1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E); 119 120 void VisitConditionalOperator(const ConditionalOperator *CO); 121 void VisitChooseExpr(const ChooseExpr *CE); 122 void VisitInitListExpr(InitListExpr *E); 123 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 124 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 125 Visit(DAE->getExpr()); 126 } 127 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 128 void VisitCXXConstructExpr(const CXXConstructExpr *E); 129 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 130 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 131 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 132 133 void VisitVAArgExpr(VAArgExpr *E); 134 135 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 136 void EmitNullInitializationToLValue(LValue Address, QualType T); 137 // case Expr::ChooseExprClass: 138 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 139 }; 140 } // end anonymous namespace. 141 142 //===----------------------------------------------------------------------===// 143 // Utilities 144 //===----------------------------------------------------------------------===// 145 146 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 147 /// represents a value lvalue, this method emits the address of the lvalue, 148 /// then loads the result into DestPtr. 149 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 150 LValue LV = CGF.EmitLValue(E); 151 EmitFinalDestCopy(E, LV); 152 } 153 154 /// \brief True if the given aggregate type requires special GC API calls. 155 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 156 // Only record types have members that might require garbage collection. 157 const RecordType *RecordTy = T->getAs<RecordType>(); 158 if (!RecordTy) return false; 159 160 // Don't mess with non-trivial C++ types. 161 RecordDecl *Record = RecordTy->getDecl(); 162 if (isa<CXXRecordDecl>(Record) && 163 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 164 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 165 return false; 166 167 // Check whether the type has an object member. 168 return Record->hasObjectMember(); 169 } 170 171 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 172 /// 173 /// The idea is that you do something like this: 174 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 175 /// EmitGCMove(E, Result); 176 /// If GC doesn't interfere, this will cause the result to be emitted 177 /// directly into the return value slot. If GC does interfere, a final 178 /// move will be performed. 179 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 180 if (Dest.requiresGCollection()) { 181 std::pair<uint64_t, unsigned> TypeInfo = 182 CGF.getContext().getTypeInfo(E->getType()); 183 unsigned long size = TypeInfo.first/8; 184 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 185 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 186 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 187 Src.getAggregateAddr(), 188 SizeVal); 189 } 190 } 191 192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 194 assert(Src.isAggregate() && "value must be aggregate value!"); 195 196 // If Dest is ignored, then we're evaluating an aggregate expression 197 // in a context (like an expression statement) that doesn't care 198 // about the result. C says that an lvalue-to-rvalue conversion is 199 // performed in these cases; C++ says that it is not. In either 200 // case, we don't actually need to do anything unless the value is 201 // volatile. 202 if (Dest.isIgnored()) { 203 if (!Src.isVolatileQualified() || 204 CGF.CGM.getLangOptions().CPlusPlus || 205 (IgnoreResult && Ignore)) 206 return; 207 208 // If the source is volatile, we must read from it; to do that, we need 209 // some place to put it. 210 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 211 } 212 213 if (Dest.requiresGCollection()) { 214 std::pair<uint64_t, unsigned> TypeInfo = 215 CGF.getContext().getTypeInfo(E->getType()); 216 unsigned long size = TypeInfo.first/8; 217 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 218 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 219 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 220 Dest.getAddr(), 221 Src.getAggregateAddr(), 222 SizeVal); 223 return; 224 } 225 // If the result of the assignment is used, copy the LHS there also. 226 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 227 // from the source as well, as we can't eliminate it if either operand 228 // is volatile, unless copy has volatile for both source and destination.. 229 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 230 Dest.isVolatile()|Src.isVolatileQualified()); 231 } 232 233 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 234 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 235 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 236 237 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 238 Src.isVolatileQualified()), 239 Ignore); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Visitor Methods 244 //===----------------------------------------------------------------------===// 245 246 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 247 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 248 Visit(E->getSubExpr()); 249 return; 250 } 251 252 switch (E->getCastKind()) { 253 default: assert(0 && "Unhandled cast kind!"); 254 255 case CK_Dynamic: { 256 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 257 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 258 // FIXME: Do we also need to handle property references here? 259 if (LV.isSimple()) 260 