1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Intrinsics.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 //===----------------------------------------------------------------------===//
30 //                        Aggregate Expression Emitter
31 //===----------------------------------------------------------------------===//
32 
33 namespace  {
34 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
35   CodeGenFunction &CGF;
36   CGBuilderTy &Builder;
37   AggValueSlot Dest;
38   bool IsResultUnused;
39 
40   /// We want to use 'dest' as the return slot except under two
41   /// conditions:
42   ///   - The destination slot requires garbage collection, so we
43   ///     need to use the GC API.
44   ///   - The destination slot is potentially aliased.
45   bool shouldUseDestForReturnSlot() const {
46     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
47   }
48 
49   ReturnValueSlot getReturnValueSlot() const {
50     if (!shouldUseDestForReturnSlot())
51       return ReturnValueSlot();
52 
53     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
54                            IsResultUnused);
55   }
56 
57   AggValueSlot EnsureSlot(QualType T) {
58     if (!Dest.isIgnored()) return Dest;
59     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
60   }
61   void EnsureDest(QualType T) {
62     if (!Dest.isIgnored()) return;
63     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
64   }
65 
66 public:
67   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
68     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
69     IsResultUnused(IsResultUnused) { }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
76   /// represents a value lvalue, this method emits the address of the lvalue,
77   /// then loads the result into DestPtr.
78   void EmitAggLoadOfLValue(const Expr *E);
79 
80   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81   void EmitFinalDestCopy(QualType type, const LValue &src);
82   void EmitFinalDestCopy(QualType type, RValue src);
83   void EmitCopy(QualType type, const AggValueSlot &dest,
84                 const AggValueSlot &src);
85 
86   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
87 
88   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
89                      QualType ArrayQTy, InitListExpr *E);
90 
91   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
92     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
93       return AggValueSlot::NeedsGCBarriers;
94     return AggValueSlot::DoesNotNeedGCBarriers;
95   }
96 
97   bool TypeRequiresGCollection(QualType T);
98 
99   //===--------------------------------------------------------------------===//
100   //                            Visitor Methods
101   //===--------------------------------------------------------------------===//
102 
103   void Visit(Expr *E) {
104     ApplyDebugLocation DL(CGF, E);
105     StmtVisitor<AggExprEmitter>::Visit(E);
106   }
107 
108   void VisitStmt(Stmt *S) {
109     CGF.ErrorUnsupported(S, "aggregate expression");
110   }
111   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
112   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     Visit(GE->getResultExpr());
114   }
115   void VisitCoawaitExpr(CoawaitExpr *E) {
116     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
117   }
118   void VisitCoyieldExpr(CoyieldExpr *E) {
119     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
120   }
121   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
122   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
124     return Visit(E->getReplacement());
125   }
126 
127   // l-values.
128   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
129   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
130   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
131   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
132   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
133   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
134     EmitAggLoadOfLValue(E);
135   }
136   void VisitPredefinedExpr(const PredefinedExpr *E) {
137     EmitAggLoadOfLValue(E);
138   }
139 
140   // Operators.
141   void VisitCastExpr(CastExpr *E);
142   void VisitCallExpr(const CallExpr *E);
143   void VisitStmtExpr(const StmtExpr *E);
144   void VisitBinaryOperator(const BinaryOperator *BO);
145   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
146   void VisitBinAssign(const BinaryOperator *E);
147   void VisitBinComma(const BinaryOperator *E);
148 
149   void VisitObjCMessageExpr(ObjCMessageExpr *E);
150   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
151     EmitAggLoadOfLValue(E);
152   }
153 
154   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
155   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
156   void VisitChooseExpr(const ChooseExpr *CE);
157   void VisitInitListExpr(InitListExpr *E);
158   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
159                               llvm::Value *outerBegin = nullptr);
160   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
161   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
162   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
163     Visit(DAE->getExpr());
164   }
165   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
166     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
167     Visit(DIE->getExpr());
168   }
169   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
170   void VisitCXXConstructExpr(const CXXConstructExpr *E);
171   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
172   void VisitLambdaExpr(LambdaExpr *E);
173   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
174   void VisitExprWithCleanups(ExprWithCleanups *E);
175   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
176   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
177   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
178   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
179 
180   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
181     if (E->isGLValue()) {
182       LValue LV = CGF.EmitPseudoObjectLValue(E);
183       return EmitFinalDestCopy(E->getType(), LV);
184     }
185 
186     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
187   }
188 
189   void VisitVAArgExpr(VAArgExpr *E);
190 
191   void EmitInitializationToLValue(Expr *E, LValue Address);
192   void EmitNullInitializationToLValue(LValue Address);
193   //  case Expr::ChooseExprClass:
194   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
195   void VisitAtomicExpr(AtomicExpr *E) {
196     RValue Res = CGF.EmitAtomicExpr(E);
197     EmitFinalDestCopy(E->getType(), Res);
198   }
199 };
200 }  // end anonymous namespace.
201 
202 //===----------------------------------------------------------------------===//
203 //                                Utilities
204 //===----------------------------------------------------------------------===//
205 
206 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
207 /// represents a value lvalue, this method emits the address of the lvalue,
208 /// then loads the result into DestPtr.
209 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
210   LValue LV = CGF.EmitLValue(E);
211 
212   // If the type of the l-value is atomic, then do an atomic load.
213   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
214     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
215     return;
216   }
217 
218   EmitFinalDestCopy(E->getType(), LV);
219 }
220 
221 /// \brief True if the given aggregate type requires special GC API calls.
222 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
223   // Only record types have members that might require garbage collection.
224   const RecordType *RecordTy = T->getAs<RecordType>();
225   if (!RecordTy) return false;
226 
227   // Don't mess with non-trivial C++ types.
228   RecordDecl *Record = RecordTy->getDecl();
229   if (isa<CXXRecordDecl>(Record) &&
230       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
231        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
232     return false;
233 
234   // Check whether the type has an object member.
235   return Record->hasObjectMember();
236 }
237 
238 /// \brief Perform the final move to DestPtr if for some reason
239 /// getReturnValueSlot() didn't use it directly.
240 ///
241 /// The idea is that you do something like this:
242 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
243 ///   EmitMoveFromReturnSlot(E, Result);
244 ///
245 /// If nothing interferes, this will cause the result to be emitted
246 /// directly into the return value slot.  Otherwise, a final move
247 /// will be performed.
