1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   /// We want to use 'dest' as the return slot except under two
39   /// conditions:
40   ///   - The destination slot requires garbage collection, so we
41   ///     need to use the GC API.
42   ///   - The destination slot is potentially aliased.
43   bool shouldUseDestForReturnSlot() const {
44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45   }
46 
47   ReturnValueSlot getReturnValueSlot() const {
48     if (!shouldUseDestForReturnSlot())
49       return ReturnValueSlot();
50 
51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52   }
53 
54   AggValueSlot EnsureSlot(QualType T) {
55     if (!Dest.isIgnored()) return Dest;
56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
61                  bool ignore)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63       IgnoreResult(ignore) {
64   }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
76   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
77   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
78                          unsigned Alignment = 0);
79 
80   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
81 
82   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
83     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
84       return AggValueSlot::NeedsGCBarriers;
85     return AggValueSlot::DoesNotNeedGCBarriers;
86   }
87 
88   bool TypeRequiresGCollection(QualType T);
89 
90   //===--------------------------------------------------------------------===//
91   //                            Visitor Methods
92   //===--------------------------------------------------------------------===//
93 
94   void VisitStmt(Stmt *S) {
95     CGF.ErrorUnsupported(S, "aggregate expression");
96   }
97   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
98   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
99     Visit(GE->getResultExpr());
100   }
101   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
102   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
103     return Visit(E->getReplacement());
104   }
105 
106   // l-values.
107   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
108   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
109   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
110   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
111   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
112   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
113     EmitAggLoadOfLValue(E);
114   }
115   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
116     EmitAggLoadOfLValue(E);
117   }
118   void VisitPredefinedExpr(const PredefinedExpr *E) {
119     EmitAggLoadOfLValue(E);
120   }
121 
122   // Operators.
123   void VisitCastExpr(CastExpr *E);
124   void VisitCallExpr(const CallExpr *E);
125   void VisitStmtExpr(const StmtExpr *E);
126   void VisitBinaryOperator(const BinaryOperator *BO);
127   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
128   void VisitBinAssign(const BinaryOperator *E);
129   void VisitBinComma(const BinaryOperator *E);
130 
131   void VisitObjCMessageExpr(ObjCMessageExpr *E);
132   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
133     EmitAggLoadOfLValue(E);
134   }
135 
136   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
137   void VisitChooseExpr(const ChooseExpr *CE);
138   void VisitInitListExpr(InitListExpr *E);
139   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
140   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
141     Visit(DAE->getExpr());
142   }
143   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
144   void VisitCXXConstructExpr(const CXXConstructExpr *E);
145   void VisitExprWithCleanups(ExprWithCleanups *E);
146   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
147   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
148   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
149   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
150 
151   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
152     if (E->isGLValue()) {
153       LValue LV = CGF.EmitPseudoObjectLValue(E);
154       return EmitFinalDestCopy(E, LV);
155     }
156 
157     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
158   }
159 
160   void VisitVAArgExpr(VAArgExpr *E);
161 
162   void EmitInitializationToLValue(Expr *E, LValue Address);
163   void EmitNullInitializationToLValue(LValue Address);
164   //  case Expr::ChooseExprClass:
165   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
166   void VisitAtomicExpr(AtomicExpr *E) {
167     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
168   }
169 };
170 }  // end anonymous namespace.
171 
172 //===----------------------------------------------------------------------===//
173 //                                Utilities
174 //===----------------------------------------------------------------------===//
175 
176 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
177 /// represents a value lvalue, this method emits the address of the lvalue,
178 /// then loads the result into DestPtr.
179 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
180   LValue LV = CGF.EmitLValue(E);
181   EmitFinalDestCopy(E, LV);
182 }
183 
184 /// \brief True if the given aggregate type requires special GC API calls.
185 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
186   // Only record types have members that might require garbage collection.
187   const RecordType *RecordTy = T->getAs<RecordType>();
188   if (!RecordTy) return false;
189 
190   // Don't mess with non-trivial C++ types.
191   RecordDecl *Record = RecordTy->getDecl();
192   if (isa<CXXRecordDecl>(Record) &&
193       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
194        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
195     return false;
196 
197   // Check whether the type has an object member.
198   return Record->hasObjectMember();
199 }
200 
201 /// \brief Perform the final move to DestPtr if for some reason
202 /// getReturnValueSlot() didn't use it directly.
