1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 llvm::Value *DestPtr; 37 bool VolatileDest; 38 bool IgnoreResult; 39 bool IsInitializer; 40 bool RequiresGCollection; 41 public: 42 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, 43 bool ignore, bool isinit, bool requiresGCollection) 44 : CGF(cgf), Builder(CGF.Builder), 45 DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore), 46 IsInitializer(isinit), RequiresGCollection(requiresGCollection) { 47 } 48 49 //===--------------------------------------------------------------------===// 50 // Utilities 51 //===--------------------------------------------------------------------===// 52 53 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 54 /// represents a value lvalue, this method emits the address of the lvalue, 55 /// then loads the result into DestPtr. 56 void EmitAggLoadOfLValue(const Expr *E); 57 58 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 59 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 60 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 61 62 //===--------------------------------------------------------------------===// 63 // Visitor Methods 64 //===--------------------------------------------------------------------===// 65 66 void VisitStmt(Stmt *S) { 67 CGF.ErrorUnsupported(S, "aggregate expression"); 68 } 69 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 70 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 71 72 // l-values. 73 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 74 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 75 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 76 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 77 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 78 EmitAggLoadOfLValue(E); 79 } 80 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 81 EmitAggLoadOfLValue(E); 82 } 83 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 84 EmitAggLoadOfLValue(E); 85 } 86 void VisitPredefinedExpr(const PredefinedExpr *E) { 87 EmitAggLoadOfLValue(E); 88 } 89 90 // Operators. 91 void VisitCastExpr(CastExpr *E); 92 void VisitCallExpr(const CallExpr *E); 93 void VisitStmtExpr(const StmtExpr *E); 94 void VisitBinaryOperator(const BinaryOperator *BO); 95 void VisitBinAssign(const BinaryOperator *E); 96 void VisitBinComma(const BinaryOperator *E); 97 98 void VisitObjCMessageExpr(ObjCMessageExpr *E); 99 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 100 EmitAggLoadOfLValue(E); 101 } 102 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 103 void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E); 104 105 void VisitConditionalOperator(const ConditionalOperator *CO); 106 void VisitChooseExpr(const ChooseExpr *CE); 107 void VisitInitListExpr(InitListExpr *E); 108 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 109 Visit(DAE->getExpr()); 110 } 111 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 112 void VisitCXXConstructExpr(const CXXConstructExpr *E); 113 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 114 115 void VisitVAArgExpr(VAArgExpr *E); 116 117 void EmitInitializationToLValue(Expr *E, LValue Address); 118 void EmitNullInitializationToLValue(LValue Address, QualType T); 119 // case Expr::ChooseExprClass: 120 121 }; 122 } // end anonymous namespace. 123 124 //===----------------------------------------------------------------------===// 125 // Utilities 126 //===----------------------------------------------------------------------===// 127 128 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 129 /// represents a value lvalue, this method emits the address of the lvalue, 130 /// then loads the result into DestPtr. 131 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 132 LValue LV = CGF.EmitLValue(E); 133 EmitFinalDestCopy(E, LV); 134 } 135 136 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 137 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 138 assert(Src.isAggregate() && "value must be aggregate value!"); 139 140 // If the result is ignored, don't copy from the value. 141 if (DestPtr == 0) { 142 if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) 143 return; 144 // If the source is volatile, we must read from it; to do that, we need 145 // some place to put it. 146 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 147 } 148 149 if (RequiresGCollection) { 150 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 151 DestPtr, Src.getAggregateAddr(), 152 E->getType()); 153 return; 154 } 155 // If the result of the assignment is used, copy the LHS there also. 156 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 157 // from the source as well, as we can't eliminate it if either operand 158 // is volatile, unless copy has volatile for both source and destination.. 