248 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
249   if (shouldUseDestForReturnSlot()) {
250     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
251     // The possibility of undef rvalues complicates that a lot,
252     // though, so we can't really assert.
253     return;
254   }
255 
256   // Otherwise, copy from there to the destination.
257   assert(Dest.getPointer() != src.getAggregatePointer());
258   EmitFinalDestCopy(E->getType(), src);
259 }
260 
261 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
262 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
263   assert(src.isAggregate() && "value must be aggregate value!");
264   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
265   EmitFinalDestCopy(type, srcLV);
266 }
267 
268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
269 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
270   // If Dest is ignored, then we're evaluating an aggregate expression
271   // in a context that doesn't care about the result.  Note that loads
272   // from volatile l-values force the existence of a non-ignored
273   // destination.
274   if (Dest.isIgnored())
275     return;
276 
277   AggValueSlot srcAgg =
278     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
279                             needsGC(type), AggValueSlot::IsAliased);
280   EmitCopy(type, Dest, srcAgg);
281 }
282 
283 /// Perform a copy from the source into the destination.
284 ///
285 /// \param type - the type of the aggregate being copied; qualifiers are
286 ///   ignored
287 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
288                               const AggValueSlot &src) {
289   if (dest.requiresGCollection()) {
290     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
291     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
292     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
293                                                       dest.getAddress(),
294                                                       src.getAddress(),
295                                                       size);
296     return;
297   }
298 
299   // If the result of the assignment is used, copy the LHS there also.
300   // It's volatile if either side is.  Use the minimum alignment of
301   // the two sides.
302   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
303   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
304   CGF.EmitAggregateCopy(DestLV, SrcLV, type,
305                         dest.isVolatile() || src.isVolatile());
306 }
307 
308 /// \brief Emit the initializer for a std::initializer_list initialized with a
309 /// real initializer list.
310 void
311 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
312   // Emit an array containing the elements.  The array is externally destructed
313   // if the std::initializer_list object is.
314   ASTContext &Ctx = CGF.getContext();
315   LValue Array = CGF.EmitLValue(E->getSubExpr());
316   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
317   Address ArrayPtr = Array.getAddress();
318 
319   const ConstantArrayType *ArrayType =
320       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
321   assert(ArrayType && "std::initializer_list constructed from non-array");
322 
323   // FIXME: Perform the checks on the field types in SemaInit.
324   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
325   RecordDecl::field_iterator Field = Record->field_begin();
326   if (Field == Record->field_end()) {
327     CGF.ErrorUnsupported(E, "weird std::initializer_list");
328     return;
329   }
330 
331   // Start pointer.
332   if (!Field->getType()->isPointerType() ||
333       !Ctx.hasSameType(Field->getType()->getPointeeType(),
334                        ArrayType->getElementType())) {
335     CGF.ErrorUnsupported(E, "weird std::initializer_list");
336     return;
337   }
338 
339   AggValueSlot Dest = EnsureSlot(E->getType());
340   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
341   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
342   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
343   llvm::Value *IdxStart[] = { Zero, Zero };
344   llvm::Value *ArrayStart =
345       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
346   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
347   ++Field;
348 
349   if (Field == Record->field_end()) {
350     CGF.ErrorUnsupported(E, "weird std::initializer_list");
351     return;
352   }
353 
354   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
355   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
356   if (Field->getType()->isPointerType() &&
357       Ctx.hasSameType(Field->getType()->getPointeeType(),
358                       ArrayType->getElementType())) {
359     // End pointer.
360     llvm::Value *IdxEnd[] = { Zero, Size };
361     llvm::Value *ArrayEnd =
362         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
363     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
364   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
365     // Length.
366     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
367   } else {
368     CGF.ErrorUnsupported(E, "weird std::initializer_list");
369     return;
370   }
371 }
372 
373 /// \brief Determine if E is a trivial array filler, that is, one that is
374 /// equivalent to zero-initialization.
375 static bool isTrivialFiller(Expr *E) {
376   if (!E)
377     return true;
378 
379   if (isa<ImplicitValueInitExpr>(E))
380     return true;
381 
382   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
383     if (ILE->getNumInits())
384       return false;
385     return isTrivialFiller(ILE->getArrayFiller());
386   }
387 
388   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
389     return Cons->getConstructor()->isDefaultConstructor() &&
390            Cons->getConstructor()->isTrivial();
391 
392   // FIXME: Are there other cases where we can avoid emitting an initializer?
393   return false;
394 }
395 
396 /// \brief Emit initialization of an array from an initializer list.
397 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
398                                    QualType ArrayQTy, InitListExpr *E) {
399   uint64_t NumInitElements = E->getNumInits();
400 
401   uint64_t NumArrayElements = AType->getNumElements();
402   assert(NumInitElements <= NumArrayElements);
403 
404   QualType elementType =
405       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
406 
407   // DestPtr is an array*.  Construct an elementType* by drilling
408   // down a level.
409   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
410   llvm::Value *indices[] = { zero, zero };
411   llvm::Value *begin =
412     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
413 
414   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
415   CharUnits elementAlign =
416     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
417 
418   // Consider initializing the array by copying from a global. For this to be
419   // more efficient than per-element initialization, the size of the elements
420   // with explicit initializers should be large enough.
421   if (NumInitElements * elementSize.getQuantity() > 16 &&
422       elementType.isTriviallyCopyableType(CGF.getContext())) {
423     CodeGen::CodeGenModule &CGM = CGF.CGM;
424     ConstantEmitter Emitter(CGM);
425     LangAS AS = ArrayQTy.getAddressSpace();
426     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
427       auto GV = new llvm::GlobalVariable(
428           CGM.getModule(), C->getType(),
429           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
430           llvm::GlobalValue::PrivateLinkage, C, "constinit",
431           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
432           CGM.getContext().getTargetAddressSpace(AS));
433       Emitter.finalize(GV);
434       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
435       GV->setAlignment(Align.getQuantity());
436       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
437       return;
438     }
439   }
440 
441   // Exception safety requires us to destroy all the
442   // already-constructed members if an initializer throws.
443   // For that, we'll need an EH cleanup.
444   QualType::DestructionKind dtorKind = elementType.isDestructedType();
445   Address endOfInit = Address::invalid();
446   EHScopeStack::stable_iterator cleanup;
447   llvm::Instruction *cleanupDominator = nullptr;
448   if (CGF.needsEHCleanup(dtorKind)) {
449     // In principle we could tell the cleanup where we are more
450     // directly, but the control flow can get so varied here that it
451     // would actually be quite complex.  Therefore we go through an
452     // alloca.
