1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 llvm::Value *AggValueSlot::getPaddedAtomicAddr() const { 33 assert(isValueOfAtomic()); 34 llvm::GEPOperator *op = cast<llvm::GEPOperator>(getAddr()); 35 assert(op->getNumIndices() == 2); 36 assert(op->hasAllZeroIndices()); 37 return op->getPointerOperand(); 38 } 39 40 namespace { 41 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 42 CodeGenFunction &CGF; 43 CGBuilderTy &Builder; 44 AggValueSlot Dest; 45 46 /// We want to use 'dest' as the return slot except under two 47 /// conditions: 48 /// - The destination slot requires garbage collection, so we 49 /// need to use the GC API. 50 /// - The destination slot is potentially aliased. 51 bool shouldUseDestForReturnSlot() const { 52 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 53 } 54 55 ReturnValueSlot getReturnValueSlot() const { 56 if (!shouldUseDestForReturnSlot()) 57 return ReturnValueSlot(); 58 59 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 60 } 61 62 AggValueSlot EnsureSlot(QualType T) { 63 if (!Dest.isIgnored()) return Dest; 64 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 65 } 66 void EnsureDest(QualType T) { 67 if (!Dest.isIgnored()) return; 68 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 69 } 70 71 public: 72 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest) 73 : CGF(cgf), Builder(CGF.Builder), Dest(Dest) { 74 } 75 76 //===--------------------------------------------------------------------===// 77 // Utilities 78 //===--------------------------------------------------------------------===// 79 80 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 81 /// represents a value lvalue, this method emits the address of the lvalue, 82 /// then loads the result into DestPtr. 83 void EmitAggLoadOfLValue(const Expr *E); 84 85 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 86 void EmitFinalDestCopy(QualType type, const LValue &src); 87 void EmitFinalDestCopy(QualType type, RValue src, 88 CharUnits srcAlignment = CharUnits::Zero()); 89 void EmitCopy(QualType type, const AggValueSlot &dest, 90 const AggValueSlot &src); 91 92 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 93 94 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 95 QualType elementType, InitListExpr *E); 96 97 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 98 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 99 return AggValueSlot::NeedsGCBarriers; 100 return AggValueSlot::DoesNotNeedGCBarriers; 101 } 102 103 bool TypeRequiresGCollection(QualType T); 104 105 //===--------------------------------------------------------------------===// 106 // Visitor Methods 107 //===--------------------------------------------------------------------===// 108 109 void VisitStmt(Stmt *S) { 110 CGF.ErrorUnsupported(S, "aggregate expression"); 111 } 112 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 113 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 114 Visit(GE->getResultExpr()); 115 } 116 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 117 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 118 return Visit(E->getReplacement()); 119 } 120 121 // l-values. 122 void VisitDeclRefExpr(DeclRefExpr *E) { 123 // For aggregates, we should always be able to emit the variable 124 // as an l-value unless it's a reference. This is due to the fact 125 // that we can't actually ever see a normal l2r conversion on an 126 // aggregate in C++, and in C there's no language standard 127 // actively preventing us from listing variables in the captures 128 // list of a block. 129 if (E->getDecl()->getType()->isReferenceType()) { 130 if (CodeGenFunction::ConstantEmission result 131 = CGF.tryEmitAsConstant(E)) { 132 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 133 return; 134 } 135 } 136 137 EmitAggLoadOfLValue(E); 138 } 139 140 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 141 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 142 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 143 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 144 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 145 EmitAggLoadOfLValue(E); 146 } 147 void VisitPredefinedExpr(const PredefinedExpr *E) { 148 EmitAggLoadOfLValue(E); 149 } 150 151 // Operators. 152 void VisitCastExpr(CastExpr *E); 153 void VisitCallExpr(const CallExpr *E); 154 void VisitStmtExpr(const StmtExpr *E); 155 void VisitBinaryOperator(const BinaryOperator *BO); 156 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 157 void VisitBinAssign(const BinaryOperator *E); 158 void VisitBinComma(const BinaryOperator *E); 159 160 void VisitObjCMessageExpr(ObjCMessageExpr *E); 161 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 162 EmitAggLoadOfLValue(E); 163 } 164 165 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 166 void VisitChooseExpr(const ChooseExpr *CE); 167 void VisitInitListExpr(InitListExpr *E); 168 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 169 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 170 Visit(DAE->getExpr()); 171 } 172 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 173 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 174 Visit(DIE->getExpr()); 175 } 176 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 177 void VisitCXXConstructExpr(const CXXConstructExpr *E); 178 void VisitLambdaExpr(LambdaExpr *E); 179 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 180 void VisitExprWithCleanups(ExprWithCleanups *E); 181 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 182 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 183 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 184 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 185 186 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 187 if (E->isGLValue()) { 188 LValue LV = CGF.EmitPseudoObjectLValue(E); 189 return EmitFinalDestCopy(E->getType(), LV); 190 } 191 192 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 193 } 194 195 void VisitVAArgExpr(VAArgExpr *E); 196 197 void EmitInitializationToLValue(Expr *E, LValue Address); 198 void EmitNullInitializationToLValue(LValue Address); 199 // case Expr::ChooseExprClass: 200 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 201 void VisitAtomicExpr(AtomicExpr *E) { 202 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 203 } 204 }; 205 206 /// A helper class for emitting expressions into the value sub-object 207 /// of a padded atomic type. 208 class ValueDestForAtomic { 209 AggValueSlot Dest; 210 public: 211 ValueDestForAtomic(CodeGenFunction &CGF, AggValueSlot dest, QualType type) 212 : Dest(dest) { 213 assert(!Dest.isValueOfAtomic()); 214 if (!Dest.isIgnored() && CGF.CGM.isPaddedAtomicType(type)) { 215 llvm::Value *valueAddr = CGF.Builder.CreateStructGEP(Dest.getAddr(), 0); 216 Dest = AggValueSlot::forAddr(valueAddr, 217 Dest.getAlignment(), 218 Dest.getQualifiers(), 219 Dest.isExternallyDestructed(), 220 Dest.requiresGCollection(), 221 Dest.isPotentiallyAliased(), 222 Dest.isZeroed(), 223 AggValueSlot::IsValueOfAtomic); 224 } 225 } 226 227 const AggValueSlot &getDest() const { return Dest; } 228 229 ~ValueDestForAtomic() { 230 // Kill the GEP if we made one and it didn't end up used. 231 if (Dest.isValueOfAtomic()) { 232 llvm::Instruction *addr = cast<llvm::GetElementPtrInst>(Dest.getAddr()); 233 if (addr->use_empty()) addr->eraseFromParent(); 234 } 235 } 236 }; 237 } // end anonymous namespace. 