1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IsResultUnused; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile(), IsResultUnused); 53 } 54 55 AggValueSlot EnsureSlot(QualType T) { 56 if (!Dest.isIgnored()) return Dest; 57 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 58 } 59 void EnsureDest(QualType T) { 60 if (!Dest.isIgnored()) return; 61 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 62 } 63 64 public: 65 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 66 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 67 IsResultUnused(IsResultUnused) { } 68 69 //===--------------------------------------------------------------------===// 70 // Utilities 71 //===--------------------------------------------------------------------===// 72 73 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 74 /// represents a value lvalue, this method emits the address of the lvalue, 75 /// then loads the result into DestPtr. 76 void EmitAggLoadOfLValue(const Expr *E); 77 78 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 79 void EmitFinalDestCopy(QualType type, const LValue &src); 80 void EmitFinalDestCopy(QualType type, RValue src, 81 CharUnits srcAlignment = CharUnits::Zero()); 82 void EmitCopy(QualType type, const AggValueSlot &dest, 83 const AggValueSlot &src); 84 85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 86 87 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void Visit(Expr *E) { 103 ApplyDebugLocation DL(CGF, E); 104 StmtVisitor<AggExprEmitter>::Visit(E); 105 } 106 107 void VisitStmt(Stmt *S) { 108 CGF.ErrorUnsupported(S, "aggregate expression"); 109 } 110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 112 Visit(GE->getResultExpr()); 113 } 114 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 115 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 116 return Visit(E->getReplacement()); 117 } 118 119 // l-values. 120 void VisitDeclRefExpr(DeclRefExpr *E) { 121 // For aggregates, we should always be able to emit the variable 122 // as an l-value unless it's a reference. This is due to the fact 123 // that we can't actually ever see a normal l2r conversion on an 124 // aggregate in C++, and in C there's no language standard 125 // actively preventing us from listing variables in the captures 126 // list of a block. 127 if (E->getDecl()->getType()->isReferenceType()) { 128 if (CodeGenFunction::ConstantEmission result 129 = CGF.tryEmitAsConstant(E)) { 130 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 131 return; 132 } 133 } 134 135 EmitAggLoadOfLValue(E); 136 } 137 138 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 139 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 140 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 141 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 142 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 143 EmitAggLoadOfLValue(E); 144 } 145 void VisitPredefinedExpr(const PredefinedExpr *E) { 146 EmitAggLoadOfLValue(E); 147 } 148 149 // Operators. 150 void VisitCastExpr(CastExpr *E); 151 void VisitCallExpr(const CallExpr *E); 152 void VisitStmtExpr(const StmtExpr *E); 153 void VisitBinaryOperator(const BinaryOperator *BO); 154 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 155 void VisitBinAssign(const BinaryOperator *E); 156 void VisitBinComma(const BinaryOperator *E); 157 158 void VisitObjCMessageExpr(ObjCMessageExpr *E); 159 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 160 EmitAggLoadOfLValue(E); 161 } 162 163 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 164 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 165 void VisitChooseExpr(const ChooseExpr *CE); 166 void VisitInitListExpr(InitListExpr *E); 167 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 168 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 169 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 170 Visit(DAE->getExpr()); 171 } 172 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 173 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 174 Visit(DIE->getExpr()); 175 } 176 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 177 void VisitCXXConstructExpr(const CXXConstructExpr *E); 178 void VisitLambdaExpr(LambdaExpr *E); 179 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 180 void VisitExprWithCleanups(ExprWithCleanups *E); 181 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 182 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 183 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 184 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 185 186 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 187 if (E->isGLValue()) { 188 LValue LV = CGF.EmitPseudoObjectLValue(E); 189 return EmitFinalDestCopy(E->getType(), LV); 190 } 191 192 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 193 } 194 195 void VisitVAArgExpr(VAArgExpr *E); 196 197 void EmitInitializationToLValue(Expr *E, LValue Address); 198 void EmitNullInitializationToLValue(LValue Address); 199 // case Expr::ChooseExprClass: 200 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 201 void VisitAtomicExpr(AtomicExpr *E) { 202 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 203 } 204 }; 205 } // end anonymous namespace. 206 207 //===----------------------------------------------------------------------===// 208 // Utilities 209 //===----------------------------------------------------------------------===// 210 211 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 212 /// represents a value lvalue, this method emits the address of the lvalue, 213 /// then loads the result into DestPtr. 214 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 215 LValue LV = CGF.EmitLValue(E); 216 217 // If the type of the l-value is atomic, then do an atomic load. 218 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 219 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 220 return; 221 } 222 223 EmitFinalDestCopy(E->getType(), LV); 224 } 225 226 /// \brief True if the given aggregate type requires special GC API calls. 227 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 228 // Only record types have members that might require garbage collection. 229 const RecordType *RecordTy = T->getAs<RecordType>(); 230 if (!RecordTy) return false; 231 232 // Don't mess with non-trivial C++ types. 233 RecordDecl *Record = RecordTy->getDecl(); 234 if (isa<CXXRecordDecl>(Record) && 235 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 236 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 237 return false; 238 239 // Check whether the type has an object member. 240 return Record->hasObjectMember(); 241 } 242 243 /// \brief Perform the final move to DestPtr if for some reason 244 /// getReturnValueSlot() didn't use it directly. 