1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/Intrinsics.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===----------------------------------------------------------------------===// 30 // Aggregate Expression Emitter 31 //===----------------------------------------------------------------------===// 32 33 namespace { 34 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 35 CodeGenFunction &CGF; 36 CGBuilderTy &Builder; 37 AggValueSlot Dest; 38 bool IsResultUnused; 39 40 /// We want to use 'dest' as the return slot except under two 41 /// conditions: 42 /// - The destination slot requires garbage collection, so we 43 /// need to use the GC API. 44 /// - The destination slot is potentially aliased. 45 bool shouldUseDestForReturnSlot() const { 46 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 47 } 48 49 ReturnValueSlot getReturnValueSlot() const { 50 if (!shouldUseDestForReturnSlot()) 51 return ReturnValueSlot(); 52 53 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 54 IsResultUnused); 55 } 56 57 AggValueSlot EnsureSlot(QualType T) { 58 if (!Dest.isIgnored()) return Dest; 59 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 60 } 61 void EnsureDest(QualType T) { 62 if (!Dest.isIgnored()) return; 63 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 64 } 65 66 public: 67 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 68 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 69 IsResultUnused(IsResultUnused) { } 70 71 //===--------------------------------------------------------------------===// 72 // Utilities 73 //===--------------------------------------------------------------------===// 74 75 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 76 /// represents a value lvalue, this method emits the address of the lvalue, 77 /// then loads the result into DestPtr. 78 void EmitAggLoadOfLValue(const Expr *E); 79 80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 81 void EmitFinalDestCopy(QualType type, const LValue &src); 82 void EmitFinalDestCopy(QualType type, RValue src); 83 void EmitCopy(QualType type, const AggValueSlot &dest, 84 const AggValueSlot &src); 85 86 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 87 88 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 89 QualType ArrayQTy, InitListExpr *E); 90 91 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 92 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 93 return AggValueSlot::NeedsGCBarriers; 94 return AggValueSlot::DoesNotNeedGCBarriers; 95 } 96 97 bool TypeRequiresGCollection(QualType T); 98 99 //===--------------------------------------------------------------------===// 100 // Visitor Methods 101 //===--------------------------------------------------------------------===// 102 103 void Visit(Expr *E) { 104 ApplyDebugLocation DL(CGF, E); 105 StmtVisitor<AggExprEmitter>::Visit(E); 106 } 107 108 void VisitStmt(Stmt *S) { 109 CGF.ErrorUnsupported(S, "aggregate expression"); 110 } 111 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 112 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 Visit(GE->getResultExpr()); 114 } 115 void VisitCoawaitExpr(CoawaitExpr *E) { 116 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 117 } 118 void VisitCoyieldExpr(CoyieldExpr *E) { 119 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 120 } 121 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 122 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 124 return Visit(E->getReplacement()); 125 } 126 127 // l-values. 128 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 129 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 130 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 131 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 132 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 133 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 134 EmitAggLoadOfLValue(E); 135 } 136 void VisitPredefinedExpr(const PredefinedExpr *E) { 137 EmitAggLoadOfLValue(E); 138 } 139 140 // Operators. 141 void VisitCastExpr(CastExpr *E); 142 void VisitCallExpr(const CallExpr *E); 143 void VisitStmtExpr(const StmtExpr *E); 144 void VisitBinaryOperator(const BinaryOperator *BO); 145 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 146 void VisitBinAssign(const BinaryOperator *E); 147 void VisitBinComma(const BinaryOperator *E); 148 149 void VisitObjCMessageExpr(ObjCMessageExpr *E); 150 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 151 EmitAggLoadOfLValue(E); 152 } 153 154 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 155 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 156 void VisitChooseExpr(const ChooseExpr *CE); 157 void VisitInitListExpr(InitListExpr *E); 158 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 159 llvm::Value *outerBegin = nullptr); 160 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 161 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 162 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 163 Visit(DAE->getExpr()); 164 } 165 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 166 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 167 Visit(DIE->getExpr()); 168 } 169 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 170 void VisitCXXConstructExpr(const CXXConstructExpr *E); 171 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 172 void VisitLambdaExpr(LambdaExpr *E); 173 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 174 void VisitExprWithCleanups(ExprWithCleanups *E); 175 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 176 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 177 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 178 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 179 180 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 181 if (E->isGLValue()) { 182 LValue LV = CGF.EmitPseudoObjectLValue(E); 183 return EmitFinalDestCopy(E->getType(), LV); 184 } 185 186 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 187 } 188 189 void VisitVAArgExpr(VAArgExpr *E); 190 191 void EmitInitializationToLValue(Expr *E, LValue Address); 192 void EmitNullInitializationToLValue(LValue Address); 193 // case Expr::ChooseExprClass: 194 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 195 void VisitAtomicExpr(AtomicExpr *E) { 196 RValue Res = CGF.EmitAtomicExpr(E); 197 EmitFinalDestCopy(E->getType(), Res); 198 } 199 }; 200 } // end anonymous namespace. 201 202 //===----------------------------------------------------------------------===// 203 // Utilities 204 //===----------------------------------------------------------------------===// 205 206 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 207 /// represents a value lvalue, this method emits the address of the lvalue, 208 /// then loads the result into DestPtr. 209 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 210 LValue LV = CGF.EmitLValue(E); 211 212 // If the type of the l-value is atomic, then do an atomic load. 213 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 214 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 215 return; 216 } 217 218 EmitFinalDestCopy(E->getType(), LV); 219 } 220 221 /// \brief True if the given aggregate type requires special GC API calls. 222 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 223 // Only record types have members that might require garbage collection. 224 const RecordType *RecordTy = T->getAs<RecordType>(); 225 if (!RecordTy) return false; 226 227 // Don't mess with non-trivial C++ types. 