1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 llvm::Value *AggValueSlot::getPaddedAtomicAddr() const {
33   assert(isValueOfAtomic());
34   llvm::GEPOperator *op = cast<llvm::GEPOperator>(getAddr());
35   assert(op->getNumIndices() == 2);
36   assert(op->hasAllZeroIndices());
37   return op->getPointerOperand();
38 }
39 
40 namespace  {
41 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
42   CodeGenFunction &CGF;
43   CGBuilderTy &Builder;
44   AggValueSlot Dest;
45 
46   /// We want to use 'dest' as the return slot except under two
47   /// conditions:
48   ///   - The destination slot requires garbage collection, so we
49   ///     need to use the GC API.
50   ///   - The destination slot is potentially aliased.
51   bool shouldUseDestForReturnSlot() const {
52     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
53   }
54 
55   ReturnValueSlot getReturnValueSlot() const {
56     if (!shouldUseDestForReturnSlot())
57       return ReturnValueSlot();
58 
59     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
60   }
61 
62   AggValueSlot EnsureSlot(QualType T) {
63     if (!Dest.isIgnored()) return Dest;
64     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
65   }
66   void EnsureDest(QualType T) {
67     if (!Dest.isIgnored()) return;
68     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
69   }
70 
71 public:
72   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest)
73     : CGF(cgf), Builder(CGF.Builder), Dest(Dest) {
74   }
75 
76   //===--------------------------------------------------------------------===//
77   //                               Utilities
78   //===--------------------------------------------------------------------===//
79 
80   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
81   /// represents a value lvalue, this method emits the address of the lvalue,
82   /// then loads the result into DestPtr.
83   void EmitAggLoadOfLValue(const Expr *E);
84 
85   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
86   void EmitFinalDestCopy(QualType type, const LValue &src);
87   void EmitFinalDestCopy(QualType type, RValue src,
88                          CharUnits srcAlignment = CharUnits::Zero());
89   void EmitCopy(QualType type, const AggValueSlot &dest,
90                 const AggValueSlot &src);
91 
92   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
93 
94   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
95                      QualType elementType, InitListExpr *E);
96 
97   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
98     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
99       return AggValueSlot::NeedsGCBarriers;
100     return AggValueSlot::DoesNotNeedGCBarriers;
101   }
102 
103   bool TypeRequiresGCollection(QualType T);
104 
105   //===--------------------------------------------------------------------===//
106   //                            Visitor Methods
107   //===--------------------------------------------------------------------===//
108 
109   void VisitStmt(Stmt *S) {
110     CGF.ErrorUnsupported(S, "aggregate expression");
111   }
112   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
113   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
114     Visit(GE->getResultExpr());
115   }
116   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
117   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
118     return Visit(E->getReplacement());
119   }
120 
121   // l-values.
122   void VisitDeclRefExpr(DeclRefExpr *E) {
123     // For aggregates, we should always be able to emit the variable
124     // as an l-value unless it's a reference.  This is due to the fact
125     // that we can't actually ever see a normal l2r conversion on an
126     // aggregate in C++, and in C there's no language standard
127     // actively preventing us from listing variables in the captures
128     // list of a block.
129     if (E->getDecl()->getType()->isReferenceType()) {
130       if (CodeGenFunction::ConstantEmission result
131             = CGF.tryEmitAsConstant(E)) {
132         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
133         return;
134       }
135     }
136 
137     EmitAggLoadOfLValue(E);
138   }
139 
140   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
141   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
142   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
143   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
144   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
145     EmitAggLoadOfLValue(E);
146   }
147   void VisitPredefinedExpr(const PredefinedExpr *E) {
148     EmitAggLoadOfLValue(E);
149   }
150 
151   // Operators.
152   void VisitCastExpr(CastExpr *E);
153   void VisitCallExpr(const CallExpr *E);
154   void VisitStmtExpr(const StmtExpr *E);
155   void VisitBinaryOperator(const BinaryOperator *BO);
156   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
157   void VisitBinAssign(const BinaryOperator *E);
158   void VisitBinComma(const BinaryOperator *E);
159 
160   void VisitObjCMessageExpr(ObjCMessageExpr *E);
161   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
162     EmitAggLoadOfLValue(E);
163   }
164 
165   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
166   void VisitChooseExpr(const ChooseExpr *CE);
167   void VisitInitListExpr(InitListExpr *E);
168   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
169   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
170     Visit(DAE->getExpr());
171   }
172   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
173     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
174     Visit(DIE->getExpr());
175   }
176   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
177   void VisitCXXConstructExpr(const CXXConstructExpr *E);
178   void VisitLambdaExpr(LambdaExpr *E);
179   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
180   void VisitExprWithCleanups(ExprWithCleanups *E);
181   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
182   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
183   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
184   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
185 
186   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
187     if (E->isGLValue()) {
188       LValue LV = CGF.EmitPseudoObjectLValue(E);
189       return EmitFinalDestCopy(E->getType(), LV);
190     }
191 
192     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
193   }
194 
195   void VisitVAArgExpr(VAArgExpr *E);
196 
197   void EmitInitializationToLValue(Expr *E, LValue Address);
198   void EmitNullInitializationToLValue(LValue Address);
199   //  case Expr::ChooseExprClass:
200   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
201   void VisitAtomicExpr(AtomicExpr *E) {
202     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
203   }
204 };
205 
206 /// A helper class for emitting expressions into the value sub-object
207 /// of a padded atomic type.
208 class ValueDestForAtomic {
209   AggValueSlot Dest;
210 public:
211   ValueDestForAtomic(CodeGenFunction &CGF, AggValueSlot dest, QualType type)
212     : Dest(dest) {
213     assert(!Dest.isValueOfAtomic());
214     if (!Dest.isIgnored() && CGF.CGM.isPaddedAtomicType(type)) {
215       llvm::Value *valueAddr = CGF.Builder.CreateStructGEP(Dest.getAddr(), 0);
216       Dest = AggValueSlot::forAddr(valueAddr,
217                                    Dest.getAlignment(),
218                                    Dest.getQualifiers(),
219                                    Dest.isExternallyDestructed(),
220                                    Dest.requiresGCollection(),
221                                    Dest.isPotentiallyAliased(),
222                                    Dest.isZeroed(),
223                                    AggValueSlot::IsValueOfAtomic);
224     }
225   }
226 
227   const AggValueSlot &getDest() const { return Dest; }
228 
229   ~ValueDestForAtomic() {
230     // Kill the GEP if we made one and it didn't end up used.
