1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 119 void VisitConditionalOperator(const ConditionalOperator *CO); 120 void VisitChooseExpr(const ChooseExpr *CE); 121 void VisitInitListExpr(InitListExpr *E); 122 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 123 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 124 Visit(DAE->getExpr()); 125 } 126 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 127 void VisitCXXConstructExpr(const CXXConstructExpr *E); 128 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 129 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 130 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 131 132 void VisitVAArgExpr(VAArgExpr *E); 133 134 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 135 void EmitNullInitializationToLValue(LValue Address, QualType T); 136 // case Expr::ChooseExprClass: 137 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 138 }; 139 } // end anonymous namespace. 140 141 //===----------------------------------------------------------------------===// 142 // Utilities 143 //===----------------------------------------------------------------------===// 144 145 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 146 /// represents a value lvalue, this method emits the address of the lvalue, 147 /// then loads the result into DestPtr. 148 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 149 LValue LV = CGF.EmitLValue(E); 150 EmitFinalDestCopy(E, LV); 151 } 152 153 /// \brief True if the given aggregate type requires special GC API calls. 154 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 155 // Only record types have members that might require garbage collection. 156 const RecordType *RecordTy = T->getAs<RecordType>(); 157 if (!RecordTy) return false; 158 159 // Don't mess with non-trivial C++ types. 160 RecordDecl *Record = RecordTy->getDecl(); 161 if (isa<CXXRecordDecl>(Record) && 162 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 163 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 164 return false; 165 166 // Check whether the type has an object member. 167 return Record->hasObjectMember(); 168 } 169 170 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 171 /// 172 /// The idea is that you do something like this: 173 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 174 /// EmitGCMove(E, Result); 175 /// If GC doesn't interfere, this will cause the result to be emitted 176 /// directly into the return value slot. If GC does interfere, a final 177 /// move will be performed. 178 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 179 if (Dest.requiresGCollection()) { 180 std::pair<uint64_t, unsigned> TypeInfo = 181 CGF.getContext().getTypeInfo(E->getType()); 182 unsigned long size = TypeInfo.first/8; 183 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 184 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 185 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 186 Src.getAggregateAddr(), 187 SizeVal); 188 } 189 } 190 191 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 192 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 193 assert(Src.isAggregate() && "value must be aggregate value!"); 194 195 // If Dest is ignored, then we're evaluating an aggregate expression 196 // in a context (like an expression statement) that doesn't care 197 // about the result. C says that an lvalue-to-rvalue conversion is 198 // performed in these cases; C++ says that it is not. In either 199 // case, we don't actually need to do anything unless the value is 200 // volatile. 201 if (Dest.isIgnored()) { 202 if (!Src.isVolatileQualified() || 203 CGF.CGM.getLangOptions().CPlusPlus || 204 (IgnoreResult && Ignore)) 205 return; 206 207 // If the source is volatile, we must read from it; to do that, we need 208 // some place to put it. 209 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 210 } 211 212 if (Dest.requiresGCollection()) { 213 std::pair<uint64_t, unsigned> TypeInfo = 214 CGF.getContext().getTypeInfo(E->getType()); 215 unsigned long size = TypeInfo.first/8; 216 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 217 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 218 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 219 Dest.getAddr(), 220 Src.getAggregateAddr(), 221 SizeVal); 222 return; 223 } 224 // If the result of the assignment is used, copy the LHS there also. 225 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 226 // from the source as well, as we can't eliminate it if either operand 227 // is volatile, unless copy has volatile for both source and destination.. 