228 RecordDecl *Record = RecordTy->getDecl(); 229 if (isa<CXXRecordDecl>(Record) && 230 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 231 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 232 return false; 233 234 // Check whether the type has an object member. 235 return Record->hasObjectMember(); 236 } 237 238 /// \brief Perform the final move to DestPtr if for some reason 239 /// getReturnValueSlot() didn't use it directly. 240 /// 241 /// The idea is that you do something like this: 242 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 243 /// EmitMoveFromReturnSlot(E, Result); 244 /// 245 /// If nothing interferes, this will cause the result to be emitted 246 /// directly into the return value slot. Otherwise, a final move 247 /// will be performed. 248 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 249 if (shouldUseDestForReturnSlot()) { 250 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 251 // The possibility of undef rvalues complicates that a lot, 252 // though, so we can't really assert. 253 return; 254 } 255 256 // Otherwise, copy from there to the destination. 257 assert(Dest.getPointer() != src.getAggregatePointer()); 258 EmitFinalDestCopy(E->getType(), src); 259 } 260 261 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 262 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 263 assert(src.isAggregate() && "value must be aggregate value!"); 264 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 265 EmitFinalDestCopy(type, srcLV); 266 } 267 268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 269 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 270 // If Dest is ignored, then we're evaluating an aggregate expression 271 // in a context that doesn't care about the result. Note that loads 272 // from volatile l-values force the existence of a non-ignored 273 // destination. 274 if (Dest.isIgnored()) 275 return; 276 277 AggValueSlot srcAgg = 278 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 279 needsGC(type), AggValueSlot::IsAliased); 280 EmitCopy(type, Dest, srcAgg); 281 } 282 283 /// Perform a copy from the source into the destination. 284 /// 285 /// \param type - the type of the aggregate being copied; qualifiers are 286 /// ignored 287 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 288 const AggValueSlot &src) { 289 if (dest.requiresGCollection()) { 290 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 291 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 292 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 293 dest.getAddress(), 294 src.getAddress(), 295 size); 296 return; 297 } 298 299 // If the result of the assignment is used, copy the LHS there also. 300 // It's volatile if either side is. Use the minimum alignment of 301 // the two sides. 302 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 303 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 304 CGF.EmitAggregateCopy(DestLV, SrcLV, type, 305 dest.isVolatile() || src.isVolatile()); 306 } 307 308 /// \brief Emit the initializer for a std::initializer_list initialized with a 309 /// real initializer list. 310 void 311 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 312 // Emit an array containing the elements. The array is externally destructed 313 // if the std::initializer_list object is. 314 ASTContext &Ctx = CGF.getContext(); 315 LValue Array = CGF.EmitLValue(E->getSubExpr()); 316 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 317 Address ArrayPtr = Array.getAddress(); 318 319 const ConstantArrayType *ArrayType = 320 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 321 assert(ArrayType && "std::initializer_list constructed from non-array"); 322 323 // FIXME: Perform the checks on the field types in SemaInit. 324 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 325 RecordDecl::field_iterator Field = Record->field_begin(); 326 if (Field == Record->field_end()) { 327 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 328 return; 329 } 330 331 // Start pointer. 332 if (!Field->getType()->isPointerType() || 333 !Ctx.hasSameType(Field->getType()->getPointeeType(), 334 ArrayType->getElementType())) { 335 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 336 return; 337 } 338 339 AggValueSlot Dest = EnsureSlot(E->getType()); 340 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 341 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 342 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 343 llvm::Value *IdxStart[] = { Zero, Zero }; 344 llvm::Value *ArrayStart = 345 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 346 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 347 ++Field; 348 349 if (Field == Record->field_end()) { 350 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 351 return; 352 } 353 354 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 355 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 356 if (Field->getType()->isPointerType() && 357 Ctx.hasSameType(Field->getType()->getPointeeType(), 358 ArrayType->getElementType())) { 359 // End pointer. 360 llvm::Value *IdxEnd[] = { Zero, Size }; 361 llvm::Value *ArrayEnd = 362 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 363 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 364 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 365 // Length. 366 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 367 } else { 368 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 369 return; 370 } 371 } 372 373 /// \brief Determine if E is a trivial array filler, that is, one that is 374 /// equivalent to zero-initialization. 375 static bool isTrivialFiller(Expr *E) { 376 if (!E) 377 return true; 378 379 if (isa<ImplicitValueInitExpr>(E)) 380 return true; 381 382 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 383 if (ILE->getNumInits()) 384 return false; 385 return isTrivialFiller(ILE->getArrayFiller()); 386 } 387 388 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 389 return Cons->getConstructor()->isDefaultConstructor() && 390 Cons->getConstructor()->isTrivial(); 391 392 // FIXME: Are there other cases where we can avoid emitting an initializer? 393 return false; 394 } 395 396 /// \brief Emit initialization of an array from an initializer list. 397 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 398 QualType ArrayQTy, InitListExpr *E) { 399 uint64_t NumInitElements = E->getNumInits(); 400 401 uint64_t NumArrayElements = AType->getNumElements(); 402 assert(NumInitElements <= NumArrayElements); 403 404 QualType elementType = 405 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 406 407 // DestPtr is an array*. Construct an elementType* by drilling 408 // down a level. 409 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 410 llvm::Value *indices[] = { zero, zero }; 411 llvm::Value *begin = 412 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 413 414 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 415 CharUnits elementAlign = 416 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 417 418 // Consider initializing the array by copying from a global. For this to be 419 // more efficient than per-element initialization, the size of the elements 420 // with explicit initializers should be large enough. 