203 ///
204 /// The idea is that you do something like this:
205 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
206 ///   EmitMoveFromReturnSlot(E, Result);
207 ///
208 /// If nothing interferes, this will cause the result to be emitted
209 /// directly into the return value slot.  Otherwise, a final move
210 /// will be performed.
211 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
212   if (shouldUseDestForReturnSlot()) {
213     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
214     // The possibility of undef rvalues complicates that a lot,
215     // though, so we can't really assert.
216     return;
217   }
218 
219   // Otherwise, do a final copy,
220   assert(Dest.getAddr() != Src.getAggregateAddr());
221   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
222 }
223 
224 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
225 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
226                                        unsigned Alignment) {
227   assert(Src.isAggregate() && "value must be aggregate value!");
228 
229   // If Dest is ignored, then we're evaluating an aggregate expression
230   // in a context (like an expression statement) that doesn't care
231   // about the result.  C says that an lvalue-to-rvalue conversion is
232   // performed in these cases; C++ says that it is not.  In either
233   // case, we don't actually need to do anything unless the value is
234   // volatile.
235   if (Dest.isIgnored()) {
236     if (!Src.isVolatileQualified() ||
237         CGF.CGM.getLangOptions().CPlusPlus ||
238         (IgnoreResult && Ignore))
239       return;
240 
241     // If the source is volatile, we must read from it; to do that, we need
242     // some place to put it.
243     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
244   }
245 
246   if (Dest.requiresGCollection()) {
247     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
248     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
249     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
250     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
251                                                       Dest.getAddr(),
252                                                       Src.getAggregateAddr(),
253                                                       SizeVal);
254     return;
255   }
256   // If the result of the assignment is used, copy the LHS there also.
257   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
258   // from the source as well, as we can't eliminate it if either operand
259   // is volatile, unless copy has volatile for both source and destination..
260   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
261                         Dest.isVolatile()|Src.isVolatileQualified(),
262                         Alignment);
263 }
264 
265 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
266 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
267   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
268 
269   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
270   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
271 }
272 
273 //===----------------------------------------------------------------------===//
274 //                            Visitor Methods
275 //===----------------------------------------------------------------------===//
276 
277 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
278   Visit(E->GetTemporaryExpr());
279 }
280 
281 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
282   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
283 }
284 
285 void
286 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
287   if (E->getType().isPODType(CGF.getContext())) {
288     // For a POD type, just emit a load of the lvalue + a copy, because our
289     // compound literal might alias the destination.
290     // FIXME: This is a band-aid; the real problem appears to be in our handling
291     // of assignments, where we store directly into the LHS without checking
292     // whether anything in the RHS aliases.
293     EmitAggLoadOfLValue(E);
294     return;
295   }
296 
297   AggValueSlot Slot = EnsureSlot(E->getType());
298   CGF.EmitAggExpr(E->getInitializer(), Slot);
299 }
300 
301 
302 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
303   switch (E->getCastKind()) {
304   case CK_Dynamic: {
305     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
306     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
307     // FIXME: Do we also need to handle property references here?