228 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 229 Dest.isVolatile()|Src.isVolatileQualified()); 230 } 231 232 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 233 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 234 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 235 236 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 237 Src.isVolatileQualified()), 238 Ignore); 239 } 240 241 //===----------------------------------------------------------------------===// 242 // Visitor Methods 243 //===----------------------------------------------------------------------===// 244 245 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 246 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 247 Visit(E->getSubExpr()); 248 return; 249 } 250 251 switch (E->getCastKind()) { 252 case CK_Dynamic: { 253 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 254 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 255 // FIXME: Do we also need to handle property references here? 256 if (LV.isSimple()) 257 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 258 else 259 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 260 261 if (!Dest.isIgnored()) 262 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 263 break; 264 } 265 266 case CK_ToUnion: { 267 // GCC union extension 268 QualType Ty = E->getSubExpr()->getType(); 269 QualType PtrTy = CGF.getContext().getPointerType(Ty); 270 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 271 CGF.ConvertType(PtrTy)); 272 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 273 Ty); 274 break; 275 } 276 277 case CK_DerivedToBase: 278 case CK_BaseToDerived: 279 case CK_UncheckedDerivedToBase: { 280 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 281 "should have been unpacked before we got here"); 282 break; 283 } 284 285 case CK_NoOp: 286 case CK_LValueToRValue: 287 case CK_UserDefinedConversion: 288 case CK_ConstructorConversion: 289 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 290 E->getType()) && 291 "Implicit cast types must be compatible"); 292 Visit(E->getSubExpr()); 293 break; 294 295 case CK_LValueBitCast: 296 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 297 break; 298 299 case CK_Dependent: 300 case CK_BitCast: 301 case CK_ArrayToPointerDecay: 302 case CK_FunctionToPointerDecay: 303 case CK_NullToPointer: 304 case CK_NullToMemberPointer: 305 case CK_BaseToDerivedMemberPointer: 306 case CK_DerivedToBaseMemberPointer: 307 case CK_MemberPointerToBoolean: 308 case CK_IntegralToPointer: 309 case CK_PointerToIntegral: 310 case CK_PointerToBoolean: 311 case CK_ToVoid: 312 case CK_VectorSplat: 313 case CK_IntegralCast: 314 case CK_IntegralToBoolean: 315 case CK_IntegralToFloating: 316 case CK_FloatingToIntegral: 317 case CK_FloatingToBoolean: 318 case CK_FloatingCast: 319 case CK_AnyPointerToObjCPointerCast: 320 case CK_AnyPointerToBlockPointerCast: 321 case CK_ObjCObjectLValueCast: 322 case CK_FloatingRealToComplex: 323 case CK_FloatingComplexToReal: 324 case CK_FloatingComplexToBoolean: 325 case CK_FloatingComplexCast: 326 case CK_FloatingComplexToIntegralComplex: 327 case CK_IntegralRealToComplex: 328 case CK_IntegralComplexToReal: 329 case CK_IntegralComplexToBoolean: 330 case CK_IntegralComplexCast: 331 case CK_IntegralComplexToFloatingComplex: 332 llvm_unreachable("cast kind invalid for aggregate types"); 333 } 334 } 335 336 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 337 if (E->getCallReturnType()->isReferenceType()) { 338 EmitAggLoadOfLValue(E); 339 return; 340 } 341 342 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 343 EmitGCMove(E, RV); 344 } 345 346 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 347 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 348 EmitGCMove(E, RV); 349 } 350 351 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 352 RValue RV = CGF.EmitLoadOfPropertyRefLValue(CGF.EmitObjCPropertyRefLValue(E), 353 getReturnValueSlot()); 354 EmitGCMove(E, RV); 355 } 356 357 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 358 CGF.EmitAnyExpr(E->getLHS(), AggValueSlot::ignored(), true); 359 Visit(E->getRHS()); 360 } 361 362 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 363 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 364 } 365 366 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 367 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 368 VisitPointerToDataMemberBinaryOperator(E); 369 else 370 CGF.ErrorUnsupported(E, "aggregate binary expression"); 371 } 372 373 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 374 const BinaryOperator *E) { 375 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 376 EmitFinalDestCopy(E, LV); 377 } 378 379 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 380 // For an assignment to work, the value on the right has 381 // to be compatible with the value on the left. 382 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 383 E->getRHS()->getType()) 384 && "Invalid assignment"); 385 LValue LHS = CGF.EmitLValue(E->getLHS()); 386 387 // We have to special case property setters, otherwise we must have 388 // a simple lvalue (no aggregates inside vectors, bitfields). 