1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   /// We want to use 'dest' as the return slot except under two
39   /// conditions:
40   ///   - The destination slot requires garbage collection, so we
41   ///     need to use the GC API.
42   ///   - The destination slot is potentially aliased.
43   bool shouldUseDestForReturnSlot() const {
44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45   }
46 
47   ReturnValueSlot getReturnValueSlot() const {
48     if (!shouldUseDestForReturnSlot())
49       return ReturnValueSlot();
50 
51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52   }
53 
54   AggValueSlot EnsureSlot(QualType T) {
55     if (!Dest.isIgnored()) return Dest;
56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
61                  bool ignore)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63       IgnoreResult(ignore) {
64   }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
76   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
77   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
78                          unsigned Alignment = 0);
79 
80   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
81 
82   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
83     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
84       return AggValueSlot::NeedsGCBarriers;
85     return AggValueSlot::DoesNotNeedGCBarriers;
86   }
87 
88   bool TypeRequiresGCollection(QualType T);
89 
90   //===--------------------------------------------------------------------===//
91   //                            Visitor Methods
92   //===--------------------------------------------------------------------===//
93 
94   void VisitStmt(Stmt *S) {
95     CGF.ErrorUnsupported(S, "aggregate expression");
96   }
97   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
98   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
99     Visit(GE->getResultExpr());
100   }
101   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
102   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
103     return Visit(E->getReplacement());
104   }
105 
106   // l-values.
107   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
108   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
109   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
110   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
111   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
112   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
113     EmitAggLoadOfLValue(E);
114   }
115   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
116     EmitAggLoadOfLValue(E);
117   }
118   void VisitPredefinedExpr(const PredefinedExpr *E) {
119     EmitAggLoadOfLValue(E);
120   }
121 
122   // Operators.
123   void VisitCastExpr(CastExpr *E);
124   void VisitCallExpr(const CallExpr *E);
125   void VisitStmtExpr(const StmtExpr *E);
126   void VisitBinaryOperator(const BinaryOperator *BO);
127   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
128   void VisitBinAssign(const BinaryOperator *E);
129   void VisitBinComma(const BinaryOperator *E);
130 
131   void VisitObjCMessageExpr(ObjCMessageExpr *E);
132   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
133     EmitAggLoadOfLValue(E);
134   }
135 
136   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
137   void VisitChooseExpr(const ChooseExpr *CE);
138   void VisitInitListExpr(InitListExpr *E);
139   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
140   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
141     Visit(DAE->getExpr());
142   }
143   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
144   void VisitCXXConstructExpr(const CXXConstructExpr *E);
145   void VisitExprWithCleanups(ExprWithCleanups *E);
146   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
147   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
148   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
149   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
150 
151   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
152     if (E->isGLValue()) {
153       LValue LV = CGF.EmitPseudoObjectLValue(E);
154       return EmitFinalDestCopy(E, LV);
155     }
156 
157     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
158   }
159 
160   void VisitVAArgExpr(VAArgExpr *E);
161 
162   void EmitInitializationToLValue(Expr *E, LValue Address);
163   void EmitNullInitializationToLValue(LValue Address);
164   //  case Expr::ChooseExprClass:
165   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
166   void VisitAtomicExpr(AtomicExpr *E) {
167     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
168   }
169 };
170 }  // end anonymous namespace.
171 
172 //===----------------------------------------------------------------------===//
173 //                                Utilities
174 //===----------------------------------------------------------------------===//
175 
176 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
177 /// represents a value lvalue, this method emits the address of the lvalue,
178 /// then loads the result into DestPtr.
179 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
180   LValue LV = CGF.EmitLValue(E);
181   EmitFinalDestCopy(E, LV);
182 }
183 
184 /// \brief True if the given aggregate type requires special GC API calls.
185 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
186   // Only record types have members that might require garbage collection.
187   const RecordType *RecordTy = T->getAs<RecordType>();
188   if (!RecordTy) return false;
189 
190   // Don't mess with non-trivial C++ types.
191   RecordDecl *Record = RecordTy->getDecl();
192   if (isa<CXXRecordDecl>(Record) &&
193       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
194        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
195     return false;
196 
197   // Check whether the type has an object member.
198   return Record->hasObjectMember();
199 }
200 
201 /// \brief Perform the final move to DestPtr if for some reason
202 /// getReturnValueSlot() didn't use it directly.