231     if (Dest.isValueOfAtomic()) {
232       llvm::Instruction *addr = cast<llvm::GetElementPtrInst>(Dest.getAddr());
233       if (addr->use_empty()) addr->eraseFromParent();
234     }
235   }
236 };
237 }  // end anonymous namespace.
238 
239 //===----------------------------------------------------------------------===//
240 //                                Utilities
241 //===----------------------------------------------------------------------===//
242 
243 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
244 /// represents a value lvalue, this method emits the address of the lvalue,
245 /// then loads the result into DestPtr.
246 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
247   LValue LV = CGF.EmitLValue(E);
248 
249   // If the type of the l-value is atomic, then do an atomic load.
250   if (LV.getType()->isAtomicType()) {
251     ValueDestForAtomic valueDest(CGF, Dest, LV.getType());
252     CGF.EmitAtomicLoad(LV, valueDest.getDest());
253     return;
254   }
255 
256   EmitFinalDestCopy(E->getType(), LV);
257 }
258 
259 /// \brief True if the given aggregate type requires special GC API calls.
260 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
261   // Only record types have members that might require garbage collection.
262   const RecordType *RecordTy = T->getAs<RecordType>();
263   if (!RecordTy) return false;
264 
265   // Don't mess with non-trivial C++ types.
266   RecordDecl *Record = RecordTy->getDecl();
267   if (isa<CXXRecordDecl>(Record) &&
268       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
269        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
270     return false;
271 
272   // Check whether the type has an object member.
273   return Record->hasObjectMember();
274 }
275 
276 /// \brief Perform the final move to DestPtr if for some reason
277 /// getReturnValueSlot() didn't use it directly.
278 ///
279 /// The idea is that you do something like this:
280 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
281 ///   EmitMoveFromReturnSlot(E, Result);
282 ///
283 /// If nothing interferes, this will cause the result to be emitted
284 /// directly into the return value slot.  Otherwise, a final move
285 /// will be performed.
286 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
287   if (shouldUseDestForReturnSlot()) {
288     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
289     // The possibility of undef rvalues complicates that a lot,
290     // though, so we can't really assert.
291     return;
292   }
293 
294   // Otherwise, copy from there to the destination.
295   assert(Dest.getAddr() != src.getAggregateAddr());
296   std::pair<CharUnits, CharUnits> typeInfo =
297     CGF.getContext().getTypeInfoInChars(E->getType());
298   EmitFinalDestCopy(E->getType(), src, typeInfo.second);
299 }
300 
301 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
302 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
303                                        CharUnits srcAlign) {
304   assert(src.isAggregate() && "value must be aggregate value!");
305   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
306   EmitFinalDestCopy(type, srcLV);
307 }
308 
309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
310 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
311   // If Dest is ignored, then we're evaluating an aggregate expression
312   // in a context that doesn't care about the result.  Note that loads
313   // from volatile l-values force the existence of a non-ignored
314   // destination.
315   if (Dest.isIgnored())
316     return;
317 
318   AggValueSlot srcAgg =
319     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
320                             needsGC(type), AggValueSlot::IsAliased);
321   EmitCopy(type, Dest, srcAgg);
322 }
323 
324 /// Perform a copy from the source into the destination.
325 ///
326 /// \param type - the type of the aggregate being copied; qualifiers are
327 ///   ignored
328 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
329                               const AggValueSlot &src) {
330   if (dest.requiresGCollection()) {
331     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
332     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
333     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
334                                                       dest.getAddr(),
335                                                       src.getAddr(),
336                                                       size);
337     return;
338   }
339 
340   // If the result of the assignment is used, copy the LHS there also.
341   // It's volatile if either side is.  Use the minimum alignment of
342   // the two sides.
343   CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
344                         dest.isVolatile() || src.isVolatile(),
345                         std::min(dest.getAlignment(), src.getAlignment()));
346 }
347 
348 /// \brief Emit the initializer for a std::initializer_list initialized with a
349 /// real initializer list.
350 void
351 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
352   // Emit an array containing the elements.  The array is externally destructed
353   // if the std::initializer_list object is.
354   ASTContext &Ctx = CGF.getContext();
355   LValue Array = CGF.EmitLValue(E->getSubExpr());
356   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
357   llvm::Value *ArrayPtr = Array.getAddress();
358 
359   const ConstantArrayType *ArrayType =
360       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
361   assert(ArrayType && "std::initializer_list constructed from non-array");
362 
363   // FIXME: Perform the checks on the field types in SemaInit.
364   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
365   RecordDecl::field_iterator Field = Record->field_begin();
366   if (Field == Record->field_end()) {
367     CGF.ErrorUnsupported(E, "weird std::initializer_list");
368     return;
369   }
370 
371   // Start pointer.
372   if (!Field->getType()->isPointerType() ||
373       !Ctx.hasSameType(Field->getType()->getPointeeType(),
374                        ArrayType->getElementType())) {
375     CGF.ErrorUnsupported(E, "weird std::initializer_list");
376     return;
377   }
378 
379   AggValueSlot Dest = EnsureSlot(E->getType());
380   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
381                                      Dest.getAlignment());
382   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
383   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
384   llvm::Value *IdxStart[] = { Zero, Zero };
385   llvm::Value *ArrayStart =
386       Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart");
387   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
388   ++Field;
389 
390   if (Field == Record->field_end()) {
391     CGF.ErrorUnsupported(E, "weird std::initializer_list");
392     return;
393   }
394 
395   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
396   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
397   if (Field->getType()->isPointerType() &&
398       Ctx.hasSameType(Field->getType()->getPointeeType(),
399                       ArrayType->getElementType())) {
400     // End pointer.