245 /// 246 /// The idea is that you do something like this: 247 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 248 /// EmitMoveFromReturnSlot(E, Result); 249 /// 250 /// If nothing interferes, this will cause the result to be emitted 251 /// directly into the return value slot. Otherwise, a final move 252 /// will be performed. 253 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 254 if (shouldUseDestForReturnSlot()) { 255 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 256 // The possibility of undef rvalues complicates that a lot, 257 // though, so we can't really assert. 258 return; 259 } 260 261 // Otherwise, copy from there to the destination. 262 assert(Dest.getAddr() != src.getAggregateAddr()); 263 std::pair<CharUnits, CharUnits> typeInfo = 264 CGF.getContext().getTypeInfoInChars(E->getType()); 265 EmitFinalDestCopy(E->getType(), src, typeInfo.second); 266 } 267 268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 269 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, 270 CharUnits srcAlign) { 271 assert(src.isAggregate() && "value must be aggregate value!"); 272 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); 273 EmitFinalDestCopy(type, srcLV); 274 } 275 276 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 277 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 278 // If Dest is ignored, then we're evaluating an aggregate expression 279 // in a context that doesn't care about the result. Note that loads 280 // from volatile l-values force the existence of a non-ignored 281 // destination. 282 if (Dest.isIgnored()) 283 return; 284 285 AggValueSlot srcAgg = 286 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 287 needsGC(type), AggValueSlot::IsAliased); 288 EmitCopy(type, Dest, srcAgg); 289 } 290 291 /// Perform a copy from the source into the destination. 292 /// 293 /// \param type - the type of the aggregate being copied; qualifiers are 294 /// ignored 295 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 296 const AggValueSlot &src) { 297 if (dest.requiresGCollection()) { 298 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 299 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 300 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 301 dest.getAddr(), 302 src.getAddr(), 303 size); 304 return; 305 } 306 307 // If the result of the assignment is used, copy the LHS there also. 308 // It's volatile if either side is. Use the minimum alignment of 309 // the two sides. 310 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, 311 dest.isVolatile() || src.isVolatile(), 312 std::min(dest.getAlignment(), src.getAlignment())); 313 } 314 315 /// \brief Emit the initializer for a std::initializer_list initialized with a 316 /// real initializer list. 317 void 318 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 319 // Emit an array containing the elements. The array is externally destructed 320 // if the std::initializer_list object is. 321 ASTContext &Ctx = CGF.getContext(); 322 LValue Array = CGF.EmitLValue(E->getSubExpr()); 323 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 324 llvm::Value *ArrayPtr = Array.getAddress(); 325 326 const ConstantArrayType *ArrayType = 327 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 328 assert(ArrayType && "std::initializer_list constructed from non-array"); 329 330 // FIXME: Perform the checks on the field types in SemaInit. 331 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 332 RecordDecl::field_iterator Field = Record->field_begin(); 333 if (Field == Record->field_end()) { 334 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 335 return; 336 } 337 338 // Start pointer. 339 if (!Field->getType()->isPointerType() || 340 !Ctx.hasSameType(Field->getType()->getPointeeType(), 341 ArrayType->getElementType())) { 342 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 343 return; 344 } 345 346 AggValueSlot Dest = EnsureSlot(E->getType()); 347 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 348 Dest.getAlignment()); 349 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 350 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 351 llvm::Value *IdxStart[] = { Zero, Zero }; 352 llvm::Value *ArrayStart = 353 Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart"); 354 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 355 ++Field; 356 357 if (Field == Record->field_end()) { 358 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 359 return; 360 } 361 362 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 363 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 364 if (Field->getType()->isPointerType() && 365 Ctx.hasSameType(Field->getType()->getPointeeType(), 366 ArrayType->getElementType())) { 367 // End pointer. 368 llvm::Value *IdxEnd[] = { Zero, Size }; 369 llvm::Value *ArrayEnd = 370 Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend"); 371 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 372 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 373 // Length. 374 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 375 } else { 376 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 377 return; 378 } 379 } 380 381 /// \brief Determine if E is a trivial array filler, that is, one that is 382 /// equivalent to zero-initialization. 383 static bool isTrivialFiller(Expr *E) { 384 if (!E) 385 return true; 386 387 if (isa<ImplicitValueInitExpr>(E)) 388 return true; 389 390 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 391 if (ILE->getNumInits()) 392 return false; 393 return isTrivialFiller(ILE->getArrayFiller()); 394 } 395 396 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 397 return Cons->getConstructor()->isDefaultConstructor() && 398 Cons->getConstructor()->isTrivial(); 399 400 // FIXME: Are there other cases where we can avoid emitting an initializer? 401 return false; 402 } 403 404 /// \brief Emit initialization of an array from an initializer list. 405 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 406 QualType elementType, InitListExpr *E) { 407 uint64_t NumInitElements = E->getNumInits(); 408 409 uint64_t NumArrayElements = AType->getNumElements(); 410 assert(NumInitElements <= NumArrayElements); 411 412 // DestPtr is an array*. Construct an elementType* by drilling 413 // down a level. 414 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 415 llvm::Value *indices[] = { zero, zero }; 416 llvm::Value *begin = 417 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 418 419 // Exception safety requires us to destroy all the 420 // already-constructed members if an initializer throws. 421 // For that, we'll need an EH cleanup. 