1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
85 
86   // l-values.
87   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
88   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
89   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
90   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
91   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
92     EmitAggLoadOfLValue(E);
93   }
94   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
95     EmitAggLoadOfLValue(E);
96   }
97   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitPredefinedExpr(const PredefinedExpr *E) {
101     EmitAggLoadOfLValue(E);
102   }
103 
104   // Operators.
105   void VisitCastExpr(CastExpr *E);
106   void VisitCallExpr(const CallExpr *E);
107   void VisitStmtExpr(const StmtExpr *E);
108   void VisitBinaryOperator(const BinaryOperator *BO);
109   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
110   void VisitBinAssign(const BinaryOperator *E);
111   void VisitBinComma(const BinaryOperator *E);
112 
113   void VisitObjCMessageExpr(ObjCMessageExpr *E);
114   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
115     EmitAggLoadOfLValue(E);
116   }
117   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
118 
119   void VisitConditionalOperator(const ConditionalOperator *CO);
120   void VisitChooseExpr(const ChooseExpr *CE);
121   void VisitInitListExpr(InitListExpr *E);
122   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
123   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
124     Visit(DAE->getExpr());
125   }
126   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
127   void VisitCXXConstructExpr(const CXXConstructExpr *E);
128   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
129   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
130   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
131 
132   void VisitVAArgExpr(VAArgExpr *E);
133 
134   void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
135   void EmitNullInitializationToLValue(LValue Address, QualType T);
136   //  case Expr::ChooseExprClass:
137   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
138 };
139 }  // end anonymous namespace.
140 
141 //===----------------------------------------------------------------------===//
142 //                                Utilities
143 //===----------------------------------------------------------------------===//
144 
145 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
146 /// represents a value lvalue, this method emits the address of the lvalue,
147 /// then loads the result into DestPtr.
148 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
149   LValue LV = CGF.EmitLValue(E);
150   EmitFinalDestCopy(E, LV);
151 }
152 
153 /// \brief True if the given aggregate type requires special GC API calls.
154 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
155   // Only record types have members that might require garbage collection.
156   const RecordType *RecordTy = T->getAs<RecordType>();
157   if (!RecordTy) return false;
158 
159   // Don't mess with non-trivial C++ types.
160   RecordDecl *Record = RecordTy->getDecl();
161   if (isa<CXXRecordDecl>(Record) &&
162       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
163        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
164     return false;
165 
166   // Check whether the type has an object member.
167   return Record->hasObjectMember();
168 }
169 
170 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
171 ///
172 /// The idea is that you do something like this:
173 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
174 ///   EmitGCMove(E, Result);
175 /// If GC doesn't interfere, this will cause the result to be emitted
176 /// directly into the return value slot.  If GC does interfere, a final
177 /// move will be performed.
178 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
179   if (Dest.requiresGCollection()) {
180     std::pair<uint64_t, unsigned> TypeInfo =
181       CGF.getContext().getTypeInfo(E->getType());
182     unsigned long size = TypeInfo.first/8;
183     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
184     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
185     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
186                                                     Src.getAggregateAddr(),
187                                                     SizeVal);
188   }
189 }
190 
191 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
192 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
193   assert(Src.isAggregate() && "value must be aggregate value!");
194 
195   // If Dest is ignored, then we're evaluating an aggregate expression
196   // in a context (like an expression statement) that doesn't care
197   // about the result.  C says that an lvalue-to-rvalue conversion is
198   // performed in these cases; C++ says that it is not.  In either
199   // case, we don't actually need to do anything unless the value is
200   // volatile.
201   if (Dest.isIgnored()) {
202     if (!Src.isVolatileQualified() ||
203         CGF.CGM.getLangOptions().CPlusPlus ||
204         (IgnoreResult && Ignore))
205       return;
206 
207     // If the source is volatile, we must read from it; to do that, we need
208     // some place to put it.
209     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
210   }
211 
212   if (Dest.requiresGCollection()) {
213     std::pair<uint64_t, unsigned> TypeInfo =
214     CGF.getContext().getTypeInfo(E->getType());
215     unsigned long size = TypeInfo.first/8;
216     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
217     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
218     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
219                                                       Dest.getAddr(),
220                                                       Src.getAggregateAddr(),
221                                                       SizeVal);
222     return;
223   }
224   // If the result of the assignment is used, copy the LHS there also.