401     llvm::Value *IdxEnd[] = { Zero, Size };
402     llvm::Value *ArrayEnd =
403         Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend");
404     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
405   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
406     // Length.
407     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
408   } else {
409     CGF.ErrorUnsupported(E, "weird std::initializer_list");
410     return;
411   }
412 }
413 
414 /// \brief Emit initialization of an array from an initializer list.
415 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
416                                    QualType elementType, InitListExpr *E) {
417   uint64_t NumInitElements = E->getNumInits();
418 
419   uint64_t NumArrayElements = AType->getNumElements();
420   assert(NumInitElements <= NumArrayElements);
421 
422   // DestPtr is an array*.  Construct an elementType* by drilling
423   // down a level.
424   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
425   llvm::Value *indices[] = { zero, zero };
426   llvm::Value *begin =
427     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
428 
429   // Exception safety requires us to destroy all the
430   // already-constructed members if an initializer throws.
431   // For that, we'll need an EH cleanup.
432   QualType::DestructionKind dtorKind = elementType.isDestructedType();
433   llvm::AllocaInst *endOfInit = 0;
434   EHScopeStack::stable_iterator cleanup;
435   llvm::Instruction *cleanupDominator = 0;
436   if (CGF.needsEHCleanup(dtorKind)) {
437     // In principle we could tell the cleanup where we are more
438     // directly, but the control flow can get so varied here that it
439     // would actually be quite complex.  Therefore we go through an
440     // alloca.
441     endOfInit = CGF.CreateTempAlloca(begin->getType(),
442                                      "arrayinit.endOfInit");
443     cleanupDominator = Builder.CreateStore(begin, endOfInit);
444     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
445                                          CGF.getDestroyer(dtorKind));
446     cleanup = CGF.EHStack.stable_begin();
447 
448   // Otherwise, remember that we didn't need a cleanup.
449   } else {
450     dtorKind = QualType::DK_none;
451   }
452 
453   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
454 
455   // The 'current element to initialize'.  The invariants on this
456   // variable are complicated.  Essentially, after each iteration of
457   // the loop, it points to the last initialized element, except
458   // that it points to the beginning of the array before any
459   // elements have been initialized.
460   llvm::Value *element = begin;
461 
462   // Emit the explicit initializers.
463   for (uint64_t i = 0; i != NumInitElements; ++i) {
464     // Advance to the next element.
465     if (i > 0) {
466       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
467 
468       // Tell the cleanup that it needs to destroy up to this
469       // element.  TODO: some of these stores can be trivially
470       // observed to be unnecessary.
471       if (endOfInit) Builder.CreateStore(element, endOfInit);
472     }
473 
474     LValue elementLV = CGF.MakeAddrLValue(element, elementType);
475     EmitInitializationToLValue(E->getInit(i), elementLV);
476   }
477 
478   // Check whether there's a non-trivial array-fill expression.
479   // Note that this will be a CXXConstructExpr even if the element
480   // type is an array (or array of array, etc.) of class type.
481   Expr *filler = E->getArrayFiller();
482   bool hasTrivialFiller = true;
483   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
484     assert(cons->getConstructor()->isDefaultConstructor());
485     hasTrivialFiller = cons->getConstructor()->isTrivial();
486   }
487 
488   // Any remaining elements need to be zero-initialized, possibly
489   // using the filler expression.  We can skip this if the we're
490   // emitting to zeroed memory.
491   if (NumInitElements != NumArrayElements &&
492       !(Dest.isZeroed() && hasTrivialFiller &&
493         CGF.getTypes().isZeroInitializable(elementType))) {
494 
495     // Use an actual loop.  This is basically
496     //   do { *array++ = filler; } while (array != end);
497 
498     // Advance to the start of the rest of the array.
499     if (NumInitElements) {
500       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
501       if (endOfInit) Builder.CreateStore(element, endOfInit);
502     }
503 
504     // Compute the end of the array.
505     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
506                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
507                                                  "arrayinit.end");
508 
509     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
510     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
511 
512     // Jump into the body.
513     CGF.EmitBlock(bodyBB);
514     llvm::PHINode *currentElement =
515       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
516     currentElement->addIncoming(element, entryBB);
517 
518     // Emit the actual filler expression.
519     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
520     if (filler)
521       EmitInitializationToLValue(filler, elementLV);
522     else
523       EmitNullInitializationToLValue(elementLV);
524 
525     // Move on to the next element.
526     llvm::Value *nextElement =
527       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
528 
529     // Tell the EH cleanup that we finished with the last element.
530     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
531 
532     // Leave the loop if we're done.
533     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
534                                              "arrayinit.done");
535     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
536     Builder.CreateCondBr(done, endBB, bodyBB);
537     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
538 
539     CGF.EmitBlock(endBB);
540   }
541 
542   // Leave the partial-array cleanup if we entered one.
543   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
544 }
545 
546 //===----------------------------------------------------------------------===//
547 //                            Visitor Methods
548 //===----------------------------------------------------------------------===//
549 
550 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
551   Visit(E->GetTemporaryExpr());
552 }
553 
554 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
555   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
556 }
557 
558 void
559 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
560   if (Dest.isPotentiallyAliased() &&
561       E->getType().isPODType(CGF.getContext())) {
562     // For a POD type, just emit a load of the lvalue + a copy, because our
563     // compound literal might alias the destination.
564     EmitAggLoadOfLValue(E);
565     return;
566   }
567 
568   AggValueSlot Slot = EnsureSlot(E->getType());
569   CGF.EmitAggExpr(E->getInitializer(), Slot);
570 }
571 
572 /// Attempt to look through various unimportant expressions to find a
573 /// cast of the given kind.