203 ///
204 /// The idea is that you do something like this:
205 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
206 ///   EmitMoveFromReturnSlot(E, Result);
207 ///
208 /// If nothing interferes, this will cause the result to be emitted
209 /// directly into the return value slot.  Otherwise, a final move
210 /// will be performed.
211 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
212   if (shouldUseDestForReturnSlot()) {
213     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
214     // The possibility of undef rvalues complicates that a lot,
215     // though, so we can't really assert.
216     return;
217   }
218 
219   // Otherwise, do a final copy,
220   assert(Dest.getAddr() != Src.getAggregateAddr());
221   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
222 }
223 
224 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
225 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
226                                        unsigned Alignment) {
227   assert(Src.isAggregate() && "value must be aggregate value!");
228 
229   // If Dest is ignored, then we're evaluating an aggregate expression
230   // in a context (like an expression statement) that doesn't care
231   // about the result.  C says that an lvalue-to-rvalue conversion is
232   // performed in these cases; C++ says that it is not.  In either
233   // case, we don't actually need to do anything unless the value is
234   // volatile.
235   if (Dest.isIgnored()) {
236     if (!Src.isVolatileQualified() ||
237         CGF.CGM.getLangOptions().CPlusPlus ||
238         (IgnoreResult && Ignore))
239       return;
240 
241     // If the source is volatile, we must read from it; to do that, we need
242     // some place to put it.
243     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
244   }
245 
246   if (Dest.requiresGCollection()) {
247     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
248     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
249     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
250     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
251                                                       Dest.getAddr(),
252                                                       Src.getAggregateAddr(),
253                                                       SizeVal);
254     return;
255   }
256   // If the result of the assignment is used, copy the LHS there also.
257   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
258   // from the source as well, as we can't eliminate it if either operand
259   // is volatile, unless copy has volatile for both source and destination..
260   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
261                         Dest.isVolatile()|Src.isVolatileQualified(),
262                         Alignment);
263 }
264 
265 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
266 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
267   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
268 
269   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
270   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
271 }
272 
273 //===----------------------------------------------------------------------===//
274 //                            Visitor Methods
275 //===----------------------------------------------------------------------===//
276 
277 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
278   Visit(E->GetTemporaryExpr());
279 }
280 
281 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
282   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
283 }
284 
285 void
286 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
287   if (E->getType().isPODType(CGF.getContext())) {
288     // For a POD type, just emit a load of the lvalue + a copy, because our
289     // compound literal might alias the destination.
290     // FIXME: This is a band-aid; the real problem appears to be in our handling
291     // of assignments, where we store directly into the LHS without checking
292     // whether anything in the RHS aliases.
293     EmitAggLoadOfLValue(E);
294     return;
295   }
296 
297   AggValueSlot Slot = EnsureSlot(E->getType());
298   CGF.EmitAggExpr(E->getInitializer(), Slot);
299 }
300 
301 
302 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
303   switch (E->getCastKind()) {
304   case CK_Dynamic: {
305     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
306     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
307     // FIXME: Do we also need to handle property references here?
