585 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
586   QualType type = LV.getType();
587   // FIXME: Ignore result?
588   // FIXME: Are initializers affected by volatile?
589   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
590     // Storing "i32 0" to a zero'd memory location is a noop.
591   } else if (isa<ImplicitValueInitExpr>(E)) {
592     EmitNullInitializationToLValue(LV);
593   } else if (type->isReferenceType()) {
594     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
595     CGF.EmitStoreThroughLValue(RV, LV);
596   } else if (type->isAnyComplexType()) {
597     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
598   } else if (CGF.hasAggregateLLVMType(type)) {
599     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
600                                                AggValueSlot::IsDestructed,
601                                       AggValueSlot::DoesNotNeedGCBarriers,
602                                                AggValueSlot::IsNotAliased,
603                                                Dest.isZeroed()));
604   } else if (LV.isSimple()) {
605     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
606   } else {
607     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
608   }
609 }
610 
611 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
612   QualType type = lv.getType();
613 
614   // If the destination slot is already zeroed out before the aggregate is
615   // copied into it, we don't have to emit any zeros here.
616   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
617     return;
618 
619   if (!CGF.hasAggregateLLVMType(type)) {
620     // For non-aggregates, we can store zero
621     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
622     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
623   } else {
624     // There's a potential optimization opportunity in combining
625     // memsets; that would be easy for arrays, but relatively
626     // difficult for structures with the current code.
627     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
628   }
629 }
630 
631 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
632 #if 0
633   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
634   // (Length of globals? Chunks of zeroed-out space?).
635   //
636   // If we can, prefer a copy from a global; this is a lot less code for long
637   // globals, and it's easier for the current optimizers to analyze.
638   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
639     llvm::GlobalVariable* GV =
640     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
641                              llvm::GlobalValue::InternalLinkage, C, "");
642     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
643     return;
644   }
645 #endif
646   if (E->hadArrayRangeDesignator())
647     CGF.ErrorUnsupported(E, "GNU array range designator extension");
648 
649   llvm::Value *DestPtr = Dest.getAddr();
650 
651   // Handle initialization of an array.
652   if (E->getType()->isArrayType()) {
653     llvm::PointerType *APType =
654       cast<llvm::PointerType>(DestPtr->getType());
655     llvm::ArrayType *AType =
656       cast<llvm::ArrayType>(APType->getElementType());
657 
658     uint64_t NumInitElements = E->getNumInits();
659 
660     if (E->getNumInits() > 0) {
661       QualType T1 = E->getType();
662       QualType T2 = E->getInit(0)->getType();
663       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
664         EmitAggLoadOfLValue(E->getInit(0));
665         return;
666       }
667     }
668 
669     uint64_t NumArrayElements = AType->getNumElements();
670     assert(NumInitElements <= NumArrayElements);
671 
672     QualType elementType = E->getType().getCanonicalType();
673     elementType = CGF.getContext().getQualifiedType(
674                     cast<ArrayType>(elementType)->getElementType(),
675                     elementType.getQualifiers() + Dest.getQualifiers());
676 
677     // DestPtr is an array*.  Construct an elementType* by drilling
678     // down a level.
679     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
680     llvm::Value *indices[] = { zero, zero };
681     llvm::Value *begin =
682       Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
683 
684     // Exception safety requires us to destroy all the
685     // already-constructed members if an initializer throws.
686     // For that, we'll need an EH cleanup.
687     QualType::DestructionKind dtorKind = elementType.isDestructedType();
688     llvm::AllocaInst *endOfInit = 0;
689     EHScopeStack::stable_iterator cleanup;
690     llvm::Instruction *cleanupDominator = 0;
691     if (CGF.needsEHCleanup(dtorKind)) {
692       // In principle we could tell the cleanup where we are more
693       // directly, but the control flow can get so varied here that it
694       // would actually be quite complex.  Therefore we go through an
695       // alloca.
696       endOfInit = CGF.CreateTempAlloca(begin->getType(),
697                                        "arrayinit.endOfInit");
698       cleanupDominator = Builder.CreateStore(begin, endOfInit);
699       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
700                                            CGF.getDestroyer(dtorKind));
701       cleanup = CGF.EHStack.stable_begin();
702 
703     // Otherwise, remember that we didn't need a cleanup.
704     } else {
705       dtorKind = QualType::DK_none;
706     }
707 
708     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
709 
710     // The 'current element to initialize'.  The invariants on this
711     // variable are complicated.  Essentially, after each iteration of
712     // the loop, it points to the last initialized element, except
713     // that it points to the beginning of the array before any
714     // elements have been initialized.