574 static Expr *findPeephole(Expr *op, CastKind kind) {
575   while (true) {
576     op = op->IgnoreParens();
577     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
578       if (castE->getCastKind() == kind)
579         return castE->getSubExpr();
580       if (castE->getCastKind() == CK_NoOp)
581         continue;
582     }
583     return 0;
584   }
585 }
586 
587 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
588   switch (E->getCastKind()) {
589   case CK_Dynamic: {
590     // FIXME: Can this actually happen? We have no test coverage for it.
591     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
592     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
593                                       CodeGenFunction::TCK_Load);
594     // FIXME: Do we also need to handle property references here?
595     if (LV.isSimple())
596       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
597     else
598       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
599 
600     if (!Dest.isIgnored())
601       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
602     break;
603   }
604 
605   case CK_ToUnion: {
606     if (Dest.isIgnored()) break;
607 
608     // GCC union extension
609     QualType Ty = E->getSubExpr()->getType();
610     QualType PtrTy = CGF.getContext().getPointerType(Ty);
611     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
612                                                  CGF.ConvertType(PtrTy));
613     EmitInitializationToLValue(E->getSubExpr(),
614                                CGF.MakeAddrLValue(CastPtr, Ty));
615     break;
616   }
617 
618   case CK_DerivedToBase:
619   case CK_BaseToDerived:
620   case CK_UncheckedDerivedToBase: {
621     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
622                 "should have been unpacked before we got here");
623   }
624 
625   case CK_NonAtomicToAtomic:
626   case CK_AtomicToNonAtomic: {
627     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
628 
629     // Determine the atomic and value types.
630     QualType atomicType = E->getSubExpr()->getType();
631     QualType valueType = E->getType();
632     if (isToAtomic) std::swap(atomicType, valueType);
633 
634     assert(atomicType->isAtomicType());
635     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
636                           atomicType->castAs<AtomicType>()->getValueType()));
637 
638     // Just recurse normally if we're ignoring the result or the
639     // atomic type doesn't change representation.
640     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
641       return Visit(E->getSubExpr());
642     }
643 
644     CastKind peepholeTarget =
645       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
646 
647     // These two cases are reverses of each other; try to peephole them.
648     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
649       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
650                                                      E->getType()) &&
651            "peephole significantly changed types?");
652       return Visit(op);
653     }
654 
655     // If we're converting an r-value of non-atomic type to an r-value
656     // of atomic type, just make an atomic temporary, emit into that,
657     // and then copy the value out.  (FIXME: do we need to
658     // zero-initialize it first?)
659     if (isToAtomic) {
660       ValueDestForAtomic valueDest(CGF, Dest, atomicType);
661       CGF.EmitAggExpr(E->getSubExpr(), valueDest.getDest());
662       return;
663     }
664 
665     // Otherwise, we're converting an atomic type to a non-atomic type.
666 
667     // If the dest is a value-of-atomic subobject, drill back out.
668     if (Dest.isValueOfAtomic()) {
669       AggValueSlot atomicSlot =
670         AggValueSlot::forAddr(Dest.getPaddedAtomicAddr(),
671                               Dest.getAlignment(),
672                               Dest.getQualifiers(),
673                               Dest.isExternallyDestructed(),
674                               Dest.requiresGCollection(),
675                               Dest.isPotentiallyAliased(),
676                               Dest.isZeroed(),
677                               AggValueSlot::IsNotValueOfAtomic);
678       CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
679       return;
680     }
681 
682     // Otherwise, make an atomic temporary, emit into that, and then
683     // copy the value out.
684     AggValueSlot atomicSlot =
685       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
686     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
687 
688     llvm::Value *valueAddr =
689       Builder.CreateStructGEP(atomicSlot.getAddr(), 0);
690     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
691     return EmitFinalDestCopy(valueType, rvalue);
692   }
693 
694   case CK_LValueToRValue:
695     // If we're loading from a volatile type, force the destination
696     // into existence.
697     if (E->getSubExpr()->getType().isVolatileQualified()) {
698       EnsureDest(E->getType());
699       return Visit(E->getSubExpr());
700     }
701 
702     // fallthrough
703 
704   case CK_NoOp:
705   case CK_UserDefinedConversion:
706   case CK_ConstructorConversion:
707     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
708                                                    E->getType()) &&
709            "Implicit cast types must be compatible");
710     Visit(E->getSubExpr());
711     break;
712 
713   case CK_LValueBitCast:
714     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
715 
716   case CK_Dependent:
717   case CK_BitCast:
718   case CK_ArrayToPointerDecay:
719   case CK_FunctionToPointerDecay:
720   case CK_NullToPointer:
721   case CK_NullToMemberPointer:
722   case CK_BaseToDerivedMemberPointer:
723   case CK_DerivedToBaseMemberPointer:
724   case CK_MemberPointerToBoolean:
725   case CK_ReinterpretMemberPointer:
726   case CK_IntegralToPointer:
727   case CK_PointerToIntegral:
728   case CK_PointerToBoolean:
729   case CK_ToVoid:
730   case CK_VectorSplat:
731   case CK_IntegralCast:
732   case CK_IntegralToBoolean:
733   case CK_IntegralToFloating:
734   case CK_FloatingToIntegral:
735   case CK_FloatingToBoolean:
736   case CK_FloatingCast:
737   case CK_CPointerToObjCPointerCast:
738   case CK_BlockPointerToObjCPointerCast:
739   case CK_AnyPointerToBlockPointerCast:
740   case CK_ObjCObjectLValueCast:
741   case CK_FloatingRealToComplex:
742   case CK_FloatingComplexToReal:
743   case CK_FloatingComplexToBoolean:
744   case CK_FloatingComplexCast:
745   case CK_FloatingComplexToIntegralComplex:
746   case CK_IntegralRealToComplex:
747   case CK_IntegralComplexToReal:
748   case CK_IntegralComplexToBoolean:
749   case CK_IntegralComplexCast:
750   case CK_IntegralComplexToFloatingComplex:
751   case CK_ARCProduceObject:
752   case CK_ARCConsumeObject:
753   case CK_ARCReclaimReturnedObject:
754   case CK_ARCExtendBlockObject:
755   case CK_CopyAndAutoreleaseBlockObject:
756   case CK_BuiltinFnToFnPtr:
757   case CK_ZeroToOCLEvent:
758     llvm_unreachable("cast kind invalid for aggregate types");
759   }
760 }
761 
762 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
763   if (E->getCallReturnType()->isReferenceType()) {
764     EmitAggLoadOfLValue(E);
765     return;
766   }
767 
768   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
769   EmitMoveFromReturnSlot(E, RV);
770 }
771 
772 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
773   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
774   EmitMoveFromReturnSlot(E, RV);
775 }
776 
777 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
778   CGF.EmitIgnoredExpr(E->getLHS());
779   Visit(E->getRHS());
780 }
781 
782 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
783   CodeGenFunction::StmtExprEvaluation eval(CGF);
784   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
785 }
786 
787 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
788   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
789     VisitPointerToDataMemberBinaryOperator(E);
790   else
791     CGF.ErrorUnsupported(E, "aggregate binary expression");
792 }
793 
794 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
795                                                     const BinaryOperator *E) {
796   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
797   EmitFinalDestCopy(E->getType(), LV);
798 }
799 
800 /// Is the value of the given expression possibly a reference to or
801 /// into a __block variable?