453     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
454                                      "arrayinit.endOfInit");
455     cleanupDominator = Builder.CreateStore(begin, endOfInit);
456     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
457                                          elementAlign,
458                                          CGF.getDestroyer(dtorKind));
459     cleanup = CGF.EHStack.stable_begin();
460 
461   // Otherwise, remember that we didn't need a cleanup.
462   } else {
463     dtorKind = QualType::DK_none;
464   }
465 
466   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
467 
468   // The 'current element to initialize'.  The invariants on this
469   // variable are complicated.  Essentially, after each iteration of
470   // the loop, it points to the last initialized element, except
471   // that it points to the beginning of the array before any
472   // elements have been initialized.
473   llvm::Value *element = begin;
474 
475   // Emit the explicit initializers.
476   for (uint64_t i = 0; i != NumInitElements; ++i) {
477     // Advance to the next element.
478     if (i > 0) {
479       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
480 
481       // Tell the cleanup that it needs to destroy up to this
482       // element.  TODO: some of these stores can be trivially
483       // observed to be unnecessary.
484       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
485     }
486 
487     LValue elementLV =
488       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
489     EmitInitializationToLValue(E->getInit(i), elementLV);
490   }
491 
492   // Check whether there's a non-trivial array-fill expression.
493   Expr *filler = E->getArrayFiller();
494   bool hasTrivialFiller = isTrivialFiller(filler);
495 
496   // Any remaining elements need to be zero-initialized, possibly
497   // using the filler expression.  We can skip this if the we're
498   // emitting to zeroed memory.
499   if (NumInitElements != NumArrayElements &&
500       !(Dest.isZeroed() && hasTrivialFiller &&
501         CGF.getTypes().isZeroInitializable(elementType))) {
502 
503     // Use an actual loop.  This is basically
504     //   do { *array++ = filler; } while (array != end);
505 
506     // Advance to the start of the rest of the array.
507     if (NumInitElements) {
508       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
509       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
510     }
511 
512     // Compute the end of the array.
513     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
514                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
515                                                  "arrayinit.end");
516 
517     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
518     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
519 
520     // Jump into the body.
521     CGF.EmitBlock(bodyBB);
522     llvm::PHINode *currentElement =
523       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
524     currentElement->addIncoming(element, entryBB);
525 
526     // Emit the actual filler expression.
527     {
528       // C++1z [class.temporary]p5:
529       //   when a default constructor is called to initialize an element of
530       //   an array with no corresponding initializer [...] the destruction of
531       //   every temporary created in a default argument is sequenced before
532       //   the construction of the next array element, if any
533       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
534       LValue elementLV =
535         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
536       if (filler)
537         EmitInitializationToLValue(filler, elementLV);
538       else
539         EmitNullInitializationToLValue(elementLV);
540     }
541 
542     // Move on to the next element.
543     llvm::Value *nextElement =
544       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
545 
546     // Tell the EH cleanup that we finished with the last element.
547     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
548 
549     // Leave the loop if we're done.
550     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
551                                              "arrayinit.done");
552     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
553     Builder.CreateCondBr(done, endBB, bodyBB);
554     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
555 
556     CGF.EmitBlock(endBB);
557   }
558 
559   // Leave the partial-array cleanup if we entered one.
560   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
561 }
562 
563 //===----------------------------------------------------------------------===//
564 //                            Visitor Methods
565 //===----------------------------------------------------------------------===//
566 
567 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
568   Visit(E->GetTemporaryExpr());
569 }
570 
571 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
572   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
573 }
574 
575 void
576 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
577   if (Dest.isPotentiallyAliased() &&
578       E->getType().isPODType(CGF.getContext())) {
579     // For a POD type, just emit a load of the lvalue + a copy, because our
580     // compound literal might alias the destination.
581     EmitAggLoadOfLValue(E);
582     return;
583   }
584 
585   AggValueSlot Slot = EnsureSlot(E->getType());
586   CGF.EmitAggExpr(E->getInitializer(), Slot);
587 }
588 
589 /// Attempt to look through various unimportant expressions to find a
590 /// cast of the given kind.
591 static Expr *findPeephole(Expr *op, CastKind kind) {
592   while (true) {
593     op = op->IgnoreParens();
594     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
595       if (castE->getCastKind() == kind)
596         return castE->getSubExpr();
597       if (castE->getCastKind() == CK_NoOp)
598         continue;
599     }
600     return nullptr;
601   }
602 }
603 
604 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
605   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
606     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
607   switch (E->getCastKind()) {
608   case CK_Dynamic: {
609     // FIXME: Can this actually happen? We have no test coverage for it.
610     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
611     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
612                                       CodeGenFunction::TCK_Load);
613     // FIXME: Do we also need to handle property references here?
614     if (LV.isSimple())
615       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
616     else
617       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
618 
619     if (!Dest.isIgnored())
620       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
621     break;
622   }
623 
624   case CK_ToUnion: {
625     // Evaluate even if the destination is ignored.
626     if (Dest.isIgnored()) {
627       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
628                       /*ignoreResult=*/true);
629       break;
630     }
631 
632     // GCC union extension
633     QualType Ty = E->getSubExpr()->getType();
634     Address CastPtr =
635       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
636     EmitInitializationToLValue(E->getSubExpr(),
637                                CGF.MakeAddrLValue(CastPtr, Ty));
638     break;
639   }
640 
641   case CK_DerivedToBase:
642   case CK_BaseToDerived:
643   case CK_UncheckedDerivedToBase: {
644     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
645                 "should have been unpacked before we got here");
646   }
647 
648   case CK_NonAtomicToAtomic:
649   case CK_AtomicToNonAtomic: {
650     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
651 
652     // Determine the atomic and value types.
653     QualType atomicType = E->getSubExpr()->getType();
654     QualType valueType = E->getType();
655     if (isToAtomic) std::swap(atomicType, valueType);
656 
657     assert(atomicType->isAtomicType());
658     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
659                           atomicType->castAs<AtomicType>()->getValueType()));
660 
661     // Just recurse normally if we're ignoring the result or the
662     // atomic type doesn't change representation.
