1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
85     Visit(GE->getResultExpr());
86   }
87   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
88 
89   // l-values.
90   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
91   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
92   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
93   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
94   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
95     EmitAggLoadOfLValue(E);
96   }
97   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
101     EmitAggLoadOfLValue(E);
102   }
103   void VisitPredefinedExpr(const PredefinedExpr *E) {
104     EmitAggLoadOfLValue(E);
105   }
106 
107   // Operators.
108   void VisitCastExpr(CastExpr *E);
109   void VisitCallExpr(const CallExpr *E);
110   void VisitStmtExpr(const StmtExpr *E);
111   void VisitBinaryOperator(const BinaryOperator *BO);
112   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
113   void VisitBinAssign(const BinaryOperator *E);
114   void VisitBinComma(const BinaryOperator *E);
115 
116   void VisitObjCMessageExpr(ObjCMessageExpr *E);
117   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
118     EmitAggLoadOfLValue(E);
119   }
120   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
121 
122   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
123   void VisitChooseExpr(const ChooseExpr *CE);
124   void VisitInitListExpr(InitListExpr *E);
125   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
126   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
127     Visit(DAE->getExpr());
128   }
129   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
130   void VisitCXXConstructExpr(const CXXConstructExpr *E);
131   void VisitExprWithCleanups(ExprWithCleanups *E);
132   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
133   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
134 
135   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
136 
137   void VisitVAArgExpr(VAArgExpr *E);
138 
139   void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
140   void EmitNullInitializationToLValue(LValue Address, QualType T);
141   //  case Expr::ChooseExprClass:
142   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
143 };
144 }  // end anonymous namespace.
145 
146 //===----------------------------------------------------------------------===//
147 //                                Utilities
148 //===----------------------------------------------------------------------===//
149 
150 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
151 /// represents a value lvalue, this method emits the address of the lvalue,
152 /// then loads the result into DestPtr.
153 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
154   LValue LV = CGF.EmitLValue(E);
155   EmitFinalDestCopy(E, LV);
156 }
157 
158 /// \brief True if the given aggregate type requires special GC API calls.
159 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
160   // Only record types have members that might require garbage collection.
161   const RecordType *RecordTy = T->getAs<RecordType>();
162   if (!RecordTy) return false;
163 
164   // Don't mess with non-trivial C++ types.
165   RecordDecl *Record = RecordTy->getDecl();
166   if (isa<CXXRecordDecl>(Record) &&
167       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
168        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
169     return false;
170 
171   // Check whether the type has an object member.
172   return Record->hasObjectMember();
173 }
174 
175 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
176 ///
177 /// The idea is that you do something like this:
178 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
179 ///   EmitGCMove(E, Result);
180 /// If GC doesn't interfere, this will cause the result to be emitted
181 /// directly into the return value slot.  If GC does interfere, a final
182 /// move will be performed.
183 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
184   if (Dest.requiresGCollection()) {
185     std::pair<uint64_t, unsigned> TypeInfo =
186       CGF.getContext().getTypeInfo(E->getType());
187     unsigned long size = TypeInfo.first/8;
188     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
189     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
190     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
191                                                     Src.getAggregateAddr(),
192                                                     SizeVal);
193   }
194 }
195 
196 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
197 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
198   assert(Src.isAggregate() && "value must be aggregate value!");
199 
200   // If Dest is ignored, then we're evaluating an aggregate expression
201   // in a context (like an expression statement) that doesn't care
202   // about the result.  C says that an lvalue-to-rvalue conversion is
203   // performed in these cases; C++ says that it is not.  In either
204   // case, we don't actually need to do anything unless the value is
205   // volatile.
206   if (Dest.isIgnored()) {
207     if (!Src.isVolatileQualified() ||
208         CGF.CGM.getLangOptions().CPlusPlus ||
209         (IgnoreResult && Ignore))
210       return;
211 
212     // If the source is volatile, we must read from it; to do that, we need
213     // some place to put it.