802 static bool isBlockVarRef(const Expr *E) {
803   // Make sure we look through parens.
804   E = E->IgnoreParens();
805 
806   // Check for a direct reference to a __block variable.
807   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
808     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
809     return (var && var->hasAttr<BlocksAttr>());
810   }
811 
812   // More complicated stuff.
813 
814   // Binary operators.
815   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
816     // For an assignment or pointer-to-member operation, just care
817     // about the LHS.
818     if (op->isAssignmentOp() || op->isPtrMemOp())
819       return isBlockVarRef(op->getLHS());
820 
821     // For a comma, just care about the RHS.
822     if (op->getOpcode() == BO_Comma)
823       return isBlockVarRef(op->getRHS());
824 
825     // FIXME: pointer arithmetic?
826     return false;
827 
828   // Check both sides of a conditional operator.
829   } else if (const AbstractConditionalOperator *op
830                = dyn_cast<AbstractConditionalOperator>(E)) {
831     return isBlockVarRef(op->getTrueExpr())
832         || isBlockVarRef(op->getFalseExpr());
833 
834   // OVEs are required to support BinaryConditionalOperators.
835   } else if (const OpaqueValueExpr *op
836                = dyn_cast<OpaqueValueExpr>(E)) {
837     if (const Expr *src = op->getSourceExpr())
838       return isBlockVarRef(src);
839 
840   // Casts are necessary to get things like (*(int*)&var) = foo().
841   // We don't really care about the kind of cast here, except
842   // we don't want to look through l2r casts, because it's okay
843   // to get the *value* in a __block variable.
844   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
845     if (cast->getCastKind() == CK_LValueToRValue)
846       return false;
847     return isBlockVarRef(cast->getSubExpr());
848 
849   // Handle unary operators.  Again, just aggressively look through
850   // it, ignoring the operation.
851   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
852     return isBlockVarRef(uop->getSubExpr());
853 
854   // Look into the base of a field access.
855   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
856     return isBlockVarRef(mem->getBase());
857 
858   // Look into the base of a subscript.
859   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
860     return isBlockVarRef(sub->getBase());
861   }
862 
863   return false;
864 }
865 
866 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
867   // For an assignment to work, the value on the right has
868   // to be compatible with the value on the left.
869   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
870                                                  E->getRHS()->getType())
871          && "Invalid assignment");
872 
873   // If the LHS might be a __block variable, and the RHS can
874   // potentially cause a block copy, we need to evaluate the RHS first
875   // so that the assignment goes the right place.
876   // This is pretty semantically fragile.
877   if (isBlockVarRef(E->getLHS()) &&
878       E->getRHS()->HasSideEffects(CGF.getContext())) {
879     // Ensure that we have a destination, and evaluate the RHS into that.
880     EnsureDest(E->getRHS()->getType());
881     Visit(E->getRHS());
882 
883     // Now emit the LHS and copy into it.
884     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
885 
886     // That copy is an atomic copy if the LHS is atomic.
887     if (LHS.getType()->isAtomicType()) {
888       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
889       return;
890     }
891 
892     EmitCopy(E->getLHS()->getType(),
893              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
894                                      needsGC(E->getLHS()->getType()),
895                                      AggValueSlot::IsAliased),
896              Dest);
897     return;
898   }
899 
900   LValue LHS = CGF.EmitLValue(E->getLHS());
901 
902   // If we have an atomic type, evaluate into the destination and then
903   // do an atomic copy.
904   if (LHS.getType()->isAtomicType()) {
905     EnsureDest(E->getRHS()->getType());
906     Visit(E->getRHS());
907     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
908     return;
909   }
910 
911   // Codegen the RHS so that it stores directly into the LHS.
912   AggValueSlot LHSSlot =
913     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
914                             needsGC(E->getLHS()->getType()),
915                             AggValueSlot::IsAliased);
916   // A non-volatile aggregate destination might have volatile member.
917   if (!LHSSlot.isVolatile() &&
918       CGF.hasVolatileMember(E->getLHS()->getType()))
919     LHSSlot.setVolatile(true);
920 
921   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
922 
923   // Copy into the destination if the assignment isn't ignored.
924   EmitFinalDestCopy(E->getType(), LHS);
925 }
926 
927 void AggExprEmitter::
928 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
929   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
930   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
931   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
932 
933   // Bind the common expression if necessary.
934   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
935 
936   CodeGenFunction::ConditionalEvaluation eval(CGF);
937   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
938 
939   // Save whether the destination's lifetime is externally managed.