389 if (LHS.isPropertyRef()) { 390 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 391 CGF.EmitAggExpr(E->getRHS(), Slot); 392 CGF.EmitStoreThroughPropertyRefLValue(Slot.asRValue(), LHS); 393 } else { 394 bool GCollection = false; 395 if (CGF.getContext().getLangOptions().getGCMode()) 396 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 397 398 // Codegen the RHS so that it stores directly into the LHS. 399 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 400 GCollection); 401 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 402 EmitFinalDestCopy(E, LHS, true); 403 } 404 } 405 406 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 407 if (!E->getLHS()) { 408 CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); 409 return; 410 } 411 412 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 413 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 414 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 415 416 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 417 418 CGF.BeginConditionalBranch(); 419 CGF.EmitBlock(LHSBlock); 420 421 // Save whether the destination's lifetime is externally managed. 422 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 423 424 Visit(E->getLHS()); 425 CGF.EndConditionalBranch(); 426 CGF.EmitBranch(ContBlock); 427 428 CGF.BeginConditionalBranch(); 429 CGF.EmitBlock(RHSBlock); 430 431 // If the result of an agg expression is unused, then the emission 432 // of the LHS might need to create a destination slot. That's fine 433 // with us, and we can safely emit the RHS into the same slot, but 434 // we shouldn't claim that its lifetime is externally managed. 435 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 436 437 Visit(E->getRHS()); 438 CGF.EndConditionalBranch(); 439 CGF.EmitBranch(ContBlock); 440 441 CGF.EmitBlock(ContBlock); 442 } 443 444 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 445 Visit(CE->getChosenSubExpr(CGF.getContext())); 446 } 447 448 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 449 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 450 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 451 452 if (!ArgPtr) { 453 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 454 return; 455 } 456 457 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 458 } 459 460 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 461 // Ensure that we have a slot, but if we already do, remember 462 // whether its lifetime was externally managed. 463 bool WasManaged = Dest.isLifetimeExternallyManaged(); 464 Dest = EnsureSlot(E->getType()); 465 Dest.setLifetimeExternallyManaged(); 466 467 Visit(E->getSubExpr()); 468 469 // Set up the temporary's destructor if its lifetime wasn't already 470 // being managed. 471 if (!WasManaged) 472 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 473 } 474 475 void 476 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 477 AggValueSlot Slot = EnsureSlot(E->getType()); 478 CGF.EmitCXXConstructExpr(E, Slot); 479 } 480 481 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 482 CGF.EmitCXXExprWithTemporaries(E, Dest); 483 } 484 485 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 486 QualType T = E->getType(); 487 AggValueSlot Slot = EnsureSlot(T); 488 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 489 } 490 491 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 492 QualType T = E->getType(); 493 AggValueSlot Slot = EnsureSlot(T); 494 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 495 } 496 497 /// isSimpleZero - If emitting this value will obviously just cause a store of 498 /// zero to memory, return true. This can return false if uncertain, so it just 499 /// handles simple cases. 500 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 501 // (0) 502 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 503 return isSimpleZero(PE->getSubExpr(), CGF); 504 // 0 505 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 506 return IL->getValue() == 0; 507 // +0.0 508 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 509 return FL->getValue().isPosZero(); 510 // int() 511 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 512 CGF.getTypes().isZeroInitializable(E->getType())) 513 return true; 514 // (int*)0 - Null pointer expressions. 515 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 516 return ICE->getCastKind() == CK_NullToPointer; 517 // '\0' 518 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 519 return CL->getValue() == 0; 520 521 // Otherwise, hard case: conservatively return false. 522 return false; 523 } 524 525 526 void 527 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 528 // FIXME: Ignore result? 529 // FIXME: Are initializers affected by volatile? 