1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                        Aggregate Expression Emitter
32 //===----------------------------------------------------------------------===//
33 
34 namespace  {
35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
36   CodeGenFunction &CGF;
37   CGBuilderTy &Builder;
38   AggValueSlot Dest;
39   bool IsResultUnused;
40 
41   AggValueSlot EnsureSlot(QualType T) {
42     if (!Dest.isIgnored()) return Dest;
43     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
44   }
45   void EnsureDest(QualType T) {
46     if (!Dest.isIgnored()) return;
47     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
48   }
49 
50   // Calls `Fn` with a valid return value slot, potentially creating a temporary
51   // to do so. If a temporary is created, an appropriate copy into `Dest` will
52   // be emitted, as will lifetime markers.
53   //
54   // The given function should take a ReturnValueSlot, and return an RValue that
55   // points to said slot.
56   void withReturnValueSlot(const Expr *E,
57                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
61     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
62     IsResultUnused(IsResultUnused) { }
63 
64   //===--------------------------------------------------------------------===//
65   //                               Utilities
66   //===--------------------------------------------------------------------===//
67 
68   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
69   /// represents a value lvalue, this method emits the address of the lvalue,
70   /// then loads the result into DestPtr.
71   void EmitAggLoadOfLValue(const Expr *E);
72 
73   enum ExprValueKind {
74     EVK_RValue,
75     EVK_NonRValue
76   };
77 
78   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
79   /// SrcIsRValue is true if source comes from an RValue.
80   void EmitFinalDestCopy(QualType type, const LValue &src,
81                          ExprValueKind SrcValueKind = EVK_NonRValue);
82   void EmitFinalDestCopy(QualType type, RValue src);
83   void EmitCopy(QualType type, const AggValueSlot &dest,
84                 const AggValueSlot &src);
85 
86   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
87 
88   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
89                      QualType ArrayQTy, InitListExpr *E);
90 
91   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
92     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
93       return AggValueSlot::NeedsGCBarriers;
94     return AggValueSlot::DoesNotNeedGCBarriers;
95   }
96 
97   bool TypeRequiresGCollection(QualType T);
98 
99   //===--------------------------------------------------------------------===//
100   //                            Visitor Methods
101   //===--------------------------------------------------------------------===//
102 
103   void Visit(Expr *E) {
104     ApplyDebugLocation DL(CGF, E);
105     StmtVisitor<AggExprEmitter>::Visit(E);
106   }
107 
108   void VisitStmt(Stmt *S) {
109     CGF.ErrorUnsupported(S, "aggregate expression");
110   }
111   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
112   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     Visit(GE->getResultExpr());
114   }
115   void VisitCoawaitExpr(CoawaitExpr *E) {
116     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
117   }
118   void VisitCoyieldExpr(CoyieldExpr *E) {
119     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
120   }
121   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
122   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
124     return Visit(E->getReplacement());
125   }
126 
127   void VisitConstantExpr(ConstantExpr *E) {
128     return Visit(E->getSubExpr());
129   }
130 
131   // l-values.
132   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
133   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
134   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
135   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
136   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
137   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140   void VisitPredefinedExpr(const PredefinedExpr *E) {
141     EmitAggLoadOfLValue(E);
142   }
143 
144   // Operators.
145   void VisitCastExpr(CastExpr *E);
146   void VisitCallExpr(const CallExpr *E);
147   void VisitStmtExpr(const StmtExpr *E);
148   void VisitBinaryOperator(const BinaryOperator *BO);
149   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
150   void VisitBinAssign(const BinaryOperator *E);
151   void VisitBinComma(const BinaryOperator *E);
152   void VisitBinCmp(const BinaryOperator *E);
153   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
154     Visit(E->getSemanticForm());
155   }
156 
157   void VisitObjCMessageExpr(ObjCMessageExpr *E);
158   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
159     EmitAggLoadOfLValue(E);
160   }
161 
162   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
163   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
164   void VisitChooseExpr(const ChooseExpr *CE);
165   void VisitInitListExpr(InitListExpr *E);
166   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
167                               llvm::Value *outerBegin = nullptr);
168   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
169   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
170   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
171     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
172     Visit(DAE->getExpr());
173   }
174   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
175     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
176     Visit(DIE->getExpr());
177   }
178   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
179   void VisitCXXConstructExpr(const CXXConstructExpr *E);
180   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
181   void VisitLambdaExpr(LambdaExpr *E);
182   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
183   void VisitExprWithCleanups(ExprWithCleanups *E);
184   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
185   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
186   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
187   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
188 
189   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
190     if (E->isGLValue()) {
191       LValue LV = CGF.EmitPseudoObjectLValue(E);
192       return EmitFinalDestCopy(E->getType(), LV);
193     }
194 
195     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
196   }
197 
198   void VisitVAArgExpr(VAArgExpr *E);
199 
200   void EmitInitializationToLValue(Expr *E, LValue Address);
201   void EmitNullInitializationToLValue(LValue Address);
202   //  case Expr::ChooseExprClass:
203   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
204   void VisitAtomicExpr(AtomicExpr *E) {
205     RValue Res = CGF.EmitAtomicExpr(E);
206     EmitFinalDestCopy(E->getType(), Res);
207   }
208 };
209 }  // end anonymous namespace.
210 
211 //===----------------------------------------------------------------------===//
212 //                                Utilities
213 //===----------------------------------------------------------------------===//
214 
215 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
216 /// represents a value lvalue, this method emits the address of the lvalue,
217 /// then loads the result into DestPtr.
218 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
219   LValue LV = CGF.EmitLValue(E);
220 
221   // If the type of the l-value is atomic, then do an atomic load.
222   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
223     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
224     return;
225   }
226 
227   EmitFinalDestCopy(E->getType(), LV);
228 }
229 
230 /// True if the given aggregate type requires special GC API calls.
231 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
232   // Only record types have members that might require garbage collection.
233   const RecordType *RecordTy = T->getAs<RecordType>();
234   if (!RecordTy) return false;
235 
236   // Don't mess with non-trivial C++ types.
237   RecordDecl *Record = RecordTy->getDecl();
238   if (isa<CXXRecordDecl>(Record) &&
239       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
240        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
241     return false;
242 
243   // Check whether the type has an object member.
244   return Record->hasObjectMember();
245 }
246 
247 void AggExprEmitter::withReturnValueSlot(
248     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
249   QualType RetTy = E->getType();
250   bool RequiresDestruction =
251       Dest.isIgnored() &&
252       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
253 
254   // If it makes no observable difference, save a memcpy + temporary.
255   //
256   // We need to always provide our own temporary if destruction is required.
257   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
258   // its lifetime before we have the chance to emit a proper destructor call.
259   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
260                  (RequiresDestruction && !Dest.getAddress().isValid());
261 
262   Address RetAddr = Address::invalid();
263   Address RetAllocaAddr = Address::invalid();
264 
265   EHScopeStack::stable_iterator LifetimeEndBlock;
266   llvm::Value *LifetimeSizePtr = nullptr;
267   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
268   if (!UseTemp) {
269     RetAddr = Dest.getAddress();
270   } else {
271     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
272     uint64_t Size =
273         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
274     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
275     if (LifetimeSizePtr) {
276       LifetimeStartInst =
277           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
278       assert(LifetimeStartInst->getIntrinsicID() ==
279                  llvm::Intrinsic::lifetime_start &&
280              "Last insertion wasn't a lifetime.start?");
281 
282       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
283           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
284       LifetimeEndBlock = CGF.EHStack.stable_begin();
285     }
286   }
287 
288   RValue Src =
289       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
290 
291   if (RequiresDestruction)
292     CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
293 
294   if (!UseTemp)
295     return;
296 
297   assert(Dest.getPointer() != Src.getAggregatePointer());
298   EmitFinalDestCopy(E->getType(), Src);
299 
300   if (!RequiresDestruction && LifetimeStartInst) {
301     // If there's no dtor to run, the copy was the last use of our temporary.