715     llvm::Value *element = begin;
716 
717     // Emit the explicit initializers.
718     for (uint64_t i = 0; i != NumInitElements; ++i) {
719       // Advance to the next element.
720       if (i > 0) {
721         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
722 
723         // Tell the cleanup that it needs to destroy up to this
724         // element.  TODO: some of these stores can be trivially
725         // observed to be unnecessary.
726         if (endOfInit) Builder.CreateStore(element, endOfInit);
727       }
728 
729       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
730       EmitInitializationToLValue(E->getInit(i), elementLV);
731     }
732 
733     // Check whether there's a non-trivial array-fill expression.
734     // Note that this will be a CXXConstructExpr even if the element
735     // type is an array (or array of array, etc.) of class type.
736     Expr *filler = E->getArrayFiller();
737     bool hasTrivialFiller = true;
738     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
739       assert(cons->getConstructor()->isDefaultConstructor());
740       hasTrivialFiller = cons->getConstructor()->isTrivial();
741     }
742 
743     // Any remaining elements need to be zero-initialized, possibly
744     // using the filler expression.  We can skip this if the we're
745     // emitting to zeroed memory.
746     if (NumInitElements != NumArrayElements &&
747         !(Dest.isZeroed() && hasTrivialFiller &&
748           CGF.getTypes().isZeroInitializable(elementType))) {
749 
750       // Use an actual loop.  This is basically
751       //   do { *array++ = filler; } while (array != end);
752 
753       // Advance to the start of the rest of the array.
754       if (NumInitElements) {
755         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
756         if (endOfInit) Builder.CreateStore(element, endOfInit);
757       }
758 
759       // Compute the end of the array.
760       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
761                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
762                                                    "arrayinit.end");
763 
764       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
765       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
766 
767       // Jump into the body.
768       CGF.EmitBlock(bodyBB);
769       llvm::PHINode *currentElement =
770         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
771       currentElement->addIncoming(element, entryBB);
772 
773       // Emit the actual filler expression.
774       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
775       if (filler)
776         EmitInitializationToLValue(filler, elementLV);
777       else
778         EmitNullInitializationToLValue(elementLV);
779 
780       // Move on to the next element.
781       llvm::Value *nextElement =
782         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
783 
784       // Tell the EH cleanup that we finished with the last element.
785       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
786 
787       // Leave the loop if we're done.
788       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
789                                                "arrayinit.done");
790       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
791       Builder.CreateCondBr(done, endBB, bodyBB);
792       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
793 
794       CGF.EmitBlock(endBB);
795     }
796 
797     // Leave the partial-array cleanup if we entered one.
798     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
799 
800     return;
801   }
802 
803   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
804 
805   // Do struct initialization; this code just sets each individual member
806   // to the approprate value.  This makes bitfield support automatic;
807   // the disadvantage is that the generated code is more difficult for
808   // the optimizer, especially with bitfields.
809   unsigned NumInitElements = E->getNumInits();
810   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
811 
812   if (record->isUnion()) {
813     // Only initialize one field of a union. The field itself is
814     // specified by the initializer list.
815     if (!E->getInitializedFieldInUnion()) {
816       // Empty union; we have nothing to do.
817 
818 #ifndef NDEBUG
819       // Make sure that it's really an empty and not a failure of
820       // semantic analysis.
821       for (RecordDecl::field_iterator Field = record->field_begin(),
822                                    FieldEnd = record->field_end();
823            Field != FieldEnd; ++Field)
824         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
825 #endif
826       return;
827     }
828 
829     // FIXME: volatility
830     FieldDecl *Field = E->getInitializedFieldInUnion();
831 
832     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
833     if (NumInitElements) {
834       // Store the initializer into the field
835       EmitInitializationToLValue(E->getInit(0), FieldLoc);
836     } else {
837       // Default-initialize to null.
838       EmitNullInitializationToLValue(FieldLoc);
839     }
840 
841     return;
842   }
843 
844   // We'll need to enter cleanup scopes in case any of the member
845   // initializers throw an exception.
846   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
847   llvm::Instruction *cleanupDominator = 0;
848 
849   // Here we iterate over the fields; this makes it simpler to both
850   // default-initialize fields and skip over unnamed fields.
851   unsigned curInitIndex = 0;
852   for (RecordDecl::field_iterator field = record->field_begin(),
853                                fieldEnd = record->field_end();
854        field != fieldEnd; ++field) {
855     // We're done once we hit the flexible array member.
856     if (field->getType()->isIncompleteArrayType())
857       break;
858 
859     // Always skip anonymous bitfields.