530 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 531 // Storing "i32 0" to a zero'd memory location is a noop. 532 } else if (isa<ImplicitValueInitExpr>(E)) { 533 EmitNullInitializationToLValue(LV, T); 534 } else if (T->isReferenceType()) { 535 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 536 CGF.EmitStoreThroughLValue(RV, LV, T); 537 } else if (T->isAnyComplexType()) { 538 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 539 } else if (CGF.hasAggregateLLVMType(T)) { 540 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true, 541 false, Dest.isZeroed())); 542 } else { 543 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T); 544 } 545 } 546 547 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 548 // If the destination slot is already zeroed out before the aggregate is 549 // copied into it, we don't have to emit any zeros here. 550 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T)) 551 return; 552 553 if (!CGF.hasAggregateLLVMType(T)) { 554 // For non-aggregates, we can store zero 555 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 556 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 557 } else { 558 // There's a potential optimization opportunity in combining 559 // memsets; that would be easy for arrays, but relatively 560 // difficult for structures with the current code. 561 CGF.EmitNullInitialization(LV.getAddress(), T); 562 } 563 } 564 565 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 566 #if 0 567 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 568 // (Length of globals? Chunks of zeroed-out space?). 569 // 570 // If we can, prefer a copy from a global; this is a lot less code for long 571 // globals, and it's easier for the current optimizers to analyze. 572 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 573 llvm::GlobalVariable* GV = 574 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 575 llvm::GlobalValue::InternalLinkage, C, ""); 576 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 577 return; 578 } 579 #endif 580 if (E->hadArrayRangeDesignator()) 581 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 582 583 llvm::Value *DestPtr = Dest.getAddr(); 584 585 // Handle initialization of an array. 586 if (E->getType()->isArrayType()) { 587 const llvm::PointerType *APType = 588 cast<llvm::PointerType>(DestPtr->getType()); 589 const llvm::ArrayType *AType = 590 cast<llvm::ArrayType>(APType->getElementType()); 591 592 uint64_t NumInitElements = E->getNumInits(); 593 594 if (E->getNumInits() > 0) { 595 QualType T1 = E->getType(); 596 QualType T2 = E->getInit(0)->getType(); 597 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 598 EmitAggLoadOfLValue(E->getInit(0)); 599 return; 600 } 601 } 602 603 uint64_t NumArrayElements = AType->getNumElements(); 604 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 605 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 606 607 // FIXME: were we intentionally ignoring address spaces and GC attributes? 608 609 for (uint64_t i = 0; i != NumArrayElements; ++i) { 610 // If we're done emitting initializers and the destination is known-zeroed 611 // then we're done. 612 if (i == NumInitElements && 613 Dest.isZeroed() && 614 CGF.getTypes().isZeroInitializable(ElementType)) 615 break; 616 617 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 618 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 619 620 if (i < NumInitElements) 621 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 622 else 623 EmitNullInitializationToLValue(LV, ElementType); 624 625 // If the GEP didn't get used because of a dead zero init or something 626 // else, clean it up for -O0 builds and general tidiness. 627 if (llvm::GetElementPtrInst *GEP = 628 dyn_cast<llvm::GetElementPtrInst>(NextVal)) 629 if (GEP->use_empty()) 630 GEP->eraseFromParent(); 631 } 632 return; 633 } 634 635 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 636 637 // Do struct initialization; this code just sets each individual member 638 // to the approprate value. This makes bitfield support automatic; 639 // the disadvantage is that the generated code is more difficult for 640 // the optimizer, especially with bitfields. 641 unsigned NumInitElements = E->getNumInits(); 642 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 643 644 if (E->getType()->isUnionType()) { 645 // Only initialize one field of a union. The field itself is 646 // specified by the initializer list. 647 if (!E->getInitializedFieldInUnion()) { 648 // Empty union; we have nothing to do. 649 650 #ifndef NDEBUG 651 // Make sure that it's really an empty and not a failure of 652 // semantic analysis. 653 for (RecordDecl::field_iterator Field = SD->field_begin(), 654 FieldEnd = SD->field_end(); 655 Field != FieldEnd; ++Field) 656 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 657 #endif 658 return; 659 } 660 661 // FIXME: volatility 662 FieldDecl *Field = E->getInitializedFieldInUnion(); 663 664 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 665 if (NumInitElements) { 666 // Store the initializer into the field 667 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 668 } else { 669 // Default-initialize to null. 670 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 671 } 672 673 return; 674 } 675 676 // Here we iterate over the fields; this makes it simpler to both 677 // default-initialize fields and skip over unnamed fields. 