940   bool isExternallyDestructed = Dest.isExternallyDestructed();
941 
942   eval.begin(CGF);
943   CGF.EmitBlock(LHSBlock);
944   Visit(E->getTrueExpr());
945   eval.end(CGF);
946 
947   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
948   CGF.Builder.CreateBr(ContBlock);
949 
950   // If the result of an agg expression is unused, then the emission
951   // of the LHS might need to create a destination slot.  That's fine
952   // with us, and we can safely emit the RHS into the same slot, but
953   // we shouldn't claim that it's already being destructed.
954   Dest.setExternallyDestructed(isExternallyDestructed);
955 
956   eval.begin(CGF);
957   CGF.EmitBlock(RHSBlock);
958   Visit(E->getFalseExpr());
959   eval.end(CGF);
960 
961   CGF.EmitBlock(ContBlock);
962 }
963 
964 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
965   Visit(CE->getChosenSubExpr(CGF.getContext()));
966 }
967 
968 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
969   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
970   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
971 
972   if (!ArgPtr) {
973     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
974     return;
975   }
976 
977   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
978 }
979 
980 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
981   // Ensure that we have a slot, but if we already do, remember
982   // whether it was externally destructed.
983   bool wasExternallyDestructed = Dest.isExternallyDestructed();
984   EnsureDest(E->getType());
985 
986   // We're going to push a destructor if there isn't already one.
987   Dest.setExternallyDestructed();
988 
989   Visit(E->getSubExpr());
990 
991   // Push that destructor we promised.
992   if (!wasExternallyDestructed)
993     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
994 }
995 
996 void
997 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
998   AggValueSlot Slot = EnsureSlot(E->getType());
999   CGF.EmitCXXConstructExpr(E, Slot);
1000 }
1001 
1002 void
1003 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1004   AggValueSlot Slot = EnsureSlot(E->getType());
1005   CGF.EmitLambdaExpr(E, Slot);
1006 }
1007 
1008 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1009   CGF.enterFullExpression(E);
1010   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1011   Visit(E->getSubExpr());
1012 }
1013 
1014 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1015   QualType T = E->getType();
1016   AggValueSlot Slot = EnsureSlot(T);
1017   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1018 }
1019 
1020 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1021   QualType T = E->getType();
1022   AggValueSlot Slot = EnsureSlot(T);
1023   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1024 }
1025 
1026 /// isSimpleZero - If emitting this value will obviously just cause a store of
1027 /// zero to memory, return true.  This can return false if uncertain, so it just
1028 /// handles simple cases.
1029 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1030   E = E->IgnoreParens();
1031 
1032   // 0
1033   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1034     return IL->getValue() == 0;
1035   // +0.0
1036   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1037     return FL->getValue().isPosZero();
1038   // int()
1039   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1040       CGF.getTypes().isZeroInitializable(E->getType()))
1041     return true;
1042   // (int*)0 - Null pointer expressions.
1043   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1044     return ICE->getCastKind() == CK_NullToPointer;
1045   // '\0'
1046   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1047     return CL->getValue() == 0;
1048 
1049   // Otherwise, hard case: conservatively return false.
1050   return false;
1051 }
1052 
1053 
1054 void
1055 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
1056   QualType type = LV.getType();
1057   // FIXME: Ignore result?
1058   // FIXME: Are initializers affected by volatile?
1059   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1060     // Storing "i32 0" to a zero'd memory location is a noop.
1061     return;
1062   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1063     return EmitNullInitializationToLValue(LV);
1064   } else if (type->isReferenceType()) {
1065     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1066     return CGF.EmitStoreThroughLValue(RV, LV);
1067   }
1068 
1069   switch (CGF.getEvaluationKind(type)) {
1070   case TEK_Complex:
1071     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1072     return;
1073   case TEK_Aggregate:
1074     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1075                                                AggValueSlot::IsDestructed,
1076                                       AggValueSlot::DoesNotNeedGCBarriers,
1077                                                AggValueSlot::IsNotAliased,
1078                                                Dest.isZeroed()));
1079     return;
1080   case TEK_Scalar:
1081     if (LV.isSimple()) {
1082       CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
1083     } else {
1084       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1085     }
1086     return;
1087   }
1088   llvm_unreachable("bad evaluation kind");
1089 }
1090 
1091 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1092   QualType type = lv.getType();
1093 
1094   // If the destination slot is already zeroed out before the aggregate is
1095   // copied into it, we don't have to emit any zeros here.
1096   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1097     return;
1098 
1099   if (CGF.hasScalarEvaluationKind(type)) {
1100     // For non-aggregates, we can store the appropriate null constant.
1101     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1102     // Note that the following is not equivalent to
1103     // EmitStoreThroughBitfieldLValue for ARC types.
1104     if (lv.isBitField()) {
1105       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1106     } else {
1107       assert(lv.isSimple());
1108       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1109     }
1110   } else {
1111     // There's a potential optimization opportunity in combining
1112     // memsets; that would be easy for arrays, but relatively
1113     // difficult for structures with the current code.
1114     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1115   }
1116 }
1117 
1118 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1119 #if 0
1120   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1121   // (Length of globals? Chunks of zeroed-out space?).
1122   //
1123   // If we can, prefer a copy from a global; this is a lot less code for long
1124   // globals, and it's easier for the current optimizers to analyze.
1125   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1126     llvm::GlobalVariable* GV =
1127     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1128                              llvm::GlobalValue::InternalLinkage, C, "");
1129     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1130     return;
1131   }
1132 #endif
1133   if (E->hadArrayRangeDesignator())
1134     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1135 
1136   AggValueSlot Dest = EnsureSlot(E->getType());
1137 
1138   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
1139                                      Dest.getAlignment());
1140 
1141   // Handle initialization of an array.
1142   if (E->getType()->isArrayType()) {
1143     if (E->isStringLiteralInit())
1144       return Visit(E->getInit(0));
1145 
1146     QualType elementType =
1147         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1148 
1149     llvm::PointerType *APType =
1150       cast<llvm::PointerType>(Dest.getAddr()->getType());
1151     llvm::ArrayType *AType =
1152       cast<llvm::ArrayType>(APType->getElementType());
1153 
1154     EmitArrayInit(Dest.getAddr(), AType, elementType, E);
1155     return;
1156   }
1157 
1158   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1159 
1160   // Do struct initialization; this code just sets each individual member
1161   // to the approprate value.  This makes bitfield support automatic;
1162   // the disadvantage is that the generated code is more difficult for
1163   // the optimizer, especially with bitfields.