308     if (LV.isSimple())
309       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
310     else
311       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
312 
313     if (!Dest.isIgnored())
314       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
315     break;
316   }
317 
318   case CK_ToUnion: {
319     if (Dest.isIgnored()) break;
320 
321     // GCC union extension
322     QualType Ty = E->getSubExpr()->getType();
323     QualType PtrTy = CGF.getContext().getPointerType(Ty);
324     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
325                                                  CGF.ConvertType(PtrTy));
326     EmitInitializationToLValue(E->getSubExpr(),
327                                CGF.MakeAddrLValue(CastPtr, Ty));
328     break;
329   }
330 
331   case CK_DerivedToBase:
332   case CK_BaseToDerived:
333   case CK_UncheckedDerivedToBase: {
334     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
335                 "should have been unpacked before we got here");
336   }
337 
338   case CK_LValueToRValue: // hope for downstream optimization
339   case CK_NoOp:
340   case CK_UserDefinedConversion:
341   case CK_ConstructorConversion:
342     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
343                                                    E->getType()) &&
344            "Implicit cast types must be compatible");
345     Visit(E->getSubExpr());
346     break;
347 
348   case CK_LValueBitCast:
349     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
350     break;
351 
352   case CK_Dependent:
353   case CK_BitCast:
354   case CK_ArrayToPointerDecay:
355   case CK_FunctionToPointerDecay:
356   case CK_NullToPointer:
357   case CK_NullToMemberPointer:
358   case CK_BaseToDerivedMemberPointer:
359   case CK_DerivedToBaseMemberPointer:
360   case CK_MemberPointerToBoolean:
361   case CK_IntegralToPointer:
362   case CK_PointerToIntegral:
363   case CK_PointerToBoolean:
364   case CK_ToVoid:
365   case CK_VectorSplat:
366   case CK_IntegralCast:
367   case CK_IntegralToBoolean:
368   case CK_IntegralToFloating:
369   case CK_FloatingToIntegral:
370   case CK_FloatingToBoolean:
371   case CK_FloatingCast:
372   case CK_CPointerToObjCPointerCast:
373   case CK_BlockPointerToObjCPointerCast:
374   case CK_AnyPointerToBlockPointerCast:
375   case CK_ObjCObjectLValueCast:
376   case CK_FloatingRealToComplex:
377   case CK_FloatingComplexToReal:
378   case CK_FloatingComplexToBoolean:
379   case CK_FloatingComplexCast:
380   case CK_FloatingComplexToIntegralComplex:
381   case CK_IntegralRealToComplex:
382   case CK_IntegralComplexToReal:
383   case CK_IntegralComplexToBoolean:
384   case CK_IntegralComplexCast:
385   case CK_IntegralComplexToFloatingComplex:
386   case CK_ARCProduceObject:
387   case CK_ARCConsumeObject:
388   case CK_ARCReclaimReturnedObject:
389   case CK_ARCExtendBlockObject:
390     llvm_unreachable("cast kind invalid for aggregate types");
391   }
392 }
393 
394 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
395   if (E->getCallReturnType()->isReferenceType()) {
396     EmitAggLoadOfLValue(E);
397     return;
398   }
399 
400   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
401   EmitMoveFromReturnSlot(E, RV);
402 }
403 
404 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
405   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
406   EmitMoveFromReturnSlot(E, RV);
407 }
408 
409 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
410   CGF.EmitIgnoredExpr(E->getLHS());
411   Visit(E->getRHS());
412 }
413 
414 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
415   CodeGenFunction::StmtExprEvaluation eval(CGF);
416   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
417 }
418 
419 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
420   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
421     VisitPointerToDataMemberBinaryOperator(E);
422   else
423     CGF.ErrorUnsupported(E, "aggregate binary expression");
424 }
425 
426 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
427                                                     const BinaryOperator *E) {
428   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
429   EmitFinalDestCopy(E, LV);
430 }
431 
432 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
433   // For an assignment to work, the value on the right has
434   // to be compatible with the value on the left.
435   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
436                                                  E->getRHS()->getType())
437          && "Invalid assignment");
438 
439   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
440     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
441       if (VD->hasAttr<BlocksAttr>() &&
442           E->getRHS()->HasSideEffects(CGF.getContext())) {
443         // When __block variable on LHS, the RHS must be evaluated first
444         // as it may change the 'forwarding' field via call to Block_copy.
445         LValue RHS = CGF.EmitLValue(E->getRHS());
446         LValue LHS = CGF.EmitLValue(E->getLHS());
447         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
448                                        needsGC(E->getLHS()->getType()),
449                                        AggValueSlot::IsAliased);
450         EmitFinalDestCopy(E, RHS, true);
451         return;
452       }
453 
454   LValue LHS = CGF.EmitLValue(E->getLHS());
455 
456   // Codegen the RHS so that it stores directly into the LHS.
457   AggValueSlot LHSSlot =
458     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
459                             needsGC(E->getLHS()->getType()),
460                             AggValueSlot::IsAliased);
461   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
462   EmitFinalDestCopy(E, LHS, true);
463 }
464 
465 void AggExprEmitter::
466 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
467   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
468   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
469   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
470 
471   // Bind the common expression if necessary.
472   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
473 
474   CodeGenFunction::ConditionalEvaluation eval(CGF);
475   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
476 
477   // Save whether the destination's lifetime is externally managed.