678 unsigned CurInitVal = 0; 679 for (RecordDecl::field_iterator Field = SD->field_begin(), 680 FieldEnd = SD->field_end(); 681 Field != FieldEnd; ++Field) { 682 // We're done once we hit the flexible array member 683 if (Field->getType()->isIncompleteArrayType()) 684 break; 685 686 if (Field->isUnnamedBitfield()) 687 continue; 688 689 // Don't emit GEP before a noop store of zero. 690 if (CurInitVal == NumInitElements && Dest.isZeroed() && 691 CGF.getTypes().isZeroInitializable(E->getType())) 692 break; 693 694 // FIXME: volatility 695 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 696 // We never generate write-barries for initialized fields. 697 FieldLoc.setNonGC(true); 698 699 if (CurInitVal < NumInitElements) { 700 // Store the initializer into the field. 701 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 702 Field->getType()); 703 } else { 704 // We're out of initalizers; default-initialize to null 705 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 706 } 707 708 // If the GEP didn't get used because of a dead zero init or something 709 // else, clean it up for -O0 builds and general tidiness. 710 if (FieldLoc.isSimple()) 711 if (llvm::GetElementPtrInst *GEP = 712 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) 713 if (GEP->use_empty()) 714 GEP->eraseFromParent(); 715 } 716 } 717 718 //===----------------------------------------------------------------------===// 719 // Entry Points into this File 720 //===----------------------------------------------------------------------===// 721 722 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 723 /// non-zero bytes that will be stored when outputting the initializer for the 724 /// specified initializer expression. 725 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 726 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 727 return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF); 728 729 // 0 and 0.0 won't require any non-zero stores! 730 if (isSimpleZero(E, CGF)) return 0; 731 732 // If this is an initlist expr, sum up the size of sizes of the (present) 733 // elements. If this is something weird, assume the whole thing is non-zero. 734 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 735 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 736 return CGF.getContext().getTypeSize(E->getType())/8; 737 738 // InitListExprs for structs have to be handled carefully. If there are 739 // reference members, we need to consider the size of the reference, not the 740 // referencee. InitListExprs for unions and arrays can't have references. 741 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 742 if (!RT->isUnionType()) { 743 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 744 uint64_t NumNonZeroBytes = 0; 745 746 unsigned ILEElement = 0; 747 for (RecordDecl::field_iterator Field = SD->field_begin(), 748 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 749 // We're done once we hit the flexible array member or run out of 750 // InitListExpr elements. 751 if (Field->getType()->isIncompleteArrayType() || 752 ILEElement == ILE->getNumInits()) 753 break; 754 if (Field->isUnnamedBitfield()) 755 continue; 756 757 const Expr *E = ILE->getInit(ILEElement++); 758 759 // Reference values are always non-null and have the width of a pointer. 760 if (Field->getType()->isReferenceType()) 761 NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0); 762 else 763 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 764 } 765 766 return NumNonZeroBytes; 767 } 768 } 769 770 771 uint64_t NumNonZeroBytes = 0; 772 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 773 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 774 return NumNonZeroBytes; 775 } 776 777 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 778 /// zeros in it, emit a memset and avoid storing the individual zeros. 779 /// 780 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 781 CodeGenFunction &CGF) { 782 // If the slot is already known to be zeroed, nothing to do. Don't mess with 783 // volatile stores. 784 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 785 786 // If the type is 16-bytes or smaller, prefer individual stores over memset. 787 std::pair<uint64_t, unsigned> TypeInfo = 788 CGF.getContext().getTypeInfo(E->getType()); 789 if (TypeInfo.first/8 <= 16) 790 return; 791 792 // Check to see if over 3/4 of the initializer are known to be zero. If so, 793 // we prefer to emit memset + individual stores for the rest. 794 uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 795 if (NumNonZeroBytes*4 > TypeInfo.first/8) 796 return; 797 798 // Okay, it seems like a good idea to use an initial memset, emit the call. 799 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8); 800 llvm::ConstantInt *AlignVal = CGF.Builder.getInt32(TypeInfo.second/8); 801 802 llvm::Value *Loc = Slot.getAddr(); 803 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 804 805 Loc = CGF.Builder.CreateBitCast(Loc, BP); 806 CGF.Builder.CreateCall5(CGF.CGM.getMemSetFn(Loc->getType(), 807 SizeVal->getType()), 808 Loc, CGF.Builder.getInt8(0), SizeVal, AlignVal, 809 CGF.Builder.getFalse()); 810 811 // Tell the AggExprEmitter that the slot is known zero. 812 Slot.setZeroed(); 813 } 814 815 816 817 818 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 819 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 820 /// the value of the aggregate expression is not needed. If VolatileDest is 821 /// true, DestPtr cannot be 0. 