1164   unsigned NumInitElements = E->getNumInits();
1165   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1166 
1167   // Prepare a 'this' for CXXDefaultInitExprs.
1168   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr());
1169 
1170   if (record->isUnion()) {
1171     // Only initialize one field of a union. The field itself is
1172     // specified by the initializer list.
1173     if (!E->getInitializedFieldInUnion()) {
1174       // Empty union; we have nothing to do.
1175 
1176 #ifndef NDEBUG
1177       // Make sure that it's really an empty and not a failure of
1178       // semantic analysis.
1179       for (RecordDecl::field_iterator Field = record->field_begin(),
1180                                    FieldEnd = record->field_end();
1181            Field != FieldEnd; ++Field)
1182         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1183 #endif
1184       return;
1185     }
1186 
1187     // FIXME: volatility
1188     FieldDecl *Field = E->getInitializedFieldInUnion();
1189 
1190     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1191     if (NumInitElements) {
1192       // Store the initializer into the field
1193       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1194     } else {
1195       // Default-initialize to null.
1196       EmitNullInitializationToLValue(FieldLoc);
1197     }
1198 
1199     return;
1200   }
1201 
1202   // We'll need to enter cleanup scopes in case any of the member
1203   // initializers throw an exception.
1204   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1205   llvm::Instruction *cleanupDominator = 0;
1206 
1207   // Here we iterate over the fields; this makes it simpler to both
1208   // default-initialize fields and skip over unnamed fields.
1209   unsigned curInitIndex = 0;
1210   for (RecordDecl::field_iterator field = record->field_begin(),
1211                                fieldEnd = record->field_end();
1212        field != fieldEnd; ++field) {
1213     // We're done once we hit the flexible array member.
1214     if (field->getType()->isIncompleteArrayType())
1215       break;
1216 
1217     // Always skip anonymous bitfields.
1218     if (field->isUnnamedBitfield())
1219       continue;
1220 
1221     // We're done if we reach the end of the explicit initializers, we
1222     // have a zeroed object, and the rest of the fields are
1223     // zero-initializable.
1224     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1225         CGF.getTypes().isZeroInitializable(E->getType()))
1226       break;
1227 
1228 
1229     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
1230     // We never generate write-barries for initialized fields.
1231     LV.setNonGC(true);
1232 
1233     if (curInitIndex < NumInitElements) {
1234       // Store the initializer into the field.
1235       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1236     } else {
1237       // We're out of initalizers; default-initialize to null
1238       EmitNullInitializationToLValue(LV);
1239     }
1240 
1241     // Push a destructor if necessary.
1242     // FIXME: if we have an array of structures, all explicitly
1243     // initialized, we can end up pushing a linear number of cleanups.
1244     bool pushedCleanup = false;
1245     if (QualType::DestructionKind dtorKind
1246           = field->getType().isDestructedType()) {
1247       assert(LV.isSimple());
1248       if (CGF.needsEHCleanup(dtorKind)) {
1249         if (!cleanupDominator)
1250           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1251 
1252         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1253                         CGF.getDestroyer(dtorKind), false);
1254         cleanups.push_back(CGF.EHStack.stable_begin());
1255         pushedCleanup = true;
1256       }
1257     }
1258 
1259     // If the GEP didn't get used because of a dead zero init or something
1260     // else, clean it up for -O0 builds and general tidiness.
1261     if (!pushedCleanup && LV.isSimple())
1262       if (llvm::GetElementPtrInst *GEP =
1263             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1264         if (GEP->use_empty())
1265           GEP->eraseFromParent();
1266   }
1267 
1268   // Deactivate all the partial cleanups in reverse order, which
1269   // generally means popping them.
1270   for (unsigned i = cleanups.size(); i != 0; --i)
1271     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1272 
1273   // Destroy the placeholder if we made one.
1274   if (cleanupDominator)
1275     cleanupDominator->eraseFromParent();
1276 }
1277 
1278 //===----------------------------------------------------------------------===//
1279 //                        Entry Points into this File
1280 //===----------------------------------------------------------------------===//
1281 
1282 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1283 /// non-zero bytes that will be stored when outputting the initializer for the
1284 /// specified initializer expression.
1285 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1286   E = E->IgnoreParens();
1287 
1288   // 0 and 0.0 won't require any non-zero stores!
1289   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1290 
1291   // If this is an initlist expr, sum up the size of sizes of the (present)
1292   // elements.  If this is something weird, assume the whole thing is non-zero.
1293   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1294   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1295     return CGF.getContext().getTypeSizeInChars(E->getType());
1296 
1297   // InitListExprs for structs have to be handled carefully.  If there are
1298   // reference members, we need to consider the size of the reference, not the
1299   // referencee.  InitListExprs for unions and arrays can't have references.
1300   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1301     if (!RT->isUnionType()) {
1302       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1303       CharUnits NumNonZeroBytes = CharUnits::Zero();
1304 
1305       unsigned ILEElement = 0;
1306       for (RecordDecl::field_iterator Field = SD->field_begin(),
1307            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1308         // We're done once we hit the flexible array member or run out of
1309         // InitListExpr elements.
1310         if (Field->getType()->isIncompleteArrayType() ||
1311             ILEElement == ILE->getNumInits())
1312           break;
1313         if (Field->isUnnamedBitfield())
1314           continue;
1315 
1316         const Expr *E = ILE->getInit(ILEElement++);
1317 
1318         // Reference values are always non-null and have the width of a pointer.