302     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
303     // eagerly.
304     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
305     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
306   }
307 }
308 
309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
310 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
311   assert(src.isAggregate() && "value must be aggregate value!");
312   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
313   EmitFinalDestCopy(type, srcLV, EVK_RValue);
314 }
315 
316 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
317 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
318                                        ExprValueKind SrcValueKind) {
319   // If Dest is ignored, then we're evaluating an aggregate expression
320   // in a context that doesn't care about the result.  Note that loads
321   // from volatile l-values force the existence of a non-ignored
322   // destination.
323   if (Dest.isIgnored())
324     return;
325 
326   // Copy non-trivial C structs here.
327   LValue DstLV = CGF.MakeAddrLValue(
328       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
329 
330   if (SrcValueKind == EVK_RValue) {
331     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
332       if (Dest.isPotentiallyAliased())
333         CGF.callCStructMoveAssignmentOperator(DstLV, src);
334       else
335         CGF.callCStructMoveConstructor(DstLV, src);
336       return;
337     }
338   } else {
339     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
340       if (Dest.isPotentiallyAliased())
341         CGF.callCStructCopyAssignmentOperator(DstLV, src);
342       else
343         CGF.callCStructCopyConstructor(DstLV, src);
344       return;
345     }
346   }
347 
348   AggValueSlot srcAgg = AggValueSlot::forLValue(
349       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
350       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
351   EmitCopy(type, Dest, srcAgg);
352 }
353 
354 /// Perform a copy from the source into the destination.
355 ///
356 /// \param type - the type of the aggregate being copied; qualifiers are
357 ///   ignored
358 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
359                               const AggValueSlot &src) {
360   if (dest.requiresGCollection()) {
361     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
362     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
363     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
364                                                       dest.getAddress(),
365                                                       src.getAddress(),
366                                                       size);
367     return;
368   }
369 
370   // If the result of the assignment is used, copy the LHS there also.
371   // It's volatile if either side is.  Use the minimum alignment of
372   // the two sides.
373   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
374   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
375   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
376                         dest.isVolatile() || src.isVolatile());
377 }
378 
379 /// Emit the initializer for a std::initializer_list initialized with a
380 /// real initializer list.
381 void
382 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
383   // Emit an array containing the elements.  The array is externally destructed
384   // if the std::initializer_list object is.
385   ASTContext &Ctx = CGF.getContext();
386   LValue Array = CGF.EmitLValue(E->getSubExpr());
387   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
388   Address ArrayPtr = Array.getAddress(CGF);
389 
390   const ConstantArrayType *ArrayType =
391       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
392   assert(ArrayType && "std::initializer_list constructed from non-array");
393 
394   // FIXME: Perform the checks on the field types in SemaInit.
395   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
396   RecordDecl::field_iterator Field = Record->field_begin();
397   if (Field == Record->field_end()) {
398     CGF.ErrorUnsupported(E, "weird std::initializer_list");
399     return;
400   }
401 
402   // Start pointer.
403   if (!Field->getType()->isPointerType() ||
404       !Ctx.hasSameType(Field->getType()->getPointeeType(),
405                        ArrayType->getElementType())) {
406     CGF.ErrorUnsupported(E, "weird std::initializer_list");
407     return;
408   }
409 
410   AggValueSlot Dest = EnsureSlot(E->getType());
411   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
412   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
413   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
414   llvm::Value *IdxStart[] = { Zero, Zero };
415   llvm::Value *ArrayStart =
416       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
417   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
418   ++Field;
419 
420   if (Field == Record->field_end()) {
421     CGF.ErrorUnsupported(E, "weird std::initializer_list");
422     return;
423   }
424 
425   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
426   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
427   if (Field->getType()->isPointerType() &&
428       Ctx.hasSameType(Field->getType()->getPointeeType(),
429                       ArrayType->getElementType())) {
430     // End pointer.
431     llvm::Value *IdxEnd[] = { Zero, Size };
432     llvm::Value *ArrayEnd =
433         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
434     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
435   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
436     // Length.
437     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
438   } else {
439     CGF.ErrorUnsupported(E, "weird std::initializer_list");
440     return;
441   }
442 }
443 
444 /// Determine if E is a trivial array filler, that is, one that is
445 /// equivalent to zero-initialization.
446 static bool isTrivialFiller(Expr *E) {
447   if (!E)
448     return true;
449 
450   if (isa<ImplicitValueInitExpr>(E))
451     return true;
452 
453   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
454     if (ILE->getNumInits())
455       return false;
456     return isTrivialFiller(ILE->getArrayFiller());
457   }
458 
459   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
460     return Cons->getConstructor()->isDefaultConstructor() &&
461            Cons->getConstructor()->isTrivial();
462 
463   // FIXME: Are there other cases where we can avoid emitting an initializer?
464   return false;
465 }
466 
467 /// Emit initialization of an array from an initializer list.
468 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
469                                    QualType ArrayQTy, InitListExpr *E) {
470   uint64_t NumInitElements = E->getNumInits();
471 
472   uint64_t NumArrayElements = AType->getNumElements();
473   assert(NumInitElements <= NumArrayElements);
474 
475   QualType elementType =
476       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
477 
478   // DestPtr is an array*.  Construct an elementType* by drilling
479   // down a level.
480   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
481   llvm::Value *indices[] = { zero, zero };
482   llvm::Value *begin =
483     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
484 
485   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
486   CharUnits elementAlign =
487     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
488 
489   // Consider initializing the array by copying from a global. For this to be
490   // more efficient than per-element initialization, the size of the elements
491   // with explicit initializers should be large enough.
492   if (NumInitElements * elementSize.getQuantity() > 16 &&
493       elementType.isTriviallyCopyableType(CGF.getContext())) {
494     CodeGen::CodeGenModule &CGM = CGF.CGM;
495     ConstantEmitter Emitter(CGF);
496     LangAS AS = ArrayQTy.getAddressSpace();
497     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
498       auto GV = new llvm::GlobalVariable(
499           CGM.getModule(), C->getType(),
500           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
501           llvm::GlobalValue::PrivateLinkage, C, "constinit",
502           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
503           CGM.getContext().getTargetAddressSpace(AS));
504       Emitter.finalize(GV);
505       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
506       GV->setAlignment(Align.getAsAlign());
507       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
508       return;
509     }
510   }
511 
512   // Exception safety requires us to destroy all the
513   // already-constructed members if an initializer throws.
514   // For that, we'll need an EH cleanup.
515   QualType::DestructionKind dtorKind = elementType.isDestructedType();
516   Address endOfInit = Address::invalid();
517   EHScopeStack::stable_iterator cleanup;
518   llvm::Instruction *cleanupDominator = nullptr;
519   if (CGF.needsEHCleanup(dtorKind)) {
520     // In principle we could tell the cleanup where we are more
521     // directly, but the control flow can get so varied here that it
522     // would actually be quite complex.  Therefore we go through an
523     // alloca.
524     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
525                                      "arrayinit.endOfInit");
526     cleanupDominator = Builder.CreateStore(begin, endOfInit);
527     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
528                                          elementAlign,
529                                          CGF.getDestroyer(dtorKind));
530     cleanup = CGF.EHStack.stable_begin();
531 
532   // Otherwise, remember that we didn't need a cleanup.