421 if (NumInitElements * elementSize.getQuantity() > 16 && 422 elementType.isTriviallyCopyableType(CGF.getContext())) { 423 CodeGen::CodeGenModule &CGM = CGF.CGM; 424 ConstantEmitter Emitter(CGM); 425 LangAS AS = ArrayQTy.getAddressSpace(); 426 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 427 auto GV = new llvm::GlobalVariable( 428 CGM.getModule(), C->getType(), 429 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 430 llvm::GlobalValue::PrivateLinkage, C, "constinit", 431 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 432 CGM.getContext().getTargetAddressSpace(AS)); 433 Emitter.finalize(GV); 434 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 435 GV->setAlignment(Align.getQuantity()); 436 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 437 return; 438 } 439 } 440 441 // Exception safety requires us to destroy all the 442 // already-constructed members if an initializer throws. 443 // For that, we'll need an EH cleanup. 444 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 445 Address endOfInit = Address::invalid(); 446 EHScopeStack::stable_iterator cleanup; 447 llvm::Instruction *cleanupDominator = nullptr; 448 if (CGF.needsEHCleanup(dtorKind)) { 449 // In principle we could tell the cleanup where we are more 450 // directly, but the control flow can get so varied here that it 451 // would actually be quite complex. Therefore we go through an 452 // alloca. 453 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 454 "arrayinit.endOfInit"); 455 cleanupDominator = Builder.CreateStore(begin, endOfInit); 456 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 457 elementAlign, 458 CGF.getDestroyer(dtorKind)); 459 cleanup = CGF.EHStack.stable_begin(); 460 461 // Otherwise, remember that we didn't need a cleanup. 462 } else { 463 dtorKind = QualType::DK_none; 464 } 465 466 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 467 468 // The 'current element to initialize'. The invariants on this 469 // variable are complicated. Essentially, after each iteration of 470 // the loop, it points to the last initialized element, except 471 // that it points to the beginning of the array before any 472 // elements have been initialized. 473 llvm::Value *element = begin; 474 475 // Emit the explicit initializers. 476 for (uint64_t i = 0; i != NumInitElements; ++i) { 477 // Advance to the next element. 478 if (i > 0) { 479 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 480 481 // Tell the cleanup that it needs to destroy up to this 482 // element. TODO: some of these stores can be trivially 483 // observed to be unnecessary. 484 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 485 } 486 487 LValue elementLV = 488 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 489 EmitInitializationToLValue(E->getInit(i), elementLV); 490 } 491 492 // Check whether there's a non-trivial array-fill expression. 493 Expr *filler = E->getArrayFiller(); 494 bool hasTrivialFiller = isTrivialFiller(filler); 495 496 // Any remaining elements need to be zero-initialized, possibly 497 // using the filler expression. We can skip this if the we're 498 // emitting to zeroed memory. 499 if (NumInitElements != NumArrayElements && 500 !(Dest.isZeroed() && hasTrivialFiller && 501 CGF.getTypes().isZeroInitializable(elementType))) { 502 503 // Use an actual loop. This is basically 504 // do { *array++ = filler; } while (array != end); 505 506 // Advance to the start of the rest of the array. 507 if (NumInitElements) { 508 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 509 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 510 } 511 512 // Compute the end of the array. 513 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 514 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 515 "arrayinit.end"); 516 517 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 518 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 519 520 // Jump into the body. 521 CGF.EmitBlock(bodyBB); 522 llvm::PHINode *currentElement = 523 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 524 currentElement->addIncoming(element, entryBB); 525 526 // Emit the actual filler expression. 527 { 528 // C++1z [class.temporary]p5: 529 // when a default constructor is called to initialize an element of 530 // an array with no corresponding initializer [...] the destruction of 531 // every temporary created in a default argument is sequenced before 532 // the construction of the next array element, if any 533 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 534 LValue elementLV = 535 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 536 if (filler) 537 EmitInitializationToLValue(filler, elementLV); 538 else 539 EmitNullInitializationToLValue(elementLV); 540 } 541 542 // Move on to the next element. 543 llvm::Value *nextElement = 544 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 545 546 // Tell the EH cleanup that we finished with the last element. 547 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 548 549 // Leave the loop if we're done. 550 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 551 "arrayinit.done"); 552 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 553 Builder.CreateCondBr(done, endBB, bodyBB); 554 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 555 556 CGF.EmitBlock(endBB); 557 } 558 559 // Leave the partial-array cleanup if we entered one. 560 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 561 } 562 563 //===----------------------------------------------------------------------===// 564 // Visitor Methods 565 //===----------------------------------------------------------------------===// 566 567 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 568 Visit(E->GetTemporaryExpr()); 569 } 570 571 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 572 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 573 } 574 575 void 576 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 577 if (Dest.isPotentiallyAliased() && 578 E->getType().isPODType(CGF.getContext())) { 579 // For a POD type, just emit a load of the lvalue + a copy, because our 580 // compound literal might alias the destination. 581 EmitAggLoadOfLValue(E); 582 return; 583 } 584 585 AggValueSlot Slot = EnsureSlot(E->getType()); 586 CGF.EmitAggExpr(E->getInitializer(), Slot); 587 } 588 589 /// Attempt to look through various unimportant expressions to find a 590 /// cast of the given kind. 591 static Expr *findPeephole(Expr *op, CastKind kind) { 592 while (true) { 593 op = op->IgnoreParens(); 594 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 595 if (castE->getCastKind() == kind) 596 return castE->getSubExpr(); 597 if (castE->getCastKind() == CK_NoOp) 598 continue; 599 } 600 return nullptr; 601 } 602 } 603 604 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 605 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 606 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 607 switch (E->getCastKind()) { 608 case CK_Dynamic: { 609 // FIXME: Can this actually happen? We have no test coverage for it. 610 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 611 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 612 CodeGenFunction::TCK_Load); 613 // FIXME: Do we also need to handle property references here? 614 if (LV.isSimple()) 615 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 616 else 617 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 618 619 if (!Dest.isIgnored()) 620 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 621 break; 622 } 623 624 case CK_ToUnion: { 625 // Evaluate even if the destination is ignored. 626 if (Dest.isIgnored()) { 627 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 628 /*ignoreResult=*/true); 629 break; 630 } 631 632 // GCC union extension 633 QualType Ty = E->getSubExpr()->getType(); 634 Address CastPtr = 635 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 636 EmitInitializationToLValue(E->getSubExpr(), 637 CGF.MakeAddrLValue(CastPtr, Ty)); 638 break; 639 } 640 641 case CK_DerivedToBase: 642 case CK_BaseToDerived: 643 case CK_UncheckedDerivedToBase: { 644 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 645 "should have been unpacked before we got here"); 646 } 647 648 case CK_NonAtomicToAtomic: 649 case CK_AtomicToNonAtomic: { 650 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 651 652 // Determine the atomic and value types. 