422 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 423 llvm::AllocaInst *endOfInit = nullptr; 424 EHScopeStack::stable_iterator cleanup; 425 llvm::Instruction *cleanupDominator = nullptr; 426 if (CGF.needsEHCleanup(dtorKind)) { 427 // In principle we could tell the cleanup where we are more 428 // directly, but the control flow can get so varied here that it 429 // would actually be quite complex. Therefore we go through an 430 // alloca. 431 endOfInit = CGF.CreateTempAlloca(begin->getType(), 432 "arrayinit.endOfInit"); 433 cleanupDominator = Builder.CreateStore(begin, endOfInit); 434 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 435 CGF.getDestroyer(dtorKind)); 436 cleanup = CGF.EHStack.stable_begin(); 437 438 // Otherwise, remember that we didn't need a cleanup. 439 } else { 440 dtorKind = QualType::DK_none; 441 } 442 443 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 444 445 // The 'current element to initialize'. The invariants on this 446 // variable are complicated. Essentially, after each iteration of 447 // the loop, it points to the last initialized element, except 448 // that it points to the beginning of the array before any 449 // elements have been initialized. 450 llvm::Value *element = begin; 451 452 // Emit the explicit initializers. 453 for (uint64_t i = 0; i != NumInitElements; ++i) { 454 // Advance to the next element. 455 if (i > 0) { 456 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 457 458 // Tell the cleanup that it needs to destroy up to this 459 // element. TODO: some of these stores can be trivially 460 // observed to be unnecessary. 461 if (endOfInit) Builder.CreateStore(element, endOfInit); 462 } 463 464 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 465 EmitInitializationToLValue(E->getInit(i), elementLV); 466 } 467 468 // Check whether there's a non-trivial array-fill expression. 469 Expr *filler = E->getArrayFiller(); 470 bool hasTrivialFiller = isTrivialFiller(filler); 471 472 // Any remaining elements need to be zero-initialized, possibly 473 // using the filler expression. We can skip this if the we're 474 // emitting to zeroed memory. 475 if (NumInitElements != NumArrayElements && 476 !(Dest.isZeroed() && hasTrivialFiller && 477 CGF.getTypes().isZeroInitializable(elementType))) { 478 479 // Use an actual loop. This is basically 480 // do { *array++ = filler; } while (array != end); 481 482 // Advance to the start of the rest of the array. 483 if (NumInitElements) { 484 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 485 if (endOfInit) Builder.CreateStore(element, endOfInit); 486 } 487 488 // Compute the end of the array. 489 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 490 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 491 "arrayinit.end"); 492 493 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 494 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 495 496 // Jump into the body. 497 CGF.EmitBlock(bodyBB); 498 llvm::PHINode *currentElement = 499 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 500 currentElement->addIncoming(element, entryBB); 501 502 // Emit the actual filler expression. 503 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 504 if (filler) 505 EmitInitializationToLValue(filler, elementLV); 506 else 507 EmitNullInitializationToLValue(elementLV); 508 509 // Move on to the next element. 510 llvm::Value *nextElement = 511 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 512 513 // Tell the EH cleanup that we finished with the last element. 514 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 515 516 // Leave the loop if we're done. 517 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 518 "arrayinit.done"); 519 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 520 Builder.CreateCondBr(done, endBB, bodyBB); 521 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 522 523 CGF.EmitBlock(endBB); 524 } 525 526 // Leave the partial-array cleanup if we entered one. 527 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 528 } 529 530 //===----------------------------------------------------------------------===// 531 // Visitor Methods 532 //===----------------------------------------------------------------------===// 533 534 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 535 Visit(E->GetTemporaryExpr()); 536 } 537 538 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 539 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 540 } 541 542 void 543 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 544 if (Dest.isPotentiallyAliased() && 545 E->getType().isPODType(CGF.getContext())) { 546 // For a POD type, just emit a load of the lvalue + a copy, because our 547 // compound literal might alias the destination. 548 EmitAggLoadOfLValue(E); 549 return; 550 } 551 552 AggValueSlot Slot = EnsureSlot(E->getType()); 553 CGF.EmitAggExpr(E->getInitializer(), Slot); 554 } 555 556 /// Attempt to look through various unimportant expressions to find a 557 /// cast of the given kind. 558 static Expr *findPeephole(Expr *op, CastKind kind) { 559 while (true) { 560 op = op->IgnoreParens(); 561 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 562 if (castE->getCastKind() == kind) 563 return castE->getSubExpr(); 564 if (castE->getCastKind() == CK_NoOp) 565 continue; 566 } 567 return nullptr; 568 } 569 } 570 571 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 572 switch (E->getCastKind()) { 573 case CK_Dynamic: { 574 // FIXME: Can this actually happen? We have no test coverage for it. 575 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 576 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 577 CodeGenFunction::TCK_Load); 578 // FIXME: Do we also need to handle property references here? 579 if (LV.isSimple()) 580 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 581 else 582 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 583 584 if (!Dest.isIgnored()) 585 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 586 break; 587 } 588 589 case CK_ToUnion: { 590 // Evaluate even if the destination is ignored. 591 if (Dest.isIgnored()) { 592 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 593 /*ignoreResult=*/true); 594 break; 595 } 596 597 // GCC union extension 598 QualType Ty = E->getSubExpr()->getType(); 599 QualType PtrTy = CGF.getContext().getPointerType(Ty); 600 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 601 CGF.ConvertType(PtrTy)); 602 EmitInitializationToLValue(E->getSubExpr(), 603 CGF.MakeAddrLValue(CastPtr, Ty)); 604 break; 605 } 606 607 case CK_DerivedToBase: 608 case CK_BaseToDerived: 609 case CK_UncheckedDerivedToBase: { 610 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 611 "should have been unpacked before we got here"); 612 } 613 614 case CK_NonAtomicToAtomic: 615 case CK_AtomicToNonAtomic: { 616 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 617 618 // Determine the atomic and value types. 