214     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
215   }
216 
217   if (Dest.requiresGCollection()) {
218     std::pair<uint64_t, unsigned> TypeInfo =
219     CGF.getContext().getTypeInfo(E->getType());
220     unsigned long size = TypeInfo.first/8;
221     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
222     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
223     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
224                                                       Dest.getAddr(),
225                                                       Src.getAggregateAddr(),
226                                                       SizeVal);
227     return;
228   }
229   // If the result of the assignment is used, copy the LHS there also.
230   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
231   // from the source as well, as we can't eliminate it if either operand
232   // is volatile, unless copy has volatile for both source and destination..
233   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
234                         Dest.isVolatile()|Src.isVolatileQualified());
235 }
236 
237 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
238 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
239   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
240 
241   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
242                                             Src.isVolatileQualified()),
243                     Ignore);
244 }
245 
246 //===----------------------------------------------------------------------===//
247 //                            Visitor Methods
248 //===----------------------------------------------------------------------===//
249 
250 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
251   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
252 }
253 
254 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
255   switch (E->getCastKind()) {
256   case CK_Dynamic: {
257     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
258     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
259     // FIXME: Do we also need to handle property references here?
260     if (LV.isSimple())
261       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
262     else
263       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
264 
265     if (!Dest.isIgnored())
266       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
267     break;
268   }
269 
270   case CK_ToUnion: {
271     if (Dest.isIgnored()) break;
272 
273     // GCC union extension
274     QualType Ty = E->getSubExpr()->getType();
275     QualType PtrTy = CGF.getContext().getPointerType(Ty);
276     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
277                                                  CGF.ConvertType(PtrTy));
278     EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
279                                Ty);
280     break;
281   }
282 
283   case CK_DerivedToBase:
284   case CK_BaseToDerived:
285   case CK_UncheckedDerivedToBase: {
286     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
287                 "should have been unpacked before we got here");
288     break;
289   }
290 
291   case CK_GetObjCProperty: {
292     LValue LV = CGF.EmitLValue(E->getSubExpr());
293     assert(LV.isPropertyRef());
294     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
295     EmitGCMove(E, RV);
296     break;
297   }
298 
299   case CK_LValueToRValue: // hope for downstream optimization
300   case CK_NoOp:
301   case CK_UserDefinedConversion:
302   case CK_ConstructorConversion:
303     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
304                                                    E->getType()) &&
305            "Implicit cast types must be compatible");
306     Visit(E->getSubExpr());
307     break;
308 
309   case CK_LValueBitCast:
310     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
311     break;
312 
313   case CK_Dependent:
314   case CK_BitCast:
315   case CK_ArrayToPointerDecay:
316   case CK_FunctionToPointerDecay:
317   case CK_NullToPointer:
318   case CK_NullToMemberPointer:
319   case CK_BaseToDerivedMemberPointer:
320   case CK_DerivedToBaseMemberPointer:
321   case CK_MemberPointerToBoolean:
322   case CK_IntegralToPointer:
323   case CK_PointerToIntegral:
324   case CK_PointerToBoolean:
325   case CK_ToVoid:
326   case CK_VectorSplat:
327   case CK_IntegralCast:
328   case CK_IntegralToBoolean:
329   case CK_IntegralToFloating:
330   case CK_FloatingToIntegral:
331   case CK_FloatingToBoolean:
332   case CK_FloatingCast:
333   case CK_AnyPointerToObjCPointerCast:
334   case CK_AnyPointerToBlockPointerCast:
335   case CK_ObjCObjectLValueCast:
336   case CK_FloatingRealToComplex:
337   case CK_FloatingComplexToReal:
338   case CK_FloatingComplexToBoolean:
339   case CK_FloatingComplexCast:
340   case CK_FloatingComplexToIntegralComplex:
341   case CK_IntegralRealToComplex:
342   case CK_IntegralComplexToReal:
343   case CK_IntegralComplexToBoolean:
344   case CK_IntegralComplexCast:
345   case CK_IntegralComplexToFloatingComplex:
346     llvm_unreachable("cast kind invalid for aggregate types");
347   }
348 }
349 
350 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
351   if (E->getCallReturnType()->isReferenceType()) {
352     EmitAggLoadOfLValue(E);
353     return;
354   }
355 
356   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
357   EmitGCMove(E, RV);
358 }
359 
360 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
361   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
362   EmitGCMove(E, RV);
363 }
364 
365 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
366   llvm_unreachable("direct property access not surrounded by "
367                    "lvalue-to-rvalue cast");
368 }
369 
370 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
371   CGF.EmitIgnoredExpr(E->getLHS());
372   Visit(E->getRHS());
373 }
374 
375 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
376   CodeGenFunction::StmtExprEvaluation eval(CGF);
377   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
378 }
379 
380 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
381   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
382     VisitPointerToDataMemberBinaryOperator(E);
383   else
384     CGF.ErrorUnsupported(E, "aggregate binary expression");
385 }
386 
387 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
388                                                     const BinaryOperator *E) {
389   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
390   EmitFinalDestCopy(E, LV);
391 }
392 
393 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
394   // For an assignment to work, the value on the right has
395   // to be compatible with the value on the left.