225   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
226   // from the source as well, as we can't eliminate it if either operand
227   // is volatile, unless copy has volatile for both source and destination..
228   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
229                         Dest.isVolatile()|Src.isVolatileQualified());
230 }
231 
232 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
233 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
234   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
235 
236   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
237                                             Src.isVolatileQualified()),
238                     Ignore);
239 }
240 
241 //===----------------------------------------------------------------------===//
242 //                            Visitor Methods
243 //===----------------------------------------------------------------------===//
244 
245 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
246   if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) {
247     Visit(E->getSubExpr());
248     return;
249   }
250 
251   switch (E->getCastKind()) {
252   case CK_Dynamic: {
253     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
254     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
255     // FIXME: Do we also need to handle property references here?
256     if (LV.isSimple())
257       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
258     else
259       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
260 
261     if (!Dest.isIgnored())
262       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
263     break;
264   }
265 
266   case CK_ToUnion: {
267     // GCC union extension
268     QualType Ty = E->getSubExpr()->getType();
269     QualType PtrTy = CGF.getContext().getPointerType(Ty);
270     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
271                                                  CGF.ConvertType(PtrTy));
272     EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
273                                Ty);
274     break;
275   }
276 
277   case CK_DerivedToBase:
278   case CK_BaseToDerived:
279   case CK_UncheckedDerivedToBase: {
280     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
281                 "should have been unpacked before we got here");
282     break;
283   }
284 
285   case CK_NoOp:
286   case CK_LValueToRValue:
287   case CK_UserDefinedConversion:
288   case CK_ConstructorConversion:
289     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
290                                                    E->getType()) &&
291            "Implicit cast types must be compatible");
292     Visit(E->getSubExpr());
293     break;
294 
295   case CK_LValueBitCast:
296     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
297     break;
298 
299   case CK_Dependent:
300   case CK_BitCast:
301   case CK_ArrayToPointerDecay:
302   case CK_FunctionToPointerDecay:
303   case CK_NullToPointer:
304   case CK_NullToMemberPointer:
305   case CK_BaseToDerivedMemberPointer:
306   case CK_DerivedToBaseMemberPointer:
307   case CK_MemberPointerToBoolean:
308   case CK_IntegralToPointer:
309   case CK_PointerToIntegral:
310   case CK_PointerToBoolean:
311   case CK_ToVoid:
312   case CK_VectorSplat:
313   case CK_IntegralCast:
314   case CK_IntegralToBoolean:
315   case CK_IntegralToFloating:
316   case CK_FloatingToIntegral:
317   case CK_FloatingToBoolean:
318   case CK_FloatingCast:
319   case CK_AnyPointerToObjCPointerCast:
320   case CK_AnyPointerToBlockPointerCast:
321   case CK_ObjCObjectLValueCast:
322   case CK_FloatingRealToComplex:
323   case CK_FloatingComplexToReal:
324   case CK_FloatingComplexToBoolean:
325   case CK_FloatingComplexCast:
326   case CK_FloatingComplexToIntegralComplex:
327   case CK_IntegralRealToComplex:
328   case CK_IntegralComplexToReal:
329   case CK_IntegralComplexToBoolean:
330   case CK_IntegralComplexCast:
331   case CK_IntegralComplexToFloatingComplex:
332     llvm_unreachable("cast kind invalid for aggregate types");
333   }
334 }
335 
336 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
337   if (E->getCallReturnType()->isReferenceType()) {
338     EmitAggLoadOfLValue(E);
339     return;
340   }
341 
342   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
343   EmitGCMove(E, RV);
344 }
345 
346 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
347   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
348   EmitGCMove(E, RV);
349 }
350 
351 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
352   RValue RV = CGF.EmitLoadOfPropertyRefLValue(CGF.EmitObjCPropertyRefLValue(E),
353                                               getReturnValueSlot());
354   EmitGCMove(E, RV);
355 }
356 
357 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
358   CGF.EmitAnyExpr(E->getLHS(), AggValueSlot::ignored(), true);
359   Visit(E->getRHS());
360 }
361 
362 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
363   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
364 }
365 
366 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
367   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
368     VisitPointerToDataMemberBinaryOperator(E);
369   else
370     CGF.ErrorUnsupported(E, "aggregate binary expression");
371 }
372 
373 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
374                                                     const BinaryOperator *E) {
375   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
376   EmitFinalDestCopy(E, LV);
377 }
378 
379 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
380   // For an assignment to work, the value on the right has
381   // to be compatible with the value on the left.