308     if (LV.isSimple())
309       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
310     else
311       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
312 
313     if (!Dest.isIgnored())
314       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
315     break;
316   }
317 
318   case CK_ToUnion: {
319     if (Dest.isIgnored()) break;
320 
321     // GCC union extension
322     QualType Ty = E->getSubExpr()->getType();
323     QualType PtrTy = CGF.getContext().getPointerType(Ty);
324     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
325                                                  CGF.ConvertType(PtrTy));
326     EmitInitializationToLValue(E->getSubExpr(),
327                                CGF.MakeAddrLValue(CastPtr, Ty));
328     break;
329   }
330 
331   case CK_DerivedToBase:
332   case CK_BaseToDerived:
333   case CK_UncheckedDerivedToBase: {
334     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
335                 "should have been unpacked before we got here");
336   }
337 
338   case CK_LValueToRValue: // hope for downstream optimization
339   case CK_NoOp:
340   case CK_AtomicToNonAtomic:
341   case CK_NonAtomicToAtomic:
342   case CK_UserDefinedConversion:
343   case CK_ConstructorConversion:
344     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
345                                                    E->getType()) &&
346            "Implicit cast types must be compatible");
347     Visit(E->getSubExpr());
348     break;
349 
350   case CK_LValueBitCast:
351     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
352 
353   case CK_Dependent:
354   case CK_BitCast:
355   case CK_ArrayToPointerDecay:
356   case CK_FunctionToPointerDecay:
357   case CK_NullToPointer:
358   case CK_NullToMemberPointer:
359   case CK_BaseToDerivedMemberPointer:
360   case CK_DerivedToBaseMemberPointer:
361   case CK_MemberPointerToBoolean:
362   case CK_IntegralToPointer:
363   case CK_PointerToIntegral:
364   case CK_PointerToBoolean:
365   case CK_ToVoid:
366   case CK_VectorSplat:
367   case CK_IntegralCast:
368   case CK_IntegralToBoolean:
369   case CK_IntegralToFloating:
370   case CK_FloatingToIntegral:
371   case CK_FloatingToBoolean:
372   case CK_FloatingCast:
373   case CK_CPointerToObjCPointerCast:
374   case CK_BlockPointerToObjCPointerCast:
375   case CK_AnyPointerToBlockPointerCast:
376   case CK_ObjCObjectLValueCast:
377   case CK_FloatingRealToComplex:
378   case CK_FloatingComplexToReal:
379   case CK_FloatingComplexToBoolean:
380   case CK_FloatingComplexCast:
381   case CK_FloatingComplexToIntegralComplex:
382   case CK_IntegralRealToComplex:
383   case CK_IntegralComplexToReal:
384   case CK_IntegralComplexToBoolean:
385   case CK_IntegralComplexCast:
386   case CK_IntegralComplexToFloatingComplex:
387   case CK_ARCProduceObject:
388   case CK_ARCConsumeObject:
389   case CK_ARCReclaimReturnedObject:
390   case CK_ARCExtendBlockObject:
391     llvm_unreachable("cast kind invalid for aggregate types");
392   }
393 }
394 
395 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
396   if (E->getCallReturnType()->isReferenceType()) {
397     EmitAggLoadOfLValue(E);
398     return;
399   }
400 
401   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
402   EmitMoveFromReturnSlot(E, RV);
403 }
404 
405 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
406   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
407   EmitMoveFromReturnSlot(E, RV);
408 }
409 
410 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
411   CGF.EmitIgnoredExpr(E->getLHS());
412   Visit(E->getRHS());
413 }
414 
415 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
416   CodeGenFunction::StmtExprEvaluation eval(CGF);
417   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
418 }
419 
420 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
421   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
422     VisitPointerToDataMemberBinaryOperator(E);
423   else
424     CGF.ErrorUnsupported(E, "aggregate binary expression");
425 }
426 
427 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
428                                                     const BinaryOperator *E) {
429   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
430   EmitFinalDestCopy(E, LV);
431 }
432 
433 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
434   // For an assignment to work, the value on the right has
435   // to be compatible with the value on the left.
436   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
437                                                  E->getRHS()->getType())
438          && "Invalid assignment");
439 
440   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
441     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
442       if (VD->hasAttr<BlocksAttr>() &&
443           E->getRHS()->HasSideEffects(CGF.getContext())) {
444         // When __block variable on LHS, the RHS must be evaluated first
445         // as it may change the 'forwarding' field via call to Block_copy.
446         LValue RHS = CGF.EmitLValue(E->getRHS());
447         LValue LHS = CGF.EmitLValue(E->getLHS());
448         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
449                                        needsGC(E->getLHS()->getType()),
450                                        AggValueSlot::IsAliased);
451         EmitFinalDestCopy(E, RHS, true);
452         return;
453       }
454 
455   LValue LHS = CGF.EmitLValue(E->getLHS());
456 
457   // Codegen the RHS so that it stores directly into the LHS.
458   AggValueSlot LHSSlot =
459     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
460                             needsGC(E->getLHS()->getType()),
461                             AggValueSlot::IsAliased);
462   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
463   EmitFinalDestCopy(E, LHS, true);
464 }
465 
466 void AggExprEmitter::
467 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
468   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
469   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
470   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
471 
472   // Bind the common expression if necessary.
473   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
474 
475   CodeGenFunction::ConditionalEvaluation eval(CGF);
476   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
477 
478   // Save whether the destination's lifetime is externally managed.