159 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 160 VolatileDest|Src.isVolatileQualified()); 161 } 162 163 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 164 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 165 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 166 167 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 168 Src.isVolatileQualified()), 169 Ignore); 170 } 171 172 //===----------------------------------------------------------------------===// 173 // Visitor Methods 174 //===----------------------------------------------------------------------===// 175 176 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 177 if (E->getCastKind() == CastExpr::CK_ToUnion) { 178 // GCC union extension 179 QualType PtrTy = 180 CGF.getContext().getPointerType(E->getSubExpr()->getType()); 181 llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr, 182 CGF.ConvertType(PtrTy)); 183 EmitInitializationToLValue(E->getSubExpr(), 184 LValue::MakeAddr(CastPtr, 0)); 185 return; 186 } 187 188 // FIXME: Remove the CK_Unknown check here. 189 assert((E->getCastKind() == CastExpr::CK_NoOp || 190 E->getCastKind() == CastExpr::CK_Unknown || 191 E->getCastKind() == CastExpr::CK_UserDefinedConversion || 192 E->getCastKind() == CastExpr::CK_ConstructorConversion) && 193 "Only no-op casts allowed!"); 194 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 195 E->getType()) && 196 "Implicit cast types must be compatible"); 197 Visit(E->getSubExpr()); 198 } 199 200 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 201 if (E->getCallReturnType()->isReferenceType()) { 202 EmitAggLoadOfLValue(E); 203 return; 204 } 205 206 RValue RV = CGF.EmitCallExpr(E); 207 EmitFinalDestCopy(E, RV); 208 } 209 210 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 211 RValue RV = CGF.EmitObjCMessageExpr(E); 212 EmitFinalDestCopy(E, RV); 213 } 214 215 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 216 RValue RV = CGF.EmitObjCPropertyGet(E); 217 EmitFinalDestCopy(E, RV); 218 } 219 220 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr( 221 ObjCImplicitSetterGetterRefExpr *E) { 222 RValue RV = CGF.EmitObjCPropertyGet(E); 223 EmitFinalDestCopy(E, RV); 224 } 225 226 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 227 CGF.EmitAnyExpr(E->getLHS(), 0, false, true); 228 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest, 229 /*IgnoreResult=*/false, IsInitializer); 230 } 231 232 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 233 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 234 } 235 236 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 237 CGF.ErrorUnsupported(E, "aggregate binary expression"); 238 } 239 240 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 241 // For an assignment to work, the value on the right has 242 // to be compatible with the value on the left. 243 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 244 E->getRHS()->getType()) 245 && "Invalid assignment"); 246 LValue LHS = CGF.EmitLValue(E->getLHS()); 247 248 // We have to special case property setters, otherwise we must have 249 // a simple lvalue (no aggregates inside vectors, bitfields). 250 if (LHS.isPropertyRef()) { 251 llvm::Value *AggLoc = DestPtr; 252 if (!AggLoc) 253 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 254 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 255 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 256 RValue::getAggregate(AggLoc, VolatileDest)); 257 } else if (LHS.isKVCRef()) { 258 llvm::Value *AggLoc = DestPtr; 259 if (!AggLoc) 260 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 261 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 262 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 263 RValue::getAggregate(AggLoc, VolatileDest)); 264 } else { 265 bool RequiresGCollection = false; 266 if (CGF.getContext().getLangOptions().NeXTRuntime) { 267 QualType LHSTy = E->getLHS()->getType(); 268 if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>()) 269 RequiresGCollection = FDTTy->getDecl()->hasObjectMember(); 270 } 271 // Codegen the RHS so that it stores directly into the LHS. 272 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified(), 273 false, false, RequiresGCollection); 274 EmitFinalDestCopy(E, LHS, true); 275 } 276 } 277 278 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 279 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 280 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 281 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 282 283 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 284 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 285 286 CGF.PushConditionalTempDestruction(); 287 CGF.EmitBlock(LHSBlock); 288 289 // Handle the GNU extension for missing LHS. 290 assert(E->getLHS() && "Must have LHS for aggregate value"); 291 292 Visit(E->getLHS()); 293 CGF.PopConditionalTempDestruction(); 294 CGF.EmitBranch(ContBlock); 295 296 CGF.PushConditionalTempDestruction(); 297 CGF.EmitBlock(RHSBlock); 298 299 Visit(E->getRHS()); 300 CGF.PopConditionalTempDestruction(); 301 CGF.EmitBranch(ContBlock); 302 303 CGF.EmitBlock(ContBlock); 304 } 305 306 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 307 Visit(CE->getChosenSubExpr(CGF.getContext())); 308 } 309 310 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 311 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 312 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 313 314 if (!ArgPtr) { 315 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 316 return; 317 } 318 319 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); 320 } 321 322 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 323 llvm::Value *Val = DestPtr; 324 325 if (!Val) { 326 // Create a temporary variable. 