619 QualType atomicType = E->getSubExpr()->getType(); 620 QualType valueType = E->getType(); 621 if (isToAtomic) std::swap(atomicType, valueType); 622 623 assert(atomicType->isAtomicType()); 624 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 625 atomicType->castAs<AtomicType>()->getValueType())); 626 627 // Just recurse normally if we're ignoring the result or the 628 // atomic type doesn't change representation. 629 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 630 return Visit(E->getSubExpr()); 631 } 632 633 CastKind peepholeTarget = 634 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 635 636 // These two cases are reverses of each other; try to peephole them. 637 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 638 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 639 E->getType()) && 640 "peephole significantly changed types?"); 641 return Visit(op); 642 } 643 644 // If we're converting an r-value of non-atomic type to an r-value 645 // of atomic type, just emit directly into the relevant sub-object. 646 if (isToAtomic) { 647 AggValueSlot valueDest = Dest; 648 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 649 // Zero-initialize. (Strictly speaking, we only need to intialize 650 // the padding at the end, but this is simpler.) 651 if (!Dest.isZeroed()) 652 CGF.EmitNullInitialization(Dest.getAddr(), atomicType); 653 654 // Build a GEP to refer to the subobject. 655 llvm::Value *valueAddr = 656 CGF.Builder.CreateStructGEP(nullptr, valueDest.getAddr(), 0); 657 valueDest = AggValueSlot::forAddr(valueAddr, 658 valueDest.getAlignment(), 659 valueDest.getQualifiers(), 660 valueDest.isExternallyDestructed(), 661 valueDest.requiresGCollection(), 662 valueDest.isPotentiallyAliased(), 663 AggValueSlot::IsZeroed); 664 } 665 666 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 667 return; 668 } 669 670 // Otherwise, we're converting an atomic type to a non-atomic type. 671 // Make an atomic temporary, emit into that, and then copy the value out. 672 AggValueSlot atomicSlot = 673 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 674 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 675 676 llvm::Value *valueAddr = 677 Builder.CreateStructGEP(nullptr, atomicSlot.getAddr(), 0); 678 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 679 return EmitFinalDestCopy(valueType, rvalue); 680 } 681 682 case CK_LValueToRValue: 683 // If we're loading from a volatile type, force the destination 684 // into existence. 685 if (E->getSubExpr()->getType().isVolatileQualified()) { 686 EnsureDest(E->getType()); 687 return Visit(E->getSubExpr()); 688 } 689 690 // fallthrough 691 692 case CK_NoOp: 693 case CK_UserDefinedConversion: 694 case CK_ConstructorConversion: 695 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 696 E->getType()) && 697 "Implicit cast types must be compatible"); 698 Visit(E->getSubExpr()); 699 break; 700 701 case CK_LValueBitCast: 702 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 703 704 case CK_Dependent: 705 case CK_BitCast: 706 case CK_ArrayToPointerDecay: 707 case CK_FunctionToPointerDecay: 708 case CK_NullToPointer: 709 case CK_NullToMemberPointer: 710 case CK_BaseToDerivedMemberPointer: 711 case CK_DerivedToBaseMemberPointer: 712 case CK_MemberPointerToBoolean: 713 case CK_ReinterpretMemberPointer: 714 case CK_IntegralToPointer: 715 case CK_PointerToIntegral: 716 case CK_PointerToBoolean: 717 case CK_ToVoid: 718 case CK_VectorSplat: 719 case CK_IntegralCast: 720 case CK_IntegralToBoolean: 721 case CK_IntegralToFloating: 722 case CK_FloatingToIntegral: 723 case CK_FloatingToBoolean: 724 case CK_FloatingCast: 725 case CK_CPointerToObjCPointerCast: 726 case CK_BlockPointerToObjCPointerCast: 727 case CK_AnyPointerToBlockPointerCast: 728 case CK_ObjCObjectLValueCast: 729 case CK_FloatingRealToComplex: 730 case CK_FloatingComplexToReal: 731 case CK_FloatingComplexToBoolean: 732 case CK_FloatingComplexCast: 733 case CK_FloatingComplexToIntegralComplex: 734 case CK_IntegralRealToComplex: 735 case CK_IntegralComplexToReal: 736 case CK_IntegralComplexToBoolean: 737 case CK_IntegralComplexCast: 738 case CK_IntegralComplexToFloatingComplex: 739 case CK_ARCProduceObject: 740 case CK_ARCConsumeObject: 741 case CK_ARCReclaimReturnedObject: 742 case CK_ARCExtendBlockObject: 743 case CK_CopyAndAutoreleaseBlockObject: 744 case CK_BuiltinFnToFnPtr: 745 case CK_ZeroToOCLEvent: 746 case CK_AddressSpaceConversion: 747 llvm_unreachable("cast kind invalid for aggregate types"); 748 } 749 } 750 751 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 752 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 753 EmitAggLoadOfLValue(E); 754 return; 755 } 756 757 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 758 EmitMoveFromReturnSlot(E, RV); 759 } 760 761 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 762 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 763 EmitMoveFromReturnSlot(E, RV); 764 } 765 766 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 767 CGF.EmitIgnoredExpr(E->getLHS()); 768 Visit(E->getRHS()); 769 } 770 771 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 772 CodeGenFunction::StmtExprEvaluation eval(CGF); 773 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 774 } 775 776 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 777 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 778 VisitPointerToDataMemberBinaryOperator(E); 779 else 780 CGF.ErrorUnsupported(E, "aggregate binary expression"); 781 } 782 783 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 784 const BinaryOperator *E) { 785 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 786 EmitFinalDestCopy(E->getType(), LV); 787 } 788 789 /// Is the value of the given expression possibly a reference to or 790 /// into a __block variable? 791 static bool isBlockVarRef(const Expr *E) { 792 // Make sure we look through parens. 793 E = E->IgnoreParens(); 794 795 // Check for a direct reference to a __block variable. 796 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 797 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 798 return (var && var->hasAttr<BlocksAttr>()); 799 } 800 801 // More complicated stuff. 802 803 // Binary operators. 804 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 805 // For an assignment or pointer-to-member operation, just care 806 // about the LHS. 807 if (op->isAssignmentOp() || op->isPtrMemOp()) 808 return isBlockVarRef(op->getLHS()); 809 810 // For a comma, just care about the RHS. 811 if (op->getOpcode() == BO_Comma) 812 return isBlockVarRef(op->getRHS()); 813 814 // FIXME: pointer arithmetic? 