533   } else {
534     dtorKind = QualType::DK_none;
535   }
536 
537   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
538 
539   // The 'current element to initialize'.  The invariants on this
540   // variable are complicated.  Essentially, after each iteration of
541   // the loop, it points to the last initialized element, except
542   // that it points to the beginning of the array before any
543   // elements have been initialized.
544   llvm::Value *element = begin;
545 
546   // Emit the explicit initializers.
547   for (uint64_t i = 0; i != NumInitElements; ++i) {
548     // Advance to the next element.
549     if (i > 0) {
550       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
551 
552       // Tell the cleanup that it needs to destroy up to this
553       // element.  TODO: some of these stores can be trivially
554       // observed to be unnecessary.
555       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
556     }
557 
558     LValue elementLV =
559       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
560     EmitInitializationToLValue(E->getInit(i), elementLV);
561   }
562 
563   // Check whether there's a non-trivial array-fill expression.
564   Expr *filler = E->getArrayFiller();
565   bool hasTrivialFiller = isTrivialFiller(filler);
566 
567   // Any remaining elements need to be zero-initialized, possibly
568   // using the filler expression.  We can skip this if the we're
569   // emitting to zeroed memory.
570   if (NumInitElements != NumArrayElements &&
571       !(Dest.isZeroed() && hasTrivialFiller &&
572         CGF.getTypes().isZeroInitializable(elementType))) {
573 
574     // Use an actual loop.  This is basically
575     //   do { *array++ = filler; } while (array != end);
576 
577     // Advance to the start of the rest of the array.
578     if (NumInitElements) {
579       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
580       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
581     }
582 
583     // Compute the end of the array.
584     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
585                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
586                                                  "arrayinit.end");
587 
588     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
589     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
590 
591     // Jump into the body.
592     CGF.EmitBlock(bodyBB);
593     llvm::PHINode *currentElement =
594       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
595     currentElement->addIncoming(element, entryBB);
596 
597     // Emit the actual filler expression.
598     {
599       // C++1z [class.temporary]p5:
600       //   when a default constructor is called to initialize an element of
601       //   an array with no corresponding initializer [...] the destruction of
602       //   every temporary created in a default argument is sequenced before
603       //   the construction of the next array element, if any
604       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
605       LValue elementLV =
606         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
607       if (filler)
608         EmitInitializationToLValue(filler, elementLV);
609       else
610         EmitNullInitializationToLValue(elementLV);
611     }
612 
613     // Move on to the next element.
614     llvm::Value *nextElement =
615       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
616 
617     // Tell the EH cleanup that we finished with the last element.
618     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
619 
620     // Leave the loop if we're done.
621     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
622                                              "arrayinit.done");
623     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
624     Builder.CreateCondBr(done, endBB, bodyBB);
625     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
626 
627     CGF.EmitBlock(endBB);
628   }
629 
630   // Leave the partial-array cleanup if we entered one.
631   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
632 }
633 
634 //===----------------------------------------------------------------------===//
635 //                            Visitor Methods
636 //===----------------------------------------------------------------------===//
637 
638 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
639   Visit(E->getSubExpr());
640 }
641 
642 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
643   // If this is a unique OVE, just visit its source expression.
644   if (e->isUnique())
645     Visit(e->getSourceExpr());
646   else
647     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
648 }
649 
650 void
651 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
652   if (Dest.isPotentiallyAliased() &&
653       E->getType().isPODType(CGF.getContext())) {
654     // For a POD type, just emit a load of the lvalue + a copy, because our
655     // compound literal might alias the destination.
656     EmitAggLoadOfLValue(E);
657     return;
658   }
659 
660   AggValueSlot Slot = EnsureSlot(E->getType());
661   CGF.EmitAggExpr(E->getInitializer(), Slot);
662 }
663 
664 /// Attempt to look through various unimportant expressions to find a
665 /// cast of the given kind.
666 static Expr *findPeephole(Expr *op, CastKind kind) {
667   while (true) {
668     op = op->IgnoreParens();
669     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
670       if (castE->getCastKind() == kind)
671         return castE->getSubExpr();
672       if (castE->getCastKind() == CK_NoOp)
673         continue;
674     }
675     return nullptr;
676   }
677 }
678 
679 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
680   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
681     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
682   switch (E->getCastKind()) {
683   case CK_Dynamic: {
684     // FIXME: Can this actually happen? We have no test coverage for it.
685     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
686     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
687                                       CodeGenFunction::TCK_Load);
688     // FIXME: Do we also need to handle property references here?
689     if (LV.isSimple())
690       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
691     else
692       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
693 
694     if (!Dest.isIgnored())
695       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
696     break;
697   }
698 
699   case CK_ToUnion: {
700     // Evaluate even if the destination is ignored.
701     if (Dest.isIgnored()) {
702       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
703                       /*ignoreResult=*/true);
704       break;
705     }
706 
707     // GCC union extension
708     QualType Ty = E->getSubExpr()->getType();
709     Address CastPtr =
710       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
711     EmitInitializationToLValue(E->getSubExpr(),
712                                CGF.MakeAddrLValue(CastPtr, Ty));
713     break;
714   }
715 
716   case CK_LValueToRValueBitCast: {
717     if (Dest.isIgnored()) {
718       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
719                       /*ignoreResult=*/true);
720       break;
721     }
722 
723     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
724     Address SourceAddress =
725         Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
726     Address DestAddress =
727         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
728     llvm::Value *SizeVal = llvm::ConstantInt::get(
729         CGF.SizeTy,
730         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
731     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
732     break;
733   }
734 
735   case CK_DerivedToBase:
736   case CK_BaseToDerived:
737   case CK_UncheckedDerivedToBase: {
738     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
739                 "should have been unpacked before we got here");
740   }
741 
742   case CK_NonAtomicToAtomic:
743   case CK_AtomicToNonAtomic: {
744     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
745 
746     // Determine the atomic and value types.
747     QualType atomicType = E->getSubExpr()->getType();
748     QualType valueType = E->getType();
749     if (isToAtomic) std::swap(atomicType, valueType);
750 
751     assert(atomicType->isAtomicType());
752     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
753                           atomicType->castAs<AtomicType>()->getValueType()));
754 
755     // Just recurse normally if we're ignoring the result or the
756     // atomic type doesn't change representation.
757     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
758       return Visit(E->getSubExpr());
759     }
760 
761     CastKind peepholeTarget =
762       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
763 
764     // These two cases are reverses of each other; try to peephole them.
765     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
766       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
767                                                      E->getType()) &&
768            "peephole significantly changed types?");
769       return Visit(op);
770     }
771 
772     // If we're converting an r-value of non-atomic type to an r-value
773     // of atomic type, just emit directly into the relevant sub-object.
774     if (isToAtomic) {
775       AggValueSlot valueDest = Dest;
776       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
777         // Zero-initialize.  (Strictly speaking, we only need to initialize
778         // the padding at the end, but this is simpler.)
779         if (!Dest.isZeroed())
780           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
781 
782         // Build a GEP to refer to the subobject.
783         Address valueAddr =
784             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
785         valueDest = AggValueSlot::forAddr(valueAddr,
786                                           valueDest.getQualifiers(),
787                                           valueDest.isExternallyDestructed(),
788                                           valueDest.requiresGCollection(),
789                                           valueDest.isPotentiallyAliased(),
790                                           AggValueSlot::DoesNotOverlap,
791                                           AggValueSlot::IsZeroed);
792       }
793 
794       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
795       return;
796     }
797 
798     // Otherwise, we're converting an atomic type to a non-atomic type.
799     // Make an atomic temporary, emit into that, and then copy the value out.