238 239 //===----------------------------------------------------------------------===// 240 // Utilities 241 //===----------------------------------------------------------------------===// 242 243 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 244 /// represents a value lvalue, this method emits the address of the lvalue, 245 /// then loads the result into DestPtr. 246 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 247 LValue LV = CGF.EmitLValue(E); 248 249 // If the type of the l-value is atomic, then do an atomic load. 250 if (LV.getType()->isAtomicType()) { 251 ValueDestForAtomic valueDest(CGF, Dest, LV.getType()); 252 CGF.EmitAtomicLoad(LV, valueDest.getDest()); 253 return; 254 } 255 256 EmitFinalDestCopy(E->getType(), LV); 257 } 258 259 /// \brief True if the given aggregate type requires special GC API calls. 260 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 261 // Only record types have members that might require garbage collection. 262 const RecordType *RecordTy = T->getAs<RecordType>(); 263 if (!RecordTy) return false; 264 265 // Don't mess with non-trivial C++ types. 266 RecordDecl *Record = RecordTy->getDecl(); 267 if (isa<CXXRecordDecl>(Record) && 268 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 269 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 270 return false; 271 272 // Check whether the type has an object member. 273 return Record->hasObjectMember(); 274 } 275 276 /// \brief Perform the final move to DestPtr if for some reason 277 /// getReturnValueSlot() didn't use it directly. 278 /// 279 /// The idea is that you do something like this: 280 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 281 /// EmitMoveFromReturnSlot(E, Result); 282 /// 283 /// If nothing interferes, this will cause the result to be emitted 284 /// directly into the return value slot. Otherwise, a final move 285 /// will be performed. 286 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 287 if (shouldUseDestForReturnSlot()) { 288 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 289 // The possibility of undef rvalues complicates that a lot, 290 // though, so we can't really assert. 291 return; 292 } 293 294 // Otherwise, copy from there to the destination. 295 assert(Dest.getAddr() != src.getAggregateAddr()); 296 std::pair<CharUnits, CharUnits> typeInfo = 297 CGF.getContext().getTypeInfoInChars(E->getType()); 298 EmitFinalDestCopy(E->getType(), src, typeInfo.second); 299 } 300 301 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 302 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, 303 CharUnits srcAlign) { 304 assert(src.isAggregate() && "value must be aggregate value!"); 305 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); 306 EmitFinalDestCopy(type, srcLV); 307 } 308 309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 310 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 311 // If Dest is ignored, then we're evaluating an aggregate expression 312 // in a context that doesn't care about the result. Note that loads 313 // from volatile l-values force the existence of a non-ignored 314 // destination. 315 if (Dest.isIgnored()) 316 return; 317 318 AggValueSlot srcAgg = 319 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 320 needsGC(type), AggValueSlot::IsAliased); 321 EmitCopy(type, Dest, srcAgg); 322 } 323 324 /// Perform a copy from the source into the destination. 325 /// 326 /// \param type - the type of the aggregate being copied; qualifiers are 327 /// ignored 328 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 329 const AggValueSlot &src) { 330 if (dest.requiresGCollection()) { 331 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 332 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 333 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 334 dest.getAddr(), 335 src.getAddr(), 336 size); 337 return; 338 } 339 340 // If the result of the assignment is used, copy the LHS there also. 341 // It's volatile if either side is. Use the minimum alignment of 342 // the two sides. 343 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, 344 dest.isVolatile() || src.isVolatile(), 345 std::min(dest.getAlignment(), src.getAlignment())); 346 } 347 348 /// \brief Emit the initializer for a std::initializer_list initialized with a 349 /// real initializer list. 350 void 351 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 352 // Emit an array containing the elements. The array is externally destructed 353 // if the std::initializer_list object is. 354 ASTContext &Ctx = CGF.getContext(); 355 LValue Array = CGF.EmitLValue(E->getSubExpr()); 356 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 357 llvm::Value *ArrayPtr = Array.getAddress(); 358 359 const ConstantArrayType *ArrayType = 360 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 361 assert(ArrayType && "std::initializer_list constructed from non-array"); 362 363 // FIXME: Perform the checks on the field types in SemaInit. 364 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 365 RecordDecl::field_iterator Field = Record->field_begin(); 366 if (Field == Record->field_end()) { 367 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 368 return; 369 } 370 371 // Start pointer. 372 if (!Field->getType()->isPointerType() || 373 !Ctx.hasSameType(Field->getType()->getPointeeType(), 374 ArrayType->getElementType())) { 375 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 376 return; 377 } 378 379 AggValueSlot Dest = EnsureSlot(E->getType()); 380 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 381 Dest.getAlignment()); 382 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 383 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 384 llvm::Value *IdxStart[] = { Zero, Zero }; 385 llvm::Value *ArrayStart = 386 Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart"); 387 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 388 ++Field; 389 390 if (Field == Record->field_end()) { 391 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 392 return; 393 } 394 395 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 396 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 397 if (Field->getType()->isPointerType() && 398 Ctx.hasSameType(Field->getType()->getPointeeType(), 399 ArrayType->getElementType())) { 400 // End pointer. 