860     if (field->isUnnamedBitfield())
861       continue;
862 
863     // We're done if we reach the end of the explicit initializers, we
864     // have a zeroed object, and the rest of the fields are
865     // zero-initializable.
866     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
867         CGF.getTypes().isZeroInitializable(E->getType()))
868       break;
869 
870     // FIXME: volatility
871     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
872     // We never generate write-barries for initialized fields.
873     LV.setNonGC(true);
874 
875     if (curInitIndex < NumInitElements) {
876       // Store the initializer into the field.
877       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
878     } else {
879       // We're out of initalizers; default-initialize to null
880       EmitNullInitializationToLValue(LV);
881     }
882 
883     // Push a destructor if necessary.
884     // FIXME: if we have an array of structures, all explicitly
885     // initialized, we can end up pushing a linear number of cleanups.
886     bool pushedCleanup = false;
887     if (QualType::DestructionKind dtorKind
888           = field->getType().isDestructedType()) {
889       assert(LV.isSimple());
890       if (CGF.needsEHCleanup(dtorKind)) {
891         if (!cleanupDominator)
892           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
893 
894         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
895                         CGF.getDestroyer(dtorKind), false);
896         cleanups.push_back(CGF.EHStack.stable_begin());
897         pushedCleanup = true;
898       }
899     }
900 
901     // If the GEP didn't get used because of a dead zero init or something
902     // else, clean it up for -O0 builds and general tidiness.
903     if (!pushedCleanup && LV.isSimple())
904       if (llvm::GetElementPtrInst *GEP =
905             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
906         if (GEP->use_empty())
907           GEP->eraseFromParent();
908   }
909 
910   // Deactivate all the partial cleanups in reverse order, which
911   // generally means popping them.
912   for (unsigned i = cleanups.size(); i != 0; --i)
913     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
914 
915   // Destroy the placeholder if we made one.
916   if (cleanupDominator)
917     cleanupDominator->eraseFromParent();
918 }
919 
920 //===----------------------------------------------------------------------===//
921 //                        Entry Points into this File
922 //===----------------------------------------------------------------------===//
923 
924 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
925 /// non-zero bytes that will be stored when outputting the initializer for the
926 /// specified initializer expression.
927 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
928   E = E->IgnoreParens();
929 
930   // 0 and 0.0 won't require any non-zero stores!
931   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
932 
933   // If this is an initlist expr, sum up the size of sizes of the (present)
934   // elements.  If this is something weird, assume the whole thing is non-zero.
935   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
936   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
937     return CGF.getContext().getTypeSizeInChars(E->getType());
938 
939   // InitListExprs for structs have to be handled carefully.  If there are
940   // reference members, we need to consider the size of the reference, not the
941   // referencee.  InitListExprs for unions and arrays can't have references.
942   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
943     if (!RT->isUnionType()) {
944       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
945       CharUnits NumNonZeroBytes = CharUnits::Zero();
946 
947       unsigned ILEElement = 0;
948       for (RecordDecl::field_iterator Field = SD->field_begin(),
949            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
950         // We're done once we hit the flexible array member or run out of
951         // InitListExpr elements.
952         if (Field->getType()->isIncompleteArrayType() ||
953             ILEElement == ILE->getNumInits())
954           break;
955         if (Field->isUnnamedBitfield())
956           continue;
957 
958         const Expr *E = ILE->getInit(ILEElement++);
959 
960         // Reference values are always non-null and have the width of a pointer.
961         if (Field->getType()->isReferenceType())
962           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
963               CGF.getContext().getTargetInfo().getPointerWidth(0));
964         else
965           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
966       }
967 
968       return NumNonZeroBytes;
969     }
970   }
971 
972 
973   CharUnits NumNonZeroBytes = CharUnits::Zero();
974   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
975     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
976   return NumNonZeroBytes;
977 }
978 
979 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
980 /// zeros in it, emit a memset and avoid storing the individual zeros.
981 ///
982 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
983                                      CodeGenFunction &CGF) {
984   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
985   // volatile stores.
986   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
987 
988   // C++ objects with a user-declared constructor don't need zero'ing.
989   if (CGF.getContext().getLangOptions().CPlusPlus)
990     if (const RecordType *RT = CGF.getContext()
991                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
992       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
993       if (RD->hasUserDeclaredConstructor())
994         return;
995     }
996 
997   // If the type is 16-bytes or smaller, prefer individual stores over memset.
998   std::pair<CharUnits, CharUnits> TypeInfo =
999     CGF.getContext().getTypeInfoInChars(E->getType());
1000   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1001     return;
1002 
1003   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1004   // we prefer to emit memset + individual stores for the rest.