396   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
397                                                  E->getRHS()->getType())
398          && "Invalid assignment");
399 
400   // FIXME:  __block variables need the RHS evaluated first!
401   LValue LHS = CGF.EmitLValue(E->getLHS());
402 
403   // We have to special case property setters, otherwise we must have
404   // a simple lvalue (no aggregates inside vectors, bitfields).
405   if (LHS.isPropertyRef()) {
406     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
407     QualType ArgType = RE->getSetterArgType();
408     RValue Src;
409     if (ArgType->isReferenceType())
410       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
411     else {
412       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
413       CGF.EmitAggExpr(E->getRHS(), Slot);
414       Src = Slot.asRValue();
415     }
416     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
417   } else {
418     bool GCollection = false;
419     if (CGF.getContext().getLangOptions().getGCMode())
420       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
421 
422     // Codegen the RHS so that it stores directly into the LHS.
423     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
424                                                    GCollection);
425     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
426     EmitFinalDestCopy(E, LHS, true);
427   }
428 }
429 
430 void AggExprEmitter::
431 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
432   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
433   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
434   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
435 
436   // Bind the common expression if necessary.
437   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
438 
439   CodeGenFunction::ConditionalEvaluation eval(CGF);
440   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
441 
442   // Save whether the destination's lifetime is externally managed.
443   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
444 
445   eval.begin(CGF);
446   CGF.EmitBlock(LHSBlock);
447   Visit(E->getTrueExpr());
448   eval.end(CGF);
449 
450   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
451   CGF.Builder.CreateBr(ContBlock);
452 
453   // If the result of an agg expression is unused, then the emission
454   // of the LHS might need to create a destination slot.  That's fine
455   // with us, and we can safely emit the RHS into the same slot, but
456   // we shouldn't claim that its lifetime is externally managed.
457   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
458 
459   eval.begin(CGF);
460   CGF.EmitBlock(RHSBlock);
461   Visit(E->getFalseExpr());
462   eval.end(CGF);
463 
464   CGF.EmitBlock(ContBlock);
465 }
466 
467 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
468   Visit(CE->getChosenSubExpr(CGF.getContext()));
469 }
470 
471 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
472   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
473   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
474 
475   if (!ArgPtr) {
476     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
477     return;
478   }
479 
480   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
481 }
482 
483 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
484   // Ensure that we have a slot, but if we already do, remember
485   // whether its lifetime was externally managed.
486   bool WasManaged = Dest.isLifetimeExternallyManaged();
487   Dest = EnsureSlot(E->getType());
488   Dest.setLifetimeExternallyManaged();
489 
490   Visit(E->getSubExpr());
491 
492   // Set up the temporary's destructor if its lifetime wasn't already
493   // being managed.
494   if (!WasManaged)
495     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
496 }
497 
498 void
499 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
500   AggValueSlot Slot = EnsureSlot(E->getType());
501   CGF.EmitCXXConstructExpr(E, Slot);
502 }
503 
504 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
505   CGF.EmitExprWithCleanups(E, Dest);
506 }
507 
508 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
509   QualType T = E->getType();
510   AggValueSlot Slot = EnsureSlot(T);
511   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
512 }
513 
514 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
515   QualType T = E->getType();
516   AggValueSlot Slot = EnsureSlot(T);
517   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
518 }
519 
520 /// isSimpleZero - If emitting this value will obviously just cause a store of
521 /// zero to memory, return true.  This can return false if uncertain, so it just
522 /// handles simple cases.