800     AggValueSlot atomicSlot =
801       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
802     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
803 
804     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
805     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
806     return EmitFinalDestCopy(valueType, rvalue);
807   }
808   case CK_AddressSpaceConversion:
809      return Visit(E->getSubExpr());
810 
811   case CK_LValueToRValue:
812     // If we're loading from a volatile type, force the destination
813     // into existence.
814     if (E->getSubExpr()->getType().isVolatileQualified()) {
815       EnsureDest(E->getType());
816       return Visit(E->getSubExpr());
817     }
818 
819     LLVM_FALLTHROUGH;
820 
821 
822   case CK_NoOp:
823   case CK_UserDefinedConversion:
824   case CK_ConstructorConversion:
825     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
826                                                    E->getType()) &&
827            "Implicit cast types must be compatible");
828     Visit(E->getSubExpr());
829     break;
830 
831   case CK_LValueBitCast:
832     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
833 
834   case CK_Dependent:
835   case CK_BitCast:
836   case CK_ArrayToPointerDecay:
837   case CK_FunctionToPointerDecay:
838   case CK_NullToPointer:
839   case CK_NullToMemberPointer:
840   case CK_BaseToDerivedMemberPointer:
841   case CK_DerivedToBaseMemberPointer:
842   case CK_MemberPointerToBoolean:
843   case CK_ReinterpretMemberPointer:
844   case CK_IntegralToPointer:
845   case CK_PointerToIntegral:
846   case CK_PointerToBoolean:
847   case CK_ToVoid:
848   case CK_VectorSplat:
849   case CK_IntegralCast:
850   case CK_BooleanToSignedIntegral:
851   case CK_IntegralToBoolean:
852   case CK_IntegralToFloating:
853   case CK_FloatingToIntegral:
854   case CK_FloatingToBoolean:
855   case CK_FloatingCast:
856   case CK_CPointerToObjCPointerCast:
857   case CK_BlockPointerToObjCPointerCast:
858   case CK_AnyPointerToBlockPointerCast:
859   case CK_ObjCObjectLValueCast:
860   case CK_FloatingRealToComplex:
861   case CK_FloatingComplexToReal:
862   case CK_FloatingComplexToBoolean:
863   case CK_FloatingComplexCast:
864   case CK_FloatingComplexToIntegralComplex:
865   case CK_IntegralRealToComplex:
866   case CK_IntegralComplexToReal:
867   case CK_IntegralComplexToBoolean:
868   case CK_IntegralComplexCast:
869   case CK_IntegralComplexToFloatingComplex:
870   case CK_ARCProduceObject:
871   case CK_ARCConsumeObject:
872   case CK_ARCReclaimReturnedObject:
873   case CK_ARCExtendBlockObject:
874   case CK_CopyAndAutoreleaseBlockObject:
875   case CK_BuiltinFnToFnPtr:
876   case CK_ZeroToOCLOpaqueType:
877 
878   case CK_IntToOCLSampler:
879   case CK_FixedPointCast:
880   case CK_FixedPointToBoolean:
881   case CK_FixedPointToIntegral:
882   case CK_IntegralToFixedPoint:
883     llvm_unreachable("cast kind invalid for aggregate types");
884   }
885 }
886 
887 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
888   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
889     EmitAggLoadOfLValue(E);
890     return;
891   }
892 
893   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
894     return CGF.EmitCallExpr(E, Slot);
895   });
896 }
897 
898 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
899   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
900     return CGF.EmitObjCMessageExpr(E, Slot);
901   });
902 }
903 
904 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
905   CGF.EmitIgnoredExpr(E->getLHS());
906   Visit(E->getRHS());
907 }
908 
909 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
910   CodeGenFunction::StmtExprEvaluation eval(CGF);
911   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
912 }
913 
914 enum CompareKind {
915   CK_Less,
916   CK_Greater,
917   CK_Equal,
918 };
919 
920 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
921                                 const BinaryOperator *E, llvm::Value *LHS,
922                                 llvm::Value *RHS, CompareKind Kind,
923                                 const char *NameSuffix = "") {
924   QualType ArgTy = E->getLHS()->getType();
925   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
926     ArgTy = CT->getElementType();
927 
928   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
929     assert(Kind == CK_Equal &&
930            "member pointers may only be compared for equality");
931     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
932         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
933   }
934 
935   // Compute the comparison instructions for the specified comparison kind.
936   struct CmpInstInfo {
937     const char *Name;
938     llvm::CmpInst::Predicate FCmp;
939     llvm::CmpInst::Predicate SCmp;
940     llvm::CmpInst::Predicate UCmp;
941   };
942   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
943     using FI = llvm::FCmpInst;
944     using II = llvm::ICmpInst;
945     switch (Kind) {
946     case CK_Less:
947       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
948     case CK_Greater:
949       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
950     case CK_Equal:
951       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
952     }
953     llvm_unreachable("Unrecognised CompareKind enum");
954   }();
955 
956   if (ArgTy->hasFloatingRepresentation())
957     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
958                               llvm::Twine(InstInfo.Name) + NameSuffix);
959   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
960     auto Inst =
961         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
962     return Builder.CreateICmp(Inst, LHS, RHS,
963                               llvm::Twine(InstInfo.Name) + NameSuffix);
964   }
965 
966   llvm_unreachable("unsupported aggregate binary expression should have "
967                    "already been handled");
968 }
969 
970 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
971   using llvm::BasicBlock;
972   using llvm::PHINode;
973   using llvm::Value;
974   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
975                                       E->getRHS()->getType()));
976   const ComparisonCategoryInfo &CmpInfo =
977       CGF.getContext().CompCategories.getInfoForType(E->getType());
978   assert(CmpInfo.Record->isTriviallyCopyable() &&
979          "cannot copy non-trivially copyable aggregate");
980 
981   QualType ArgTy = E->getLHS()->getType();
982 
983   // TODO: Handle comparing these types.
984   if (ArgTy->isVectorType())
985     return CGF.ErrorUnsupported(
986         E, "aggregate three-way comparison with vector arguments");
987   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
988       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
989       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
990     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
991   }
992   bool IsComplex = ArgTy->isAnyComplexType();
993 
994   // Evaluate the operands to the expression and extract their values.
995   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
996     RValue RV = CGF.EmitAnyExpr(E);
997     if (RV.isScalar())
998       return {RV.getScalarVal(), nullptr};
999     if (RV.isAggregate())
1000       return {RV.getAggregatePointer(), nullptr};
1001     assert(RV.isComplex());
1002     return RV.getComplexVal();
1003   };
1004   auto LHSValues = EmitOperand(E->getLHS()),
1005        RHSValues = EmitOperand(E->getRHS());
1006 
1007   auto EmitCmp = [&](CompareKind K) {
1008     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1009                              K, IsComplex ? ".r" : "");
1010     if (!IsComplex)
1011       return Cmp;
1012     assert(K == CompareKind::CK_Equal);
1013     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1014                                  RHSValues.second, K, ".i");
1015     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1016   };
1017   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1018     return Builder.getInt(VInfo->getIntValue());
1019   };
1020 
1021   Value *Select;
1022   if (ArgTy->isNullPtrType()) {
1023     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1024   } else if (CmpInfo.isEquality()) {
1025     Select = Builder.CreateSelect(
1026         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1027         EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq");
1028   } else if (!CmpInfo.isPartial()) {
1029     Value *SelectOne =
1030         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1031                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1032     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1033                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1034                                   SelectOne, "sel.eq");
1035   } else {
1036     Value *SelectEq = Builder.CreateSelect(
1037         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1038         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1039     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1040                                            EmitCmpRes(CmpInfo.getGreater()),
1041                                            SelectEq, "sel.gt");
1042     Select = Builder.CreateSelect(
1043         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1044   }
1045   // Create the return value in the destination slot.