653 QualType atomicType = E->getSubExpr()->getType(); 654 QualType valueType = E->getType(); 655 if (isToAtomic) std::swap(atomicType, valueType); 656 657 assert(atomicType->isAtomicType()); 658 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 659 atomicType->castAs<AtomicType>()->getValueType())); 660 661 // Just recurse normally if we're ignoring the result or the 662 // atomic type doesn't change representation. 663 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 664 return Visit(E->getSubExpr()); 665 } 666 667 CastKind peepholeTarget = 668 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 669 670 // These two cases are reverses of each other; try to peephole them. 671 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 672 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 673 E->getType()) && 674 "peephole significantly changed types?"); 675 return Visit(op); 676 } 677 678 // If we're converting an r-value of non-atomic type to an r-value 679 // of atomic type, just emit directly into the relevant sub-object. 680 if (isToAtomic) { 681 AggValueSlot valueDest = Dest; 682 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 683 // Zero-initialize. (Strictly speaking, we only need to intialize 684 // the padding at the end, but this is simpler.) 685 if (!Dest.isZeroed()) 686 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 687 688 // Build a GEP to refer to the subobject. 689 Address valueAddr = 690 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 691 CharUnits()); 692 valueDest = AggValueSlot::forAddr(valueAddr, 693 valueDest.getQualifiers(), 694 valueDest.isExternallyDestructed(), 695 valueDest.requiresGCollection(), 696 valueDest.isPotentiallyAliased(), 697 AggValueSlot::IsZeroed); 698 } 699 700 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 701 return; 702 } 703 704 // Otherwise, we're converting an atomic type to a non-atomic type. 705 // Make an atomic temporary, emit into that, and then copy the value out. 706 AggValueSlot atomicSlot = 707 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 708 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 709 710 Address valueAddr = 711 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 712 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 713 return EmitFinalDestCopy(valueType, rvalue); 714 } 715 716 case CK_LValueToRValue: 717 // If we're loading from a volatile type, force the destination 718 // into existence. 719 if (E->getSubExpr()->getType().isVolatileQualified()) { 720 EnsureDest(E->getType()); 721 return Visit(E->getSubExpr()); 722 } 723 724 LLVM_FALLTHROUGH; 725 726 case CK_NoOp: 727 case CK_UserDefinedConversion: 728 case CK_ConstructorConversion: 729 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 730 E->getType()) && 731 "Implicit cast types must be compatible"); 732 Visit(E->getSubExpr()); 733 break; 734 735 case CK_LValueBitCast: 736 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 737 738 case CK_Dependent: 739 case CK_BitCast: 740 case CK_ArrayToPointerDecay: 741 case CK_FunctionToPointerDecay: 742 case CK_NullToPointer: 743 case CK_NullToMemberPointer: 744 case CK_BaseToDerivedMemberPointer: 745 case CK_DerivedToBaseMemberPointer: 746 case CK_MemberPointerToBoolean: 747 case CK_ReinterpretMemberPointer: 748 case CK_IntegralToPointer: 749 case CK_PointerToIntegral: 750 case CK_PointerToBoolean: 751 case CK_ToVoid: 752 case CK_VectorSplat: 753 case CK_IntegralCast: 754 case CK_BooleanToSignedIntegral: 755 case CK_IntegralToBoolean: 756 case CK_IntegralToFloating: 757 case CK_FloatingToIntegral: 758 case CK_FloatingToBoolean: 759 case CK_FloatingCast: 760 case CK_CPointerToObjCPointerCast: 761 case CK_BlockPointerToObjCPointerCast: 762 case CK_AnyPointerToBlockPointerCast: 763 case CK_ObjCObjectLValueCast: 764 case CK_FloatingRealToComplex: 765 case CK_FloatingComplexToReal: 766 case CK_FloatingComplexToBoolean: 767 case CK_FloatingComplexCast: 768 case CK_FloatingComplexToIntegralComplex: 769 case CK_IntegralRealToComplex: 770 case CK_IntegralComplexToReal: 771 case CK_IntegralComplexToBoolean: 772 case CK_IntegralComplexCast: 773 case CK_IntegralComplexToFloatingComplex: 774 case CK_ARCProduceObject: 775 case CK_ARCConsumeObject: 776 case CK_ARCReclaimReturnedObject: 777 case CK_ARCExtendBlockObject: 778 case CK_CopyAndAutoreleaseBlockObject: 779 case CK_BuiltinFnToFnPtr: 780 case CK_ZeroToOCLEvent: 781 case CK_ZeroToOCLQueue: 782 case CK_AddressSpaceConversion: 783 case CK_IntToOCLSampler: 784 llvm_unreachable("cast kind invalid for aggregate types"); 785 } 786 } 787 788 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 789 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 790 EmitAggLoadOfLValue(E); 791 return; 792 } 793 794 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 795 EmitMoveFromReturnSlot(E, RV); 796 } 797 798 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 799 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 800 EmitMoveFromReturnSlot(E, RV); 801 } 802 803 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 804 CGF.EmitIgnoredExpr(E->getLHS()); 805 Visit(E->getRHS()); 806 } 807 808 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 809 CodeGenFunction::StmtExprEvaluation eval(CGF); 810 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 811 } 812 813 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 814 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 815 VisitPointerToDataMemberBinaryOperator(E); 816 else 817 CGF.ErrorUnsupported(E, "aggregate binary expression"); 818 } 819 820 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 821 const BinaryOperator *E) { 822 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 823 EmitFinalDestCopy(E->getType(), LV); 824 } 825 826 /// Is the value of the given expression possibly a reference to or 827 /// into a __block variable? 828 static bool isBlockVarRef(const Expr *E) { 829 // Make sure we look through parens. 830 E = E->IgnoreParens(); 831 832 // Check for a direct reference to a __block variable. 833 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 834 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 835 return (var && var->hasAttr<BlocksAttr>()); 836 } 837 838 // More complicated stuff. 839 840 // Binary operators. 841 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 842 // For an assignment or pointer-to-member operation, just care 843 // about the LHS. 844 if (op->isAssignmentOp() || op->isPtrMemOp()) 845 return isBlockVarRef(op->getLHS()); 846 847 // For a comma, just care about the RHS. 848 if (op->getOpcode() == BO_Comma) 849 return isBlockVarRef(op->getRHS()); 850 851 // FIXME: pointer arithmetic? 852 return false; 853 854 // Check both sides of a conditional operator. 855 } else if (const AbstractConditionalOperator *op 856 = dyn_cast<AbstractConditionalOperator>(E)) { 857 return isBlockVarRef(op->getTrueExpr()) 858 || isBlockVarRef(op->getFalseExpr()); 859 860 // OVEs are required to support BinaryConditionalOperators. 861 } else if (const OpaqueValueExpr *op 862 = dyn_cast<OpaqueValueExpr>(E)) { 863 if (const Expr *src = op->getSourceExpr()) 864 return isBlockVarRef(src); 865 866 // Casts are necessary to get things like (*(int*)&var) = foo(). 