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 261 else 262 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 263 264 if (!Dest.isIgnored()) 265 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 266 break; 267 } 268 269 case CK_ToUnion: { 270 // GCC union extension 271 QualType Ty = E->getSubExpr()->getType(); 272 QualType PtrTy = CGF.getContext().getPointerType(Ty); 273 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 274 CGF.ConvertType(PtrTy)); 275 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 276 Ty); 277 break; 278 } 279 280 case CK_DerivedToBase: 281 case CK_BaseToDerived: 282 case CK_UncheckedDerivedToBase: { 283 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 284 "should have been unpacked before we got here"); 285 break; 286 } 287 288 // FIXME: Remove the CK_Unknown check here. 289 case CK_Unknown: 290 case CK_NoOp: 291 case CK_UserDefinedConversion: 292 case CK_ConstructorConversion: 293 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 294 E->getType()) && 295 "Implicit cast types must be compatible"); 296 Visit(E->getSubExpr()); 297 break; 298 299 case CK_LValueBitCast: 300 llvm_unreachable("there are no lvalue bit-casts on aggregates"); 301 break; 302 } 303 } 304 305 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 306 if (E->getCallReturnType()->isReferenceType()) { 307 EmitAggLoadOfLValue(E); 308 return; 309 } 310 311 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 312 EmitGCMove(E, RV); 313 } 314 315 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 316 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 317 EmitGCMove(E, RV); 318 } 319 320 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 321 RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); 322 EmitGCMove(E, RV); 323 } 324 325 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr( 326 ObjCImplicitSetterGetterRefExpr *E) { 327 RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); 328 EmitGCMove(E, RV); 329 } 330 331 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 332 CGF.EmitAnyExpr(E->getLHS(), AggValueSlot::ignored(), true); 333 Visit(E->getRHS()); 334 } 335 336 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 337 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 338 } 339 340 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 341 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 342 VisitPointerToDataMemberBinaryOperator(E); 343 else 344 CGF.ErrorUnsupported(E, "aggregate binary expression"); 345 } 346 347 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 348 const BinaryOperator *E) { 349 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 350 EmitFinalDestCopy(E, LV); 351 } 352 353 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 354 // For an assignment to work, the value on the right has 355 // to be compatible with the value on the left. 356 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 357 E->getRHS()->getType()) 358 && "Invalid assignment"); 359 LValue LHS = CGF.EmitLValue(E->getLHS()); 360 361 // We have to special case property setters, otherwise we must have 362 // a simple lvalue (no aggregates inside vectors, bitfields). 363 if (LHS.isPropertyRef()) { 364 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 365 CGF.EmitAggExpr(E->getRHS(), Slot); 366 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), Slot.asRValue()); 367 } else if (LHS.isKVCRef()) { 368 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 369 CGF.EmitAggExpr(E->getRHS(), Slot); 370 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), Slot.asRValue()); 371 } else { 372 bool GCollection = false; 373 if (CGF.getContext().getLangOptions().getGCMode()) 374 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 375 376 // Codegen the RHS so that it stores directly into the LHS. 377 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 378 GCollection); 379 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 380 EmitFinalDestCopy(E, LHS, true); 381 } 382 } 383 384 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 385 if (!E->getLHS()) { 386 CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); 387 return; 388 } 389 390 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 391 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 392 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 393 394 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 395 396 CGF.BeginConditionalBranch(); 397 CGF.EmitBlock(LHSBlock); 398 399 // Handle the GNU extension for missing LHS. 400 assert(E->getLHS() && "Must have LHS for aggregate value"); 401 402 Visit(E->getLHS()); 403 CGF.EndConditionalBranch(); 404 CGF.EmitBranch(ContBlock); 405 406 CGF.BeginConditionalBranch(); 407 CGF.EmitBlock(RHSBlock); 408 409 Visit(E->getRHS()); 410 CGF.EndConditionalBranch(); 411 CGF.EmitBranch(ContBlock); 412 413 CGF.EmitBlock(ContBlock); 414 } 415 416 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 417 Visit(CE->getChosenSubExpr(CGF.getContext())); 418 } 419 420 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 421 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 422 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 423 424 if (!ArgPtr) { 425 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 426 return; 427 } 428 429 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 430 } 431 432 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 433 // Ensure that we have a slot, but if we already do, remember 434 // whether its lifetime was externally managed. 