1046   EnsureDest(E->getType());
1047   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1048 
1049   // Emit the address of the first (and only) field in the comparison category
1050   // type, and initialize it from the constant integer value selected above.
1051   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1052       DestLV, *CmpInfo.Record->field_begin());
1053   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1054 
1055   // All done! The result is in the Dest slot.
1056 }
1057 
1058 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1059   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1060     VisitPointerToDataMemberBinaryOperator(E);
1061   else
1062     CGF.ErrorUnsupported(E, "aggregate binary expression");
1063 }
1064 
1065 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1066                                                     const BinaryOperator *E) {
1067   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1068   EmitFinalDestCopy(E->getType(), LV);
1069 }
1070 
1071 /// Is the value of the given expression possibly a reference to or
1072 /// into a __block variable?
1073 static bool isBlockVarRef(const Expr *E) {
1074   // Make sure we look through parens.
1075   E = E->IgnoreParens();
1076 
1077   // Check for a direct reference to a __block variable.
1078   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1079     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1080     return (var && var->hasAttr<BlocksAttr>());
1081   }
1082 
1083   // More complicated stuff.
1084 
1085   // Binary operators.
1086   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1087     // For an assignment or pointer-to-member operation, just care
1088     // about the LHS.
1089     if (op->isAssignmentOp() || op->isPtrMemOp())
1090       return isBlockVarRef(op->getLHS());
1091 
1092     // For a comma, just care about the RHS.
1093     if (op->getOpcode() == BO_Comma)
1094       return isBlockVarRef(op->getRHS());
1095 
1096     // FIXME: pointer arithmetic?
1097     return false;
1098 
1099   // Check both sides of a conditional operator.
1100   } else if (const AbstractConditionalOperator *op
1101                = dyn_cast<AbstractConditionalOperator>(E)) {
1102     return isBlockVarRef(op->getTrueExpr())
1103         || isBlockVarRef(op->getFalseExpr());
1104 
1105   // OVEs are required to support BinaryConditionalOperators.
1106   } else if (const OpaqueValueExpr *op
1107                = dyn_cast<OpaqueValueExpr>(E)) {
1108     if (const Expr *src = op->getSourceExpr())
1109       return isBlockVarRef(src);
1110 
1111   // Casts are necessary to get things like (*(int*)&var) = foo().
1112   // We don't really care about the kind of cast here, except
1113   // we don't want to look through l2r casts, because it's okay
1114   // to get the *value* in a __block variable.
1115   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1116     if (cast->getCastKind() == CK_LValueToRValue)
1117       return false;
1118     return isBlockVarRef(cast->getSubExpr());
1119 
1120   // Handle unary operators.  Again, just aggressively look through
1121   // it, ignoring the operation.
1122   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1123     return isBlockVarRef(uop->getSubExpr());
1124 
1125   // Look into the base of a field access.
1126   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1127     return isBlockVarRef(mem->getBase());
1128 
1129   // Look into the base of a subscript.
1130   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1131     return isBlockVarRef(sub->getBase());
1132   }
1133 
1134   return false;
1135 }
1136 
1137 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1138   // For an assignment to work, the value on the right has
1139   // to be compatible with the value on the left.
1140   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1141                                                  E->getRHS()->getType())
1142          && "Invalid assignment");
1143 
1144   // If the LHS might be a __block variable, and the RHS can
1145   // potentially cause a block copy, we need to evaluate the RHS first
1146   // so that the assignment goes the right place.
1147   // This is pretty semantically fragile.
1148   if (isBlockVarRef(E->getLHS()) &&
1149       E->getRHS()->HasSideEffects(CGF.getContext())) {
1150     // Ensure that we have a destination, and evaluate the RHS into that.
1151     EnsureDest(E->getRHS()->getType());
1152     Visit(E->getRHS());
1153 
1154     // Now emit the LHS and copy into it.
1155     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1156 
1157     // That copy is an atomic copy if the LHS is atomic.
1158     if (LHS.getType()->isAtomicType() ||
1159         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1160       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1161       return;
1162     }
1163 
1164     EmitCopy(E->getLHS()->getType(),
1165              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1166                                      needsGC(E->getLHS()->getType()),
1167                                      AggValueSlot::IsAliased,
1168                                      AggValueSlot::MayOverlap),
1169              Dest);
1170     return;
1171   }
1172 
1173   LValue LHS = CGF.EmitLValue(E->getLHS());
1174 
1175   // If we have an atomic type, evaluate into the destination and then
1176   // do an atomic copy.
1177   if (LHS.getType()->isAtomicType() ||
1178       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1179     EnsureDest(E->getRHS()->getType());
1180     Visit(E->getRHS());
1181     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1182     return;
1183   }
1184 
1185   // Codegen the RHS so that it stores directly into the LHS.
1186   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1187       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1188       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1189   // A non-volatile aggregate destination might have volatile member.
1190   if (!LHSSlot.isVolatile() &&
1191       CGF.hasVolatileMember(E->getLHS()->getType()))
1192     LHSSlot.setVolatile(true);
1193 
1194   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1195 
1196   // Copy into the destination if the assignment isn't ignored.
1197   EmitFinalDestCopy(E->getType(), LHS);
1198 }
1199 
1200 void AggExprEmitter::
1201 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1202   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1203   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1204   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1205 
1206   // Bind the common expression if necessary.
1207   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1208 
1209   CodeGenFunction::ConditionalEvaluation eval(CGF);
1210   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1211                            CGF.getProfileCount(E));
1212 
1213   // Save whether the destination's lifetime is externally managed.
1214   bool isExternallyDestructed = Dest.isExternallyDestructed();
1215 
1216   eval.begin(CGF);
1217   CGF.EmitBlock(LHSBlock);
1218   CGF.incrementProfileCounter(E);
1219   Visit(E->getTrueExpr());
1220   eval.end(CGF);
1221 
1222   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1223   CGF.Builder.CreateBr(ContBlock);
1224 
1225   // If the result of an agg expression is unused, then the emission
1226   // of the LHS might need to create a destination slot.  That's fine
1227   // with us, and we can safely emit the RHS into the same slot, but
1228   // we shouldn't claim that it's already being destructed.
1229   Dest.setExternallyDestructed(isExternallyDestructed);
1230 
1231   eval.begin(CGF);
1232   CGF.EmitBlock(RHSBlock);
1233   Visit(E->getFalseExpr());
1234   eval.end(CGF);
1235 
1236   CGF.EmitBlock(ContBlock);
1237 }
1238 
1239 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1240   Visit(CE->getChosenSubExpr());
1241 }
1242 
1243 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1244   Address ArgValue = Address::invalid();
1245   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1246 
1247   // If EmitVAArg fails, emit an error.
1248   if (!ArgPtr.isValid()) {
1249     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1250     return;
1251   }
1252 
1253   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1254 }
1255 
1256 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1257   // Ensure that we have a slot, but if we already do, remember
1258   // whether it was externally destructed.
1259   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1260   EnsureDest(E->getType());
1261 
1262   // We're going to push a destructor if there isn't already one.
1263   Dest.setExternallyDestructed();
1264 
1265   Visit(E->getSubExpr());
1266 
1267   // Push that destructor we promised.
1268   if (!wasExternallyDestructed)
1269     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1270 }
1271 
1272 void
1273 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1274   AggValueSlot Slot = EnsureSlot(E->getType());
1275   CGF.EmitCXXConstructExpr(E, Slot);
1276 }
1277 
1278 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1279     const CXXInheritedCtorInitExpr *E) {
1280   AggValueSlot Slot = EnsureSlot(E->getType());
1281   CGF.EmitInheritedCXXConstructorCall(
1282       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1283       E->inheritedFromVBase(), E);
1284 }
1285 
1286 void
1287 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1288   AggValueSlot Slot = EnsureSlot(E->getType());
1289   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1290 
1291   // We'll need to enter cleanup scopes in case any of the element
1292   // initializers throws an exception.