401 llvm::Value *IdxEnd[] = { Zero, Size }; 402 llvm::Value *ArrayEnd = 403 Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend"); 404 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 405 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 406 // Length. 407 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 408 } else { 409 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 410 return; 411 } 412 } 413 414 /// \brief Emit initialization of an array from an initializer list. 415 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 416 QualType elementType, InitListExpr *E) { 417 uint64_t NumInitElements = E->getNumInits(); 418 419 uint64_t NumArrayElements = AType->getNumElements(); 420 assert(NumInitElements <= NumArrayElements); 421 422 // DestPtr is an array*. Construct an elementType* by drilling 423 // down a level. 424 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 425 llvm::Value *indices[] = { zero, zero }; 426 llvm::Value *begin = 427 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 428 429 // Exception safety requires us to destroy all the 430 // already-constructed members if an initializer throws. 431 // For that, we'll need an EH cleanup. 432 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 433 llvm::AllocaInst *endOfInit = 0; 434 EHScopeStack::stable_iterator cleanup; 435 llvm::Instruction *cleanupDominator = 0; 436 if (CGF.needsEHCleanup(dtorKind)) { 437 // In principle we could tell the cleanup where we are more 438 // directly, but the control flow can get so varied here that it 439 // would actually be quite complex. Therefore we go through an 440 // alloca. 441 endOfInit = CGF.CreateTempAlloca(begin->getType(), 442 "arrayinit.endOfInit"); 443 cleanupDominator = Builder.CreateStore(begin, endOfInit); 444 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 445 CGF.getDestroyer(dtorKind)); 446 cleanup = CGF.EHStack.stable_begin(); 447 448 // Otherwise, remember that we didn't need a cleanup. 449 } else { 450 dtorKind = QualType::DK_none; 451 } 452 453 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 454 455 // The 'current element to initialize'. The invariants on this 456 // variable are complicated. Essentially, after each iteration of 457 // the loop, it points to the last initialized element, except 458 // that it points to the beginning of the array before any 459 // elements have been initialized. 460 llvm::Value *element = begin; 461 462 // Emit the explicit initializers. 463 for (uint64_t i = 0; i != NumInitElements; ++i) { 464 // Advance to the next element. 465 if (i > 0) { 466 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 467 468 // Tell the cleanup that it needs to destroy up to this 469 // element. TODO: some of these stores can be trivially 470 // observed to be unnecessary. 471 if (endOfInit) Builder.CreateStore(element, endOfInit); 472 } 473 474 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 475 EmitInitializationToLValue(E->getInit(i), elementLV); 476 } 477 478 // Check whether there's a non-trivial array-fill expression. 479 // Note that this will be a CXXConstructExpr even if the element 480 // type is an array (or array of array, etc.) of class type. 481 Expr *filler = E->getArrayFiller(); 482 bool hasTrivialFiller = true; 483 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 484 assert(cons->getConstructor()->isDefaultConstructor()); 485 hasTrivialFiller = cons->getConstructor()->isTrivial(); 486 } 487 488 // Any remaining elements need to be zero-initialized, possibly 489 // using the filler expression. We can skip this if the we're 490 // emitting to zeroed memory. 491 if (NumInitElements != NumArrayElements && 492 !(Dest.isZeroed() && hasTrivialFiller && 493 CGF.getTypes().isZeroInitializable(elementType))) { 494 495 // Use an actual loop. This is basically 496 // do { *array++ = filler; } while (array != end); 497 498 // Advance to the start of the rest of the array. 499 if (NumInitElements) { 500 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 501 if (endOfInit) Builder.CreateStore(element, endOfInit); 502 } 503 504 // Compute the end of the array. 505 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 506 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 507 "arrayinit.end"); 508 509 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 510 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 511 512 // Jump into the body. 513 CGF.EmitBlock(bodyBB); 514 llvm::PHINode *currentElement = 515 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 516 currentElement->addIncoming(element, entryBB); 517 518 // Emit the actual filler expression. 519 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 520 if (filler) 521 EmitInitializationToLValue(filler, elementLV); 522 else 523 EmitNullInitializationToLValue(elementLV); 524 525 // Move on to the next element. 526 llvm::Value *nextElement = 527 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 528 529 // Tell the EH cleanup that we finished with the last element. 530 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 531 532 // Leave the loop if we're done. 533 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 534 "arrayinit.done"); 535 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 536 Builder.CreateCondBr(done, endBB, bodyBB); 537 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 538 539 CGF.EmitBlock(endBB); 540 } 541 542 // Leave the partial-array cleanup if we entered one. 543 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 544 } 545 546 //===----------------------------------------------------------------------===// 547 // Visitor Methods 548 //===----------------------------------------------------------------------===// 549 550 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 551 Visit(E->GetTemporaryExpr()); 552 } 553 554 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 555 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 556 } 557 558 void 559 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 560 if (Dest.isPotentiallyAliased() && 561 E->getType().isPODType(CGF.getContext())) { 562 // For a POD type, just emit a load of the lvalue + a copy, because our 563 // compound literal might alias the destination. 