479   bool isExternallyDestructed = Dest.isExternallyDestructed();
480 
481   eval.begin(CGF);
482   CGF.EmitBlock(LHSBlock);
483   Visit(E->getTrueExpr());
484   eval.end(CGF);
485 
486   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
487   CGF.Builder.CreateBr(ContBlock);
488 
489   // If the result of an agg expression is unused, then the emission
490   // of the LHS might need to create a destination slot.  That's fine
491   // with us, and we can safely emit the RHS into the same slot, but
492   // we shouldn't claim that it's already being destructed.
493   Dest.setExternallyDestructed(isExternallyDestructed);
494 
495   eval.begin(CGF);
496   CGF.EmitBlock(RHSBlock);
497   Visit(E->getFalseExpr());
498   eval.end(CGF);
499 
500   CGF.EmitBlock(ContBlock);
501 }
502 
503 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
504   Visit(CE->getChosenSubExpr(CGF.getContext()));
505 }
506 
507 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
508   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
509   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
510 
511   if (!ArgPtr) {
512     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
513     return;
514   }
515 
516   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
517 }
518 
519 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
520   // Ensure that we have a slot, but if we already do, remember
521   // whether it was externally destructed.
522   bool wasExternallyDestructed = Dest.isExternallyDestructed();
523   Dest = EnsureSlot(E->getType());
524 
525   // We're going to push a destructor if there isn't already one.
526   Dest.setExternallyDestructed();
527 
528   Visit(E->getSubExpr());
529 
530   // Push that destructor we promised.
531   if (!wasExternallyDestructed)
532     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
533 }
534 
535 void
536 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
537   AggValueSlot Slot = EnsureSlot(E->getType());
538   CGF.EmitCXXConstructExpr(E, Slot);
539 }
540 
541 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
542   CGF.enterFullExpression(E);
543   CodeGenFunction::RunCleanupsScope cleanups(CGF);
544   Visit(E->getSubExpr());
545 }
546 
547 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
548   QualType T = E->getType();
549   AggValueSlot Slot = EnsureSlot(T);
550   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
551 }
552 
553 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
554   QualType T = E->getType();
555   AggValueSlot Slot = EnsureSlot(T);
556   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
557 }
558 
559 /// isSimpleZero - If emitting this value will obviously just cause a store of
560 /// zero to memory, return true.  This can return false if uncertain, so it just
561 /// handles simple cases.
562 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
563   E = E->IgnoreParens();
564 
565   // 0
566   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
567     return IL->getValue() == 0;
568   // +0.0
569   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
570     return FL->getValue().isPosZero();
571   // int()
572   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
573       CGF.getTypes().isZeroInitializable(E->getType()))
574     return true;
575   // (int*)0 - Null pointer expressions.
576   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
577     return ICE->getCastKind() == CK_NullToPointer;
578   // '\0'
579   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
580     return CL->getValue() == 0;
581 
582   // Otherwise, hard case: conservatively return false.
583   return false;
584 }
585 
586 
587 void
588 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
589   QualType type = LV.getType();
590   // FIXME: Ignore result?
591   // FIXME: Are initializers affected by volatile?
592   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
593     // Storing "i32 0" to a zero'd memory location is a noop.
594   } else if (isa<ImplicitValueInitExpr>(E)) {
595     EmitNullInitializationToLValue(LV);
596   } else if (type->isReferenceType()) {
597     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
598     CGF.EmitStoreThroughLValue(RV, LV);
599   } else if (type->isAnyComplexType()) {
600     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
601   } else if (CGF.hasAggregateLLVMType(type)) {
602     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
603                                                AggValueSlot::IsDestructed,
604                                       AggValueSlot::DoesNotNeedGCBarriers,
605                                                AggValueSlot::IsNotAliased,
606                                                Dest.isZeroed()));
607   } else if (LV.isSimple()) {
608     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
609   } else {
610     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
611   }
612 }
613 
614 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
615   QualType type = lv.getType();
616 
617   // If the destination slot is already zeroed out before the aggregate is
618   // copied into it, we don't have to emit any zeros here.
619   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
620     return;
621 
622   if (!CGF.hasAggregateLLVMType(type)) {
623     // For non-aggregates, we can store zero
624     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
625     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
626   } else {
627     // There's a potential optimization opportunity in combining
628     // memsets; that would be easy for arrays, but relatively
629     // difficult for structures with the current code.