1293   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1294   llvm::Instruction *CleanupDominator = nullptr;
1295 
1296   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1297   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1298                                                e = E->capture_init_end();
1299        i != e; ++i, ++CurField) {
1300     // Emit initialization
1301     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1302     if (CurField->hasCapturedVLAType()) {
1303       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1304       continue;
1305     }
1306 
1307     EmitInitializationToLValue(*i, LV);
1308 
1309     // Push a destructor if necessary.
1310     if (QualType::DestructionKind DtorKind =
1311             CurField->getType().isDestructedType()) {
1312       assert(LV.isSimple());
1313       if (CGF.needsEHCleanup(DtorKind)) {
1314         if (!CleanupDominator)
1315           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1316               CGF.Int8Ty,
1317               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1318               CharUnits::One()); // placeholder
1319 
1320         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1321                         CGF.getDestroyer(DtorKind), false);
1322         Cleanups.push_back(CGF.EHStack.stable_begin());
1323       }
1324     }
1325   }
1326 
1327   // Deactivate all the partial cleanups in reverse order, which
1328   // generally means popping them.
1329   for (unsigned i = Cleanups.size(); i != 0; --i)
1330     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1331 
1332   // Destroy the placeholder if we made one.
1333   if (CleanupDominator)
1334     CleanupDominator->eraseFromParent();
1335 }
1336 
1337 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1338   CGF.enterFullExpression(E);
1339   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1340   Visit(E->getSubExpr());
1341 }
1342 
1343 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1344   QualType T = E->getType();
1345   AggValueSlot Slot = EnsureSlot(T);
1346   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1347 }
1348 
1349 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1350   QualType T = E->getType();
1351   AggValueSlot Slot = EnsureSlot(T);
1352   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1353 }
1354 
1355 /// isSimpleZero - If emitting this value will obviously just cause a store of
1356 /// zero to memory, return true.  This can return false if uncertain, so it just
1357 /// handles simple cases.
1358 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1359   E = E->IgnoreParens();
1360 
1361   // 0
1362   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1363     return IL->getValue() == 0;
1364   // +0.0
1365   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1366     return FL->getValue().isPosZero();
1367   // int()
1368   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1369       CGF.getTypes().isZeroInitializable(E->getType()))
1370     return true;
1371   // (int*)0 - Null pointer expressions.
1372   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1373     return ICE->getCastKind() == CK_NullToPointer &&
1374            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1375            !E->HasSideEffects(CGF.getContext());
1376   // '\0'
1377   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1378     return CL->getValue() == 0;
1379 
1380   // Otherwise, hard case: conservatively return false.
1381   return false;
1382 }
1383 
1384 
1385 void
1386 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1387   QualType type = LV.getType();
1388   // FIXME: Ignore result?
1389   // FIXME: Are initializers affected by volatile?
1390   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1391     // Storing "i32 0" to a zero'd memory location is a noop.
1392     return;
1393   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1394     return EmitNullInitializationToLValue(LV);
1395   } else if (isa<NoInitExpr>(E)) {
1396     // Do nothing.
1397     return;
1398   } else if (type->isReferenceType()) {
1399     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1400     return CGF.EmitStoreThroughLValue(RV, LV);
1401   }
1402 
1403   switch (CGF.getEvaluationKind(type)) {
1404   case TEK_Complex:
1405     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1406     return;
1407   case TEK_Aggregate:
1408     CGF.EmitAggExpr(
1409         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1410                                    AggValueSlot::DoesNotNeedGCBarriers,
1411                                    AggValueSlot::IsNotAliased,
1412                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1413     return;
1414   case TEK_Scalar:
1415     if (LV.isSimple()) {
1416       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1417     } else {
1418       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1419     }
1420     return;
1421   }
1422   llvm_unreachable("bad evaluation kind");
1423 }
1424 
1425 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1426   QualType type = lv.getType();
1427 
1428   // If the destination slot is already zeroed out before the aggregate is
1429   // copied into it, we don't have to emit any zeros here.
1430   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1431     return;
1432 
1433   if (CGF.hasScalarEvaluationKind(type)) {
1434     // For non-aggregates, we can store the appropriate null constant.
1435     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1436     // Note that the following is not equivalent to
1437     // EmitStoreThroughBitfieldLValue for ARC types.
1438     if (lv.isBitField()) {
1439       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1440     } else {
1441       assert(lv.isSimple());
1442       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1443     }
1444   } else {
1445     // There's a potential optimization opportunity in combining
1446     // memsets; that would be easy for arrays, but relatively
1447     // difficult for structures with the current code.
1448     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1449   }
1450 }
1451 
1452 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1453 #if 0
1454   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1455   // (Length of globals? Chunks of zeroed-out space?).
1456   //
1457   // If we can, prefer a copy from a global; this is a lot less code for long
1458   // globals, and it's easier for the current optimizers to analyze.
1459   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1460     llvm::GlobalVariable* GV =
1461     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1462                              llvm::GlobalValue::InternalLinkage, C, "");
1463     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1464     return;
1465   }
1466 #endif
1467   if (E->hadArrayRangeDesignator())
1468     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1469 
1470   if (E->isTransparent())
1471     return Visit(E->getInit(0));
1472 
1473   AggValueSlot Dest = EnsureSlot(E->getType());
1474 
1475   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1476 
1477   // Handle initialization of an array.
1478   if (E->getType()->isArrayType()) {
1479     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1480     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1481     return;
1482   }
1483 
1484   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1485 
1486   // Do struct initialization; this code just sets each individual member
1487   // to the approprate value.  This makes bitfield support automatic;
1488   // the disadvantage is that the generated code is more difficult for
1489   // the optimizer, especially with bitfields.
1490   unsigned NumInitElements = E->getNumInits();
1491   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1492 
1493   // We'll need to enter cleanup scopes in case any of the element
1494   // initializers throws an exception.
1495   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1496   llvm::Instruction *cleanupDominator = nullptr;
1497   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1498     cleanups.push_back(cleanup);
1499     if (!cleanupDominator) // create placeholder once needed
1500       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1501           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1502           CharUnits::One());
1503   };
1504 
1505   unsigned curInitIndex = 0;
1506 
1507   // Emit initialization of base classes.
1508   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1509     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1510            "missing initializer for base class");
1511     for (auto &Base : CXXRD->bases()) {
1512       assert(!Base.isVirtual() && "should not see vbases here");
1513       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1514       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1515           Dest.getAddress(), CXXRD, BaseRD,
1516           /*isBaseVirtual*/ false);
1517       AggValueSlot AggSlot = AggValueSlot::forAddr(
1518           V, Qualifiers(),
1519           AggValueSlot::IsDestructed,
1520           AggValueSlot::DoesNotNeedGCBarriers,
1521           AggValueSlot::IsNotAliased,
1522           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1523       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1524 
1525       if (QualType::DestructionKind dtorKind =
1526               Base.getType().isDestructedType()) {
1527         CGF.pushDestroy(dtorKind, V, Base.getType());
1528         addCleanup(CGF.EHStack.stable_begin());
1529       }
1530     }
1531   }
1532 
1533   // Prepare a 'this' for CXXDefaultInitExprs.
1534   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1535 
1536   if (record->isUnion()) {
1537     // Only initialize one field of a union. The field itself is
1538     // specified by the initializer list.
1539     if (!E->getInitializedFieldInUnion()) {
1540       // Empty union; we have nothing to do.