822 /// 823 /// \param IsInitializer - true if this evaluation is initializing an 824 /// object whose lifetime is already being managed. 825 // 826 // FIXME: Take Qualifiers object. 827 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 828 bool IgnoreResult) { 829 assert(E && hasAggregateLLVMType(E->getType()) && 830 "Invalid aggregate expression to emit"); 831 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 832 "slot has bits but no address"); 833 834 // Optimize the slot if possible. 835 CheckAggExprForMemSetUse(Slot, E, *this); 836 837 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 838 } 839 840 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 841 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 842 llvm::Value *Temp = CreateMemTemp(E->getType()); 843 LValue LV = MakeAddrLValue(Temp, E->getType()); 844 EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false)); 845 return LV; 846 } 847 848 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 849 llvm::Value *SrcPtr, QualType Ty, 850 bool isVolatile) { 851 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 852 853 if (getContext().getLangOptions().CPlusPlus) { 854 if (const RecordType *RT = Ty->getAs<RecordType>()) { 855 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 856 assert((Record->hasTrivialCopyConstructor() || 857 Record->hasTrivialCopyAssignment()) && 858 "Trying to aggregate-copy a type without a trivial copy " 859 "constructor or assignment operator"); 860 // Ignore empty classes in C++. 861 if (Record->isEmpty()) 862 return; 863 } 864 } 865 866 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 867 // C99 6.5.16.1p3, which states "If the value being stored in an object is 868 // read from another object that overlaps in anyway the storage of the first 869 // object, then the overlap shall be exact and the two objects shall have 870 // qualified or unqualified versions of a compatible type." 871 // 872 // memcpy is not defined if the source and destination pointers are exactly 873 // equal, but other compilers do this optimization, and almost every memcpy 874 // implementation handles this case safely. If there is a libc that does not 875 // safely handle this, we can add a target hook. 876 877 // Get size and alignment info for this aggregate. 878 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 879 880 // FIXME: Handle variable sized types. 881 882 // FIXME: If we have a volatile struct, the optimizer can remove what might 883 // appear to be `extra' memory ops: 884 // 885 // volatile struct { int i; } a, b; 886 // 887 // int main() { 888 // a = b; 889 // a = b; 890 // } 891 // 892 // we need to use a different call here. We use isVolatile to indicate when 893 // either the source or the destination is volatile. 894 895 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 896 const llvm::Type *DBP = 897 llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace()); 898 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 899 900 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 901 const llvm::Type *SBP = 902 llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace()); 903 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 904 905 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 906 RecordDecl *Record = RecordTy->getDecl(); 907 if (Record->hasObjectMember()) { 908 unsigned long size = TypeInfo.first/8; 909 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 910 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 911 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 912 SizeVal); 913 return; 914 } 915 } else if (getContext().getAsArrayType(Ty)) { 916 QualType BaseType = getContext().getBaseElementType(Ty); 917 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 918 if (RecordTy->getDecl()->hasObjectMember()) { 919 unsigned long size = TypeInfo.first/8; 920 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 921 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 922 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 923 SizeVal); 924 return; 925 } 926 } 927 } 928 929 Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), 930 IntPtrTy), 931 DestPtr, SrcPtr, 932 // TypeInfo.first describes size in bits. 933 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 934 Builder.getInt32(TypeInfo.second/8), 935 Builder.getInt1(isVolatile)); 936 } 937