815 return false; 816 817 // Check both sides of a conditional operator. 818 } else if (const AbstractConditionalOperator *op 819 = dyn_cast<AbstractConditionalOperator>(E)) { 820 return isBlockVarRef(op->getTrueExpr()) 821 || isBlockVarRef(op->getFalseExpr()); 822 823 // OVEs are required to support BinaryConditionalOperators. 824 } else if (const OpaqueValueExpr *op 825 = dyn_cast<OpaqueValueExpr>(E)) { 826 if (const Expr *src = op->getSourceExpr()) 827 return isBlockVarRef(src); 828 829 // Casts are necessary to get things like (*(int*)&var) = foo(). 830 // We don't really care about the kind of cast here, except 831 // we don't want to look through l2r casts, because it's okay 832 // to get the *value* in a __block variable. 833 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 834 if (cast->getCastKind() == CK_LValueToRValue) 835 return false; 836 return isBlockVarRef(cast->getSubExpr()); 837 838 // Handle unary operators. Again, just aggressively look through 839 // it, ignoring the operation. 840 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 841 return isBlockVarRef(uop->getSubExpr()); 842 843 // Look into the base of a field access. 844 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 845 return isBlockVarRef(mem->getBase()); 846 847 // Look into the base of a subscript. 848 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 849 return isBlockVarRef(sub->getBase()); 850 } 851 852 return false; 853 } 854 855 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 856 // For an assignment to work, the value on the right has 857 // to be compatible with the value on the left. 858 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 859 E->getRHS()->getType()) 860 && "Invalid assignment"); 861 862 // If the LHS might be a __block variable, and the RHS can 863 // potentially cause a block copy, we need to evaluate the RHS first 864 // so that the assignment goes the right place. 865 // This is pretty semantically fragile. 866 if (isBlockVarRef(E->getLHS()) && 867 E->getRHS()->HasSideEffects(CGF.getContext())) { 868 // Ensure that we have a destination, and evaluate the RHS into that. 869 EnsureDest(E->getRHS()->getType()); 870 Visit(E->getRHS()); 871 872 // Now emit the LHS and copy into it. 873 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 874 875 // That copy is an atomic copy if the LHS is atomic. 876 if (LHS.getType()->isAtomicType() || 877 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 878 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 879 return; 880 } 881 882 EmitCopy(E->getLHS()->getType(), 883 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 884 needsGC(E->getLHS()->getType()), 885 AggValueSlot::IsAliased), 886 Dest); 887 return; 888 } 889 890 LValue LHS = CGF.EmitLValue(E->getLHS()); 891 892 // If we have an atomic type, evaluate into the destination and then 893 // do an atomic copy. 894 if (LHS.getType()->isAtomicType() || 895 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 896 EnsureDest(E->getRHS()->getType()); 897 Visit(E->getRHS()); 898 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 899 return; 900 } 901 902 // Codegen the RHS so that it stores directly into the LHS. 903 AggValueSlot LHSSlot = 904 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 905 needsGC(E->getLHS()->getType()), 906 AggValueSlot::IsAliased); 907 // A non-volatile aggregate destination might have volatile member. 908 if (!LHSSlot.isVolatile() && 909 CGF.hasVolatileMember(E->getLHS()->getType())) 910 LHSSlot.setVolatile(true); 911 912 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 913 914 // Copy into the destination if the assignment isn't ignored. 915 EmitFinalDestCopy(E->getType(), LHS); 916 } 917 918 void AggExprEmitter:: 919 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 920 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 921 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 922 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 923 924 // Bind the common expression if necessary. 925 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 926 927 CodeGenFunction::ConditionalEvaluation eval(CGF); 928 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 929 CGF.getProfileCount(E)); 930 931 // Save whether the destination's lifetime is externally managed. 932 bool isExternallyDestructed = Dest.isExternallyDestructed(); 933 934 eval.begin(CGF); 935 CGF.EmitBlock(LHSBlock); 936 CGF.incrementProfileCounter(E); 937 Visit(E->getTrueExpr()); 938 eval.end(CGF); 939 940 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 941 CGF.Builder.CreateBr(ContBlock); 942 943 // If the result of an agg expression is unused, then the emission 944 // of the LHS might need to create a destination slot. That's fine 945 // with us, and we can safely emit the RHS into the same slot, but 946 // we shouldn't claim that it's already being destructed. 947 Dest.setExternallyDestructed(isExternallyDestructed); 948 949 eval.begin(CGF); 950 CGF.EmitBlock(RHSBlock); 951 Visit(E->getFalseExpr()); 952 eval.end(CGF); 953 954 CGF.EmitBlock(ContBlock); 955 } 956 957 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 958 Visit(CE->getChosenSubExpr()); 959 } 960 961 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 962 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 963 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 964 965 if (!ArgPtr) { 966 // If EmitVAArg fails, we fall back to the LLVM instruction. 967 llvm::Value *Val = 968 Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType())); 969 if (!Dest.isIgnored()) 970 Builder.CreateStore(Val, Dest.getAddr()); 971 return; 972 } 973 974 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 975 } 976 977 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 978 // Ensure that we have a slot, but if we already do, remember 979 // whether it was externally destructed. 980 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 981 EnsureDest(E->getType()); 982 983 // We're going to push a destructor if there isn't already one. 984 Dest.setExternallyDestructed(); 985 986 Visit(E->getSubExpr()); 987 988 // Push that destructor we promised. 