564 EmitAggLoadOfLValue(E); 565 return; 566 } 567 568 AggValueSlot Slot = EnsureSlot(E->getType()); 569 CGF.EmitAggExpr(E->getInitializer(), Slot); 570 } 571 572 /// Attempt to look through various unimportant expressions to find a 573 /// cast of the given kind. 574 static Expr *findPeephole(Expr *op, CastKind kind) { 575 while (true) { 576 op = op->IgnoreParens(); 577 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 578 if (castE->getCastKind() == kind) 579 return castE->getSubExpr(); 580 if (castE->getCastKind() == CK_NoOp) 581 continue; 582 } 583 return 0; 584 } 585 } 586 587 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 588 switch (E->getCastKind()) { 589 case CK_Dynamic: { 590 // FIXME: Can this actually happen? We have no test coverage for it. 591 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 592 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 593 CodeGenFunction::TCK_Load); 594 // FIXME: Do we also need to handle property references here? 595 if (LV.isSimple()) 596 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 597 else 598 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 599 600 if (!Dest.isIgnored()) 601 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 602 break; 603 } 604 605 case CK_ToUnion: { 606 if (Dest.isIgnored()) break; 607 608 // GCC union extension 609 QualType Ty = E->getSubExpr()->getType(); 610 QualType PtrTy = CGF.getContext().getPointerType(Ty); 611 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 612 CGF.ConvertType(PtrTy)); 613 EmitInitializationToLValue(E->getSubExpr(), 614 CGF.MakeAddrLValue(CastPtr, Ty)); 615 break; 616 } 617 618 case CK_DerivedToBase: 619 case CK_BaseToDerived: 620 case CK_UncheckedDerivedToBase: { 621 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 622 "should have been unpacked before we got here"); 623 } 624 625 case CK_NonAtomicToAtomic: 626 case CK_AtomicToNonAtomic: { 627 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 628 629 // Determine the atomic and value types. 630 QualType atomicType = E->getSubExpr()->getType(); 631 QualType valueType = E->getType(); 632 if (isToAtomic) std::swap(atomicType, valueType); 633 634 assert(atomicType->isAtomicType()); 635 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 636 atomicType->castAs<AtomicType>()->getValueType())); 637 638 // Just recurse normally if we're ignoring the result or the 639 // atomic type doesn't change representation. 640 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 641 return Visit(E->getSubExpr()); 642 } 643 644 CastKind peepholeTarget = 645 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 646 647 // These two cases are reverses of each other; try to peephole them. 648 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 649 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 650 E->getType()) && 651 "peephole significantly changed types?"); 652 return Visit(op); 653 } 654 655 // If we're converting an r-value of non-atomic type to an r-value 656 // of atomic type, just make an atomic temporary, emit into that, 657 // and then copy the value out. (FIXME: do we need to 658 // zero-initialize it first?) 659 if (isToAtomic) { 660 ValueDestForAtomic valueDest(CGF, Dest, atomicType); 661 CGF.EmitAggExpr(E->getSubExpr(), valueDest.getDest()); 662 return; 663 } 664 665 // Otherwise, we're converting an atomic type to a non-atomic type. 666 667 // If the dest is a value-of-atomic subobject, drill back out. 668 if (Dest.isValueOfAtomic()) { 669 AggValueSlot atomicSlot = 670 AggValueSlot::forAddr(Dest.getPaddedAtomicAddr(), 671 Dest.getAlignment(), 672 Dest.getQualifiers(), 673 Dest.isExternallyDestructed(), 674 Dest.requiresGCollection(), 675 Dest.isPotentiallyAliased(), 676 Dest.isZeroed(), 677 AggValueSlot::IsNotValueOfAtomic); 678 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 679 return; 680 } 681 682 // Otherwise, make an atomic temporary, emit into that, and then 683 // copy the value out. 684 AggValueSlot atomicSlot = 685 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 686 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 687 688 llvm::Value *valueAddr = 689 Builder.CreateStructGEP(atomicSlot.getAddr(), 0); 690 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 691 return EmitFinalDestCopy(valueType, rvalue); 692 } 693 694 case CK_LValueToRValue: 695 // If we're loading from a volatile type, force the destination 696 // into existence. 697 if (E->getSubExpr()->getType().isVolatileQualified()) { 698 EnsureDest(E->getType()); 699 return Visit(E->getSubExpr()); 700 } 701 702 // fallthrough 703 704 case CK_NoOp: 705 case CK_UserDefinedConversion: 706 case CK_ConstructorConversion: 707 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 708 E->getType()) && 709 "Implicit cast types must be compatible"); 710 Visit(E->getSubExpr()); 711 break; 712 713 case CK_LValueBitCast: 714 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 715 716 case CK_Dependent: 717 case CK_BitCast: 718 case CK_ArrayToPointerDecay: 719 case CK_FunctionToPointerDecay: 720 case CK_NullToPointer: 721 case CK_NullToMemberPointer: 722 case CK_BaseToDerivedMemberPointer: 723 case CK_DerivedToBaseMemberPointer: 724 case CK_MemberPointerToBoolean: 725 case CK_ReinterpretMemberPointer: 726 case CK_IntegralToPointer: 727 case CK_PointerToIntegral: 728 case CK_PointerToBoolean: 729 case CK_ToVoid: 730 case CK_VectorSplat: 731 case CK_IntegralCast: 732 case CK_IntegralToBoolean: 733 case CK_IntegralToFloating: 734 case CK_FloatingToIntegral: 735 case CK_FloatingToBoolean: 736 case CK_FloatingCast: 737 case CK_CPointerToObjCPointerCast: 738 case CK_BlockPointerToObjCPointerCast: 739 case CK_AnyPointerToBlockPointerCast: 740 case CK_ObjCObjectLValueCast: 741 case CK_FloatingRealToComplex: 742 case CK_FloatingComplexToReal: 743 case CK_FloatingComplexToBoolean: 744 case CK_FloatingComplexCast: 745 case CK_FloatingComplexToIntegralComplex: 746 case CK_IntegralRealToComplex: 747 case CK_IntegralComplexToReal: 748 case CK_IntegralComplexToBoolean: 749 case CK_IntegralComplexCast: 750 case CK_IntegralComplexToFloatingComplex: 751 case CK_ARCProduceObject: 752 case CK_ARCConsumeObject: 753 case CK_ARCReclaimReturnedObject: 754 case CK_ARCExtendBlockObject: 755 case CK_CopyAndAutoreleaseBlockObject: 756 case CK_BuiltinFnToFnPtr: 757 case CK_ZeroToOCLEvent: 758 llvm_unreachable("cast kind invalid for aggregate types"); 759 } 760 } 761 762 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 763 if (E->getCallReturnType()->isReferenceType()) { 764 EmitAggLoadOfLValue(E); 765 return; 766 } 767 768 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 769 EmitMoveFromReturnSlot(E, RV); 770 } 771 772 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 773 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 774 EmitMoveFromReturnSlot(E, RV); 775 } 776 777 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 778 CGF.EmitIgnoredExpr(E->getLHS()); 779 Visit(E->getRHS()); 780 } 781 782 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 783 CodeGenFunction::StmtExprEvaluation eval(CGF); 784 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 785 } 786 787 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 788 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 789 VisitPointerToDataMemberBinaryOperator(E); 790 else 791 CGF.ErrorUnsupported(E, "aggregate binary expression"); 792 } 793 794 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 795 const BinaryOperator *E) { 796 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 797 EmitFinalDestCopy(E->getType(), LV); 798 } 799 800 /// Is the value of the given expression possibly a reference to or 801 /// into a __block variable? 