327 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 328 329 // FIXME: volatile 330 CGF.EmitAggExpr(E->getSubExpr(), Val, false); 331 } else 332 Visit(E->getSubExpr()); 333 334 // Don't make this a live temporary if we're emitting an initializer expr. 335 if (!IsInitializer) 336 CGF.PushCXXTemporary(E->getTemporary(), Val); 337 } 338 339 void 340 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 341 llvm::Value *Val = DestPtr; 342 343 if (!Val) { 344 // Create a temporary variable. 345 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 346 } 347 348 CGF.EmitCXXConstructExpr(Val, E); 349 } 350 351 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 352 CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest, IsInitializer); 353 } 354 355 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 356 // FIXME: Ignore result? 357 // FIXME: Are initializers affected by volatile? 358 if (isa<ImplicitValueInitExpr>(E)) { 359 EmitNullInitializationToLValue(LV, E->getType()); 360 } else if (E->getType()->isComplexType()) { 361 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 362 } else if (CGF.hasAggregateLLVMType(E->getType())) { 363 CGF.EmitAnyExpr(E, LV.getAddress(), false); 364 } else { 365 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 366 } 367 } 368 369 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 370 if (!CGF.hasAggregateLLVMType(T)) { 371 // For non-aggregates, we can store zero 372 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 373 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 374 } else { 375 // Otherwise, just memset the whole thing to zero. This is legal 376 // because in LLVM, all default initializers are guaranteed to have a 377 // bit pattern of all zeros. 378 // FIXME: That isn't true for member pointers! 379 // There's a potential optimization opportunity in combining 380 // memsets; that would be easy for arrays, but relatively 381 // difficult for structures with the current code. 382 CGF.EmitMemSetToZero(LV.getAddress(), T); 383 } 384 } 385 386 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 387 #if 0 388 // FIXME: Disabled while we figure out what to do about 389 // test/CodeGen/bitfield.c 390 // 391 // If we can, prefer a copy from a global; this is a lot less code for long 392 // globals, and it's easier for the current optimizers to analyze. 393 // FIXME: Should we really be doing this? Should we try to avoid cases where 394 // we emit a global with a lot of zeros? Should we try to avoid short 395 // globals? 396 if (E->isConstantInitializer(CGF.getContext(), 0)) { 397 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 398 llvm::GlobalVariable* GV = 399 new llvm::GlobalVariable(C->getType(), true, 400 llvm::GlobalValue::InternalLinkage, 401 C, "", &CGF.CGM.getModule(), 0); 402 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 403 return; 404 } 405 #endif 406 if (E->hadArrayRangeDesignator()) { 407 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 408 } 409 410 // Handle initialization of an array. 411 if (E->getType()->isArrayType()) { 412 const llvm::PointerType *APType = 413 cast<llvm::PointerType>(DestPtr->getType()); 414 const llvm::ArrayType *AType = 415 cast<llvm::ArrayType>(APType->getElementType()); 416 417 uint64_t NumInitElements = E->getNumInits(); 418 419 if (E->getNumInits() > 0) { 420 QualType T1 = E->getType(); 421 QualType T2 = E->getInit(0)->getType(); 422 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 423 EmitAggLoadOfLValue(E->getInit(0)); 424 return; 425 } 426 } 427 428 uint64_t NumArrayElements = AType->getNumElements(); 429 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 430 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 431 432 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 433 434 for (uint64_t i = 0; i != NumArrayElements; ++i) { 435 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 436 if (i < NumInitElements) 437 EmitInitializationToLValue(E->getInit(i), 438 LValue::MakeAddr(NextVal, CVRqualifier)); 439 else 440 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 441 ElementType); 442 } 443 return; 444 } 445 446 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 447 448 // Do struct initialization; this code just sets each individual member 449 // to the approprate value. This makes bitfield support automatic; 450 // the disadvantage is that the generated code is more difficult for 451 // the optimizer, especially with bitfields. 