478   bool isExternallyDestructed = Dest.isExternallyDestructed();
479 
480   eval.begin(CGF);
481   CGF.EmitBlock(LHSBlock);
482   Visit(E->getTrueExpr());
483   eval.end(CGF);
484 
485   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
486   CGF.Builder.CreateBr(ContBlock);
487 
488   // If the result of an agg expression is unused, then the emission
489   // of the LHS might need to create a destination slot.  That's fine
490   // with us, and we can safely emit the RHS into the same slot, but
491   // we shouldn't claim that it's already being destructed.
492   Dest.setExternallyDestructed(isExternallyDestructed);
493 
494   eval.begin(CGF);
495   CGF.EmitBlock(RHSBlock);
496   Visit(E->getFalseExpr());
497   eval.end(CGF);
498 
499   CGF.EmitBlock(ContBlock);
500 }
501 
502 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
503   Visit(CE->getChosenSubExpr(CGF.getContext()));
504 }
505 
506 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
507   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
508   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
509 
510   if (!ArgPtr) {
511     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
512     return;
513   }
514 
515   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
516 }
517 
518 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
519   // Ensure that we have a slot, but if we already do, remember
520   // whether it was externally destructed.
521   bool wasExternallyDestructed = Dest.isExternallyDestructed();
522   Dest = EnsureSlot(E->getType());
523 
524   // We're going to push a destructor if there isn't already one.
525   Dest.setExternallyDestructed();
526 
527   Visit(E->getSubExpr());
528 
529   // Push that destructor we promised.
530   if (!wasExternallyDestructed)
531     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
532 }
533 
534 void
535 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
536   AggValueSlot Slot = EnsureSlot(E->getType());
537   CGF.EmitCXXConstructExpr(E, Slot);
538 }
539 
540 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
541   CGF.enterFullExpression(E);
542   CodeGenFunction::RunCleanupsScope cleanups(CGF);
543   Visit(E->getSubExpr());
544 }
545 
546 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
547   QualType T = E->getType();
548   AggValueSlot Slot = EnsureSlot(T);
549   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
550 }
551 
552 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
553   QualType T = E->getType();
554   AggValueSlot Slot = EnsureSlot(T);
555   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
556 }
557 
558 /// isSimpleZero - If emitting this value will obviously just cause a store of
559 /// zero to memory, return true.  This can return false if uncertain, so it just
560 /// handles simple cases.
561 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
562   E = E->IgnoreParens();
563 
564   // 0
565   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
566     return IL->getValue() == 0;
567   // +0.0
568   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
569     return FL->getValue().isPosZero();
570   // int()
571   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
572       CGF.getTypes().isZeroInitializable(E->getType()))
573     return true;
574   // (int*)0 - Null pointer expressions.
575   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
576     return ICE->getCastKind() == CK_NullToPointer;
577   // '\0'
578   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
579     return CL->getValue() == 0;
580 
581   // Otherwise, hard case: conservatively return false.
582   return false;
583 }
584 
585 
586 void
587 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
588   QualType type = LV.getType();
589   // FIXME: Ignore result?
590   // FIXME: Are initializers affected by volatile?
591   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
592     // Storing "i32 0" to a zero'd memory location is a noop.
593   } else if (isa<ImplicitValueInitExpr>(E)) {
594     EmitNullInitializationToLValue(LV);
595   } else if (type->isReferenceType()) {
596     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
597     CGF.EmitStoreThroughLValue(RV, LV);
598   } else if (type->isAnyComplexType()) {
599     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
600   } else if (CGF.hasAggregateLLVMType(type)) {
601     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
602                                                AggValueSlot::IsDestructed,
603                                       AggValueSlot::DoesNotNeedGCBarriers,
604                                                AggValueSlot::IsNotAliased,
605                                                Dest.isZeroed()));
606   } else if (LV.isSimple()) {
607     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
608   } else {
609     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
610   }
611 }
612 
613 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
614   QualType type = lv.getType();
615 
616   // If the destination slot is already zeroed out before the aggregate is
617   // copied into it, we don't have to emit any zeros here.
618   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
619     return;
620 
621   if (!CGF.hasAggregateLLVMType(type)) {
622     // For non-aggregates, we can store zero
623     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
624     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
625   } else {
626     // There's a potential optimization opportunity in combining
627     // memsets; that would be easy for arrays, but relatively
628     // difficult for structures with the current code.