867 // We don't really care about the kind of cast here, except 868 // we don't want to look through l2r casts, because it's okay 869 // to get the *value* in a __block variable. 870 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 871 if (cast->getCastKind() == CK_LValueToRValue) 872 return false; 873 return isBlockVarRef(cast->getSubExpr()); 874 875 // Handle unary operators. Again, just aggressively look through 876 // it, ignoring the operation. 877 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 878 return isBlockVarRef(uop->getSubExpr()); 879 880 // Look into the base of a field access. 881 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 882 return isBlockVarRef(mem->getBase()); 883 884 // Look into the base of a subscript. 885 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 886 return isBlockVarRef(sub->getBase()); 887 } 888 889 return false; 890 } 891 892 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 893 // For an assignment to work, the value on the right has 894 // to be compatible with the value on the left. 895 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 896 E->getRHS()->getType()) 897 && "Invalid assignment"); 898 899 // If the LHS might be a __block variable, and the RHS can 900 // potentially cause a block copy, we need to evaluate the RHS first 901 // so that the assignment goes the right place. 902 // This is pretty semantically fragile. 903 if (isBlockVarRef(E->getLHS()) && 904 E->getRHS()->HasSideEffects(CGF.getContext())) { 905 // Ensure that we have a destination, and evaluate the RHS into that. 906 EnsureDest(E->getRHS()->getType()); 907 Visit(E->getRHS()); 908 909 // Now emit the LHS and copy into it. 910 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 911 912 // That copy is an atomic copy if the LHS is atomic. 913 if (LHS.getType()->isAtomicType() || 914 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 915 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 916 return; 917 } 918 919 EmitCopy(E->getLHS()->getType(), 920 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 921 needsGC(E->getLHS()->getType()), 922 AggValueSlot::IsAliased), 923 Dest); 924 return; 925 } 926 927 LValue LHS = CGF.EmitLValue(E->getLHS()); 928 929 // If we have an atomic type, evaluate into the destination and then 930 // do an atomic copy. 931 if (LHS.getType()->isAtomicType() || 932 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 933 EnsureDest(E->getRHS()->getType()); 934 Visit(E->getRHS()); 935 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 936 return; 937 } 938 939 // Codegen the RHS so that it stores directly into the LHS. 940 AggValueSlot LHSSlot = 941 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 942 needsGC(E->getLHS()->getType()), 943 AggValueSlot::IsAliased); 944 // A non-volatile aggregate destination might have volatile member. 945 if (!LHSSlot.isVolatile() && 946 CGF.hasVolatileMember(E->getLHS()->getType())) 947 LHSSlot.setVolatile(true); 948 949 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 950 951 // Copy into the destination if the assignment isn't ignored. 952 EmitFinalDestCopy(E->getType(), LHS); 953 } 954 955 void AggExprEmitter:: 956 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 957 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 958 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 959 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 960 961 // Bind the common expression if necessary. 962 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 963 964 CodeGenFunction::ConditionalEvaluation eval(CGF); 965 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 966 CGF.getProfileCount(E)); 967 968 // Save whether the destination's lifetime is externally managed. 969 bool isExternallyDestructed = Dest.isExternallyDestructed(); 970 971 eval.begin(CGF); 972 CGF.EmitBlock(LHSBlock); 973 CGF.incrementProfileCounter(E); 974 Visit(E->getTrueExpr()); 975 eval.end(CGF); 976 977 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 978 CGF.Builder.CreateBr(ContBlock); 979 980 // If the result of an agg expression is unused, then the emission 981 // of the LHS might need to create a destination slot. That's fine 982 // with us, and we can safely emit the RHS into the same slot, but 983 // we shouldn't claim that it's already being destructed. 984 Dest.setExternallyDestructed(isExternallyDestructed); 985 986 eval.begin(CGF); 987 CGF.EmitBlock(RHSBlock); 988 Visit(E->getFalseExpr()); 989 eval.end(CGF); 990 991 CGF.EmitBlock(ContBlock); 992 } 993 994 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 995 Visit(CE->getChosenSubExpr()); 996 } 997 998 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 999 Address ArgValue = Address::invalid(); 1000 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1001 1002 // If EmitVAArg fails, emit an error. 1003 if (!ArgPtr.isValid()) { 1004 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1005 return; 1006 } 1007 1008 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1009 } 1010 1011 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1012 // Ensure that we have a slot, but if we already do, remember 1013 // whether it was externally destructed. 1014 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1015 EnsureDest(E->getType()); 1016 1017 // We're going to push a destructor if there isn't already one. 1018 Dest.setExternallyDestructed(); 1019 1020 Visit(E->getSubExpr()); 1021 1022 // Push that destructor we promised. 1023 if (!wasExternallyDestructed) 1024 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1025 } 1026 1027 void 1028 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1029 AggValueSlot Slot = EnsureSlot(E->getType()); 1030 CGF.EmitCXXConstructExpr(E, Slot); 1031 } 1032 1033 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1034 const CXXInheritedCtorInitExpr *E) { 1035 AggValueSlot Slot = EnsureSlot(E->getType()); 1036 CGF.EmitInheritedCXXConstructorCall( 1037 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1038 E->inheritedFromVBase(), E); 1039 } 1040 1041 void 1042 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1043 AggValueSlot Slot = EnsureSlot(E->getType()); 1044 CGF.EmitLambdaExpr(E, Slot); 1045 } 1046 1047 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1048 CGF.enterFullExpression(E); 1049 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1050 Visit(E->getSubExpr()); 1051 } 1052 1053 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1054 QualType T = E->getType(); 1055 AggValueSlot Slot = EnsureSlot(T); 1056 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1057 } 1058 1059 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1060 QualType T = E->getType(); 1061 AggValueSlot Slot = EnsureSlot(T); 1062 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1063 } 1064 1065 /// isSimpleZero - If emitting this value will obviously just cause a store of 1066 /// zero to memory, return true. This can return false if uncertain, so it just 1067 /// handles simple cases. 1068 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1069 E = E->IgnoreParens(); 1070 1071 // 0 1072 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1073 return IL->getValue() == 0; 1074 // +0.0 1075 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1076 return FL->getValue().isPosZero(); 1077 // int() 1078 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1079 CGF.getTypes().isZeroInitializable(E->getType())) 1080 return true; 1081 // (int*)0 - Null pointer expressions. 