663     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
664       return Visit(E->getSubExpr());
665     }
666 
667     CastKind peepholeTarget =
668       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
669 
670     // These two cases are reverses of each other; try to peephole them.
671     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
672       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
673                                                      E->getType()) &&
674            "peephole significantly changed types?");
675       return Visit(op);
676     }
677 
678     // If we're converting an r-value of non-atomic type to an r-value
679     // of atomic type, just emit directly into the relevant sub-object.
680     if (isToAtomic) {
681       AggValueSlot valueDest = Dest;
682       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
683         // Zero-initialize.  (Strictly speaking, we only need to intialize
684         // the padding at the end, but this is simpler.)
685         if (!Dest.isZeroed())
686           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
687 
688         // Build a GEP to refer to the subobject.
689         Address valueAddr =
690             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
691                                         CharUnits());
692         valueDest = AggValueSlot::forAddr(valueAddr,
693                                           valueDest.getQualifiers(),
694                                           valueDest.isExternallyDestructed(),
695                                           valueDest.requiresGCollection(),
696                                           valueDest.isPotentiallyAliased(),
697                                           AggValueSlot::IsZeroed);
698       }
699 
700       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
701       return;
702     }
703 
704     // Otherwise, we're converting an atomic type to a non-atomic type.
705     // Make an atomic temporary, emit into that, and then copy the value out.
706     AggValueSlot atomicSlot =
707       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
708     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
709 
710     Address valueAddr =
711       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
712     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
713     return EmitFinalDestCopy(valueType, rvalue);
714   }
715 
716   case CK_LValueToRValue:
717     // If we're loading from a volatile type, force the destination
718     // into existence.
719     if (E->getSubExpr()->getType().isVolatileQualified()) {
720       EnsureDest(E->getType());
721       return Visit(E->getSubExpr());
722     }
723 
724     LLVM_FALLTHROUGH;
725 
726   case CK_NoOp:
727   case CK_UserDefinedConversion:
728   case CK_ConstructorConversion:
729     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
730                                                    E->getType()) &&
731            "Implicit cast types must be compatible");
732     Visit(E->getSubExpr());
733     break;
734 
735   case CK_LValueBitCast:
736     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
737 
738   case CK_Dependent:
739   case CK_BitCast:
740   case CK_ArrayToPointerDecay:
741   case CK_FunctionToPointerDecay:
742   case CK_NullToPointer:
743   case CK_NullToMemberPointer:
744   case CK_BaseToDerivedMemberPointer:
745   case CK_DerivedToBaseMemberPointer:
746   case CK_MemberPointerToBoolean:
747   case CK_ReinterpretMemberPointer:
748   case CK_IntegralToPointer:
749   case CK_PointerToIntegral:
750   case CK_PointerToBoolean:
751   case CK_ToVoid:
752   case CK_VectorSplat:
753   case CK_IntegralCast:
754   case CK_BooleanToSignedIntegral:
755   case CK_IntegralToBoolean:
756   case CK_IntegralToFloating:
757   case CK_FloatingToIntegral:
758   case CK_FloatingToBoolean:
759   case CK_FloatingCast:
760   case CK_CPointerToObjCPointerCast:
761   case CK_BlockPointerToObjCPointerCast:
762   case CK_AnyPointerToBlockPointerCast:
763   case CK_ObjCObjectLValueCast:
764   case CK_FloatingRealToComplex:
765   case CK_FloatingComplexToReal:
766   case CK_FloatingComplexToBoolean:
767   case CK_FloatingComplexCast:
768   case CK_FloatingComplexToIntegralComplex:
769   case CK_IntegralRealToComplex:
770   case CK_IntegralComplexToReal:
771   case CK_IntegralComplexToBoolean:
772   case CK_IntegralComplexCast:
773   case CK_IntegralComplexToFloatingComplex:
774   case CK_ARCProduceObject:
775   case CK_ARCConsumeObject:
776   case CK_ARCReclaimReturnedObject:
777   case CK_ARCExtendBlockObject:
778   case CK_CopyAndAutoreleaseBlockObject:
779   case CK_BuiltinFnToFnPtr:
780   case CK_ZeroToOCLEvent:
781   case CK_ZeroToOCLQueue:
782   case CK_AddressSpaceConversion:
783   case CK_IntToOCLSampler:
784     llvm_unreachable("cast kind invalid for aggregate types");
785   }
786 }
787 
788 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
789   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
790     EmitAggLoadOfLValue(E);
791     return;
792   }
793 
794   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
795   EmitMoveFromReturnSlot(E, RV);
796 }
797 
798 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
799   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
800   EmitMoveFromReturnSlot(E, RV);
801 }
802 
803 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
804   CGF.EmitIgnoredExpr(E->getLHS());
805   Visit(E->getRHS());
806 }
807 
808 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
809   CodeGenFunction::StmtExprEvaluation eval(CGF);
810   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
811 }
812 
813 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
814   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
815     VisitPointerToDataMemberBinaryOperator(E);
816   else
817     CGF.ErrorUnsupported(E, "aggregate binary expression");
818 }
819 
820 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
821                                                     const BinaryOperator *E) {
822   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
823   EmitFinalDestCopy(E->getType(), LV);
824 }
825 
826 /// Is the value of the given expression possibly a reference to or
827 /// into a __block variable?
828 static bool isBlockVarRef(const Expr *E) {
829   // Make sure we look through parens.
830   E = E->IgnoreParens();
831 
832   // Check for a direct reference to a __block variable.
833   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
834     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
835     return (var && var->hasAttr<BlocksAttr>());
836   }
837 
838   // More complicated stuff.
839 
840   // Binary operators.
841   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
842     // For an assignment or pointer-to-member operation, just care
843     // about the LHS.
844     if (op->isAssignmentOp() || op->isPtrMemOp())
845       return isBlockVarRef(op->getLHS());
846 
847     // For a comma, just care about the RHS.
848     if (op->getOpcode() == BO_Comma)
849       return isBlockVarRef(op->getRHS());
850 
851     // FIXME: pointer arithmetic?
852     return false;
853 
854   // Check both sides of a conditional operator.
855   } else if (const AbstractConditionalOperator *op
856                = dyn_cast<AbstractConditionalOperator>(E)) {
857     return isBlockVarRef(op->getTrueExpr())
858         || isBlockVarRef(op->getFalseExpr());
859 
860   // OVEs are required to support BinaryConditionalOperators.