382   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
383                                                  E->getRHS()->getType())
384          && "Invalid assignment");
385   LValue LHS = CGF.EmitLValue(E->getLHS());
386 
387   // We have to special case property setters, otherwise we must have
388   // a simple lvalue (no aggregates inside vectors, bitfields).
389   if (LHS.isPropertyRef()) {
390     AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
391     CGF.EmitAggExpr(E->getRHS(), Slot);
392     CGF.EmitStoreThroughPropertyRefLValue(Slot.asRValue(), LHS);
393   } else {
394     bool GCollection = false;
395     if (CGF.getContext().getLangOptions().getGCMode())
396       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
397 
398     // Codegen the RHS so that it stores directly into the LHS.
399     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
400                                                    GCollection);
401     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
402     EmitFinalDestCopy(E, LHS, true);
403   }
404 }
405 
406 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
407   if (!E->getLHS()) {
408     CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
409     return;
410   }
411 
412   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
413   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
414   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
415 
416   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
417 
418   CGF.BeginConditionalBranch();
419   CGF.EmitBlock(LHSBlock);
420 
421   // Save whether the destination's lifetime is externally managed.
422   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
423 
424   Visit(E->getLHS());
425   CGF.EndConditionalBranch();
426   CGF.EmitBranch(ContBlock);
427 
428   CGF.BeginConditionalBranch();
429   CGF.EmitBlock(RHSBlock);
430 
431   // If the result of an agg expression is unused, then the emission
432   // of the LHS might need to create a destination slot.  That's fine
433   // with us, and we can safely emit the RHS into the same slot, but
434   // we shouldn't claim that its lifetime is externally managed.
435   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
436 
437   Visit(E->getRHS());
438   CGF.EndConditionalBranch();
439   CGF.EmitBranch(ContBlock);
440 
441   CGF.EmitBlock(ContBlock);
442 }
443 
444 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
445   Visit(CE->getChosenSubExpr(CGF.getContext()));
446 }
447 
448 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
449   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
450   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
451 
452   if (!ArgPtr) {
453     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
454     return;
455   }
456 
457   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
458 }
459 
460 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
461   // Ensure that we have a slot, but if we already do, remember
462   // whether its lifetime was externally managed.
463   bool WasManaged = Dest.isLifetimeExternallyManaged();
464   Dest = EnsureSlot(E->getType());
465   Dest.setLifetimeExternallyManaged();
466 
467   Visit(E->getSubExpr());
468 
469   // Set up the temporary's destructor if its lifetime wasn't already
470   // being managed.
471   if (!WasManaged)
472     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
473 }
474 
475 void
476 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
477   AggValueSlot Slot = EnsureSlot(E->getType());
478   CGF.EmitCXXConstructExpr(E, Slot);
479 }
480 
481 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
482   CGF.EmitCXXExprWithTemporaries(E, Dest);
483 }
484 
485 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
486   QualType T = E->getType();
487   AggValueSlot Slot = EnsureSlot(T);
488   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
489 }
490 
491 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
492   QualType T = E->getType();
493   AggValueSlot Slot = EnsureSlot(T);
494   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
495 }
496 
497 /// isSimpleZero - If emitting this value will obviously just cause a store of
498 /// zero to memory, return true.  This can return false if uncertain, so it just
499 /// handles simple cases.
500 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
501   // (0)
502   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
503     return isSimpleZero(PE->getSubExpr(), CGF);
504   // 0
505   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
506     return IL->getValue() == 0;
507   // +0.0
508   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
509     return FL->getValue().isPosZero();
510   // int()
511   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
512       CGF.getTypes().isZeroInitializable(E->getType()))
513     return true;
514   // (int*)0 - Null pointer expressions.
515   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
516     return ICE->getCastKind() == CK_NullToPointer;
517   // '\0'
518   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
519     return CL->getValue() == 0;
520 
521   // Otherwise, hard case: conservatively return false.
522   return false;
523 }
524 
525 
526 void
527 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
528   // FIXME: Ignore result?
529   // FIXME: Are initializers affected by volatile?