989 if (!wasExternallyDestructed) 990 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 991 } 992 993 void 994 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 995 AggValueSlot Slot = EnsureSlot(E->getType()); 996 CGF.EmitCXXConstructExpr(E, Slot); 997 } 998 999 void 1000 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1001 AggValueSlot Slot = EnsureSlot(E->getType()); 1002 CGF.EmitLambdaExpr(E, Slot); 1003 } 1004 1005 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1006 CGF.enterFullExpression(E); 1007 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1008 Visit(E->getSubExpr()); 1009 } 1010 1011 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1012 QualType T = E->getType(); 1013 AggValueSlot Slot = EnsureSlot(T); 1014 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1015 } 1016 1017 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1018 QualType T = E->getType(); 1019 AggValueSlot Slot = EnsureSlot(T); 1020 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1021 } 1022 1023 /// isSimpleZero - If emitting this value will obviously just cause a store of 1024 /// zero to memory, return true. This can return false if uncertain, so it just 1025 /// handles simple cases. 1026 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1027 E = E->IgnoreParens(); 1028 1029 // 0 1030 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1031 return IL->getValue() == 0; 1032 // +0.0 1033 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1034 return FL->getValue().isPosZero(); 1035 // int() 1036 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1037 CGF.getTypes().isZeroInitializable(E->getType())) 1038 return true; 1039 // (int*)0 - Null pointer expressions. 1040 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1041 return ICE->getCastKind() == CK_NullToPointer; 1042 // '\0' 1043 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1044 return CL->getValue() == 0; 1045 1046 // Otherwise, hard case: conservatively return false. 1047 return false; 1048 } 1049 1050 1051 void 1052 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1053 QualType type = LV.getType(); 1054 // FIXME: Ignore result? 1055 // FIXME: Are initializers affected by volatile? 1056 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1057 // Storing "i32 0" to a zero'd memory location is a noop. 1058 return; 1059 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1060 return EmitNullInitializationToLValue(LV); 1061 } else if (isa<NoInitExpr>(E)) { 1062 // Do nothing. 1063 return; 1064 } else if (type->isReferenceType()) { 1065 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1066 return CGF.EmitStoreThroughLValue(RV, LV); 1067 } 1068 1069 switch (CGF.getEvaluationKind(type)) { 1070 case TEK_Complex: 1071 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1072 return; 1073 case TEK_Aggregate: 1074 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1075 AggValueSlot::IsDestructed, 1076 AggValueSlot::DoesNotNeedGCBarriers, 1077 AggValueSlot::IsNotAliased, 1078 Dest.isZeroed())); 1079 return; 1080 case TEK_Scalar: 1081 if (LV.isSimple()) { 1082 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1083 } else { 1084 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1085 } 1086 return; 1087 } 1088 llvm_unreachable("bad evaluation kind"); 1089 } 1090 1091 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1092 QualType type = lv.getType(); 1093 1094 // If the destination slot is already zeroed out before the aggregate is 1095 // copied into it, we don't have to emit any zeros here. 1096 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1097 return; 1098 1099 if (CGF.hasScalarEvaluationKind(type)) { 1100 // For non-aggregates, we can store the appropriate null constant. 1101 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1102 // Note that the following is not equivalent to 1103 // EmitStoreThroughBitfieldLValue for ARC types. 1104 if (lv.isBitField()) { 1105 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1106 } else { 1107 assert(lv.isSimple()); 1108 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1109 } 1110 } else { 1111 // There's a potential optimization opportunity in combining 1112 // memsets; that would be easy for arrays, but relatively 1113 // difficult for structures with the current code. 1114 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1115 } 1116 } 1117 1118 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1119 #if 0 1120 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1121 // (Length of globals? Chunks of zeroed-out space?). 1122 // 1123 // If we can, prefer a copy from a global; this is a lot less code for long 1124 // globals, and it's easier for the current optimizers to analyze. 1125 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1126 llvm::GlobalVariable* GV = 1127 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1128 llvm::GlobalValue::InternalLinkage, C, ""); 1129 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1130 return; 1131 } 1132 #endif 1133 if (E->hadArrayRangeDesignator()) 1134 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1135 1136 AggValueSlot Dest = EnsureSlot(E->getType()); 1137 1138 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1139 Dest.getAlignment()); 1140 1141 // Handle initialization of an array. 1142 if (E->getType()->isArrayType()) { 1143 if (E->isStringLiteralInit()) 1144 return Visit(E->getInit(0)); 1145 1146 QualType elementType = 1147 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1148 1149 llvm::PointerType *APType = 1150 cast<llvm::PointerType>(Dest.getAddr()->getType()); 1151 llvm::ArrayType *AType = 1152 cast<llvm::ArrayType>(APType->getElementType()); 1153 1154 EmitArrayInit(Dest.getAddr(), AType, elementType, E); 1155 return; 1156 } 1157 1158 if (E->getType()->isAtomicType()) { 1159 // An _Atomic(T) object can be list-initialized from an expression 1160 // of the same type. 1161 assert(E->getNumInits() == 1 && 1162 CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(), 1163 E->getType()) && 1164 "unexpected list initialization for atomic object"); 1165 return Visit(E->getInit(0)); 1166 } 1167 1168 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1169 1170 // Do struct initialization; this code just sets each individual member 1171 // to the approprate value. This makes bitfield support automatic; 1172 // the disadvantage is that the generated code is more difficult for 1173 // the optimizer, especially with bitfields. 1174 unsigned NumInitElements = E->getNumInits(); 1175 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1176 1177 // Prepare a 'this' for CXXDefaultInitExprs. 1178 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr()); 1179 1180 if (record->isUnion()) { 1181 // Only initialize one field of a union. The field itself is 1182 // specified by the initializer list. 1183 if (!E->getInitializedFieldInUnion()) { 1184 // Empty union; we have nothing to do. 1185 1186 #ifndef NDEBUG 1187 // Make sure that it's really an empty and not a failure of 1188 // semantic analysis. 