1082 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1083 return ICE->getCastKind() == CK_NullToPointer && 1084 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1085 // '\0' 1086 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1087 return CL->getValue() == 0; 1088 1089 // Otherwise, hard case: conservatively return false. 1090 return false; 1091 } 1092 1093 1094 void 1095 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1096 QualType type = LV.getType(); 1097 // FIXME: Ignore result? 1098 // FIXME: Are initializers affected by volatile? 1099 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1100 // Storing "i32 0" to a zero'd memory location is a noop. 1101 return; 1102 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1103 return EmitNullInitializationToLValue(LV); 1104 } else if (isa<NoInitExpr>(E)) { 1105 // Do nothing. 1106 return; 1107 } else if (type->isReferenceType()) { 1108 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1109 return CGF.EmitStoreThroughLValue(RV, LV); 1110 } 1111 1112 switch (CGF.getEvaluationKind(type)) { 1113 case TEK_Complex: 1114 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1115 return; 1116 case TEK_Aggregate: 1117 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1118 AggValueSlot::IsDestructed, 1119 AggValueSlot::DoesNotNeedGCBarriers, 1120 AggValueSlot::IsNotAliased, 1121 Dest.isZeroed())); 1122 return; 1123 case TEK_Scalar: 1124 if (LV.isSimple()) { 1125 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1126 } else { 1127 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1128 } 1129 return; 1130 } 1131 llvm_unreachable("bad evaluation kind"); 1132 } 1133 1134 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1135 QualType type = lv.getType(); 1136 1137 // If the destination slot is already zeroed out before the aggregate is 1138 // copied into it, we don't have to emit any zeros here. 1139 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1140 return; 1141 1142 if (CGF.hasScalarEvaluationKind(type)) { 1143 // For non-aggregates, we can store the appropriate null constant. 1144 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1145 // Note that the following is not equivalent to 1146 // EmitStoreThroughBitfieldLValue for ARC types. 1147 if (lv.isBitField()) { 1148 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1149 } else { 1150 assert(lv.isSimple()); 1151 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1152 } 1153 } else { 1154 // There's a potential optimization opportunity in combining 1155 // memsets; that would be easy for arrays, but relatively 1156 // difficult for structures with the current code. 1157 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1158 } 1159 } 1160 1161 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1162 #if 0 1163 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1164 // (Length of globals? Chunks of zeroed-out space?). 1165 // 1166 // If we can, prefer a copy from a global; this is a lot less code for long 1167 // globals, and it's easier for the current optimizers to analyze. 1168 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1169 llvm::GlobalVariable* GV = 1170 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1171 llvm::GlobalValue::InternalLinkage, C, ""); 1172 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1173 return; 1174 } 1175 #endif 1176 if (E->hadArrayRangeDesignator()) 1177 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1178 1179 if (E->isTransparent()) 1180 return Visit(E->getInit(0)); 1181 1182 AggValueSlot Dest = EnsureSlot(E->getType()); 1183 1184 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1185 1186 // Handle initialization of an array. 1187 if (E->getType()->isArrayType()) { 1188 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1189 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1190 return; 1191 } 1192 1193 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1194 1195 // Do struct initialization; this code just sets each individual member 1196 // to the approprate value. This makes bitfield support automatic; 1197 // the disadvantage is that the generated code is more difficult for 1198 // the optimizer, especially with bitfields. 1199 unsigned NumInitElements = E->getNumInits(); 1200 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1201 1202 // We'll need to enter cleanup scopes in case any of the element 1203 // initializers throws an exception. 1204 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1205 llvm::Instruction *cleanupDominator = nullptr; 1206 1207 unsigned curInitIndex = 0; 1208 1209 // Emit initialization of base classes. 1210 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1211 assert(E->getNumInits() >= CXXRD->getNumBases() && 1212 "missing initializer for base class"); 1213 for (auto &Base : CXXRD->bases()) { 1214 assert(!Base.isVirtual() && "should not see vbases here"); 1215 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1216 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1217 Dest.getAddress(), CXXRD, BaseRD, 1218 /*isBaseVirtual*/ false); 1219 AggValueSlot AggSlot = 1220 AggValueSlot::forAddr(V, Qualifiers(), 1221 AggValueSlot::IsDestructed, 1222 AggValueSlot::DoesNotNeedGCBarriers, 1223 AggValueSlot::IsNotAliased); 1224 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1225 1226 if (QualType::DestructionKind dtorKind = 1227 Base.getType().isDestructedType()) { 1228 CGF.pushDestroy(dtorKind, V, Base.getType()); 1229 cleanups.push_back(CGF.EHStack.stable_begin()); 1230 } 1231 } 1232 } 1233 1234 // Prepare a 'this' for CXXDefaultInitExprs. 1235 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1236 1237 if (record->isUnion()) { 1238 // Only initialize one field of a union. The field itself is 1239 // specified by the initializer list. 1240 if (!E->getInitializedFieldInUnion()) { 1241 // Empty union; we have nothing to do. 1242 1243 #ifndef NDEBUG 1244 // Make sure that it's really an empty and not a failure of 1245 // semantic analysis. 1246 for (const auto *Field : record->fields()) 1247 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1248 #endif 1249 return; 1250 } 1251 1252 // FIXME: volatility 1253 FieldDecl *Field = E->getInitializedFieldInUnion(); 1254 1255 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1256 if (NumInitElements) { 1257 // Store the initializer into the field 1258 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1259 } else { 1260 // Default-initialize to null. 1261 EmitNullInitializationToLValue(FieldLoc); 1262 } 1263 1264 return; 1265 } 1266 1267 // Here we iterate over the fields; this makes it simpler to both 1268 // default-initialize fields and skip over unnamed fields. 1269 for (const auto *field : record->fields()) { 1270 // We're done once we hit the flexible array member. 1271 if (field->getType()->isIncompleteArrayType()) 1272 break; 1273 1274 // Always skip anonymous bitfields. 1275 if (field->isUnnamedBitfield()) 1276 continue; 1277 1278 // We're done if we reach the end of the explicit initializers, we 1279 // have a zeroed object, and the rest of the fields are 1280 // zero-initializable. 1281 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1282 CGF.getTypes().isZeroInitializable(E->getType())) 1283 break; 1284 1285 1286 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1287 // We never generate write-barries for initialized fields. 1288 LV.setNonGC(true); 1289 1290 if (curInitIndex < NumInitElements) { 1291 // Store the initializer into the field. 1292 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1293 } else { 1294 // We're out of initializers; default-initialize to null 1295 EmitNullInitializationToLValue(LV); 1296 } 1297 1298 // Push a destructor if necessary. 