530   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
531     // Storing "i32 0" to a zero'd memory location is a noop.
532   } else if (isa<ImplicitValueInitExpr>(E)) {
533     EmitNullInitializationToLValue(LV, T);
534   } else if (T->isReferenceType()) {
535     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
536     CGF.EmitStoreThroughLValue(RV, LV, T);
537   } else if (T->isAnyComplexType()) {
538     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
539   } else if (CGF.hasAggregateLLVMType(T)) {
540     CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
541                                              false, Dest.isZeroed()));
542   } else {
543     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T);
544   }
545 }
546 
547 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
548   // If the destination slot is already zeroed out before the aggregate is
549   // copied into it, we don't have to emit any zeros here.
550   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
551     return;
552 
553   if (!CGF.hasAggregateLLVMType(T)) {
554     // For non-aggregates, we can store zero
555     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
556     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
557   } else {
558     // There's a potential optimization opportunity in combining
559     // memsets; that would be easy for arrays, but relatively
560     // difficult for structures with the current code.
561     CGF.EmitNullInitialization(LV.getAddress(), T);
562   }
563 }
564 
565 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
566 #if 0
567   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
568   // (Length of globals? Chunks of zeroed-out space?).
569   //
570   // If we can, prefer a copy from a global; this is a lot less code for long
571   // globals, and it's easier for the current optimizers to analyze.
572   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
573     llvm::GlobalVariable* GV =
574     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
575                              llvm::GlobalValue::InternalLinkage, C, "");
576     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
577     return;
578   }
579 #endif
580   if (E->hadArrayRangeDesignator())
581     CGF.ErrorUnsupported(E, "GNU array range designator extension");
582 
583   llvm::Value *DestPtr = Dest.getAddr();
584 
585   // Handle initialization of an array.
586   if (E->getType()->isArrayType()) {
587     const llvm::PointerType *APType =
588       cast<llvm::PointerType>(DestPtr->getType());
589     const llvm::ArrayType *AType =
590       cast<llvm::ArrayType>(APType->getElementType());
591 
592     uint64_t NumInitElements = E->getNumInits();
593 
594     if (E->getNumInits() > 0) {
595       QualType T1 = E->getType();
596       QualType T2 = E->getInit(0)->getType();
597       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
598         EmitAggLoadOfLValue(E->getInit(0));
599         return;
600       }
601     }
602 
603     uint64_t NumArrayElements = AType->getNumElements();
604     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
605     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
606 
607     // FIXME: were we intentionally ignoring address spaces and GC attributes?
608 
609     for (uint64_t i = 0; i != NumArrayElements; ++i) {
610       // If we're done emitting initializers and the destination is known-zeroed
611       // then we're done.
612       if (i == NumInitElements &&
613           Dest.isZeroed() &&
614           CGF.getTypes().isZeroInitializable(ElementType))
615         break;
616 
617       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
618       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
619 
620       if (i < NumInitElements)
621         EmitInitializationToLValue(E->getInit(i), LV, ElementType);
622       else
623         EmitNullInitializationToLValue(LV, ElementType);
624 
625       // If the GEP didn't get used because of a dead zero init or something
626       // else, clean it up for -O0 builds and general tidiness.
627       if (llvm::GetElementPtrInst *GEP =
628             dyn_cast<llvm::GetElementPtrInst>(NextVal))
629         if (GEP->use_empty())
630           GEP->eraseFromParent();
631     }
632     return;
633   }
634 
635   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
636 
637   // Do struct initialization; this code just sets each individual member
638   // to the approprate value.  This makes bitfield support automatic;
639   // the disadvantage is that the generated code is more difficult for
640   // the optimizer, especially with bitfields.
641   unsigned NumInitElements = E->getNumInits();
642   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
643 
644   if (E->getType()->isUnionType()) {
645     // Only initialize one field of a union. The field itself is
646     // specified by the initializer list.
647     if (!E->getInitializedFieldInUnion()) {
648       // Empty union; we have nothing to do.
649 
650 #ifndef NDEBUG
651       // Make sure that it's really an empty and not a failure of
652       // semantic analysis.
653       for (RecordDecl::field_iterator Field = SD->field_begin(),
654                                    FieldEnd = SD->field_end();
655            Field != FieldEnd; ++Field)
656         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
657 #endif
658       return;
659     }
660 
661     // FIXME: volatility
662     FieldDecl *Field = E->getInitializedFieldInUnion();
663 
664     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
665     if (NumInitElements) {
666       // Store the initializer into the field
667       EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
668     } else {
669       // Default-initialize to null.