1189 for (const auto *Field : record->fields()) 1190 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1191 #endif 1192 return; 1193 } 1194 1195 // FIXME: volatility 1196 FieldDecl *Field = E->getInitializedFieldInUnion(); 1197 1198 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1199 if (NumInitElements) { 1200 // Store the initializer into the field 1201 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1202 } else { 1203 // Default-initialize to null. 1204 EmitNullInitializationToLValue(FieldLoc); 1205 } 1206 1207 return; 1208 } 1209 1210 // We'll need to enter cleanup scopes in case any of the member 1211 // initializers throw an exception. 1212 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1213 llvm::Instruction *cleanupDominator = nullptr; 1214 1215 // Here we iterate over the fields; this makes it simpler to both 1216 // default-initialize fields and skip over unnamed fields. 1217 unsigned curInitIndex = 0; 1218 for (const auto *field : record->fields()) { 1219 // We're done once we hit the flexible array member. 1220 if (field->getType()->isIncompleteArrayType()) 1221 break; 1222 1223 // Always skip anonymous bitfields. 1224 if (field->isUnnamedBitfield()) 1225 continue; 1226 1227 // We're done if we reach the end of the explicit initializers, we 1228 // have a zeroed object, and the rest of the fields are 1229 // zero-initializable. 1230 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1231 CGF.getTypes().isZeroInitializable(E->getType())) 1232 break; 1233 1234 1235 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1236 // We never generate write-barries for initialized fields. 1237 LV.setNonGC(true); 1238 1239 if (curInitIndex < NumInitElements) { 1240 // Store the initializer into the field. 1241 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1242 } else { 1243 // We're out of initalizers; default-initialize to null 1244 EmitNullInitializationToLValue(LV); 1245 } 1246 1247 // Push a destructor if necessary. 1248 // FIXME: if we have an array of structures, all explicitly 1249 // initialized, we can end up pushing a linear number of cleanups. 1250 bool pushedCleanup = false; 1251 if (QualType::DestructionKind dtorKind 1252 = field->getType().isDestructedType()) { 1253 assert(LV.isSimple()); 1254 if (CGF.needsEHCleanup(dtorKind)) { 1255 if (!cleanupDominator) 1256 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1257 1258 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1259 CGF.getDestroyer(dtorKind), false); 1260 cleanups.push_back(CGF.EHStack.stable_begin()); 1261 pushedCleanup = true; 1262 } 1263 } 1264 1265 // If the GEP didn't get used because of a dead zero init or something 1266 // else, clean it up for -O0 builds and general tidiness. 1267 if (!pushedCleanup && LV.isSimple()) 1268 if (llvm::GetElementPtrInst *GEP = 1269 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1270 if (GEP->use_empty()) 1271 GEP->eraseFromParent(); 1272 } 1273 1274 // Deactivate all the partial cleanups in reverse order, which 1275 // generally means popping them. 1276 for (unsigned i = cleanups.size(); i != 0; --i) 1277 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1278 1279 // Destroy the placeholder if we made one. 1280 if (cleanupDominator) 1281 cleanupDominator->eraseFromParent(); 1282 } 1283 1284 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1285 AggValueSlot Dest = EnsureSlot(E->getType()); 1286 1287 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1288 Dest.getAlignment()); 1289 EmitInitializationToLValue(E->getBase(), DestLV); 1290 VisitInitListExpr(E->getUpdater()); 1291 } 1292 1293 //===----------------------------------------------------------------------===// 1294 // Entry Points into this File 1295 //===----------------------------------------------------------------------===// 1296 1297 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1298 /// non-zero bytes that will be stored when outputting the initializer for the 1299 /// specified initializer expression. 1300 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1301 E = E->IgnoreParens(); 1302 1303 // 0 and 0.0 won't require any non-zero stores! 1304 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1305 1306 // If this is an initlist expr, sum up the size of sizes of the (present) 1307 // elements. If this is something weird, assume the whole thing is non-zero. 1308 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1309 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1310 return CGF.getContext().getTypeSizeInChars(E->getType()); 1311 1312 // InitListExprs for structs have to be handled carefully. If there are 1313 // reference members, we need to consider the size of the reference, not the 1314 // referencee. InitListExprs for unions and arrays can't have references. 1315 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1316 if (!RT->isUnionType()) { 1317 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1318 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1319 1320 unsigned ILEElement = 0; 1321 for (const auto *Field : SD->fields()) { 1322 // We're done once we hit the flexible array member or run out of 1323 // InitListExpr elements. 1324 if (Field->getType()->isIncompleteArrayType() || 1325 ILEElement == ILE->getNumInits()) 1326 break; 1327 if (Field->isUnnamedBitfield()) 1328 continue; 1329 1330 const Expr *E = ILE->getInit(ILEElement++); 1331 1332 // Reference values are always non-null and have the width of a pointer. 1333 if (Field->getType()->isReferenceType()) 1334 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1335 CGF.getTarget().getPointerWidth(0)); 1336 else 1337 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1338 } 1339 1340 return NumNonZeroBytes; 1341 } 1342 } 1343 1344 1345 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1346 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1347 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1348 return NumNonZeroBytes; 1349 } 1350 1351 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1352 /// zeros in it, emit a memset and avoid storing the individual zeros. 1353 /// 1354 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1355 CodeGenFunction &CGF) { 1356 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1357 // volatile stores. 