630     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
631   }
632 }
633 
634 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
635 #if 0
636   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
637   // (Length of globals? Chunks of zeroed-out space?).
638   //
639   // If we can, prefer a copy from a global; this is a lot less code for long
640   // globals, and it's easier for the current optimizers to analyze.
641   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
642     llvm::GlobalVariable* GV =
643     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
644                              llvm::GlobalValue::InternalLinkage, C, "");
645     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
646     return;
647   }
648 #endif
649   if (E->hadArrayRangeDesignator())
650     CGF.ErrorUnsupported(E, "GNU array range designator extension");
651 
652   llvm::Value *DestPtr = Dest.getAddr();
653 
654   // Handle initialization of an array.
655   if (E->getType()->isArrayType()) {
656     llvm::PointerType *APType =
657       cast<llvm::PointerType>(DestPtr->getType());
658     llvm::ArrayType *AType =
659       cast<llvm::ArrayType>(APType->getElementType());
660 
661     uint64_t NumInitElements = E->getNumInits();
662 
663     if (E->getNumInits() > 0) {
664       QualType T1 = E->getType();
665       QualType T2 = E->getInit(0)->getType();
666       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
667         EmitAggLoadOfLValue(E->getInit(0));
668         return;
669       }
670     }
671 
672     uint64_t NumArrayElements = AType->getNumElements();
673     assert(NumInitElements <= NumArrayElements);
674 
675     QualType elementType = E->getType().getCanonicalType();
676     elementType = CGF.getContext().getQualifiedType(
677                     cast<ArrayType>(elementType)->getElementType(),
678                     elementType.getQualifiers() + Dest.getQualifiers());
679 
680     // DestPtr is an array*.  Construct an elementType* by drilling
681     // down a level.
682     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
683     llvm::Value *indices[] = { zero, zero };
684     llvm::Value *begin =
685       Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
686 
687     // Exception safety requires us to destroy all the
688     // already-constructed members if an initializer throws.
689     // For that, we'll need an EH cleanup.
690     QualType::DestructionKind dtorKind = elementType.isDestructedType();
691     llvm::AllocaInst *endOfInit = 0;
692     EHScopeStack::stable_iterator cleanup;
693     llvm::Instruction *cleanupDominator = 0;
694     if (CGF.needsEHCleanup(dtorKind)) {
695       // In principle we could tell the cleanup where we are more
696       // directly, but the control flow can get so varied here that it
697       // would actually be quite complex.  Therefore we go through an
698       // alloca.
699       endOfInit = CGF.CreateTempAlloca(begin->getType(),
700                                        "arrayinit.endOfInit");
701       cleanupDominator = Builder.CreateStore(begin, endOfInit);
702       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
703                                            CGF.getDestroyer(dtorKind));
704       cleanup = CGF.EHStack.stable_begin();
705 
706     // Otherwise, remember that we didn't need a cleanup.
707     } else {
708       dtorKind = QualType::DK_none;
709     }
710 
711     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
712 
713     // The 'current element to initialize'.  The invariants on this
714     // variable are complicated.  Essentially, after each iteration of
715     // the loop, it points to the last initialized element, except
716     // that it points to the beginning of the array before any
717     // elements have been initialized.
718     llvm::Value *element = begin;
719 
720     // Emit the explicit initializers.
721     for (uint64_t i = 0; i != NumInitElements; ++i) {
722       // Advance to the next element.
723       if (i > 0) {
724         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
725 
726         // Tell the cleanup that it needs to destroy up to this
727         // element.  TODO: some of these stores can be trivially
728         // observed to be unnecessary.
729         if (endOfInit) Builder.CreateStore(element, endOfInit);
730       }
731 
732       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
733       EmitInitializationToLValue(E->getInit(i), elementLV);
734     }
735 
736     // Check whether there's a non-trivial array-fill expression.
737     // Note that this will be a CXXConstructExpr even if the element
738     // type is an array (or array of array, etc.) of class type.
739     Expr *filler = E->getArrayFiller();
740     bool hasTrivialFiller = true;
741     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
742       assert(cons->getConstructor()->isDefaultConstructor());
743       hasTrivialFiller = cons->getConstructor()->isTrivial();
744     }
745 
746     // Any remaining elements need to be zero-initialized, possibly
747     // using the filler expression.  We can skip this if the we're
748     // emitting to zeroed memory.