1299 // FIXME: if we have an array of structures, all explicitly 1300 // initialized, we can end up pushing a linear number of cleanups. 1301 bool pushedCleanup = false; 1302 if (QualType::DestructionKind dtorKind 1303 = field->getType().isDestructedType()) { 1304 assert(LV.isSimple()); 1305 if (CGF.needsEHCleanup(dtorKind)) { 1306 if (!cleanupDominator) 1307 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1308 CGF.Int8Ty, 1309 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1310 CharUnits::One()); // placeholder 1311 1312 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1313 CGF.getDestroyer(dtorKind), false); 1314 cleanups.push_back(CGF.EHStack.stable_begin()); 1315 pushedCleanup = true; 1316 } 1317 } 1318 1319 // If the GEP didn't get used because of a dead zero init or something 1320 // else, clean it up for -O0 builds and general tidiness. 1321 if (!pushedCleanup && LV.isSimple()) 1322 if (llvm::GetElementPtrInst *GEP = 1323 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1324 if (GEP->use_empty()) 1325 GEP->eraseFromParent(); 1326 } 1327 1328 // Deactivate all the partial cleanups in reverse order, which 1329 // generally means popping them. 1330 for (unsigned i = cleanups.size(); i != 0; --i) 1331 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1332 1333 // Destroy the placeholder if we made one. 1334 if (cleanupDominator) 1335 cleanupDominator->eraseFromParent(); 1336 } 1337 1338 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1339 llvm::Value *outerBegin) { 1340 // Emit the common subexpression. 1341 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1342 1343 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1344 uint64_t numElements = E->getArraySize().getZExtValue(); 1345 1346 if (!numElements) 1347 return; 1348 1349 // destPtr is an array*. Construct an elementType* by drilling down a level. 1350 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1351 llvm::Value *indices[] = {zero, zero}; 1352 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1353 "arrayinit.begin"); 1354 1355 // Prepare to special-case multidimensional array initialization: we avoid 1356 // emitting multiple destructor loops in that case. 1357 if (!outerBegin) 1358 outerBegin = begin; 1359 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1360 1361 QualType elementType = 1362 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1363 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1364 CharUnits elementAlign = 1365 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1366 1367 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1368 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1369 1370 // Jump into the body. 1371 CGF.EmitBlock(bodyBB); 1372 llvm::PHINode *index = 1373 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1374 index->addIncoming(zero, entryBB); 1375 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1376 1377 // Prepare for a cleanup. 1378 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1379 EHScopeStack::stable_iterator cleanup; 1380 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1381 if (outerBegin->getType() != element->getType()) 1382 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1383 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1384 elementAlign, 1385 CGF.getDestroyer(dtorKind)); 1386 cleanup = CGF.EHStack.stable_begin(); 1387 } else { 1388 dtorKind = QualType::DK_none; 1389 } 1390 1391 // Emit the actual filler expression. 1392 { 1393 // Temporaries created in an array initialization loop are destroyed 1394 // at the end of each iteration. 1395 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1396 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1397 LValue elementLV = 1398 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1399 1400 if (InnerLoop) { 1401 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1402 auto elementSlot = AggValueSlot::forLValue( 1403 elementLV, AggValueSlot::IsDestructed, 1404 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); 1405 AggExprEmitter(CGF, elementSlot, false) 1406 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1407 } else 1408 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1409 } 1410 1411 // Move on to the next element. 1412 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1413 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1414 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1415 1416 // Leave the loop if we're done. 1417 llvm::Value *done = Builder.CreateICmpEQ( 1418 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1419 "arrayinit.done"); 1420 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1421 Builder.CreateCondBr(done, endBB, bodyBB); 1422 1423 CGF.EmitBlock(endBB); 1424 1425 // Leave the partial-array cleanup if we entered one. 1426 if (dtorKind) 1427 CGF.DeactivateCleanupBlock(cleanup, index); 1428 } 1429 1430 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1431 AggValueSlot Dest = EnsureSlot(E->getType()); 1432 1433 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1434 EmitInitializationToLValue(E->getBase(), DestLV); 1435 VisitInitListExpr(E->getUpdater()); 1436 } 1437 1438 //===----------------------------------------------------------------------===// 1439 // Entry Points into this File 1440 //===----------------------------------------------------------------------===// 1441 1442 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1443 /// non-zero bytes that will be stored when outputting the initializer for the 1444 /// specified initializer expression. 1445 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1446 E = E->IgnoreParens(); 1447 1448 // 0 and 0.0 won't require any non-zero stores! 1449 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1450 1451 // If this is an initlist expr, sum up the size of sizes of the (present) 1452 // elements. If this is something weird, assume the whole thing is non-zero. 1453 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1454 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1455 return CGF.getContext().getTypeSizeInChars(E->getType()); 1456 1457 // InitListExprs for structs have to be handled carefully. If there are 1458 // reference members, we need to consider the size of the reference, not the 1459 // referencee. InitListExprs for unions and arrays can't have references. 1460 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1461 if (!RT->isUnionType()) { 1462 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1463 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1464 1465 unsigned ILEElement = 0; 1466 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1467 while (ILEElement != CXXRD->getNumBases()) 1468 NumNonZeroBytes += 1469 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1470 for (const auto *Field : SD->fields()) { 1471 // We're done once we hit the flexible array member or run out of 1472 // InitListExpr elements. 1473 if (Field->getType()->isIncompleteArrayType() || 1474 ILEElement == ILE->getNumInits()) 1475 break; 1476 if (Field->isUnnamedBitfield()) 1477 continue; 1478 1479 const Expr *E = ILE->getInit(ILEElement++); 1480 1481 // Reference values are always non-null and have the width of a pointer. 1482 if (Field->getType()->isReferenceType()) 1483 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1484 CGF.getTarget().getPointerWidth(0)); 1485 else 1486 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1487 } 1488 1489 return NumNonZeroBytes; 1490 } 1491 } 1492 1493 1494 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1495 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1496 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1497 return NumNonZeroBytes; 1498 } 1499 1500 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1501 /// zeros in it, emit a memset and avoid storing the individual zeros. 