629     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
630   }
631 }
632 
633 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
634 #if 0
635   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
636   // (Length of globals? Chunks of zeroed-out space?).
637   //
638   // If we can, prefer a copy from a global; this is a lot less code for long
639   // globals, and it's easier for the current optimizers to analyze.
640   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
641     llvm::GlobalVariable* GV =
642     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
643                              llvm::GlobalValue::InternalLinkage, C, "");
644     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
645     return;
646   }
647 #endif
648   if (E->hadArrayRangeDesignator())
649     CGF.ErrorUnsupported(E, "GNU array range designator extension");
650 
651   llvm::Value *DestPtr = Dest.getAddr();
652 
653   // Handle initialization of an array.
654   if (E->getType()->isArrayType()) {
655     llvm::PointerType *APType =
656       cast<llvm::PointerType>(DestPtr->getType());
657     llvm::ArrayType *AType =
658       cast<llvm::ArrayType>(APType->getElementType());
659 
660     uint64_t NumInitElements = E->getNumInits();
661 
662     if (E->getNumInits() > 0) {
663       QualType T1 = E->getType();
664       QualType T2 = E->getInit(0)->getType();
665       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
666         EmitAggLoadOfLValue(E->getInit(0));
667         return;
668       }
669     }
670 
671     uint64_t NumArrayElements = AType->getNumElements();
672     assert(NumInitElements <= NumArrayElements);
673 
674     QualType elementType = E->getType().getCanonicalType();
675     elementType = CGF.getContext().getQualifiedType(
676                     cast<ArrayType>(elementType)->getElementType(),
677                     elementType.getQualifiers() + Dest.getQualifiers());
678 
679     // DestPtr is an array*.  Construct an elementType* by drilling
680     // down a level.
681     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
682     llvm::Value *indices[] = { zero, zero };
683     llvm::Value *begin =
684       Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
685 
686     // Exception safety requires us to destroy all the
687     // already-constructed members if an initializer throws.
688     // For that, we'll need an EH cleanup.
689     QualType::DestructionKind dtorKind = elementType.isDestructedType();
690     llvm::AllocaInst *endOfInit = 0;
691     EHScopeStack::stable_iterator cleanup;
692     llvm::Instruction *cleanupDominator = 0;
693     if (CGF.needsEHCleanup(dtorKind)) {
694       // In principle we could tell the cleanup where we are more
695       // directly, but the control flow can get so varied here that it
696       // would actually be quite complex.  Therefore we go through an
697       // alloca.
698       endOfInit = CGF.CreateTempAlloca(begin->getType(),
699                                        "arrayinit.endOfInit");
700       cleanupDominator = Builder.CreateStore(begin, endOfInit);
701       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
702                                            CGF.getDestroyer(dtorKind));
703       cleanup = CGF.EHStack.stable_begin();
704 
705     // Otherwise, remember that we didn't need a cleanup.
706     } else {
707       dtorKind = QualType::DK_none;
708     }
709 
710     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
711 
712     // The 'current element to initialize'.  The invariants on this
713     // variable are complicated.  Essentially, after each iteration of
714     // the loop, it points to the last initialized element, except
715     // that it points to the beginning of the array before any
716     // elements have been initialized.
717     llvm::Value *element = begin;
718 
719     // Emit the explicit initializers.
720     for (uint64_t i = 0; i != NumInitElements; ++i) {
721       // Advance to the next element.
722       if (i > 0) {
723         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
724 
725         // Tell the cleanup that it needs to destroy up to this
726         // element.  TODO: some of these stores can be trivially
727         // observed to be unnecessary.
728         if (endOfInit) Builder.CreateStore(element, endOfInit);
729       }
730 
731       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
732       EmitInitializationToLValue(E->getInit(i), elementLV);
733     }
734 
735     // Check whether there's a non-trivial array-fill expression.
736     // Note that this will be a CXXConstructExpr even if the element
737     // type is an array (or array of array, etc.) of class type.
738     Expr *filler = E->getArrayFiller();
739     bool hasTrivialFiller = true;
740     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
741       assert(cons->getConstructor()->isDefaultConstructor());
742       hasTrivialFiller = cons->getConstructor()->isTrivial();
743     }
744 
745     // Any remaining elements need to be zero-initialized, possibly
746     // using the filler expression.  We can skip this if the we're
747     // emitting to zeroed memory.
