1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 bool IgnoreResult; 38 39 public: 40 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, 41 bool ignore) 42 : CGF(cgf), Builder(CGF.Builder), 43 DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore) { 44 } 45 46 //===--------------------------------------------------------------------===// 47 // Utilities 48 //===--------------------------------------------------------------------===// 49 50 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 51 /// represents a value lvalue, this method emits the address of the lvalue, 52 /// then loads the result into DestPtr. 53 void EmitAggLoadOfLValue(const Expr *E); 54 55 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 56 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 57 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 58 59 //===--------------------------------------------------------------------===// 60 // Visitor Methods 61 //===--------------------------------------------------------------------===// 62 63 void VisitStmt(Stmt *S) { 64 CGF.ErrorUnsupported(S, "aggregate expression"); 65 } 66 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 67 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 68 69 // l-values. 70 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 71 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 72 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 73 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 74 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 75 EmitAggLoadOfLValue(E); 76 } 77 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 78 EmitAggLoadOfLValue(E); 79 } 80 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 81 EmitAggLoadOfLValue(E); 82 } 83 void VisitPredefinedExpr(const PredefinedExpr *E) { 84 EmitAggLoadOfLValue(E); 85 } 86 87 // Operators. 88 void VisitCStyleCastExpr(CStyleCastExpr *E); 89 void VisitImplicitCastExpr(ImplicitCastExpr *E); 90 void VisitCallExpr(const CallExpr *E); 91 void VisitStmtExpr(const StmtExpr *E); 92 void VisitBinaryOperator(const BinaryOperator *BO); 93 void VisitBinAssign(const BinaryOperator *E); 94 void VisitBinComma(const BinaryOperator *E); 95 96 void VisitObjCMessageExpr(ObjCMessageExpr *E); 97 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 101 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 102 103 void VisitConditionalOperator(const ConditionalOperator *CO); 104 void VisitInitListExpr(InitListExpr *E); 105 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 106 Visit(DAE->getExpr()); 107 } 108 void VisitCXXConstructExpr(const CXXConstructExpr *E); 109 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 110 111 void VisitVAArgExpr(VAArgExpr *E); 112 113 void EmitInitializationToLValue(Expr *E, LValue Address); 114 void EmitNullInitializationToLValue(LValue Address, QualType T); 115 // case Expr::ChooseExprClass: 116 117 }; 118 } // end anonymous namespace. 119 120 //===----------------------------------------------------------------------===// 121 // Utilities 122 //===----------------------------------------------------------------------===// 123 124 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 125 /// represents a value lvalue, this method emits the address of the lvalue, 126 /// then loads the result into DestPtr. 127 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 128 LValue LV = CGF.EmitLValue(E); 129 EmitFinalDestCopy(E, LV); 130 } 131 132 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 133 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 134 assert(Src.isAggregate() && "value must be aggregate value!"); 135 136 // If the result is ignored, don't copy from the value. 137 if (DestPtr == 0) { 138 if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) 139 return; 140 // If the source is volatile, we must read from it; to do that, we need 141 // some place to put it. 142 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 143 } 144 145 // If the result of the assignment is used, copy the LHS there also. 146 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 147 // from the source as well, as we can't eliminate it if either operand 148 // is volatile, unless copy has volatile for both source and destination.. 149 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 150 VolatileDest|Src.isVolatileQualified()); 151 } 152 153 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 154 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 155 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 156 157 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 158 Src.isVolatileQualified()), 159 Ignore); 160 } 161 162 //===----------------------------------------------------------------------===// 163 // Visitor Methods 164 //===----------------------------------------------------------------------===// 165 166 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 167 // GCC union extension 168 if (E->getType()->isUnionType()) { 169 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 170 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 171 *SD->field_begin(CGF.getContext()), 172 true, 0); 173 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 174 return; 175 } 176 177 Visit(E->getSubExpr()); 178 } 179 180 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 181 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 182 E->getType()) && 183 "Implicit cast types must be compatible"); 184 Visit(E->getSubExpr()); 185 } 186 187 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 188 if (E->getCallReturnType()->isReferenceType()) { 189 EmitAggLoadOfLValue(E); 190 return; 191 } 192 193 RValue RV = CGF.EmitCallExpr(E); 194 EmitFinalDestCopy(E, RV); 195 } 196 197 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 198 RValue RV = CGF.EmitObjCMessageExpr(E); 199 EmitFinalDestCopy(E, RV); 200 } 201 202 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 203 RValue RV = CGF.EmitObjCPropertyGet(E); 204 EmitFinalDestCopy(E, RV); 205 } 206 207 