749     if (NumInitElements != NumArrayElements &&
750         !(Dest.isZeroed() && hasTrivialFiller &&
751           CGF.getTypes().isZeroInitializable(elementType))) {
752 
753       // Use an actual loop.  This is basically
754       //   do { *array++ = filler; } while (array != end);
755 
756       // Advance to the start of the rest of the array.
757       if (NumInitElements) {
758         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
759         if (endOfInit) Builder.CreateStore(element, endOfInit);
760       }
761 
762       // Compute the end of the array.
763       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
764                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
765                                                    "arrayinit.end");
766 
767       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
768       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
769 
770       // Jump into the body.
771       CGF.EmitBlock(bodyBB);
772       llvm::PHINode *currentElement =
773         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
774       currentElement->addIncoming(element, entryBB);
775 
776       // Emit the actual filler expression.
777       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
778       if (filler)
779         EmitInitializationToLValue(filler, elementLV);
780       else
781         EmitNullInitializationToLValue(elementLV);
782 
783       // Move on to the next element.
784       llvm::Value *nextElement =
785         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
786 
787       // Tell the EH cleanup that we finished with the last element.
788       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
789 
790       // Leave the loop if we're done.
791       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
792                                                "arrayinit.done");
793       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
794       Builder.CreateCondBr(done, endBB, bodyBB);
795       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
796 
797       CGF.EmitBlock(endBB);
798     }
799 
800     // Leave the partial-array cleanup if we entered one.
801     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
802 
803     return;
804   }
805 
806   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
807 
808   // Do struct initialization; this code just sets each individual member
809   // to the approprate value.  This makes bitfield support automatic;
810   // the disadvantage is that the generated code is more difficult for
811   // the optimizer, especially with bitfields.
812   unsigned NumInitElements = E->getNumInits();
813   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
814 
815   if (record->isUnion()) {
816     // Only initialize one field of a union. The field itself is
817     // specified by the initializer list.
818     if (!E->getInitializedFieldInUnion()) {
819       // Empty union; we have nothing to do.
820 
821 #ifndef NDEBUG
822       // Make sure that it's really an empty and not a failure of
823       // semantic analysis.
824       for (RecordDecl::field_iterator Field = record->field_begin(),
825                                    FieldEnd = record->field_end();
826            Field != FieldEnd; ++Field)
827         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
828 #endif
829       return;
830     }
831 
832     // FIXME: volatility
833     FieldDecl *Field = E->getInitializedFieldInUnion();
834 
835     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
836     if (NumInitElements) {
837       // Store the initializer into the field
838       EmitInitializationToLValue(E->getInit(0), FieldLoc);
839     } else {
840       // Default-initialize to null.
841       EmitNullInitializationToLValue(FieldLoc);
842     }
843 
844     return;
845   }
846 
847   // We'll need to enter cleanup scopes in case any of the member
848   // initializers throw an exception.
849   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
850   llvm::Instruction *cleanupDominator = 0;
851 
852   // Here we iterate over the fields; this makes it simpler to both
853   // default-initialize fields and skip over unnamed fields.
854   unsigned curInitIndex = 0;
855   for (RecordDecl::field_iterator field = record->field_begin(),
856                                fieldEnd = record->field_end();
857        field != fieldEnd; ++field) {
858     // We're done once we hit the flexible array member.
859     if (field->getType()->isIncompleteArrayType())
860       break;
861 
862     // Always skip anonymous bitfields.
863     if (field->isUnnamedBitfield())
864       continue;
865 
866     // We're done if we reach the end of the explicit initializers, we
867     // have a zeroed object, and the rest of the fields are
868     // zero-initializable.
869     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
870         CGF.getTypes().isZeroInitializable(E->getType()))
871       break;
872 
873     // FIXME: volatility
874     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
875     // We never generate write-barries for initialized fields.
876     LV.setNonGC(true);
877 
878     if (curInitIndex < NumInitElements) {
879       // Store the initializer into the field.
880       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
881     } else {
882       // We're out of initalizers; default-initialize to null
883       EmitNullInitializationToLValue(LV);
884     }
885 
886     // Push a destructor if necessary.