1005   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1006   if (NumNonZeroBytes*4 > TypeInfo.first)
1007     return;
1008 
1009   // Okay, it seems like a good idea to use an initial memset, emit the call.
1010   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1011   CharUnits Align = TypeInfo.second;
1012 
1013   llvm::Value *Loc = Slot.getAddr();
1014   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1015 
1016   Loc = CGF.Builder.CreateBitCast(Loc, BP);
1017   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1018                            Align.getQuantity(), false);
1019 
1020   // Tell the AggExprEmitter that the slot is known zero.
1021   Slot.setZeroed();
1022 }
1023 
1024 
1025 
1026 
1027 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1028 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1029 /// the value of the aggregate expression is not needed.  If VolatileDest is
1030 /// true, DestPtr cannot be 0.
1031 ///
1032 /// \param IsInitializer - true if this evaluation is initializing an
1033 /// object whose lifetime is already being managed.
1034 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1035                                   bool IgnoreResult) {
1036   assert(E && hasAggregateLLVMType(E->getType()) &&
1037          "Invalid aggregate expression to emit");
1038   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1039          "slot has bits but no address");
1040 
1041   // Optimize the slot if possible.
1042   CheckAggExprForMemSetUse(Slot, E, *this);
1043 
1044   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1045 }
1046 
1047 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1048   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1049   llvm::Value *Temp = CreateMemTemp(E->getType());
1050   LValue LV = MakeAddrLValue(Temp, E->getType());
1051   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1052                                          AggValueSlot::DoesNotNeedGCBarriers,
1053                                          AggValueSlot::IsNotAliased));
1054   return LV;
1055 }
1056 
1057 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1058                                         llvm::Value *SrcPtr, QualType Ty,
1059                                         bool isVolatile) {
1060   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1061 
1062   if (getContext().getLangOptions().CPlusPlus) {
1063     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1064       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1065       assert((Record->hasTrivialCopyConstructor() ||
1066               Record->hasTrivialCopyAssignment() ||
1067               Record->hasTrivialMoveConstructor() ||
1068               Record->hasTrivialMoveAssignment()) &&
1069              "Trying to aggregate-copy a type without a trivial copy "
1070              "constructor or assignment operator");
1071       // Ignore empty classes in C++.
1072       if (Record->isEmpty())
1073         return;
1074     }
1075   }
1076 
1077   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1078   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1079   // read from another object that overlaps in anyway the storage of the first
1080   // object, then the overlap shall be exact and the two objects shall have
1081   // qualified or unqualified versions of a compatible type."
1082   //
1083   // memcpy is not defined if the source and destination pointers are exactly
1084   // equal, but other compilers do this optimization, and almost every memcpy
1085   // implementation handles this case safely.  If there is a libc that does not
1086   // safely handle this, we can add a target hook.
1087 
1088   // Get size and alignment info for this aggregate.
1089   std::pair<CharUnits, CharUnits> TypeInfo =
1090     getContext().getTypeInfoInChars(Ty);
1091 
1092   // FIXME: Handle variable sized types.
1093 
1094   // FIXME: If we have a volatile struct, the optimizer can remove what might
1095   // appear to be `extra' memory ops:
1096   //
1097   // volatile struct { int i; } a, b;
1098   //
1099   // int main() {
1100   //   a = b;
1101   //   a = b;
1102   // }
1103   //
1104   // we need to use a different call here.  We use isVolatile to indicate when
1105   // either the source or the destination is volatile.
1106 
1107   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1108   llvm::Type *DBP =
1109     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1110   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1111 
1112   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1113   llvm::Type *SBP =
1114     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1115   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1116 
1117   // Don't do any of the memmove_collectable tests if GC isn't set.
1118   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1119     // fall through
1120   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1121     RecordDecl *Record = RecordTy->getDecl();
1122     if (Record->hasObjectMember()) {
1123       CharUnits size = TypeInfo.first;
1124       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1125       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1126       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1127                                                     SizeVal);
1128       return;
1129     }
1130   } else if (Ty->isArrayType()) {
1131     QualType BaseType = getContext().getBaseElementType(Ty);
1132     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1133       if (RecordTy->getDecl()->hasObjectMember()) {
1134         CharUnits size = TypeInfo.first;
1135         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1136         llvm::Value *SizeVal =
1137           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1138         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1139                                                       SizeVal);
1140         return;
1141       }
1142     }
1143   }
1144 
1145   Builder.CreateMemCpy(DestPtr, SrcPtr,
1146                        llvm::ConstantInt::get(IntPtrTy,
1147                                               TypeInfo.first.getQuantity()),
1148                        TypeInfo.second.getQuantity(), isVolatile);
1149 }
1150