435 bool WasManaged = Dest.isLifetimeExternallyManaged(); 436 Dest = EnsureSlot(E->getType()); 437 Dest.setLifetimeExternallyManaged(); 438 439 Visit(E->getSubExpr()); 440 441 // Set up the temporary's destructor if its lifetime wasn't already 442 // being managed. 443 if (!WasManaged) 444 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 445 } 446 447 void 448 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 449 AggValueSlot Slot = EnsureSlot(E->getType()); 450 CGF.EmitCXXConstructExpr(E, Slot); 451 } 452 453 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 454 CGF.EmitCXXExprWithTemporaries(E, Dest); 455 } 456 457 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 458 QualType T = E->getType(); 459 AggValueSlot Slot = EnsureSlot(T); 460 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 461 } 462 463 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 464 QualType T = E->getType(); 465 AggValueSlot Slot = EnsureSlot(T); 466 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 467 } 468 469 void 470 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 471 // FIXME: Ignore result? 472 // FIXME: Are initializers affected by volatile? 473 if (isa<ImplicitValueInitExpr>(E)) { 474 EmitNullInitializationToLValue(LV, T); 475 } else if (T->isReferenceType()) { 476 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 477 CGF.EmitStoreThroughLValue(RV, LV, T); 478 } else if (T->isAnyComplexType()) { 479 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 480 } else if (CGF.hasAggregateLLVMType(T)) { 481 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true)); 482 } else { 483 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T); 484 } 485 } 486 487 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 488 if (!CGF.hasAggregateLLVMType(T)) { 489 // For non-aggregates, we can store zero 490 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 491 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 492 } else { 493 // There's a potential optimization opportunity in combining 494 // memsets; that would be easy for arrays, but relatively 495 // difficult for structures with the current code. 496 CGF.EmitNullInitialization(LV.getAddress(), T); 497 } 498 } 499 500 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 501 #if 0 502 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 503 // (Length of globals? Chunks of zeroed-out space?). 504 // 505 // If we can, prefer a copy from a global; this is a lot less code for long 506 // globals, and it's easier for the current optimizers to analyze. 507 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 508 llvm::GlobalVariable* GV = 509 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 510 llvm::GlobalValue::InternalLinkage, C, ""); 511 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 512 return; 513 } 514 #endif 515 if (E->hadArrayRangeDesignator()) 516 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 517 518 llvm::Value *DestPtr = Dest.getAddr(); 519 520 // Handle initialization of an array. 521 if (E->getType()->isArrayType()) { 522 const llvm::PointerType *APType = 523 cast<llvm::PointerType>(DestPtr->getType()); 524 const llvm::ArrayType *AType = 525 cast<llvm::ArrayType>(APType->getElementType()); 526 527 uint64_t NumInitElements = E->getNumInits(); 528 529 if (E->getNumInits() > 0) { 530 QualType T1 = E->getType(); 531 QualType T2 = E->getInit(0)->getType(); 532 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 533 EmitAggLoadOfLValue(E->getInit(0)); 534 return; 535 } 536 } 537 538 uint64_t NumArrayElements = AType->getNumElements(); 539 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 540 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 541 542 // FIXME: were we intentionally ignoring address spaces and GC attributes? 543 544 for (uint64_t i = 0; i != NumArrayElements; ++i) { 545 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 546 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 547 if (i < NumInitElements) 548 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 549 550 else 551 EmitNullInitializationToLValue(LV, ElementType); 552 } 553 return; 554 } 555 556 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 557 558 // Do struct initialization; this code just sets each individual member 559 // to the approprate value. This makes bitfield support automatic; 560 // the disadvantage is that the generated code is more difficult for 561 // the optimizer, especially with bitfields. 562 unsigned NumInitElements = E->getNumInits(); 563 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 564 565 if (E->getType()->isUnionType()) { 566 // Only initialize one field of a union. The field itself is 567 // specified by the initializer list. 568 if (!E->getInitializedFieldInUnion()) { 569 // Empty union; we have nothing to do. 570 571 #ifndef NDEBUG 572 // Make sure that it's really an empty and not a failure of 573 // semantic analysis. 574 for (RecordDecl::field_iterator Field = SD->field_begin(), 575 FieldEnd = SD->field_end(); 576 Field != FieldEnd; ++Field) 577 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 578 #endif 579 return; 580 } 581 582 // FIXME: volatility 583 FieldDecl *Field = E->getInitializedFieldInUnion(); 584 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 585 586 if (NumInitElements) { 587 // Store the initializer into the field 588 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 589 } else { 590 // Default-initialize to null 591 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 592 } 593 594 return; 595 } 596 597 // Here we iterate over the fields; this makes it simpler to both 598 // default-initialize fields and skip over unnamed fields. 