887     // FIXME: if we have an array of structures, all explicitly
888     // initialized, we can end up pushing a linear number of cleanups.
889     bool pushedCleanup = false;
890     if (QualType::DestructionKind dtorKind
891           = field->getType().isDestructedType()) {
892       assert(LV.isSimple());
893       if (CGF.needsEHCleanup(dtorKind)) {
894         if (!cleanupDominator)
895           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
896 
897         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
898                         CGF.getDestroyer(dtorKind), false);
899         cleanups.push_back(CGF.EHStack.stable_begin());
900         pushedCleanup = true;
901       }
902     }
903 
904     // If the GEP didn't get used because of a dead zero init or something
905     // else, clean it up for -O0 builds and general tidiness.
906     if (!pushedCleanup && LV.isSimple())
907       if (llvm::GetElementPtrInst *GEP =
908             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
909         if (GEP->use_empty())
910           GEP->eraseFromParent();
911   }
912 
913   // Deactivate all the partial cleanups in reverse order, which
914   // generally means popping them.
915   for (unsigned i = cleanups.size(); i != 0; --i)
916     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
917 
918   // Destroy the placeholder if we made one.
919   if (cleanupDominator)
920     cleanupDominator->eraseFromParent();
921 }
922 
923 //===----------------------------------------------------------------------===//
924 //                        Entry Points into this File
925 //===----------------------------------------------------------------------===//
926 
927 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
928 /// non-zero bytes that will be stored when outputting the initializer for the
929 /// specified initializer expression.
930 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
931   E = E->IgnoreParens();
932 
933   // 0 and 0.0 won't require any non-zero stores!
934   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
935 
936   // If this is an initlist expr, sum up the size of sizes of the (present)
937   // elements.  If this is something weird, assume the whole thing is non-zero.
938   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
939   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
940     return CGF.getContext().getTypeSizeInChars(E->getType());
941 
942   // InitListExprs for structs have to be handled carefully.  If there are
943   // reference members, we need to consider the size of the reference, not the
944   // referencee.  InitListExprs for unions and arrays can't have references.
945   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
946     if (!RT->isUnionType()) {
947       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
948       CharUnits NumNonZeroBytes = CharUnits::Zero();
949 
950       unsigned ILEElement = 0;
951       for (RecordDecl::field_iterator Field = SD->field_begin(),
952            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
953         // We're done once we hit the flexible array member or run out of
954         // InitListExpr elements.
955         if (Field->getType()->isIncompleteArrayType() ||
956             ILEElement == ILE->getNumInits())
957           break;
958         if (Field->isUnnamedBitfield())
959           continue;
960 
961         const Expr *E = ILE->getInit(ILEElement++);
962 
963         // Reference values are always non-null and have the width of a pointer.
964         if (Field->getType()->isReferenceType())
965           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
966               CGF.getContext().getTargetInfo().getPointerWidth(0));
967         else
968           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
969       }
970 
971       return NumNonZeroBytes;
972     }
973   }
974 
975 
976   CharUnits NumNonZeroBytes = CharUnits::Zero();
977   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
978     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
979   return NumNonZeroBytes;
980 }
981 
982 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
983 /// zeros in it, emit a memset and avoid storing the individual zeros.
984 ///
985 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
986                                      CodeGenFunction &CGF) {
987   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
988   // volatile stores.
989   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
990 
991   // C++ objects with a user-declared constructor don't need zero'ing.
992   if (CGF.getContext().getLangOptions().CPlusPlus)
993     if (const RecordType *RT = CGF.getContext()
994                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
995       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
996       if (RD->hasUserDeclaredConstructor())
997         return;
998     }
999 
1000   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1001   std::pair<CharUnits, CharUnits> TypeInfo =
1002     CGF.getContext().getTypeInfoInChars(E->getType());
1003   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1004     return;
1005 
1006   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1007   // we prefer to emit memset + individual stores for the rest.
1008   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1009   if (NumNonZeroBytes*4 > TypeInfo.first)
1010     return;
1011 
1012   // Okay, it seems like a good idea to use an initial memset, emit the call.
1013   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1014   CharUnits Align = TypeInfo.second;
1015 
1016   llvm::Value *Loc = Slot.getAddr();
1017 
1018   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1019   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1020                            Align.getQuantity(), false);
1021 
1022   // Tell the AggExprEmitter that the slot is known zero.