1541 
1542 #ifndef NDEBUG
1543       // Make sure that it's really an empty and not a failure of
1544       // semantic analysis.
1545       for (const auto *Field : record->fields())
1546         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1547 #endif
1548       return;
1549     }
1550 
1551     // FIXME: volatility
1552     FieldDecl *Field = E->getInitializedFieldInUnion();
1553 
1554     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1555     if (NumInitElements) {
1556       // Store the initializer into the field
1557       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1558     } else {
1559       // Default-initialize to null.
1560       EmitNullInitializationToLValue(FieldLoc);
1561     }
1562 
1563     return;
1564   }
1565 
1566   // Here we iterate over the fields; this makes it simpler to both
1567   // default-initialize fields and skip over unnamed fields.
1568   for (const auto *field : record->fields()) {
1569     // We're done once we hit the flexible array member.
1570     if (field->getType()->isIncompleteArrayType())
1571       break;
1572 
1573     // Always skip anonymous bitfields.
1574     if (field->isUnnamedBitfield())
1575       continue;
1576 
1577     // We're done if we reach the end of the explicit initializers, we
1578     // have a zeroed object, and the rest of the fields are
1579     // zero-initializable.
1580     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1581         CGF.getTypes().isZeroInitializable(E->getType()))
1582       break;
1583 
1584 
1585     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1586     // We never generate write-barries for initialized fields.
1587     LV.setNonGC(true);
1588 
1589     if (curInitIndex < NumInitElements) {
1590       // Store the initializer into the field.
1591       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1592     } else {
1593       // We're out of initializers; default-initialize to null
1594       EmitNullInitializationToLValue(LV);
1595     }
1596 
1597     // Push a destructor if necessary.
1598     // FIXME: if we have an array of structures, all explicitly
1599     // initialized, we can end up pushing a linear number of cleanups.
1600     bool pushedCleanup = false;
1601     if (QualType::DestructionKind dtorKind
1602           = field->getType().isDestructedType()) {
1603       assert(LV.isSimple());
1604       if (CGF.needsEHCleanup(dtorKind)) {
1605         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1606                         CGF.getDestroyer(dtorKind), false);
1607         addCleanup(CGF.EHStack.stable_begin());
1608         pushedCleanup = true;
1609       }
1610     }
1611 
1612     // If the GEP didn't get used because of a dead zero init or something
1613     // else, clean it up for -O0 builds and general tidiness.
1614     if (!pushedCleanup && LV.isSimple())
1615       if (llvm::GetElementPtrInst *GEP =
1616               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1617         if (GEP->use_empty())
1618           GEP->eraseFromParent();
1619   }
1620 
1621   // Deactivate all the partial cleanups in reverse order, which
1622   // generally means popping them.
1623   assert((cleanupDominator || cleanups.empty()) &&
1624          "Missing cleanupDominator before deactivating cleanup blocks");
1625   for (unsigned i = cleanups.size(); i != 0; --i)
1626     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1627 
1628   // Destroy the placeholder if we made one.
1629   if (cleanupDominator)
1630     cleanupDominator->eraseFromParent();
1631 }
1632 
1633 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1634                                             llvm::Value *outerBegin) {
1635   // Emit the common subexpression.
1636   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1637 
1638   Address destPtr = EnsureSlot(E->getType()).getAddress();
1639   uint64_t numElements = E->getArraySize().getZExtValue();
1640 
1641   if (!numElements)
1642     return;
1643 
1644   // destPtr is an array*. Construct an elementType* by drilling down a level.
1645   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1646   llvm::Value *indices[] = {zero, zero};
1647   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1648                                                  "arrayinit.begin");
1649 
1650   // Prepare to special-case multidimensional array initialization: we avoid
1651   // emitting multiple destructor loops in that case.
1652   if (!outerBegin)
1653     outerBegin = begin;
1654   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1655 
1656   QualType elementType =
1657       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1658   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1659   CharUnits elementAlign =
1660       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1661 
1662   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1663   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1664 
1665   // Jump into the body.
1666   CGF.EmitBlock(bodyBB);
1667   llvm::PHINode *index =
1668       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1669   index->addIncoming(zero, entryBB);
1670   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1671 
1672   // Prepare for a cleanup.
1673   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1674   EHScopeStack::stable_iterator cleanup;
1675   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1676     if (outerBegin->getType() != element->getType())
1677       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1678     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1679                                        elementAlign,
1680                                        CGF.getDestroyer(dtorKind));
1681     cleanup = CGF.EHStack.stable_begin();
1682   } else {
1683     dtorKind = QualType::DK_none;
1684   }
1685 
1686   // Emit the actual filler expression.
1687   {
1688     // Temporaries created in an array initialization loop are destroyed
1689     // at the end of each iteration.
1690     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1691     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1692     LValue elementLV =
1693         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1694 
1695     if (InnerLoop) {
1696       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1697       auto elementSlot = AggValueSlot::forLValue(
1698           elementLV, CGF, AggValueSlot::IsDestructed,
1699           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1700           AggValueSlot::DoesNotOverlap);
1701       AggExprEmitter(CGF, elementSlot, false)
1702           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1703     } else
1704       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1705   }
1706 
1707   // Move on to the next element.
1708   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1709       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1710   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1711 
1712   // Leave the loop if we're done.
1713   llvm::Value *done = Builder.CreateICmpEQ(
1714       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1715       "arrayinit.done");
1716   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1717   Builder.CreateCondBr(done, endBB, bodyBB);
1718 
1719   CGF.EmitBlock(endBB);
1720 
1721   // Leave the partial-array cleanup if we entered one.
1722   if (dtorKind)
1723     CGF.DeactivateCleanupBlock(cleanup, index);
1724 }
1725 
1726 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1727   AggValueSlot Dest = EnsureSlot(E->getType());
1728 
1729   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1730   EmitInitializationToLValue(E->getBase(), DestLV);
1731   VisitInitListExpr(E->getUpdater());
1732 }
1733 
1734 //===----------------------------------------------------------------------===//
1735 //                        Entry Points into this File
1736 //===----------------------------------------------------------------------===//
1737 
1738 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1739 /// non-zero bytes that will be stored when outputting the initializer for the
1740 /// specified initializer expression.
1741 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1742   E = E->IgnoreParens();
1743 
1744   // 0 and 0.0 won't require any non-zero stores!
1745   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1746 
1747   // If this is an initlist expr, sum up the size of sizes of the (present)
1748   // elements.  If this is something weird, assume the whole thing is non-zero.
1749   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1750   while (ILE && ILE->isTransparent())
1751     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1752   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1753     return CGF.getContext().getTypeSizeInChars(E->getType());
1754 
1755   // InitListExprs for structs have to be handled carefully.  If there are
1756   // reference members, we need to consider the size of the reference, not the
1757   // referencee.  InitListExprs for unions and arrays can't have references.
1758   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1759     if (!RT->isUnionType()) {
1760       RecordDecl *SD = RT->getDecl();
1761       CharUnits NumNonZeroBytes = CharUnits::Zero();
1762 
1763       unsigned ILEElement = 0;
1764       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1765         while (ILEElement != CXXRD->getNumBases())
1766           NumNonZeroBytes +=
1767               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1768       for (const auto *Field : SD->fields()) {
1769         // We're done once we hit the flexible array member or run out of
1770         // InitListExpr elements.
1771         if (Field->getType()->isIncompleteArrayType() ||
1772             ILEElement == ILE->getNumInits())
1773           break;
1774         if (Field->isUnnamedBitfield())
1775           continue;
1776 
1777         const Expr *E = ILE->getInit(ILEElement++);
1778 
1779         // Reference values are always non-null and have the width of a pointer.