748     if (NumInitElements != NumArrayElements &&
749         !(Dest.isZeroed() && hasTrivialFiller &&
750           CGF.getTypes().isZeroInitializable(elementType))) {
751 
752       // Use an actual loop.  This is basically
753       //   do { *array++ = filler; } while (array != end);
754 
755       // Advance to the start of the rest of the array.
756       if (NumInitElements) {
757         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
758         if (endOfInit) Builder.CreateStore(element, endOfInit);
759       }
760 
761       // Compute the end of the array.
762       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
763                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
764                                                    "arrayinit.end");
765 
766       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
767       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
768 
769       // Jump into the body.
770       CGF.EmitBlock(bodyBB);
771       llvm::PHINode *currentElement =
772         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
773       currentElement->addIncoming(element, entryBB);
774 
775       // Emit the actual filler expression.
776       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
777       if (filler)
778         EmitInitializationToLValue(filler, elementLV);
779       else
780         EmitNullInitializationToLValue(elementLV);
781 
782       // Move on to the next element.
783       llvm::Value *nextElement =
784         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
785 
786       // Tell the EH cleanup that we finished with the last element.
787       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
788 
789       // Leave the loop if we're done.
790       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
791                                                "arrayinit.done");
792       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
793       Builder.CreateCondBr(done, endBB, bodyBB);
794       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
795 
796       CGF.EmitBlock(endBB);
797     }
798 
799     // Leave the partial-array cleanup if we entered one.
800     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
801 
802     return;
803   }
804 
805   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
806 
807   // Do struct initialization; this code just sets each individual member
808   // to the approprate value.  This makes bitfield support automatic;
809   // the disadvantage is that the generated code is more difficult for
810   // the optimizer, especially with bitfields.
811   unsigned NumInitElements = E->getNumInits();
812   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
813 
814   if (record->isUnion()) {
815     // Only initialize one field of a union. The field itself is
816     // specified by the initializer list.
817     if (!E->getInitializedFieldInUnion()) {
818       // Empty union; we have nothing to do.
819 
820 #ifndef NDEBUG
821       // Make sure that it's really an empty and not a failure of
822       // semantic analysis.
823       for (RecordDecl::field_iterator Field = record->field_begin(),
824                                    FieldEnd = record->field_end();
825            Field != FieldEnd; ++Field)
826         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
827 #endif
828       return;
829     }
830 
831     // FIXME: volatility
832     FieldDecl *Field = E->getInitializedFieldInUnion();
833 
834     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
835     if (NumInitElements) {
836       // Store the initializer into the field
837       EmitInitializationToLValue(E->getInit(0), FieldLoc);
838     } else {
839       // Default-initialize to null.
840       EmitNullInitializationToLValue(FieldLoc);
841     }
842 
843     return;
844   }
845 
846   // We'll need to enter cleanup scopes in case any of the member
847   // initializers throw an exception.
848   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
849   llvm::Instruction *cleanupDominator = 0;
850 
851   // Here we iterate over the fields; this makes it simpler to both
852   // default-initialize fields and skip over unnamed fields.
853   unsigned curInitIndex = 0;
854   for (RecordDecl::field_iterator field = record->field_begin(),
855                                fieldEnd = record->field_end();
856        field != fieldEnd; ++field) {
857     // We're done once we hit the flexible array member.
858     if (field->getType()->isIncompleteArrayType())
859       break;
860 
861     // Always skip anonymous bitfields.
862     if (field->isUnnamedBitfield())
863       continue;
864 
865     // We're done if we reach the end of the explicit initializers, we
866     // have a zeroed object, and the rest of the fields are
867     // zero-initializable.
868     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
869         CGF.getTypes().isZeroInitializable(E->getType()))
870       break;
871 
872     // FIXME: volatility
873     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
874     // We never generate write-barries for initialized fields.
875     LV.setNonGC(true);
876 
877     if (curInitIndex < NumInitElements) {
878       // Store the initializer into the field.
879       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
880     } else {
881       // We're out of initalizers; default-initialize to null
882       EmitNullInitializationToLValue(LV);
883     }
884 
885     // Push a destructor if necessary.
886     // FIXME: if we have an array of structures, all explicitly
887     // initialized, we can end up pushing a linear number of cleanups.