861   } else if (const OpaqueValueExpr *op
862                = dyn_cast<OpaqueValueExpr>(E)) {
863     if (const Expr *src = op->getSourceExpr())
864       return isBlockVarRef(src);
865 
866   // Casts are necessary to get things like (*(int*)&var) = foo().
867   // We don't really care about the kind of cast here, except
868   // we don't want to look through l2r casts, because it's okay
869   // to get the *value* in a __block variable.
870   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
871     if (cast->getCastKind() == CK_LValueToRValue)
872       return false;
873     return isBlockVarRef(cast->getSubExpr());
874 
875   // Handle unary operators.  Again, just aggressively look through
876   // it, ignoring the operation.
877   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
878     return isBlockVarRef(uop->getSubExpr());
879 
880   // Look into the base of a field access.
881   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
882     return isBlockVarRef(mem->getBase());
883 
884   // Look into the base of a subscript.
885   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
886     return isBlockVarRef(sub->getBase());
887   }
888 
889   return false;
890 }
891 
892 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
893   // For an assignment to work, the value on the right has
894   // to be compatible with the value on the left.
895   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
896                                                  E->getRHS()->getType())
897          && "Invalid assignment");
898 
899   // If the LHS might be a __block variable, and the RHS can
900   // potentially cause a block copy, we need to evaluate the RHS first
901   // so that the assignment goes the right place.
902   // This is pretty semantically fragile.
903   if (isBlockVarRef(E->getLHS()) &&
904       E->getRHS()->HasSideEffects(CGF.getContext())) {
905     // Ensure that we have a destination, and evaluate the RHS into that.
906     EnsureDest(E->getRHS()->getType());
907     Visit(E->getRHS());
908 
909     // Now emit the LHS and copy into it.
910     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
911 
912     // That copy is an atomic copy if the LHS is atomic.
913     if (LHS.getType()->isAtomicType() ||
914         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
915       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
916       return;
917     }
918 
919     EmitCopy(E->getLHS()->getType(),
920              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
921                                      needsGC(E->getLHS()->getType()),
922                                      AggValueSlot::IsAliased),
923              Dest);
924     return;
925   }
926 
927   LValue LHS = CGF.EmitLValue(E->getLHS());
928 
929   // If we have an atomic type, evaluate into the destination and then
930   // do an atomic copy.
931   if (LHS.getType()->isAtomicType() ||
932       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
933     EnsureDest(E->getRHS()->getType());
934     Visit(E->getRHS());
935     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
936     return;
937   }
938 
939   // Codegen the RHS so that it stores directly into the LHS.
940   AggValueSlot LHSSlot =
941     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
942                             needsGC(E->getLHS()->getType()),
943                             AggValueSlot::IsAliased);
944   // A non-volatile aggregate destination might have volatile member.
945   if (!LHSSlot.isVolatile() &&
946       CGF.hasVolatileMember(E->getLHS()->getType()))
947     LHSSlot.setVolatile(true);
948 
949   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
950 
951   // Copy into the destination if the assignment isn't ignored.
952   EmitFinalDestCopy(E->getType(), LHS);
953 }
954 
955 void AggExprEmitter::
956 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
957   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
958   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
959   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
960 
961   // Bind the common expression if necessary.
962   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
963 
964   CodeGenFunction::ConditionalEvaluation eval(CGF);
965   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
966                            CGF.getProfileCount(E));
967 
968   // Save whether the destination's lifetime is externally managed.
969   bool isExternallyDestructed = Dest.isExternallyDestructed();
970 
971   eval.begin(CGF);
972   CGF.EmitBlock(LHSBlock);
973   CGF.incrementProfileCounter(E);
974   Visit(E->getTrueExpr());
975   eval.end(CGF);
976 
977   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
978   CGF.Builder.CreateBr(ContBlock);
979 
980   // If the result of an agg expression is unused, then the emission
981   // of the LHS might need to create a destination slot.  That's fine
982   // with us, and we can safely emit the RHS into the same slot, but
983   // we shouldn't claim that it's already being destructed.
984   Dest.setExternallyDestructed(isExternallyDestructed);
985 
986   eval.begin(CGF);
987   CGF.EmitBlock(RHSBlock);
988   Visit(E->getFalseExpr());
989   eval.end(CGF);
990 
991   CGF.EmitBlock(ContBlock);
992 }
993 
994 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
995   Visit(CE->getChosenSubExpr());
996 }
997 
998 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
999   Address ArgValue = Address::invalid();
1000   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1001 
1002   // If EmitVAArg fails, emit an error.
1003   if (!ArgPtr.isValid()) {
1004     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1005     return;
1006   }
1007 
1008   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1009 }
1010 
1011 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1012   // Ensure that we have a slot, but if we already do, remember
1013   // whether it was externally destructed.
1014   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1015   EnsureDest(E->getType());
1016 
1017   // We're going to push a destructor if there isn't already one.
1018   Dest.setExternallyDestructed();
1019 
1020   Visit(E->getSubExpr());
1021 
1022   // Push that destructor we promised.
1023   if (!wasExternallyDestructed)
1024     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1025 }
1026 
1027 void
1028 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1029   AggValueSlot Slot = EnsureSlot(E->getType());
1030   CGF.EmitCXXConstructExpr(E, Slot);
1031 }
1032 
1033 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1034     const CXXInheritedCtorInitExpr *E) {
1035   AggValueSlot Slot = EnsureSlot(E->getType());
1036   CGF.EmitInheritedCXXConstructorCall(
1037       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1038       E->inheritedFromVBase(), E);
1039 }
1040 
1041 void
1042 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1043   AggValueSlot Slot = EnsureSlot(E->getType());
1044   CGF.EmitLambdaExpr(E, Slot);
1045 }
1046 
1047 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1048   CGF.enterFullExpression(E);
1049   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1050   Visit(E->getSubExpr());
1051 }
1052 
1053 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1054   QualType T = E->getType();
1055   AggValueSlot Slot = EnsureSlot(T);
1056   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1057 }
1058 
1059 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1060   QualType T = E->getType();
1061   AggValueSlot Slot = EnsureSlot(T);
1062   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1063 }
1064 
1065 /// isSimpleZero - If emitting this value will obviously just cause a store of
1066 /// zero to memory, return true.  This can return false if uncertain, so it just
1067 /// handles simple cases.