1780         if (Field->getType()->isReferenceType())
1781           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1782               CGF.getTarget().getPointerWidth(0));
1783         else
1784           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1785       }
1786 
1787       return NumNonZeroBytes;
1788     }
1789   }
1790 
1791 
1792   CharUnits NumNonZeroBytes = CharUnits::Zero();
1793   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1794     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1795   return NumNonZeroBytes;
1796 }
1797 
1798 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1799 /// zeros in it, emit a memset and avoid storing the individual zeros.
1800 ///
1801 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1802                                      CodeGenFunction &CGF) {
1803   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1804   // volatile stores.
1805   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1806     return;
1807 
1808   // C++ objects with a user-declared constructor don't need zero'ing.
1809   if (CGF.getLangOpts().CPlusPlus)
1810     if (const RecordType *RT = CGF.getContext()
1811                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1812       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1813       if (RD->hasUserDeclaredConstructor())
1814         return;
1815     }
1816 
1817   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1818   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1819   if (Size <= CharUnits::fromQuantity(16))
1820     return;
1821 
1822   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1823   // we prefer to emit memset + individual stores for the rest.
1824   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1825   if (NumNonZeroBytes*4 > Size)
1826     return;
1827 
1828   // Okay, it seems like a good idea to use an initial memset, emit the call.
1829   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1830 
1831   Address Loc = Slot.getAddress();
1832   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1833   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1834 
1835   // Tell the AggExprEmitter that the slot is known zero.
1836   Slot.setZeroed();
1837 }
1838 
1839 
1840 
1841 
1842 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1843 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1844 /// the value of the aggregate expression is not needed.  If VolatileDest is
1845 /// true, DestPtr cannot be 0.
1846 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1847   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1848          "Invalid aggregate expression to emit");
1849   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1850          "slot has bits but no address");
1851 
1852   // Optimize the slot if possible.
1853   CheckAggExprForMemSetUse(Slot, E, *this);
1854 
1855   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1856 }
1857 
1858 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1859   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1860   Address Temp = CreateMemTemp(E->getType());
1861   LValue LV = MakeAddrLValue(Temp, E->getType());
1862   EmitAggExpr(E, AggValueSlot::forLValue(
1863                      LV, *this, AggValueSlot::IsNotDestructed,
1864                      AggValueSlot::DoesNotNeedGCBarriers,
1865                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
1866   return LV;
1867 }
1868 
1869 AggValueSlot::Overlap_t
1870 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1871   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1872     return AggValueSlot::DoesNotOverlap;
1873 
1874   // If the field lies entirely within the enclosing class's nvsize, its tail
1875   // padding cannot overlap any already-initialized object. (The only subobjects
1876   // with greater addresses that might already be initialized are vbases.)
1877   const RecordDecl *ClassRD = FD->getParent();
1878   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1879   if (Layout.getFieldOffset(FD->getFieldIndex()) +
1880           getContext().getTypeSize(FD->getType()) <=
1881       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1882     return AggValueSlot::DoesNotOverlap;
1883 
1884   // The tail padding may contain values we need to preserve.
1885   return AggValueSlot::MayOverlap;
1886 }
1887 
1888 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1889     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1890   // If the most-derived object is a field declared with [[no_unique_address]],
1891   // the tail padding of any virtual base could be reused for other subobjects
1892   // of that field's class.
1893   if (IsVirtual)
1894     return AggValueSlot::MayOverlap;
1895 
1896   // If the base class is laid out entirely within the nvsize of the derived
1897   // class, its tail padding cannot yet be initialized, so we can issue
1898   // stores at the full width of the base class.
1899   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1900   if (Layout.getBaseClassOffset(BaseRD) +
1901           getContext().getASTRecordLayout(BaseRD).getSize() <=
1902       Layout.getNonVirtualSize())
1903     return AggValueSlot::DoesNotOverlap;
1904 
1905   // The tail padding may contain values we need to preserve.
1906   return AggValueSlot::MayOverlap;
1907 }
1908 
1909 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1910                                         AggValueSlot::Overlap_t MayOverlap,
1911                                         bool isVolatile) {
1912   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1913 
1914   Address DestPtr = Dest.getAddress(*this);
1915   Address SrcPtr = Src.getAddress(*this);
1916 
1917   if (getLangOpts().CPlusPlus) {
1918     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1919       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1920       assert((Record->hasTrivialCopyConstructor() ||
1921               Record->hasTrivialCopyAssignment() ||
1922               Record->hasTrivialMoveConstructor() ||
1923               Record->hasTrivialMoveAssignment() ||
1924               Record->isUnion()) &&
1925              "Trying to aggregate-copy a type without a trivial copy/move "
1926              "constructor or assignment operator");
1927       // Ignore empty classes in C++.
1928       if (Record->isEmpty())
1929         return;
1930     }
1931   }
1932 
1933   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1934   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1935   // read from another object that overlaps in anyway the storage of the first
1936   // object, then the overlap shall be exact and the two objects shall have
1937   // qualified or unqualified versions of a compatible type."
1938   //
1939   // memcpy is not defined if the source and destination pointers are exactly
1940   // equal, but other compilers do this optimization, and almost every memcpy
1941   // implementation handles this case safely.  If there is a libc that does not
1942   // safely handle this, we can add a target hook.
1943 
1944   // Get data size info for this aggregate. Don't copy the tail padding if this
1945   // might be a potentially-overlapping subobject, since the tail padding might
1946   // be occupied by a different object. Otherwise, copying it is fine.
1947   std::pair<CharUnits, CharUnits> TypeInfo;
1948   if (MayOverlap)
1949     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1950   else
1951     TypeInfo = getContext().getTypeInfoInChars(Ty);
1952 
1953   llvm::Value *SizeVal = nullptr;
1954   if (TypeInfo.first.isZero()) {
1955     // But note that getTypeInfo returns 0 for a VLA.
1956     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1957             getContext().getAsArrayType(Ty))) {
1958       QualType BaseEltTy;
1959       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1960       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1961       assert(!TypeInfo.first.isZero());
1962       SizeVal = Builder.CreateNUWMul(
1963           SizeVal,
1964           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1965     }
1966   }
1967   if (!SizeVal) {
1968     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1969   }
1970 
1971   // FIXME: If we have a volatile struct, the optimizer can remove what might
1972   // appear to be `extra' memory ops:
1973   //
1974   // volatile struct { int i; } a, b;
1975   //
1976   // int main() {
1977   //   a = b;
1978   //   a = b;
1979   // }
1980   //
1981   // we need to use a different call here.  We use isVolatile to indicate when
1982   // either the source or the destination is volatile.
1983 
1984   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1985   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1986 
1987   // Don't do any of the memmove_collectable tests if GC isn't set.
1988   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1989     // fall through
1990   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1991     RecordDecl *Record = RecordTy->getDecl();
1992     if (Record->hasObjectMember()) {
1993       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1994                                                     SizeVal);
1995       return;
1996     }
1997   } else if (Ty->isArrayType()) {
1998     QualType BaseType = getContext().getBaseElementType(Ty);
1999     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2000       if (RecordTy->getDecl()->hasObjectMember()) {
2001         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2002                                                       SizeVal);
2003         return;
2004       }
2005     }
2006   }
2007 
2008   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2009 
2010   // Determine the metadata to describe the position of any padding in this
2011   // memcpy, as well as the TBAA tags for the members of the struct, in case
2012   // the optimizer wishes to expand it in to scalar memory operations.
2013   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2014     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2015 
2016   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2017     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2018         Dest.getTBAAInfo(), Src.getTBAAInfo());
2019     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2020   }
2021 }
2022