802 static bool isBlockVarRef(const Expr *E) { 803 // Make sure we look through parens. 804 E = E->IgnoreParens(); 805 806 // Check for a direct reference to a __block variable. 807 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 808 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 809 return (var && var->hasAttr<BlocksAttr>()); 810 } 811 812 // More complicated stuff. 813 814 // Binary operators. 815 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 816 // For an assignment or pointer-to-member operation, just care 817 // about the LHS. 818 if (op->isAssignmentOp() || op->isPtrMemOp()) 819 return isBlockVarRef(op->getLHS()); 820 821 // For a comma, just care about the RHS. 822 if (op->getOpcode() == BO_Comma) 823 return isBlockVarRef(op->getRHS()); 824 825 // FIXME: pointer arithmetic? 826 return false; 827 828 // Check both sides of a conditional operator. 829 } else if (const AbstractConditionalOperator *op 830 = dyn_cast<AbstractConditionalOperator>(E)) { 831 return isBlockVarRef(op->getTrueExpr()) 832 || isBlockVarRef(op->getFalseExpr()); 833 834 // OVEs are required to support BinaryConditionalOperators. 835 } else if (const OpaqueValueExpr *op 836 = dyn_cast<OpaqueValueExpr>(E)) { 837 if (const Expr *src = op->getSourceExpr()) 838 return isBlockVarRef(src); 839 840 // Casts are necessary to get things like (*(int*)&var) = foo(). 841 // We don't really care about the kind of cast here, except 842 // we don't want to look through l2r casts, because it's okay 843 // to get the *value* in a __block variable. 844 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 845 if (cast->getCastKind() == CK_LValueToRValue) 846 return false; 847 return isBlockVarRef(cast->getSubExpr()); 848 849 // Handle unary operators. Again, just aggressively look through 850 // it, ignoring the operation. 851 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 852 return isBlockVarRef(uop->getSubExpr()); 853 854 // Look into the base of a field access. 855 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 856 return isBlockVarRef(mem->getBase()); 857 858 // Look into the base of a subscript. 859 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 860 return isBlockVarRef(sub->getBase()); 861 } 862 863 return false; 864 } 865 866 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 867 // For an assignment to work, the value on the right has 868 // to be compatible with the value on the left. 869 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 870 E->getRHS()->getType()) 871 && "Invalid assignment"); 872 873 // If the LHS might be a __block variable, and the RHS can 874 // potentially cause a block copy, we need to evaluate the RHS first 875 // so that the assignment goes the right place. 876 // This is pretty semantically fragile. 877 if (isBlockVarRef(E->getLHS()) && 878 E->getRHS()->HasSideEffects(CGF.getContext())) { 879 // Ensure that we have a destination, and evaluate the RHS into that. 880 EnsureDest(E->getRHS()->getType()); 881 Visit(E->getRHS()); 882 883 // Now emit the LHS and copy into it. 884 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 885 886 // That copy is an atomic copy if the LHS is atomic. 887 if (LHS.getType()->isAtomicType()) { 888 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 889 return; 890 } 891 892 EmitCopy(E->getLHS()->getType(), 893 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 894 needsGC(E->getLHS()->getType()), 895 AggValueSlot::IsAliased), 896 Dest); 897 return; 898 } 899 900 LValue LHS = CGF.EmitLValue(E->getLHS()); 901 902 // If we have an atomic type, evaluate into the destination and then 903 // do an atomic copy. 904 if (LHS.getType()->isAtomicType()) { 905 EnsureDest(E->getRHS()->getType()); 906 Visit(E->getRHS()); 907 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 908 return; 909 } 910 911 // Codegen the RHS so that it stores directly into the LHS. 912 AggValueSlot LHSSlot = 913 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 914 needsGC(E->getLHS()->getType()), 915 AggValueSlot::IsAliased); 916 // A non-volatile aggregate destination might have volatile member. 917 if (!LHSSlot.isVolatile() && 918 CGF.hasVolatileMember(E->getLHS()->getType())) 919 LHSSlot.setVolatile(true); 920 921 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 922 923 // Copy into the destination if the assignment isn't ignored. 924 EmitFinalDestCopy(E->getType(), LHS); 925 } 926 927 void AggExprEmitter:: 928 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 929 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 930 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 931 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 932 933 // Bind the common expression if necessary. 934 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 935 936 CodeGenFunction::ConditionalEvaluation eval(CGF); 937 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 938 939 // Save whether the destination's lifetime is externally managed. 940 bool isExternallyDestructed = Dest.isExternallyDestructed(); 941 942 eval.begin(CGF); 943 CGF.EmitBlock(LHSBlock); 944 Visit(E->getTrueExpr()); 945 eval.end(CGF); 946 947 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 948 CGF.Builder.CreateBr(ContBlock); 949 950 // If the result of an agg expression is unused, then the emission 951 // of the LHS might need to create a destination slot. That's fine 952 // with us, and we can safely emit the RHS into the same slot, but 953 // we shouldn't claim that it's already being destructed. 954 Dest.setExternallyDestructed(isExternallyDestructed); 955 956 eval.begin(CGF); 957 CGF.EmitBlock(RHSBlock); 958 Visit(E->getFalseExpr()); 959 eval.end(CGF); 960 961 CGF.EmitBlock(ContBlock); 962 } 963 964 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 965 Visit(CE->getChosenSubExpr(CGF.getContext())); 966 } 967 968 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 969 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 970 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 971 972 if (!ArgPtr) { 973 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 974 return; 975 } 976 977 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 978 } 979 980 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 981 // Ensure that we have a slot, but if we already do, remember 982 // whether it was externally destructed. 