1319         if (Field->getType()->isReferenceType())
1320           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1321               CGF.getTarget().getPointerWidth(0));
1322         else
1323           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1324       }
1325 
1326       return NumNonZeroBytes;
1327     }
1328   }
1329 
1330 
1331   CharUnits NumNonZeroBytes = CharUnits::Zero();
1332   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1333     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1334   return NumNonZeroBytes;
1335 }
1336 
1337 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1338 /// zeros in it, emit a memset and avoid storing the individual zeros.
1339 ///
1340 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1341                                      CodeGenFunction &CGF) {
1342   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1343   // volatile stores.
1344   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1345 
1346   // C++ objects with a user-declared constructor don't need zero'ing.
1347   if (CGF.getLangOpts().CPlusPlus)
1348     if (const RecordType *RT = CGF.getContext()
1349                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1350       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1351       if (RD->hasUserDeclaredConstructor())
1352         return;
1353     }
1354 
1355   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1356   std::pair<CharUnits, CharUnits> TypeInfo =
1357     CGF.getContext().getTypeInfoInChars(E->getType());
1358   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1359     return;
1360 
1361   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1362   // we prefer to emit memset + individual stores for the rest.
1363   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1364   if (NumNonZeroBytes*4 > TypeInfo.first)
1365     return;
1366 
1367   // Okay, it seems like a good idea to use an initial memset, emit the call.
1368   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1369   CharUnits Align = TypeInfo.second;
1370 
1371   llvm::Value *Loc = Slot.getAddr();
1372 
1373   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1374   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1375                            Align.getQuantity(), false);
1376 
1377   // Tell the AggExprEmitter that the slot is known zero.
1378   Slot.setZeroed();
1379 }
1380 
1381 
1382 
1383 
1384 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1385 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1386 /// the value of the aggregate expression is not needed.  If VolatileDest is
1387 /// true, DestPtr cannot be 0.
1388 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1389   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1390          "Invalid aggregate expression to emit");
1391   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1392          "slot has bits but no address");
1393 
1394   // Optimize the slot if possible.
1395   CheckAggExprForMemSetUse(Slot, E, *this);
1396 
1397   AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E));
1398 }
1399 
1400 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1401   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1402   llvm::Value *Temp = CreateMemTemp(E->getType());
1403   LValue LV = MakeAddrLValue(Temp, E->getType());
1404   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1405                                          AggValueSlot::DoesNotNeedGCBarriers,
1406                                          AggValueSlot::IsNotAliased));
1407   return LV;
1408 }
1409 
1410 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1411                                         llvm::Value *SrcPtr, QualType Ty,
1412                                         bool isVolatile,
1413                                         CharUnits alignment,
1414                                         bool isAssignment) {
1415   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1416 
1417   if (getLangOpts().CPlusPlus) {
1418     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1419       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1420       assert((Record->hasTrivialCopyConstructor() ||
1421               Record->hasTrivialCopyAssignment() ||
1422               Record->hasTrivialMoveConstructor() ||
1423               Record->hasTrivialMoveAssignment()) &&
1424              "Trying to aggregate-copy a type without a trivial copy/move "
1425              "constructor or assignment operator");
1426       // Ignore empty classes in C++.
1427       if (Record->isEmpty())
1428         return;
1429     }
1430   }
1431 
1432   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1433   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1434   // read from another object that overlaps in anyway the storage of the first
1435   // object, then the overlap shall be exact and the two objects shall have
1436   // qualified or unqualified versions of a compatible type."
1437   //
1438   // memcpy is not defined if the source and destination pointers are exactly
1439   // equal, but other compilers do this optimization, and almost every memcpy
1440   // implementation handles this case safely.  If there is a libc that does not
1441   // safely handle this, we can add a target hook.
1442 
1443   // Get data size and alignment info for this aggregate. If this is an
1444   // assignment don't copy the tail padding. Otherwise copying it is fine.
1445   std::pair<CharUnits, CharUnits> TypeInfo;
1446   if (isAssignment)
1447     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1448   else
1449     TypeInfo = getContext().getTypeInfoInChars(Ty);
1450 
1451   if (alignment.isZero())
1452     alignment = TypeInfo.second;
1453 
1454   // FIXME: Handle variable sized types.
1455 
1456   // FIXME: If we have a volatile struct, the optimizer can remove what might
1457   // appear to be `extra' memory ops:
1458   //
1459   // volatile struct { int i; } a, b;
1460   //
1461   // int main() {
1462   //   a = b;
1463   //   a = b;
1464   // }
1465   //
1466   // we need to use a different call here.  We use isVolatile to indicate when
1467   // either the source or the destination is volatile.
1468 
1469   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1470   llvm::Type *DBP =
1471     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1472   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1473 
1474   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1475   llvm::Type *SBP =
1476     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1477   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1478 
1479   // Don't do any of the memmove_collectable tests if GC isn't set.
1480   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1481     // fall through
1482   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1483     RecordDecl *Record = RecordTy->getDecl();
1484     if (Record->hasObjectMember()) {
1485       CharUnits size = TypeInfo.first;
1486       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1487       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1488       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1489                                                     SizeVal);
1490       return;
1491     }
1492   } else if (Ty->isArrayType()) {
1493     QualType BaseType = getContext().getBaseElementType(Ty);
1494     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1495       if (RecordTy->getDecl()->hasObjectMember()) {
1496         CharUnits size = TypeInfo.first;
1497         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1498         llvm::Value *SizeVal =
1499           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1500         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1501                                                       SizeVal);
1502         return;
1503       }
1504     }
1505   }
1506 
1507   // Determine the metadata to describe the position of any padding in this
1508   // memcpy, as well as the TBAA tags for the members of the struct, in case
1509   // the optimizer wishes to expand it in to scalar memory operations.
1510   llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty);
1511 
1512   Builder.CreateMemCpy(DestPtr, SrcPtr,
1513                        llvm::ConstantInt::get(IntPtrTy,
1514                                               TypeInfo.first.getQuantity()),
1515                        alignment.getQuantity(), isVolatile,
1516                        /*TBAATag=*/0, TBAAStructTag);
1517 }
1518