452 unsigned NumInitElements = E->getNumInits(); 453 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 454 unsigned CurInitVal = 0; 455 456 if (E->getType()->isUnionType()) { 457 // Only initialize one field of a union. The field itself is 458 // specified by the initializer list. 459 if (!E->getInitializedFieldInUnion()) { 460 // Empty union; we have nothing to do. 461 462 #ifndef NDEBUG 463 // Make sure that it's really an empty and not a failure of 464 // semantic analysis. 465 for (RecordDecl::field_iterator Field = SD->field_begin(), 466 FieldEnd = SD->field_end(); 467 Field != FieldEnd; ++Field) 468 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 469 #endif 470 return; 471 } 472 473 // FIXME: volatility 474 FieldDecl *Field = E->getInitializedFieldInUnion(); 475 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 476 477 if (NumInitElements) { 478 // Store the initializer into the field 479 EmitInitializationToLValue(E->getInit(0), FieldLoc); 480 } else { 481 // Default-initialize to null 482 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 483 } 484 485 return; 486 } 487 488 // Here we iterate over the fields; this makes it simpler to both 489 // default-initialize fields and skip over unnamed fields. 490 for (RecordDecl::field_iterator Field = SD->field_begin(), 491 FieldEnd = SD->field_end(); 492 Field != FieldEnd; ++Field) { 493 // We're done once we hit the flexible array member 494 if (Field->getType()->isIncompleteArrayType()) 495 break; 496 497 if (Field->isUnnamedBitfield()) 498 continue; 499 500 // FIXME: volatility 501 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 502 // We never generate write-barries for initialized fields. 503 LValue::SetObjCNonGC(FieldLoc, true); 504 if (CurInitVal < NumInitElements) { 505 // Store the initializer into the field 506 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 507 } else { 508 // We're out of initalizers; default-initialize to null 509 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 510 } 511 } 512 } 513 514 //===----------------------------------------------------------------------===// 515 // Entry Points into this File 516 //===----------------------------------------------------------------------===// 517 518 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 519 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 520 /// the value of the aggregate expression is not needed. If VolatileDest is 521 /// true, DestPtr cannot be 0. 522 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 523 bool VolatileDest, bool IgnoreResult, 524 bool IsInitializer, 525 bool RequiresGCollection) { 526 assert(E && hasAggregateLLVMType(E->getType()) && 527 "Invalid aggregate expression to emit"); 528 assert ((DestPtr != 0 || VolatileDest == false) 529 && "volatile aggregate can't be 0"); 530 531 AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer, 532 RequiresGCollection) 533 .Visit(const_cast<Expr*>(E)); 534 } 535 536 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 537 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 538 539 EmitMemSetToZero(DestPtr, Ty); 540 } 541 542 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 543 llvm::Value *SrcPtr, QualType Ty, 544 bool isVolatile) { 545 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 546 547 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 548 // C99 6.5.16.1p3, which states "If the value being stored in an object is 549 // read from another object that overlaps in anyway the storage of the first 550 // object, then the overlap shall be exact and the two objects shall have 551 // qualified or unqualified versions of a compatible type." 552 // 553 // memcpy is not defined if the source and destination pointers are exactly 554 // equal, but other compilers do this optimization, and almost every memcpy 555 // implementation handles this case safely. If there is a libc that does not 556 // safely handle this, we can add a target hook. 557 const llvm::Type *BP = 558 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 559 if (DestPtr->getType() != BP) 560 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 561 if (SrcPtr->getType() != BP) 562 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 563 564 // Get size and alignment info for this aggregate. 565 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 566 567 // FIXME: Handle variable sized types. 568 const llvm::Type *IntPtr = 569 llvm::IntegerType::get(VMContext, LLVMPointerWidth); 570 571 // FIXME: If we have a volatile struct, the optimizer can remove what might 572 // appear to be `extra' memory ops: 573 // 574 // volatile struct { int i; } a, b; 575 // 576 // int main() { 577 // a = b; 578 // a = b; 579 // } 580 // 581 // we need to use a differnt call here. We use isVolatile to indicate when 582 // either the source or the destination is volatile. 583 Builder.CreateCall4(CGM.getMemCpyFn(), 584 DestPtr, SrcPtr, 585 // TypeInfo.first describes size in bits. 586 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 587 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 588 TypeInfo.second/8)); 589 } 590