983 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 984 EnsureDest(E->getType()); 985 986 // We're going to push a destructor if there isn't already one. 987 Dest.setExternallyDestructed(); 988 989 Visit(E->getSubExpr()); 990 991 // Push that destructor we promised. 992 if (!wasExternallyDestructed) 993 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 994 } 995 996 void 997 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 998 AggValueSlot Slot = EnsureSlot(E->getType()); 999 CGF.EmitCXXConstructExpr(E, Slot); 1000 } 1001 1002 void 1003 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1004 AggValueSlot Slot = EnsureSlot(E->getType()); 1005 CGF.EmitLambdaExpr(E, Slot); 1006 } 1007 1008 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1009 CGF.enterFullExpression(E); 1010 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1011 Visit(E->getSubExpr()); 1012 } 1013 1014 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1015 QualType T = E->getType(); 1016 AggValueSlot Slot = EnsureSlot(T); 1017 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1018 } 1019 1020 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1021 QualType T = E->getType(); 1022 AggValueSlot Slot = EnsureSlot(T); 1023 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1024 } 1025 1026 /// isSimpleZero - If emitting this value will obviously just cause a store of 1027 /// zero to memory, return true. This can return false if uncertain, so it just 1028 /// handles simple cases. 1029 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1030 E = E->IgnoreParens(); 1031 1032 // 0 1033 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1034 return IL->getValue() == 0; 1035 // +0.0 1036 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1037 return FL->getValue().isPosZero(); 1038 // int() 1039 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1040 CGF.getTypes().isZeroInitializable(E->getType())) 1041 return true; 1042 // (int*)0 - Null pointer expressions. 1043 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1044 return ICE->getCastKind() == CK_NullToPointer; 1045 // '\0' 1046 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1047 return CL->getValue() == 0; 1048 1049 // Otherwise, hard case: conservatively return false. 1050 return false; 1051 } 1052 1053 1054 void 1055 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 1056 QualType type = LV.getType(); 1057 // FIXME: Ignore result? 1058 // FIXME: Are initializers affected by volatile? 1059 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1060 // Storing "i32 0" to a zero'd memory location is a noop. 1061 return; 1062 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1063 return EmitNullInitializationToLValue(LV); 1064 } else if (type->isReferenceType()) { 1065 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1066 return CGF.EmitStoreThroughLValue(RV, LV); 1067 } 1068 1069 switch (CGF.getEvaluationKind(type)) { 1070 case TEK_Complex: 1071 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1072 return; 1073 case TEK_Aggregate: 1074 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1075 AggValueSlot::IsDestructed, 1076 AggValueSlot::DoesNotNeedGCBarriers, 1077 AggValueSlot::IsNotAliased, 1078 Dest.isZeroed())); 1079 return; 1080 case TEK_Scalar: 1081 if (LV.isSimple()) { 1082 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 1083 } else { 1084 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1085 } 1086 return; 1087 } 1088 llvm_unreachable("bad evaluation kind"); 1089 } 1090 1091 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1092 QualType type = lv.getType(); 1093 1094 // If the destination slot is already zeroed out before the aggregate is 1095 // copied into it, we don't have to emit any zeros here. 1096 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1097 return; 1098 1099 if (CGF.hasScalarEvaluationKind(type)) { 1100 // For non-aggregates, we can store the appropriate null constant. 1101 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1102 // Note that the following is not equivalent to 1103 // EmitStoreThroughBitfieldLValue for ARC types. 1104 if (lv.isBitField()) { 1105 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1106 } else { 1107 assert(lv.isSimple()); 1108 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1109 } 1110 } else { 1111 // There's a potential optimization opportunity in combining 1112 // memsets; that would be easy for arrays, but relatively 1113 // difficult for structures with the current code. 1114 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1115 } 1116 } 1117 1118 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1119 #if 0 1120 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1121 // (Length of globals? Chunks of zeroed-out space?). 1122 // 1123 // If we can, prefer a copy from a global; this is a lot less code for long 1124 // globals, and it's easier for the current optimizers to analyze. 1125 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1126 llvm::GlobalVariable* GV = 1127 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1128 llvm::GlobalValue::InternalLinkage, C, ""); 1129 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1130 return; 1131 } 1132 #endif 1133 if (E->hadArrayRangeDesignator()) 1134 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1135 1136 AggValueSlot Dest = EnsureSlot(E->getType()); 1137 1138 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1139 Dest.getAlignment()); 1140 1141 // Handle initialization of an array. 1142 if (E->getType()->isArrayType()) { 1143 if (E->isStringLiteralInit()) 1144 return Visit(E->getInit(0)); 1145 1146 QualType elementType = 1147 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1148 1149 llvm::PointerType *APType = 1150 cast<llvm::PointerType>(Dest.getAddr()->getType()); 1151 llvm::ArrayType *AType = 1152 cast<llvm::ArrayType>(APType->getElementType()); 1153 1154 EmitArrayInit(Dest.getAddr(), AType, elementType, E); 1155 return; 1156 } 1157 1158 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1159 1160 // Do struct initialization; this code just sets each individual member 1161 // to the approprate value. This makes bitfield support automatic; 1162 // the disadvantage is that the generated code is more difficult for 1163 // the optimizer, especially with bitfields. 