888     bool pushedCleanup = false;
889     if (QualType::DestructionKind dtorKind
890           = field->getType().isDestructedType()) {
891       assert(LV.isSimple());
892       if (CGF.needsEHCleanup(dtorKind)) {
893         if (!cleanupDominator)
894           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
895 
896         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
897                         CGF.getDestroyer(dtorKind), false);
898         cleanups.push_back(CGF.EHStack.stable_begin());
899         pushedCleanup = true;
900       }
901     }
902 
903     // If the GEP didn't get used because of a dead zero init or something
904     // else, clean it up for -O0 builds and general tidiness.
905     if (!pushedCleanup && LV.isSimple())
906       if (llvm::GetElementPtrInst *GEP =
907             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
908         if (GEP->use_empty())
909           GEP->eraseFromParent();
910   }
911 
912   // Deactivate all the partial cleanups in reverse order, which
913   // generally means popping them.
914   for (unsigned i = cleanups.size(); i != 0; --i)
915     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
916 
917   // Destroy the placeholder if we made one.
918   if (cleanupDominator)
919     cleanupDominator->eraseFromParent();
920 }
921 
922 //===----------------------------------------------------------------------===//
923 //                        Entry Points into this File
924 //===----------------------------------------------------------------------===//
925 
926 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
927 /// non-zero bytes that will be stored when outputting the initializer for the
928 /// specified initializer expression.
929 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
930   E = E->IgnoreParens();
931 
932   // 0 and 0.0 won't require any non-zero stores!
933   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
934 
935   // If this is an initlist expr, sum up the size of sizes of the (present)
936   // elements.  If this is something weird, assume the whole thing is non-zero.
937   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
938   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
939     return CGF.getContext().getTypeSizeInChars(E->getType());
940 
941   // InitListExprs for structs have to be handled carefully.  If there are
942   // reference members, we need to consider the size of the reference, not the
943   // referencee.  InitListExprs for unions and arrays can't have references.
944   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
945     if (!RT->isUnionType()) {
946       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
947       CharUnits NumNonZeroBytes = CharUnits::Zero();
948 
949       unsigned ILEElement = 0;
950       for (RecordDecl::field_iterator Field = SD->field_begin(),
951            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
952         // We're done once we hit the flexible array member or run out of
953         // InitListExpr elements.
954         if (Field->getType()->isIncompleteArrayType() ||
955             ILEElement == ILE->getNumInits())
956           break;
957         if (Field->isUnnamedBitfield())
958           continue;
959 
960         const Expr *E = ILE->getInit(ILEElement++);
961 
962         // Reference values are always non-null and have the width of a pointer.
963         if (Field->getType()->isReferenceType())
964           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
965               CGF.getContext().getTargetInfo().getPointerWidth(0));
966         else
967           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
968       }
969 
970       return NumNonZeroBytes;
971     }
972   }
973 
974 
975   CharUnits NumNonZeroBytes = CharUnits::Zero();
976   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
977     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
978   return NumNonZeroBytes;
979 }
980 
981 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
982 /// zeros in it, emit a memset and avoid storing the individual zeros.
983 ///
984 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
985                                      CodeGenFunction &CGF) {
986   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
987   // volatile stores.
988   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
989 
990   // C++ objects with a user-declared constructor don't need zero'ing.
991   if (CGF.getContext().getLangOptions().CPlusPlus)
992     if (const RecordType *RT = CGF.getContext()
993                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
994       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
995       if (RD->hasUserDeclaredConstructor())
996         return;
997     }
998 
999   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1000   std::pair<CharUnits, CharUnits> TypeInfo =
1001     CGF.getContext().getTypeInfoInChars(E->getType());
1002   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1003     return;
1004 
1005   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1006   // we prefer to emit memset + individual stores for the rest.
1007   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1008   if (NumNonZeroBytes*4 > TypeInfo.first)
1009     return;
1010 
1011   // Okay, it seems like a good idea to use an initial memset, emit the call.
1012   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1013   CharUnits Align = TypeInfo.second;
1014 
1015   llvm::Value *Loc = Slot.getAddr();
1016   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1017 
1018   Loc = CGF.Builder.CreateBitCast(Loc, BP);
1019   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1020                            Align.getQuantity(), false);
1021 
1022   // Tell the AggExprEmitter that the slot is known zero.