1068 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1069   E = E->IgnoreParens();
1070 
1071   // 0
1072   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1073     return IL->getValue() == 0;
1074   // +0.0
1075   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1076     return FL->getValue().isPosZero();
1077   // int()
1078   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1079       CGF.getTypes().isZeroInitializable(E->getType()))
1080     return true;
1081   // (int*)0 - Null pointer expressions.
1082   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1083     return ICE->getCastKind() == CK_NullToPointer &&
1084         CGF.getTypes().isPointerZeroInitializable(E->getType());
1085   // '\0'
1086   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1087     return CL->getValue() == 0;
1088 
1089   // Otherwise, hard case: conservatively return false.
1090   return false;
1091 }
1092 
1093 
1094 void
1095 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1096   QualType type = LV.getType();
1097   // FIXME: Ignore result?
1098   // FIXME: Are initializers affected by volatile?
1099   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1100     // Storing "i32 0" to a zero'd memory location is a noop.
1101     return;
1102   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1103     return EmitNullInitializationToLValue(LV);
1104   } else if (isa<NoInitExpr>(E)) {
1105     // Do nothing.
1106     return;
1107   } else if (type->isReferenceType()) {
1108     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1109     return CGF.EmitStoreThroughLValue(RV, LV);
1110   }
1111 
1112   switch (CGF.getEvaluationKind(type)) {
1113   case TEK_Complex:
1114     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1115     return;
1116   case TEK_Aggregate:
1117     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1118                                                AggValueSlot::IsDestructed,
1119                                       AggValueSlot::DoesNotNeedGCBarriers,
1120                                                AggValueSlot::IsNotAliased,
1121                                                Dest.isZeroed()));
1122     return;
1123   case TEK_Scalar:
1124     if (LV.isSimple()) {
1125       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1126     } else {
1127       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1128     }
1129     return;
1130   }
1131   llvm_unreachable("bad evaluation kind");
1132 }
1133 
1134 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1135   QualType type = lv.getType();
1136 
1137   // If the destination slot is already zeroed out before the aggregate is
1138   // copied into it, we don't have to emit any zeros here.
1139   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1140     return;
1141 
1142   if (CGF.hasScalarEvaluationKind(type)) {
1143     // For non-aggregates, we can store the appropriate null constant.
1144     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1145     // Note that the following is not equivalent to
1146     // EmitStoreThroughBitfieldLValue for ARC types.
1147     if (lv.isBitField()) {
1148       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1149     } else {
1150       assert(lv.isSimple());
1151       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1152     }
1153   } else {
1154     // There's a potential optimization opportunity in combining
1155     // memsets; that would be easy for arrays, but relatively
1156     // difficult for structures with the current code.
1157     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1158   }
1159 }
1160 
1161 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1162 #if 0
1163   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1164   // (Length of globals? Chunks of zeroed-out space?).
1165   //
1166   // If we can, prefer a copy from a global; this is a lot less code for long
1167   // globals, and it's easier for the current optimizers to analyze.
1168   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1169     llvm::GlobalVariable* GV =
1170     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1171                              llvm::GlobalValue::InternalLinkage, C, "");
1172     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1173     return;
1174   }
1175 #endif
1176   if (E->hadArrayRangeDesignator())
1177     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1178 
1179   if (E->isTransparent())
1180     return Visit(E->getInit(0));
1181 
1182   AggValueSlot Dest = EnsureSlot(E->getType());
1183 
1184   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1185 
1186   // Handle initialization of an array.
1187   if (E->getType()->isArrayType()) {
1188     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1189     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1190     return;
1191   }
1192 
1193   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1194 
1195   // Do struct initialization; this code just sets each individual member
1196   // to the approprate value.  This makes bitfield support automatic;
1197   // the disadvantage is that the generated code is more difficult for
1198   // the optimizer, especially with bitfields.
1199   unsigned NumInitElements = E->getNumInits();
1200   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1201 
1202   // We'll need to enter cleanup scopes in case any of the element
1203   // initializers throws an exception.
1204   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1205   llvm::Instruction *cleanupDominator = nullptr;
1206 
1207   unsigned curInitIndex = 0;
1208 
1209   // Emit initialization of base classes.
1210   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1211     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1212            "missing initializer for base class");
1213     for (auto &Base : CXXRD->bases()) {
1214       assert(!Base.isVirtual() && "should not see vbases here");
1215       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1216       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1217           Dest.getAddress(), CXXRD, BaseRD,
1218           /*isBaseVirtual*/ false);
1219       AggValueSlot AggSlot =
1220         AggValueSlot::forAddr(V, Qualifiers(),
1221                               AggValueSlot::IsDestructed,
1222                               AggValueSlot::DoesNotNeedGCBarriers,
1223                               AggValueSlot::IsNotAliased);
1224       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1225 
1226       if (QualType::DestructionKind dtorKind =
1227               Base.getType().isDestructedType()) {
1228         CGF.pushDestroy(dtorKind, V, Base.getType());
1229         cleanups.push_back(CGF.EHStack.stable_begin());
1230       }
1231     }
1232   }
1233 
1234   // Prepare a 'this' for CXXDefaultInitExprs.
1235   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1236 
1237   if (record->isUnion()) {
1238     // Only initialize one field of a union. The field itself is
1239     // specified by the initializer list.
1240     if (!E->getInitializedFieldInUnion()) {
1241       // Empty union; we have nothing to do.
1242 
1243 #ifndef NDEBUG
1244       // Make sure that it's really an empty and not a failure of
1245       // semantic analysis.
1246       for (const auto *Field : record->fields())
1247         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1248 #endif
1249       return;
1250     }
1251 
1252     // FIXME: volatility
1253     FieldDecl *Field = E->getInitializedFieldInUnion();
1254 
1255     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1256     if (NumInitElements) {
1257       // Store the initializer into the field
1258       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1259     } else {
1260       // Default-initialize to null.
1261       EmitNullInitializationToLValue(FieldLoc);
1262     }
1263 
1264     return;
1265   }
1266 
1267   // Here we iterate over the fields; this makes it simpler to both
1268   // default-initialize fields and skip over unnamed fields.
1269   for (const auto *field : record->fields()) {
1270     // We're done once we hit the flexible array member.
1271     if (field->getType()->isIncompleteArrayType())
1272       break;
1273 
1274     // Always skip anonymous bitfields.
1275     if (field->isUnnamedBitfield())
1276       continue;
1277 
1278     // We're done if we reach the end of the explicit initializers, we
1279     // have a zeroed object, and the rest of the fields are
1280     // zero-initializable.