1164 unsigned NumInitElements = E->getNumInits(); 1165 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1166 1167 // Prepare a 'this' for CXXDefaultInitExprs. 1168 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr()); 1169 1170 if (record->isUnion()) { 1171 // Only initialize one field of a union. The field itself is 1172 // specified by the initializer list. 1173 if (!E->getInitializedFieldInUnion()) { 1174 // Empty union; we have nothing to do. 1175 1176 #ifndef NDEBUG 1177 // Make sure that it's really an empty and not a failure of 1178 // semantic analysis. 1179 for (RecordDecl::field_iterator Field = record->field_begin(), 1180 FieldEnd = record->field_end(); 1181 Field != FieldEnd; ++Field) 1182 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1183 #endif 1184 return; 1185 } 1186 1187 // FIXME: volatility 1188 FieldDecl *Field = E->getInitializedFieldInUnion(); 1189 1190 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1191 if (NumInitElements) { 1192 // Store the initializer into the field 1193 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1194 } else { 1195 // Default-initialize to null. 1196 EmitNullInitializationToLValue(FieldLoc); 1197 } 1198 1199 return; 1200 } 1201 1202 // We'll need to enter cleanup scopes in case any of the member 1203 // initializers throw an exception. 1204 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1205 llvm::Instruction *cleanupDominator = 0; 1206 1207 // Here we iterate over the fields; this makes it simpler to both 1208 // default-initialize fields and skip over unnamed fields. 1209 unsigned curInitIndex = 0; 1210 for (RecordDecl::field_iterator field = record->field_begin(), 1211 fieldEnd = record->field_end(); 1212 field != fieldEnd; ++field) { 1213 // We're done once we hit the flexible array member. 1214 if (field->getType()->isIncompleteArrayType()) 1215 break; 1216 1217 // Always skip anonymous bitfields. 1218 if (field->isUnnamedBitfield()) 1219 continue; 1220 1221 // We're done if we reach the end of the explicit initializers, we 1222 // have a zeroed object, and the rest of the fields are 1223 // zero-initializable. 1224 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1225 CGF.getTypes().isZeroInitializable(E->getType())) 1226 break; 1227 1228 1229 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field); 1230 // We never generate write-barries for initialized fields. 1231 LV.setNonGC(true); 1232 1233 if (curInitIndex < NumInitElements) { 1234 // Store the initializer into the field. 1235 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1236 } else { 1237 // We're out of initalizers; default-initialize to null 1238 EmitNullInitializationToLValue(LV); 1239 } 1240 1241 // Push a destructor if necessary. 1242 // FIXME: if we have an array of structures, all explicitly 1243 // initialized, we can end up pushing a linear number of cleanups. 1244 bool pushedCleanup = false; 1245 if (QualType::DestructionKind dtorKind 1246 = field->getType().isDestructedType()) { 1247 assert(LV.isSimple()); 1248 if (CGF.needsEHCleanup(dtorKind)) { 1249 if (!cleanupDominator) 1250 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1251 1252 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1253 CGF.getDestroyer(dtorKind), false); 1254 cleanups.push_back(CGF.EHStack.stable_begin()); 1255 pushedCleanup = true; 1256 } 1257 } 1258 1259 // If the GEP didn't get used because of a dead zero init or something 1260 // else, clean it up for -O0 builds and general tidiness. 1261 if (!pushedCleanup && LV.isSimple()) 1262 if (llvm::GetElementPtrInst *GEP = 1263 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1264 if (GEP->use_empty()) 1265 GEP->eraseFromParent(); 1266 } 1267 1268 // Deactivate all the partial cleanups in reverse order, which 1269 // generally means popping them. 1270 for (unsigned i = cleanups.size(); i != 0; --i) 1271 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1272 1273 // Destroy the placeholder if we made one. 1274 if (cleanupDominator) 1275 cleanupDominator->eraseFromParent(); 1276 } 1277 1278 //===----------------------------------------------------------------------===// 1279 // Entry Points into this File 1280 //===----------------------------------------------------------------------===// 1281 1282 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1283 /// non-zero bytes that will be stored when outputting the initializer for the 1284 /// specified initializer expression. 1285 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1286 E = E->IgnoreParens(); 1287 1288 // 0 and 0.0 won't require any non-zero stores! 1289 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1290 1291 // If this is an initlist expr, sum up the size of sizes of the (present) 1292 // elements. If this is something weird, assume the whole thing is non-zero. 1293 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1294 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1295 return CGF.getContext().getTypeSizeInChars(E->getType()); 1296 1297 // InitListExprs for structs have to be handled carefully. If there are 1298 // reference members, we need to consider the size of the reference, not the 1299 // referencee. InitListExprs for unions and arrays can't have references. 1300 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1301 if (!RT->isUnionType()) { 1302 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1303 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1304 1305 unsigned ILEElement = 0; 1306 for (RecordDecl::field_iterator Field = SD->field_begin(), 1307 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 1308 // We're done once we hit the flexible array member or run out of 1309 // InitListExpr elements. 1310 if (Field->getType()->isIncompleteArrayType() || 1311 ILEElement == ILE->getNumInits()) 1312 break; 1313 if (Field->isUnnamedBitfield()) 1314 continue; 1315 1316 const Expr *E = ILE->getInit(ILEElement++); 1317 1318 // Reference values are always non-null and have the width of a pointer. 1319 if (Field->getType()->isReferenceType()) 1320 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1321 CGF.getTarget().getPointerWidth(0)); 1322 else 1323 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1324 } 1325 1326 return NumNonZeroBytes; 1327 } 1328 } 1329 1330 1331 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1332 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1333 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1334 return NumNonZeroBytes; 1335 } 1336 1337 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1338 /// zeros in it, emit a memset and avoid storing the individual zeros. 1339 /// 1340 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1341 CodeGenFunction &CGF) { 1342 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1343 // volatile stores. 