1358 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == nullptr) 1359 return; 1360 1361 // C++ objects with a user-declared constructor don't need zero'ing. 1362 if (CGF.getLangOpts().CPlusPlus) 1363 if (const RecordType *RT = CGF.getContext() 1364 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1365 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1366 if (RD->hasUserDeclaredConstructor()) 1367 return; 1368 } 1369 1370 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1371 std::pair<CharUnits, CharUnits> TypeInfo = 1372 CGF.getContext().getTypeInfoInChars(E->getType()); 1373 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1374 return; 1375 1376 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1377 // we prefer to emit memset + individual stores for the rest. 1378 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1379 if (NumNonZeroBytes*4 > TypeInfo.first) 1380 return; 1381 1382 // Okay, it seems like a good idea to use an initial memset, emit the call. 1383 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1384 CharUnits Align = TypeInfo.second; 1385 1386 llvm::Value *Loc = Slot.getAddr(); 1387 1388 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1389 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1390 Align.getQuantity(), false); 1391 1392 // Tell the AggExprEmitter that the slot is known zero. 1393 Slot.setZeroed(); 1394 } 1395 1396 1397 1398 1399 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1400 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1401 /// the value of the aggregate expression is not needed. If VolatileDest is 1402 /// true, DestPtr cannot be 0. 1403 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1404 assert(E && hasAggregateEvaluationKind(E->getType()) && 1405 "Invalid aggregate expression to emit"); 1406 assert((Slot.getAddr() != nullptr || Slot.isIgnored()) && 1407 "slot has bits but no address"); 1408 1409 // Optimize the slot if possible. 1410 CheckAggExprForMemSetUse(Slot, E, *this); 1411 1412 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1413 } 1414 1415 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1416 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1417 llvm::Value *Temp = CreateMemTemp(E->getType()); 1418 LValue LV = MakeAddrLValue(Temp, E->getType()); 1419 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1420 AggValueSlot::DoesNotNeedGCBarriers, 1421 AggValueSlot::IsNotAliased)); 1422 return LV; 1423 } 1424 1425 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1426 llvm::Value *SrcPtr, QualType Ty, 1427 bool isVolatile, 1428 CharUnits alignment, 1429 bool isAssignment) { 1430 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1431 1432 if (getLangOpts().CPlusPlus) { 1433 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1434 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1435 assert((Record->hasTrivialCopyConstructor() || 1436 Record->hasTrivialCopyAssignment() || 1437 Record->hasTrivialMoveConstructor() || 1438 Record->hasTrivialMoveAssignment() || 1439 Record->isUnion()) && 1440 "Trying to aggregate-copy a type without a trivial copy/move " 1441 "constructor or assignment operator"); 1442 // Ignore empty classes in C++. 1443 if (Record->isEmpty()) 1444 return; 1445 } 1446 } 1447 1448 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1449 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1450 // read from another object that overlaps in anyway the storage of the first 1451 // object, then the overlap shall be exact and the two objects shall have 1452 // qualified or unqualified versions of a compatible type." 1453 // 1454 // memcpy is not defined if the source and destination pointers are exactly 1455 // equal, but other compilers do this optimization, and almost every memcpy 1456 // implementation handles this case safely. If there is a libc that does not 1457 // safely handle this, we can add a target hook. 1458 1459 // Get data size and alignment info for this aggregate. If this is an 1460 // assignment don't copy the tail padding. Otherwise copying it is fine. 1461 std::pair<CharUnits, CharUnits> TypeInfo; 1462 if (isAssignment) 1463 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1464 else 1465 TypeInfo = getContext().getTypeInfoInChars(Ty); 1466 1467 if (alignment.isZero()) 1468 alignment = TypeInfo.second; 1469 1470 llvm::Value *SizeVal = nullptr; 1471 if (TypeInfo.first.isZero()) { 1472 // But note that getTypeInfo returns 0 for a VLA. 1473 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1474 getContext().getAsArrayType(Ty))) { 1475 QualType BaseEltTy; 1476 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1477 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1478 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1479 if (!isAssignment) 1480 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1481 assert(!TypeInfo.first.isZero()); 1482 SizeVal = Builder.CreateNUWMul( 1483 SizeVal, 1484 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1485 if (!isAssignment) { 1486 SizeVal = Builder.CreateNUWSub( 1487 SizeVal, 1488 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1489 SizeVal = Builder.CreateNUWAdd( 1490 SizeVal, llvm::ConstantInt::get( 1491 SizeTy, LastElementTypeInfo.first.getQuantity())); 1492 } 1493 } 1494 } 1495 if (!SizeVal) { 1496 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1497 } 1498 1499 // FIXME: If we have a volatile struct, the optimizer can remove what might 1500 // appear to be `extra' memory ops: 1501 // 1502 // volatile struct { int i; } a, b; 1503 // 1504 // int main() { 1505 // a = b; 1506 // a = b; 1507 // } 1508 // 1509 // we need to use a different call here. We use isVolatile to indicate when 1510 // either the source or the destination is volatile. 1511 1512 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1513 llvm::Type *DBP = 1514 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1515 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1516 1517 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1518 llvm::Type *SBP = 1519 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1520 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1521 1522 // Don't do any of the memmove_collectable tests if GC isn't set. 1523 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1524 // fall through 1525 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1526 RecordDecl *Record = RecordTy->getDecl(); 1527 if (Record->hasObjectMember()) { 1528 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1529 SizeVal); 1530 return; 1531 } 1532 } else if (Ty->isArrayType()) { 1533 QualType BaseType = getContext().getBaseElementType(Ty); 1534 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1535 if (RecordTy->getDecl()->hasObjectMember()) { 1536 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1537 SizeVal); 1538 return; 1539 } 1540 } 1541 } 1542 1543 // Determine the metadata to describe the position of any padding in this 1544 // memcpy, as well as the TBAA tags for the members of the struct, in case 1545 // the optimizer wishes to expand it in to scalar memory operations. 1546 llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty); 1547 1548 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, alignment.getQuantity(), 1549 isVolatile, /*TBAATag=*/nullptr, TBAAStructTag); 1550 } 1551