1281     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1282         CGF.getTypes().isZeroInitializable(E->getType()))
1283       break;
1284 
1285 
1286     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1287     // We never generate write-barries for initialized fields.
1288     LV.setNonGC(true);
1289 
1290     if (curInitIndex < NumInitElements) {
1291       // Store the initializer into the field.
1292       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1293     } else {
1294       // We're out of initializers; default-initialize to null
1295       EmitNullInitializationToLValue(LV);
1296     }
1297 
1298     // Push a destructor if necessary.
1299     // FIXME: if we have an array of structures, all explicitly
1300     // initialized, we can end up pushing a linear number of cleanups.
1301     bool pushedCleanup = false;
1302     if (QualType::DestructionKind dtorKind
1303           = field->getType().isDestructedType()) {
1304       assert(LV.isSimple());
1305       if (CGF.needsEHCleanup(dtorKind)) {
1306         if (!cleanupDominator)
1307           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1308               CGF.Int8Ty,
1309               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1310               CharUnits::One()); // placeholder
1311 
1312         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1313                         CGF.getDestroyer(dtorKind), false);
1314         cleanups.push_back(CGF.EHStack.stable_begin());
1315         pushedCleanup = true;
1316       }
1317     }
1318 
1319     // If the GEP didn't get used because of a dead zero init or something
1320     // else, clean it up for -O0 builds and general tidiness.
1321     if (!pushedCleanup && LV.isSimple())
1322       if (llvm::GetElementPtrInst *GEP =
1323             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1324         if (GEP->use_empty())
1325           GEP->eraseFromParent();
1326   }
1327 
1328   // Deactivate all the partial cleanups in reverse order, which
1329   // generally means popping them.
1330   for (unsigned i = cleanups.size(); i != 0; --i)
1331     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1332 
1333   // Destroy the placeholder if we made one.
1334   if (cleanupDominator)
1335     cleanupDominator->eraseFromParent();
1336 }
1337 
1338 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1339                                             llvm::Value *outerBegin) {
1340   // Emit the common subexpression.
1341   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1342 
1343   Address destPtr = EnsureSlot(E->getType()).getAddress();
1344   uint64_t numElements = E->getArraySize().getZExtValue();
1345 
1346   if (!numElements)
1347     return;
1348 
1349   // destPtr is an array*. Construct an elementType* by drilling down a level.
1350   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1351   llvm::Value *indices[] = {zero, zero};
1352   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1353                                                  "arrayinit.begin");
1354 
1355   // Prepare to special-case multidimensional array initialization: we avoid
1356   // emitting multiple destructor loops in that case.
1357   if (!outerBegin)
1358     outerBegin = begin;
1359   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1360 
1361   QualType elementType =
1362       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1363   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1364   CharUnits elementAlign =
1365       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1366 
1367   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1368   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1369 
1370   // Jump into the body.
1371   CGF.EmitBlock(bodyBB);
1372   llvm::PHINode *index =
1373       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1374   index->addIncoming(zero, entryBB);
1375   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1376 
1377   // Prepare for a cleanup.
1378   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1379   EHScopeStack::stable_iterator cleanup;
1380   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1381     if (outerBegin->getType() != element->getType())
1382       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1383     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1384                                        elementAlign,
1385                                        CGF.getDestroyer(dtorKind));
1386     cleanup = CGF.EHStack.stable_begin();
1387   } else {
1388     dtorKind = QualType::DK_none;
1389   }
1390 
1391   // Emit the actual filler expression.
1392   {
1393     // Temporaries created in an array initialization loop are destroyed
1394     // at the end of each iteration.
1395     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1396     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1397     LValue elementLV =
1398         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1399 
1400     if (InnerLoop) {
1401       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1402       auto elementSlot = AggValueSlot::forLValue(
1403           elementLV, AggValueSlot::IsDestructed,
1404           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased);
1405       AggExprEmitter(CGF, elementSlot, false)
1406           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1407     } else
1408       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1409   }
1410 
1411   // Move on to the next element.
1412   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1413       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1414   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1415 
1416   // Leave the loop if we're done.
1417   llvm::Value *done = Builder.CreateICmpEQ(
1418       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1419       "arrayinit.done");
1420   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1421   Builder.CreateCondBr(done, endBB, bodyBB);
1422 
1423   CGF.EmitBlock(endBB);
1424 
1425   // Leave the partial-array cleanup if we entered one.
1426   if (dtorKind)
1427     CGF.DeactivateCleanupBlock(cleanup, index);
1428 }
1429 
1430 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1431   AggValueSlot Dest = EnsureSlot(E->getType());
1432 
1433   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1434   EmitInitializationToLValue(E->getBase(), DestLV);
1435   VisitInitListExpr(E->getUpdater());
1436 }
1437 
1438 //===----------------------------------------------------------------------===//
1439 //                        Entry Points into this File
1440 //===----------------------------------------------------------------------===//
1441 
1442 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1443 /// non-zero bytes that will be stored when outputting the initializer for the
1444 /// specified initializer expression.
1445 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1446   E = E->IgnoreParens();
1447 
1448   // 0 and 0.0 won't require any non-zero stores!
1449   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1450 
1451   // If this is an initlist expr, sum up the size of sizes of the (present)
1452   // elements.  If this is something weird, assume the whole thing is non-zero.
1453   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1454   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1455     return CGF.getContext().getTypeSizeInChars(E->getType());
1456 
1457   // InitListExprs for structs have to be handled carefully.  If there are
1458   // reference members, we need to consider the size of the reference, not the
1459   // referencee.  InitListExprs for unions and arrays can't have references.
1460   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1461     if (!RT->isUnionType()) {
1462       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1463       CharUnits NumNonZeroBytes = CharUnits::Zero();
1464 
1465       unsigned ILEElement = 0;
1466       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1467         while (ILEElement != CXXRD->getNumBases())
1468           NumNonZeroBytes +=
1469               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1470       for (const auto *Field : SD->fields()) {
1471         // We're done once we hit the flexible array member or run out of
1472         // InitListExpr elements.
1473         if (Field->getType()->isIncompleteArrayType() ||
1474             ILEElement == ILE->getNumInits())
1475           break;
1476         if (Field->isUnnamedBitfield())
1477           continue;
1478 
1479         const Expr *E = ILE->getInit(ILEElement++);
1480 
1481         // Reference values are always non-null and have the width of a pointer.