670       EmitNullInitializationToLValue(FieldLoc, Field->getType());
671     }
672 
673     return;
674   }
675 
676   // Here we iterate over the fields; this makes it simpler to both
677   // default-initialize fields and skip over unnamed fields.
678   unsigned CurInitVal = 0;
679   for (RecordDecl::field_iterator Field = SD->field_begin(),
680                                FieldEnd = SD->field_end();
681        Field != FieldEnd; ++Field) {
682     // We're done once we hit the flexible array member
683     if (Field->getType()->isIncompleteArrayType())
684       break;
685 
686     if (Field->isUnnamedBitfield())
687       continue;
688 
689     // Don't emit GEP before a noop store of zero.
690     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
691         CGF.getTypes().isZeroInitializable(E->getType()))
692       break;
693 
694     // FIXME: volatility
695     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
696     // We never generate write-barries for initialized fields.
697     FieldLoc.setNonGC(true);
698 
699     if (CurInitVal < NumInitElements) {
700       // Store the initializer into the field.
701       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
702                                  Field->getType());
703     } else {
704       // We're out of initalizers; default-initialize to null
705       EmitNullInitializationToLValue(FieldLoc, Field->getType());
706     }
707 
708     // If the GEP didn't get used because of a dead zero init or something
709     // else, clean it up for -O0 builds and general tidiness.
710     if (FieldLoc.isSimple())
711       if (llvm::GetElementPtrInst *GEP =
712             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
713         if (GEP->use_empty())
714           GEP->eraseFromParent();
715   }
716 }
717 
718 //===----------------------------------------------------------------------===//
719 //                        Entry Points into this File
720 //===----------------------------------------------------------------------===//
721 
722 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
723 /// non-zero bytes that will be stored when outputting the initializer for the
724 /// specified initializer expression.
725 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
726   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
727     return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF);
728 
729   // 0 and 0.0 won't require any non-zero stores!
730   if (isSimpleZero(E, CGF)) return 0;
731 
732   // If this is an initlist expr, sum up the size of sizes of the (present)
733   // elements.  If this is something weird, assume the whole thing is non-zero.
734   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
735   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
736     return CGF.getContext().getTypeSize(E->getType())/8;
737 
738   // InitListExprs for structs have to be handled carefully.  If there are
739   // reference members, we need to consider the size of the reference, not the
740   // referencee.  InitListExprs for unions and arrays can't have references.
741   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
742     if (!RT->isUnionType()) {
743       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
744       uint64_t NumNonZeroBytes = 0;
745 
746       unsigned ILEElement = 0;
747       for (RecordDecl::field_iterator Field = SD->field_begin(),
748            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
749         // We're done once we hit the flexible array member or run out of
750         // InitListExpr elements.
751         if (Field->getType()->isIncompleteArrayType() ||
752             ILEElement == ILE->getNumInits())
753           break;
754         if (Field->isUnnamedBitfield())
755           continue;
756 
757         const Expr *E = ILE->getInit(ILEElement++);
758 
759         // Reference values are always non-null and have the width of a pointer.
760         if (Field->getType()->isReferenceType())
761           NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0);
762         else
763           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
764       }
765 
766       return NumNonZeroBytes;
767     }
768   }
769 
770 
771   uint64_t NumNonZeroBytes = 0;
772   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
773     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
774   return NumNonZeroBytes;
775 }
776 
777 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
778 /// zeros in it, emit a memset and avoid storing the individual zeros.
779 ///
780 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
781                                      CodeGenFunction &CGF) {
782   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
783   // volatile stores.
784   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
785 
786   // If the type is 16-bytes or smaller, prefer individual stores over memset.
787   std::pair<uint64_t, unsigned> TypeInfo =
788     CGF.getContext().getTypeInfo(E->getType());
789   if (TypeInfo.first/8 <= 16)
790     return;
791 
792   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
793   // we prefer to emit memset + individual stores for the rest.
794   uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
795   if (NumNonZeroBytes*4 > TypeInfo.first/8)
796     return;
797 
798   // Okay, it seems like a good idea to use an initial memset, emit the call.