1023   Slot.setZeroed();
1024 }
1025 
1026 
1027 
1028 
1029 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1030 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1031 /// the value of the aggregate expression is not needed.  If VolatileDest is
1032 /// true, DestPtr cannot be 0.
1033 ///
1034 /// \param IsInitializer - true if this evaluation is initializing an
1035 /// object whose lifetime is already being managed.
1036 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1037                                   bool IgnoreResult) {
1038   assert(E && hasAggregateLLVMType(E->getType()) &&
1039          "Invalid aggregate expression to emit");
1040   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1041          "slot has bits but no address");
1042 
1043   // Optimize the slot if possible.
1044   CheckAggExprForMemSetUse(Slot, E, *this);
1045 
1046   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1047 }
1048 
1049 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1050   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1051   llvm::Value *Temp = CreateMemTemp(E->getType());
1052   LValue LV = MakeAddrLValue(Temp, E->getType());
1053   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1054                                          AggValueSlot::DoesNotNeedGCBarriers,
1055                                          AggValueSlot::IsNotAliased));
1056   return LV;
1057 }
1058 
1059 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1060                                         llvm::Value *SrcPtr, QualType Ty,
1061                                         bool isVolatile, unsigned Alignment) {
1062   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1063 
1064   if (getContext().getLangOptions().CPlusPlus) {
1065     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1066       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1067       assert((Record->hasTrivialCopyConstructor() ||
1068               Record->hasTrivialCopyAssignment() ||
1069               Record->hasTrivialMoveConstructor() ||
1070               Record->hasTrivialMoveAssignment()) &&
1071              "Trying to aggregate-copy a type without a trivial copy "
1072              "constructor or assignment operator");
1073       // Ignore empty classes in C++.
1074       if (Record->isEmpty())
1075         return;
1076     }
1077   }
1078 
1079   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1080   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1081   // read from another object that overlaps in anyway the storage of the first
1082   // object, then the overlap shall be exact and the two objects shall have
1083   // qualified or unqualified versions of a compatible type."
1084   //
1085   // memcpy is not defined if the source and destination pointers are exactly
1086   // equal, but other compilers do this optimization, and almost every memcpy
1087   // implementation handles this case safely.  If there is a libc that does not
1088   // safely handle this, we can add a target hook.
1089 
1090   // Get size and alignment info for this aggregate.
1091   std::pair<CharUnits, CharUnits> TypeInfo =
1092     getContext().getTypeInfoInChars(Ty);
1093 
1094   if (!Alignment)
1095     Alignment = TypeInfo.second.getQuantity();
1096 
1097   // FIXME: Handle variable sized types.
1098 
1099   // FIXME: If we have a volatile struct, the optimizer can remove what might
1100   // appear to be `extra' memory ops:
1101   //
1102   // volatile struct { int i; } a, b;
1103   //
1104   // int main() {
1105   //   a = b;
1106   //   a = b;
1107   // }
1108   //
1109   // we need to use a different call here.  We use isVolatile to indicate when
1110   // either the source or the destination is volatile.
1111 
1112   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1113   llvm::Type *DBP =
1114     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1115   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1116 
1117   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1118   llvm::Type *SBP =
1119     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1120   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1121 
1122   // Don't do any of the memmove_collectable tests if GC isn't set.
1123   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1124     // fall through
1125   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1126     RecordDecl *Record = RecordTy->getDecl();
1127     if (Record->hasObjectMember()) {
1128       CharUnits size = TypeInfo.first;
1129       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1130       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1131       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1132                                                     SizeVal);
1133       return;
1134     }
1135   } else if (Ty->isArrayType()) {
1136     QualType BaseType = getContext().getBaseElementType(Ty);
1137     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1138       if (RecordTy->getDecl()->hasObjectMember()) {
1139         CharUnits size = TypeInfo.first;
1140         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1141         llvm::Value *SizeVal =
1142           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1143         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1144                                                       SizeVal);
1145         return;
1146       }
1147     }
1148   }
1149 
1150   Builder.CreateMemCpy(DestPtr, SrcPtr,
1151                        llvm::ConstantInt::get(IntPtrTy,
1152                                               TypeInfo.first.getQuantity()),
1153                        Alignment, isVolatile);
1154 }
1155