599 unsigned CurInitVal = 0; 600 for (RecordDecl::field_iterator Field = SD->field_begin(), 601 FieldEnd = SD->field_end(); 602 Field != FieldEnd; ++Field) { 603 // We're done once we hit the flexible array member 604 if (Field->getType()->isIncompleteArrayType()) 605 break; 606 607 if (Field->isUnnamedBitfield()) 608 continue; 609 610 // FIXME: volatility 611 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 612 // We never generate write-barries for initialized fields. 613 FieldLoc.setNonGC(true); 614 if (CurInitVal < NumInitElements) { 615 // Store the initializer into the field. 616 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 617 Field->getType()); 618 } else { 619 // We're out of initalizers; default-initialize to null 620 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 621 } 622 } 623 } 624 625 //===----------------------------------------------------------------------===// 626 // Entry Points into this File 627 //===----------------------------------------------------------------------===// 628 629 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 630 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 631 /// the value of the aggregate expression is not needed. If VolatileDest is 632 /// true, DestPtr cannot be 0. 633 /// 634 /// \param IsInitializer - true if this evaluation is initializing an 635 /// object whose lifetime is already being managed. 636 // 637 // FIXME: Take Qualifiers object. 638 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 639 bool IgnoreResult) { 640 assert(E && hasAggregateLLVMType(E->getType()) && 641 "Invalid aggregate expression to emit"); 642 assert((Slot.getAddr() != 0 || Slot.isIgnored()) 643 && "slot has bits but no address"); 644 645 AggExprEmitter(*this, Slot, IgnoreResult) 646 .Visit(const_cast<Expr*>(E)); 647 } 648 649 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 650 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 651 llvm::Value *Temp = CreateMemTemp(E->getType()); 652 LValue LV = MakeAddrLValue(Temp, E->getType()); 653 AggValueSlot Slot 654 = AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false); 655 EmitAggExpr(E, Slot); 656 return LV; 657 } 658 659 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 660 llvm::Value *SrcPtr, QualType Ty, 661 bool isVolatile) { 662 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 663 664 if (getContext().getLangOptions().CPlusPlus) { 665 if (const RecordType *RT = Ty->getAs<RecordType>()) { 666 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 667 assert((Record->hasTrivialCopyConstructor() || 668 Record->hasTrivialCopyAssignment()) && 669 "Trying to aggregate-copy a type without a trivial copy " 670 "constructor or assignment operator"); 671 // Ignore empty classes in C++. 672 if (Record->isEmpty()) 673 return; 674 } 675 } 676 677 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 678 // C99 6.5.16.1p3, which states "If the value being stored in an object is 679 // read from another object that overlaps in anyway the storage of the first 680 // object, then the overlap shall be exact and the two objects shall have 681 // qualified or unqualified versions of a compatible type." 682 // 683 // memcpy is not defined if the source and destination pointers are exactly 684 // equal, but other compilers do this optimization, and almost every memcpy 685 // implementation handles this case safely. If there is a libc that does not 686 // safely handle this, we can add a target hook. 687 688 // Get size and alignment info for this aggregate. 689 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 690 691 // FIXME: Handle variable sized types. 692 693 // FIXME: If we have a volatile struct, the optimizer can remove what might 694 // appear to be `extra' memory ops: 695 // 696 // volatile struct { int i; } a, b; 697 // 698 // int main() { 699 // a = b; 700 // a = b; 701 // } 702 // 703 // we need to use a different call here. We use isVolatile to indicate when 704 // either the source or the destination is volatile. 705 706 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 707 const llvm::Type *DBP = 708 llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace()); 709 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 710 711 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 712 const llvm::Type *SBP = 713 llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace()); 714 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 715 716 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 717 RecordDecl *Record = RecordTy->getDecl(); 718 if (Record->hasObjectMember()) { 719 unsigned long size = TypeInfo.first/8; 720 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 721 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 722 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 723 SizeVal); 724 return; 725 } 726 } else if (getContext().getAsArrayType(Ty)) { 727 QualType BaseType = getContext().getBaseElementType(Ty); 728 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 729 if (RecordTy->getDecl()->hasObjectMember()) { 730 unsigned long size = TypeInfo.first/8; 731 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 732 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 733 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 734 SizeVal); 735 return; 736 } 737 } 738 } 739 740 Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), 741 IntPtrTy), 742 DestPtr, SrcPtr, 743 // TypeInfo.first describes size in bits. 744 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 745 Builder.getInt32(TypeInfo.second/8), 746 Builder.getInt1(isVolatile)); 747 } 748