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 208 RValue RV = CGF.EmitObjCPropertyGet(E); 209 EmitFinalDestCopy(E, RV); 210 } 211 212 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 213 CGF.EmitAnyExpr(E->getLHS(), 0, false, true); 214 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest); 215 } 216 217 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 218 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 219 } 220 221 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 222 CGF.ErrorUnsupported(E, "aggregate binary expression"); 223 } 224 225 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 226 // For an assignment to work, the value on the right has 227 // to be compatible with the value on the left. 228 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 229 E->getRHS()->getType()) 230 && "Invalid assignment"); 231 LValue LHS = CGF.EmitLValue(E->getLHS()); 232 233 // We have to special case property setters, otherwise we must have 234 // a simple lvalue (no aggregates inside vectors, bitfields). 235 if (LHS.isPropertyRef()) { 236 llvm::Value *AggLoc = DestPtr; 237 if (!AggLoc) 238 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 239 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 240 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 241 RValue::getAggregate(AggLoc, VolatileDest)); 242 } 243 else if (LHS.isKVCRef()) { 244 llvm::Value *AggLoc = DestPtr; 245 if (!AggLoc) 246 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 247 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 248 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 249 RValue::getAggregate(AggLoc, VolatileDest)); 250 } else { 251 // Codegen the RHS so that it stores directly into the LHS. 252 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); 253 EmitFinalDestCopy(E, LHS, true); 254 } 255 } 256 257 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 258 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 259 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 260 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 261 262 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 263 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 264 265 CGF.EmitBlock(LHSBlock); 266 267 // Handle the GNU extension for missing LHS. 268 assert(E->getLHS() && "Must have LHS for aggregate value"); 269 270 Visit(E->getLHS()); 271 CGF.EmitBranch(ContBlock); 272 273 CGF.EmitBlock(RHSBlock); 274 275 Visit(E->getRHS()); 276 CGF.EmitBranch(ContBlock); 277 278 CGF.EmitBlock(ContBlock); 279 } 280 281 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 282 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 283 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 284 285 if (!ArgPtr) { 286 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 287 return; 288 } 289 290 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); 291 } 292 293 void 294 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 295 llvm::Value *V = DestPtr; 296 297 if (!V) { 298 assert(isa<CXXTempVarDecl>(E->getVarDecl()) && 299 "Must have a temp var decl when there's no destination!"); 300 301 V = CGF.CreateTempAlloca(CGF.ConvertType(E->getVarDecl()->getType()), 302 "tmpvar"); 303 } 304 305 CGF.EmitCXXConstructExpr(V, E); 306 } 307 308 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 309 // FIXME: Do something with the temporaries! 310 Visit(E->getSubExpr()); 311 } 312 313 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 314 // FIXME: Ignore result? 315 // FIXME: Are initializers affected by volatile? 316 if (isa<ImplicitValueInitExpr>(E)) { 317 EmitNullInitializationToLValue(LV, E->getType()); 318 } else if (E->getType()->isComplexType()) { 319 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 320 } else if (CGF.hasAggregateLLVMType(E->getType())) { 321 CGF.EmitAnyExpr(E, LV.getAddress(), false); 322 } else { 323 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 324 } 325 } 326 327 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 328 if (!CGF.hasAggregateLLVMType(T)) { 329 // For non-aggregates, we can store zero 330 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 331 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 332 } else { 333 // Otherwise, just memset the whole thing to zero. This is legal 334 // because in LLVM, all default initializers are guaranteed to have a 335 // bit pattern of all zeros. 336 // FIXME: That isn't true for member pointers! 337 // There's a potential optimization opportunity in combining 338 // memsets; that would be easy for arrays, but relatively 339 // difficult for structures with the current code. 340 CGF.EmitMemSetToZero(LV.getAddress(), T); 341 } 342 } 343 344 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 345 #if 0 346 // FIXME: Disabled while we figure out what to do about 347 // test/CodeGen/bitfield.c 348 // 349 // If we can, prefer a copy from a global; this is a lot less code for long 350 // globals, and it's easier for the current optimizers to analyze. 351 // FIXME: Should we really be doing this? Should we try to avoid cases where 352 // we emit a global with a lot of zeros? Should we try to avoid short 353 // globals? 354 if (E->isConstantInitializer(CGF.getContext(), 0)) { 355 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 356 llvm::GlobalVariable* GV = 357 new llvm::GlobalVariable(C->getType(), true, 358 llvm::GlobalValue::InternalLinkage, 359 C, "", &CGF.CGM.getModule(), 0); 360 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 361 return; 362 } 363 #endif 364 if (E->hadArrayRangeDesignator()) { 365 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 366 } 367 368 // Handle initialization of an array. 