1344 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 1345 1346 // C++ objects with a user-declared constructor don't need zero'ing. 1347 if (CGF.getLangOpts().CPlusPlus) 1348 if (const RecordType *RT = CGF.getContext() 1349 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1350 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1351 if (RD->hasUserDeclaredConstructor()) 1352 return; 1353 } 1354 1355 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1356 std::pair<CharUnits, CharUnits> TypeInfo = 1357 CGF.getContext().getTypeInfoInChars(E->getType()); 1358 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1359 return; 1360 1361 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1362 // we prefer to emit memset + individual stores for the rest. 1363 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1364 if (NumNonZeroBytes*4 > TypeInfo.first) 1365 return; 1366 1367 // Okay, it seems like a good idea to use an initial memset, emit the call. 1368 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1369 CharUnits Align = TypeInfo.second; 1370 1371 llvm::Value *Loc = Slot.getAddr(); 1372 1373 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1374 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1375 Align.getQuantity(), false); 1376 1377 // Tell the AggExprEmitter that the slot is known zero. 1378 Slot.setZeroed(); 1379 } 1380 1381 1382 1383 1384 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1385 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1386 /// the value of the aggregate expression is not needed. If VolatileDest is 1387 /// true, DestPtr cannot be 0. 1388 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1389 assert(E && hasAggregateEvaluationKind(E->getType()) && 1390 "Invalid aggregate expression to emit"); 1391 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1392 "slot has bits but no address"); 1393 1394 // Optimize the slot if possible. 1395 CheckAggExprForMemSetUse(Slot, E, *this); 1396 1397 AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E)); 1398 } 1399 1400 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1401 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1402 llvm::Value *Temp = CreateMemTemp(E->getType()); 1403 LValue LV = MakeAddrLValue(Temp, E->getType()); 1404 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1405 AggValueSlot::DoesNotNeedGCBarriers, 1406 AggValueSlot::IsNotAliased)); 1407 return LV; 1408 } 1409 1410 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1411 llvm::Value *SrcPtr, QualType Ty, 1412 bool isVolatile, 1413 CharUnits alignment, 1414 bool isAssignment) { 1415 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1416 1417 if (getLangOpts().CPlusPlus) { 1418 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1419 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1420 assert((Record->hasTrivialCopyConstructor() || 1421 Record->hasTrivialCopyAssignment() || 1422 Record->hasTrivialMoveConstructor() || 1423 Record->hasTrivialMoveAssignment()) && 1424 "Trying to aggregate-copy a type without a trivial copy/move " 1425 "constructor or assignment operator"); 1426 // Ignore empty classes in C++. 1427 if (Record->isEmpty()) 1428 return; 1429 } 1430 } 1431 1432 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1433 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1434 // read from another object that overlaps in anyway the storage of the first 1435 // object, then the overlap shall be exact and the two objects shall have 1436 // qualified or unqualified versions of a compatible type." 1437 // 1438 // memcpy is not defined if the source and destination pointers are exactly 1439 // equal, but other compilers do this optimization, and almost every memcpy 1440 // implementation handles this case safely. If there is a libc that does not 1441 // safely handle this, we can add a target hook. 1442 1443 // Get data size and alignment info for this aggregate. If this is an 1444 // assignment don't copy the tail padding. Otherwise copying it is fine. 1445 std::pair<CharUnits, CharUnits> TypeInfo; 1446 if (isAssignment) 1447 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1448 else 1449 TypeInfo = getContext().getTypeInfoInChars(Ty); 1450 1451 if (alignment.isZero()) 1452 alignment = TypeInfo.second; 1453 1454 // FIXME: Handle variable sized types. 1455 1456 // FIXME: If we have a volatile struct, the optimizer can remove what might 1457 // appear to be `extra' memory ops: 1458 // 1459 // volatile struct { int i; } a, b; 1460 // 1461 // int main() { 1462 // a = b; 1463 // a = b; 1464 // } 1465 // 1466 // we need to use a different call here. We use isVolatile to indicate when 1467 // either the source or the destination is volatile. 1468 1469 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1470 llvm::Type *DBP = 1471 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1472 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1473 1474 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1475 llvm::Type *SBP = 1476 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1477 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1478 1479 // Don't do any of the memmove_collectable tests if GC isn't set. 1480 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1481 // fall through 1482 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1483 RecordDecl *Record = RecordTy->getDecl(); 1484 if (Record->hasObjectMember()) { 1485 CharUnits size = TypeInfo.first; 1486 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1487 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1488 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1489 SizeVal); 1490 return; 1491 } 1492 } else if (Ty->isArrayType()) { 1493 QualType BaseType = getContext().getBaseElementType(Ty); 1494 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1495 if (RecordTy->getDecl()->hasObjectMember()) { 1496 CharUnits size = TypeInfo.first; 1497 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1498 llvm::Value *SizeVal = 1499 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1500 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1501 SizeVal); 1502 return; 1503 } 1504 } 1505 } 1506 1507 // Determine the metadata to describe the position of any padding in this 1508 // memcpy, as well as the TBAA tags for the members of the struct, in case 1509 // the optimizer wishes to expand it in to scalar memory operations. 1510 llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty); 1511 1512 Builder.CreateMemCpy(DestPtr, SrcPtr, 1513 llvm::ConstantInt::get(IntPtrTy, 1514 TypeInfo.first.getQuantity()), 1515 alignment.getQuantity(), isVolatile, 1516 /*TBAATag=*/0, TBAAStructTag); 1517 } 1518