1502 /// 1503 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1504 CodeGenFunction &CGF) { 1505 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1506 // volatile stores. 1507 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1508 return; 1509 1510 // C++ objects with a user-declared constructor don't need zero'ing. 1511 if (CGF.getLangOpts().CPlusPlus) 1512 if (const RecordType *RT = CGF.getContext() 1513 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1514 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1515 if (RD->hasUserDeclaredConstructor()) 1516 return; 1517 } 1518 1519 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1520 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1521 if (Size <= CharUnits::fromQuantity(16)) 1522 return; 1523 1524 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1525 // we prefer to emit memset + individual stores for the rest. 1526 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1527 if (NumNonZeroBytes*4 > Size) 1528 return; 1529 1530 // Okay, it seems like a good idea to use an initial memset, emit the call. 1531 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1532 1533 Address Loc = Slot.getAddress(); 1534 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1535 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1536 1537 // Tell the AggExprEmitter that the slot is known zero. 1538 Slot.setZeroed(); 1539 } 1540 1541 1542 1543 1544 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1545 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1546 /// the value of the aggregate expression is not needed. If VolatileDest is 1547 /// true, DestPtr cannot be 0. 1548 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1549 assert(E && hasAggregateEvaluationKind(E->getType()) && 1550 "Invalid aggregate expression to emit"); 1551 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1552 "slot has bits but no address"); 1553 1554 // Optimize the slot if possible. 1555 CheckAggExprForMemSetUse(Slot, E, *this); 1556 1557 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1558 } 1559 1560 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1561 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1562 Address Temp = CreateMemTemp(E->getType()); 1563 LValue LV = MakeAddrLValue(Temp, E->getType()); 1564 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1565 AggValueSlot::DoesNotNeedGCBarriers, 1566 AggValueSlot::IsNotAliased)); 1567 return LV; 1568 } 1569 1570 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, 1571 QualType Ty, bool isVolatile, 1572 bool isAssignment) { 1573 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1574 1575 Address DestPtr = Dest.getAddress(); 1576 Address SrcPtr = Src.getAddress(); 1577 1578 if (getLangOpts().CPlusPlus) { 1579 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1580 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1581 assert((Record->hasTrivialCopyConstructor() || 1582 Record->hasTrivialCopyAssignment() || 1583 Record->hasTrivialMoveConstructor() || 1584 Record->hasTrivialMoveAssignment() || 1585 Record->isUnion()) && 1586 "Trying to aggregate-copy a type without a trivial copy/move " 1587 "constructor or assignment operator"); 1588 // Ignore empty classes in C++. 1589 if (Record->isEmpty()) 1590 return; 1591 } 1592 } 1593 1594 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1595 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1596 // read from another object that overlaps in anyway the storage of the first 1597 // object, then the overlap shall be exact and the two objects shall have 1598 // qualified or unqualified versions of a compatible type." 1599 // 1600 // memcpy is not defined if the source and destination pointers are exactly 1601 // equal, but other compilers do this optimization, and almost every memcpy 1602 // implementation handles this case safely. If there is a libc that does not 1603 // safely handle this, we can add a target hook. 1604 1605 // Get data size info for this aggregate. If this is an assignment, 1606 // don't copy the tail padding, because we might be assigning into a 1607 // base subobject where the tail padding is claimed. Otherwise, 1608 // copying it is fine. 1609 std::pair<CharUnits, CharUnits> TypeInfo; 1610 if (isAssignment) 1611 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1612 else 1613 TypeInfo = getContext().getTypeInfoInChars(Ty); 1614 1615 llvm::Value *SizeVal = nullptr; 1616 if (TypeInfo.first.isZero()) { 1617 // But note that getTypeInfo returns 0 for a VLA. 1618 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1619 getContext().getAsArrayType(Ty))) { 1620 QualType BaseEltTy; 1621 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1622 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1623 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1624 if (!isAssignment) 1625 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1626 assert(!TypeInfo.first.isZero()); 1627 SizeVal = Builder.CreateNUWMul( 1628 SizeVal, 1629 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1630 if (!isAssignment) { 1631 SizeVal = Builder.CreateNUWSub( 1632 SizeVal, 1633 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1634 SizeVal = Builder.CreateNUWAdd( 1635 SizeVal, llvm::ConstantInt::get( 1636 SizeTy, LastElementTypeInfo.first.getQuantity())); 1637 } 1638 } 1639 } 1640 if (!SizeVal) { 1641 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1642 } 1643 1644 // FIXME: If we have a volatile struct, the optimizer can remove what might 1645 // appear to be `extra' memory ops: 1646 // 1647 // volatile struct { int i; } a, b; 1648 // 1649 // int main() { 1650 // a = b; 1651 // a = b; 1652 // } 1653 // 1654 // we need to use a different call here. We use isVolatile to indicate when 1655 // either the source or the destination is volatile. 1656 1657 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1658 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1659 1660 // Don't do any of the memmove_collectable tests if GC isn't set. 1661 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1662 // fall through 1663 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1664 RecordDecl *Record = RecordTy->getDecl(); 1665 if (Record->hasObjectMember()) { 1666 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1667 SizeVal); 1668 return; 1669 } 1670 } else if (Ty->isArrayType()) { 1671 QualType BaseType = getContext().getBaseElementType(Ty); 1672 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1673 if (RecordTy->getDecl()->hasObjectMember()) { 1674 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1675 SizeVal); 1676 return; 1677 } 1678 } 1679 } 1680 1681 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1682 1683 // Determine the metadata to describe the position of any padding in this 1684 // memcpy, as well as the TBAA tags for the members of the struct, in case 1685 // the optimizer wishes to expand it in to scalar memory operations. 1686 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1687 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1688 1689 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 1690 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 1691 Dest.getTBAAInfo(), Src.getTBAAInfo()); 1692 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 1693 } 1694 } 1695