369 if (E->getType()->isArrayType()) { 370 const llvm::PointerType *APType = 371 cast<llvm::PointerType>(DestPtr->getType()); 372 const llvm::ArrayType *AType = 373 cast<llvm::ArrayType>(APType->getElementType()); 374 375 uint64_t NumInitElements = E->getNumInits(); 376 377 if (E->getNumInits() > 0) { 378 QualType T1 = E->getType(); 379 QualType T2 = E->getInit(0)->getType(); 380 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 381 EmitAggLoadOfLValue(E->getInit(0)); 382 return; 383 } 384 } 385 386 uint64_t NumArrayElements = AType->getNumElements(); 387 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 388 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 389 390 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 391 392 for (uint64_t i = 0; i != NumArrayElements; ++i) { 393 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 394 if (i < NumInitElements) 395 EmitInitializationToLValue(E->getInit(i), 396 LValue::MakeAddr(NextVal, CVRqualifier)); 397 else 398 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 399 ElementType); 400 } 401 return; 402 } 403 404 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 405 406 // Do struct initialization; this code just sets each individual member 407 // to the approprate value. This makes bitfield support automatic; 408 // the disadvantage is that the generated code is more difficult for 409 // the optimizer, especially with bitfields. 410 unsigned NumInitElements = E->getNumInits(); 411 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 412 unsigned CurInitVal = 0; 413 414 if (E->getType()->isUnionType()) { 415 // Only initialize one field of a union. The field itself is 416 // specified by the initializer list. 417 if (!E->getInitializedFieldInUnion()) { 418 // Empty union; we have nothing to do. 419 420 #ifndef NDEBUG 421 // Make sure that it's really an empty and not a failure of 422 // semantic analysis. 423 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 424 FieldEnd = SD->field_end(CGF.getContext()); 425 Field != FieldEnd; ++Field) 426 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 427 #endif 428 return; 429 } 430 431 // FIXME: volatility 432 FieldDecl *Field = E->getInitializedFieldInUnion(); 433 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 434 435 if (NumInitElements) { 436 // Store the initializer into the field 437 EmitInitializationToLValue(E->getInit(0), FieldLoc); 438 } else { 439 // Default-initialize to null 440 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 441 } 442 443 return; 444 } 445 446 // Here we iterate over the fields; this makes it simpler to both 447 // default-initialize fields and skip over unnamed fields. 448 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 449 FieldEnd = SD->field_end(CGF.getContext()); 450 Field != FieldEnd; ++Field) { 451 // We're done once we hit the flexible array member 452 if (Field->getType()->isIncompleteArrayType()) 453 break; 454 455 if (Field->isUnnamedBitfield()) 456 continue; 457 458 // FIXME: volatility 459 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 460 // We never generate write-barries for initialized fields. 461 LValue::SetObjCNonGC(FieldLoc, true); 462 if (CurInitVal < NumInitElements) { 463 // Store the initializer into the field 464 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 465 } else { 466 // We're out of initalizers; default-initialize to null 467 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 468 } 469 } 470 } 471 472 //===----------------------------------------------------------------------===// 473 // Entry Points into this File 474 //===----------------------------------------------------------------------===// 475 476 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 477 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 478 /// the value of the aggregate expression is not needed. If VolatileDest is 479 /// true, DestPtr cannot be 0. 480 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 481 bool VolatileDest, bool IgnoreResult) { 482 assert(E && hasAggregateLLVMType(E->getType()) && 483 "Invalid aggregate expression to emit"); 484 assert ((DestPtr != 0 || VolatileDest == false) 485 && "volatile aggregate can't be 0"); 486 487 AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult) 488 .Visit(const_cast<Expr*>(E)); 489 } 490 491 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 492 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 493 494 EmitMemSetToZero(DestPtr, Ty); 495 } 496 497 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 498 llvm::Value *SrcPtr, QualType Ty, 499 bool isVolatile) { 500 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 501 502 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 503 // C99 6.5.16.1p3, which states "If the value being stored in an object is 504 // read from another object that overlaps in anyway the storage of the first 505 // object, then the overlap shall be exact and the two objects shall have 506 // qualified or unqualified versions of a compatible type." 507 // 508 // memcpy is not defined if the source and destination pointers are exactly 509 // equal, but other compilers do this optimization, and almost every memcpy 510 // implementation handles this case safely. If there is a libc that does not 511 // safely handle this, we can add a target hook. 512 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 513 if (DestPtr->getType() != BP) 514 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 515 if (SrcPtr->getType() != BP) 516 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 517 518 // Get size and alignment info for this aggregate. 519 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 520 521 // FIXME: Handle variable sized types. 522 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 523 524 // FIXME: If we have a volatile struct, the optimizer can remove what might 525 // appear to be `extra' memory ops: 526 // 527 // volatile struct { int i; } a, b; 528 // 529 // int main() { 530 // a = b; 531 // a = b; 532 // } 533 // 534 // we need to use a differnt call here. We use isVolatile to indicate when 535 // either the source or the destination is volatile. 536 Builder.CreateCall4(CGM.getMemCpyFn(), 537 DestPtr, SrcPtr, 538 // TypeInfo.first describes size in bits. 539 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 540 llvm::ConstantInt::get(llvm::Type::Int32Ty, 541 TypeInfo.second/8)); 542 } 543