1482         if (Field->getType()->isReferenceType())
1483           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1484               CGF.getTarget().getPointerWidth(0));
1485         else
1486           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1487       }
1488 
1489       return NumNonZeroBytes;
1490     }
1491   }
1492 
1493 
1494   CharUnits NumNonZeroBytes = CharUnits::Zero();
1495   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1496     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1497   return NumNonZeroBytes;
1498 }
1499 
1500 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1501 /// zeros in it, emit a memset and avoid storing the individual zeros.
1502 ///
1503 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1504                                      CodeGenFunction &CGF) {
1505   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1506   // volatile stores.
1507   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1508     return;
1509 
1510   // C++ objects with a user-declared constructor don't need zero'ing.
1511   if (CGF.getLangOpts().CPlusPlus)
1512     if (const RecordType *RT = CGF.getContext()
1513                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1514       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1515       if (RD->hasUserDeclaredConstructor())
1516         return;
1517     }
1518 
1519   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1520   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1521   if (Size <= CharUnits::fromQuantity(16))
1522     return;
1523 
1524   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1525   // we prefer to emit memset + individual stores for the rest.
1526   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1527   if (NumNonZeroBytes*4 > Size)
1528     return;
1529 
1530   // Okay, it seems like a good idea to use an initial memset, emit the call.
1531   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1532 
1533   Address Loc = Slot.getAddress();
1534   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1535   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1536 
1537   // Tell the AggExprEmitter that the slot is known zero.
1538   Slot.setZeroed();
1539 }
1540 
1541 
1542 
1543 
1544 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1545 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1546 /// the value of the aggregate expression is not needed.  If VolatileDest is
1547 /// true, DestPtr cannot be 0.
1548 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1549   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1550          "Invalid aggregate expression to emit");
1551   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1552          "slot has bits but no address");
1553 
1554   // Optimize the slot if possible.
1555   CheckAggExprForMemSetUse(Slot, E, *this);
1556 
1557   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1558 }
1559 
1560 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1561   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1562   Address Temp = CreateMemTemp(E->getType());
1563   LValue LV = MakeAddrLValue(Temp, E->getType());
1564   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1565                                          AggValueSlot::DoesNotNeedGCBarriers,
1566                                          AggValueSlot::IsNotAliased));
1567   return LV;
1568 }
1569 
1570 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src,
1571                                         QualType Ty, bool isVolatile,
1572                                         bool isAssignment) {
1573   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1574 
1575   Address DestPtr = Dest.getAddress();
1576   Address SrcPtr = Src.getAddress();
1577 
1578   if (getLangOpts().CPlusPlus) {
1579     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1580       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1581       assert((Record->hasTrivialCopyConstructor() ||
1582               Record->hasTrivialCopyAssignment() ||
1583               Record->hasTrivialMoveConstructor() ||
1584               Record->hasTrivialMoveAssignment() ||
1585               Record->isUnion()) &&
1586              "Trying to aggregate-copy a type without a trivial copy/move "
1587              "constructor or assignment operator");
1588       // Ignore empty classes in C++.
1589       if (Record->isEmpty())
1590         return;
1591     }
1592   }
1593 
1594   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1595   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1596   // read from another object that overlaps in anyway the storage of the first
1597   // object, then the overlap shall be exact and the two objects shall have
1598   // qualified or unqualified versions of a compatible type."
1599   //
1600   // memcpy is not defined if the source and destination pointers are exactly
1601   // equal, but other compilers do this optimization, and almost every memcpy
1602   // implementation handles this case safely.  If there is a libc that does not
1603   // safely handle this, we can add a target hook.
1604 
1605   // Get data size info for this aggregate. If this is an assignment,
1606   // don't copy the tail padding, because we might be assigning into a
1607   // base subobject where the tail padding is claimed.  Otherwise,
1608   // copying it is fine.
1609   std::pair<CharUnits, CharUnits> TypeInfo;
1610   if (isAssignment)
1611     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1612   else
1613     TypeInfo = getContext().getTypeInfoInChars(Ty);
1614 
1615   llvm::Value *SizeVal = nullptr;
1616   if (TypeInfo.first.isZero()) {
1617     // But note that getTypeInfo returns 0 for a VLA.
1618     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1619             getContext().getAsArrayType(Ty))) {
1620       QualType BaseEltTy;
1621       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1622       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1623       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1624       if (!isAssignment)
1625         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1626       assert(!TypeInfo.first.isZero());
1627       SizeVal = Builder.CreateNUWMul(
1628           SizeVal,
1629           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1630       if (!isAssignment) {
1631         SizeVal = Builder.CreateNUWSub(
1632             SizeVal,
1633             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1634         SizeVal = Builder.CreateNUWAdd(
1635             SizeVal, llvm::ConstantInt::get(
1636                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1637       }
1638     }
1639   }
1640   if (!SizeVal) {
1641     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1642   }
1643 
1644   // FIXME: If we have a volatile struct, the optimizer can remove what might
1645   // appear to be `extra' memory ops:
1646   //
1647   // volatile struct { int i; } a, b;
1648   //
1649   // int main() {
1650   //   a = b;
1651   //   a = b;
1652   // }
1653   //
1654   // we need to use a different call here.  We use isVolatile to indicate when
1655   // either the source or the destination is volatile.
1656 
1657   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1658   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1659 
1660   // Don't do any of the memmove_collectable tests if GC isn't set.
1661   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1662     // fall through
1663   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1664     RecordDecl *Record = RecordTy->getDecl();
1665     if (Record->hasObjectMember()) {
1666       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1667                                                     SizeVal);
1668       return;
1669     }
1670   } else if (Ty->isArrayType()) {
1671     QualType BaseType = getContext().getBaseElementType(Ty);
1672     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1673       if (RecordTy->getDecl()->hasObjectMember()) {
1674         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1675                                                       SizeVal);
1676         return;
1677       }
1678     }
1679   }
1680 
1681   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1682 
1683   // Determine the metadata to describe the position of any padding in this
1684   // memcpy, as well as the TBAA tags for the members of the struct, in case
1685   // the optimizer wishes to expand it in to scalar memory operations.
1686   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1687     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1688 
1689   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1690     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1691         Dest.getTBAAInfo(), Src.getTBAAInfo());
1692     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
1693   }
1694 }
1695