799   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8);
800   llvm::ConstantInt *AlignVal = CGF.Builder.getInt32(TypeInfo.second/8);
801 
802   llvm::Value *Loc = Slot.getAddr();
803   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
804 
805   Loc = CGF.Builder.CreateBitCast(Loc, BP);
806   CGF.Builder.CreateCall5(CGF.CGM.getMemSetFn(Loc->getType(),
807                                               SizeVal->getType()),
808                           Loc, CGF.Builder.getInt8(0), SizeVal, AlignVal,
809                           CGF.Builder.getFalse());
810 
811   // Tell the AggExprEmitter that the slot is known zero.
812   Slot.setZeroed();
813 }
814 
815 
816 
817 
818 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
819 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
820 /// the value of the aggregate expression is not needed.  If VolatileDest is
821 /// true, DestPtr cannot be 0.
822 ///
823 /// \param IsInitializer - true if this evaluation is initializing an
824 /// object whose lifetime is already being managed.
825 //
826 // FIXME: Take Qualifiers object.
827 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
828                                   bool IgnoreResult) {
829   assert(E && hasAggregateLLVMType(E->getType()) &&
830          "Invalid aggregate expression to emit");
831   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
832          "slot has bits but no address");
833 
834   // Optimize the slot if possible.
835   CheckAggExprForMemSetUse(Slot, E, *this);
836 
837   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
838 }
839 
840 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
841   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
842   llvm::Value *Temp = CreateMemTemp(E->getType());
843   LValue LV = MakeAddrLValue(Temp, E->getType());
844   EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
845   return LV;
846 }
847 
848 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
849                                         llvm::Value *SrcPtr, QualType Ty,
850                                         bool isVolatile) {
851   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
852 
853   if (getContext().getLangOptions().CPlusPlus) {
854     if (const RecordType *RT = Ty->getAs<RecordType>()) {
855       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
856       assert((Record->hasTrivialCopyConstructor() ||
857               Record->hasTrivialCopyAssignment()) &&
858              "Trying to aggregate-copy a type without a trivial copy "
859              "constructor or assignment operator");
860       // Ignore empty classes in C++.
861       if (Record->isEmpty())
862         return;
863     }
864   }
865 
866   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
867   // C99 6.5.16.1p3, which states "If the value being stored in an object is
868   // read from another object that overlaps in anyway the storage of the first
869   // object, then the overlap shall be exact and the two objects shall have
870   // qualified or unqualified versions of a compatible type."
871   //
872   // memcpy is not defined if the source and destination pointers are exactly
873   // equal, but other compilers do this optimization, and almost every memcpy
874   // implementation handles this case safely.  If there is a libc that does not
875   // safely handle this, we can add a target hook.
876 
877   // Get size and alignment info for this aggregate.
878   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
879 
880   // FIXME: Handle variable sized types.
881 
882   // FIXME: If we have a volatile struct, the optimizer can remove what might
883   // appear to be `extra' memory ops:
884   //
885   // volatile struct { int i; } a, b;
886   //
887   // int main() {
888   //   a = b;
889   //   a = b;
890   // }
891   //
892   // we need to use a different call here.  We use isVolatile to indicate when
893   // either the source or the destination is volatile.
894 
895   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
896   const llvm::Type *DBP =
897     llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace());
898   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
899 
900   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
901   const llvm::Type *SBP =
902     llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace());
903   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
904 
905   if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
906     RecordDecl *Record = RecordTy->getDecl();
907     if (Record->hasObjectMember()) {
908       unsigned long size = TypeInfo.first/8;
909       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
910       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
911       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
912                                                     SizeVal);
913       return;
914     }
915   } else if (getContext().getAsArrayType(Ty)) {
916     QualType BaseType = getContext().getBaseElementType(Ty);
917     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
918       if (RecordTy->getDecl()->hasObjectMember()) {
919         unsigned long size = TypeInfo.first/8;
920         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
921         llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
922         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
923                                                       SizeVal);
924         return;
925       }
926     }
927   }
928 
929   Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(),
930                                       IntPtrTy),
931                       DestPtr, SrcPtr,
932                       // TypeInfo.first describes size in bits.
933                       llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
934                       Builder.getInt32(TypeInfo.second/8),
935                       Builder.getInt1(isVolatile));
936 }
937