1023   Slot.setZeroed();
1024 }
1025 
1026 
1027 
1028 
1029 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1030 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1031 /// the value of the aggregate expression is not needed.  If VolatileDest is
1032 /// true, DestPtr cannot be 0.
1033 ///
1034 /// \param IsInitializer - true if this evaluation is initializing an
1035 /// object whose lifetime is already being managed.
1036 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1037                                   bool IgnoreResult) {
1038   assert(E && hasAggregateLLVMType(E->getType()) &&
1039          "Invalid aggregate expression to emit");
1040   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1041          "slot has bits but no address");
1042 
1043   // Optimize the slot if possible.
1044   CheckAggExprForMemSetUse(Slot, E, *this);
1045 
1046   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1047 }
1048 
1049 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1050   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1051   llvm::Value *Temp = CreateMemTemp(E->getType());
1052   LValue LV = MakeAddrLValue(Temp, E->getType());
1053   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1054                                          AggValueSlot::DoesNotNeedGCBarriers,
1055                                          AggValueSlot::IsNotAliased));
1056   return LV;
1057 }
1058 
1059 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1060                                         llvm::Value *SrcPtr, QualType Ty,
1061                                         bool isVolatile, unsigned Alignment) {
1062   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1063 
1064   if (getContext().getLangOptions().CPlusPlus) {
1065     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1066       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1067       assert((Record->hasTrivialCopyConstructor() ||
1068               Record->hasTrivialCopyAssignment() ||
1069               Record->hasTrivialMoveConstructor() ||
1070               Record->hasTrivialMoveAssignment()) &&
1071              "Trying to aggregate-copy a type without a trivial copy "
1072              "constructor or assignment operator");
1073       // Ignore empty classes in C++.
1074       if (Record->isEmpty())
1075         return;
1076     }
1077   }
1078 
1079   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1080   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1081   // read from another object that overlaps in anyway the storage of the first
1082   // object, then the overlap shall be exact and the two objects shall have
1083   // qualified or unqualified versions of a compatible type."
1084   //
1085   // memcpy is not defined if the source and destination pointers are exactly
1086   // equal, but other compilers do this optimization, and almost every memcpy
1087   // implementation handles this case safely.  If there is a libc that does not
1088   // safely handle this, we can add a target hook.
1089 
1090   // Get size and alignment info for this aggregate.
1091   std::pair<CharUnits, CharUnits> TypeInfo =
1092     getContext().getTypeInfoInChars(Ty);
1093 
1094   if (!Alignment)
1095     Alignment = TypeInfo.second.getQuantity();
1096 
1097   // FIXME: Handle variable sized types.
1098 
1099   // FIXME: If we have a volatile struct, the optimizer can remove what might
1100   // appear to be `extra' memory ops:
1101   //
1102   // volatile struct { int i; } a, b;
1103   //
1104   // int main() {
1105   //   a = b;
1106   //   a = b;
1107   // }
1108   //
1109   // we need to use a different call here.  We use isVolatile to indicate when
1110   // either the source or the destination is volatile.
1111 
1112   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1113   llvm::Type *DBP =
1114     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1115   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1116 
1117   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1118   llvm::Type *SBP =
1119     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1120   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1121 
1122   // Don't do any of the memmove_collectable tests if GC isn't set.
1123   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1124     // fall through
1125   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1126     RecordDecl *Record = RecordTy->getDecl();
1127     if (Record->hasObjectMember()) {
1128       CharUnits size = TypeInfo.first;
1129       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1130       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1131       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1132                                                     SizeVal);
1133       return;
1134     }
1135   } else if (Ty->isArrayType()) {
1136     QualType BaseType = getContext().getBaseElementType(Ty);
1137     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1138       if (RecordTy->getDecl()->hasObjectMember()) {
1139         CharUnits size = TypeInfo.first;
1140         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1141         llvm::Value *SizeVal =
1142           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1143         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1144                                                       SizeVal);
1145         return;
1146       }
1147     }
1148   }
1149 
1150   Builder.CreateMemCpy(DestPtr, SrcPtr,
1151                        llvm::ConstantInt::get(IntPtrTy,
1152                                               TypeInfo.first.getQuantity()),
1153                        Alignment, isVolatile);
1154 }
1155