523 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
524   E = E->IgnoreParens();
525 
526   // 0
527   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
528     return IL->getValue() == 0;
529   // +0.0
530   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
531     return FL->getValue().isPosZero();
532   // int()
533   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
534       CGF.getTypes().isZeroInitializable(E->getType()))
535     return true;
536   // (int*)0 - Null pointer expressions.
537   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
538     return ICE->getCastKind() == CK_NullToPointer;
539   // '\0'
540   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
541     return CL->getValue() == 0;
542 
543   // Otherwise, hard case: conservatively return false.
544   return false;
545 }
546 
547 
548 void
549 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
550   // FIXME: Ignore result?
551   // FIXME: Are initializers affected by volatile?
552   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
553     // Storing "i32 0" to a zero'd memory location is a noop.
554   } else if (isa<ImplicitValueInitExpr>(E)) {
555     EmitNullInitializationToLValue(LV, T);
556   } else if (T->isReferenceType()) {
557     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
558     CGF.EmitStoreThroughLValue(RV, LV, T);
559   } else if (T->isAnyComplexType()) {
560     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
561   } else if (CGF.hasAggregateLLVMType(T)) {
562     CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
563                                              false, Dest.isZeroed()));
564   } else {
565     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T);
566   }
567 }
568 
569 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
570   // If the destination slot is already zeroed out before the aggregate is
571   // copied into it, we don't have to emit any zeros here.
572   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
573     return;
574 
575   if (!CGF.hasAggregateLLVMType(T)) {
576     // For non-aggregates, we can store zero
577     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
578     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
579   } else {
580     // There's a potential optimization opportunity in combining
581     // memsets; that would be easy for arrays, but relatively
582     // difficult for structures with the current code.
583     CGF.EmitNullInitialization(LV.getAddress(), T);
584   }
585 }
586 
587 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
588 #if 0
589   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
590   // (Length of globals? Chunks of zeroed-out space?).
591   //
592   // If we can, prefer a copy from a global; this is a lot less code for long
593   // globals, and it's easier for the current optimizers to analyze.
594   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
595     llvm::GlobalVariable* GV =
596     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
597                              llvm::GlobalValue::InternalLinkage, C, "");
598     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
599     return;
600   }
601 #endif
602   if (E->hadArrayRangeDesignator())
603     CGF.ErrorUnsupported(E, "GNU array range designator extension");
604 
605   llvm::Value *DestPtr = Dest.getAddr();
606 
607   // Handle initialization of an array.
608   if (E->getType()->isArrayType()) {
609     const llvm::PointerType *APType =
610       cast<llvm::PointerType>(DestPtr->getType());
611     const llvm::ArrayType *AType =
612       cast<llvm::ArrayType>(APType->getElementType());
613 
614     uint64_t NumInitElements = E->getNumInits();
615 
616     if (E->getNumInits() > 0) {
617       QualType T1 = E->getType();
618       QualType T2 = E->getInit(0)->getType();
619       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
620         EmitAggLoadOfLValue(E->getInit(0));
621         return;
622       }
623     }
624 
625     uint64_t NumArrayElements = AType->getNumElements();
626     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
627     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
628 
629     // FIXME: were we intentionally ignoring address spaces and GC attributes?
630 
631     for (uint64_t i = 0; i != NumArrayElements; ++i) {
632       // If we're done emitting initializers and the destination is known-zeroed
633       // then we're done.
634       if (i == NumInitElements &&
635           Dest.isZeroed() &&
636           CGF.getTypes().isZeroInitializable(ElementType))
637         break;
638 
639       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
640       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
641 
642       if (i < NumInitElements)
643         EmitInitializationToLValue(E->getInit(i), LV, ElementType);
644       else
645         EmitNullInitializationToLValue(LV, ElementType);
646 
647       // If the GEP didn't get used because of a dead zero init or something
648       // else, clean it up for -O0 builds and general tidiness.
649       if (llvm::GetElementPtrInst *GEP =
650             dyn_cast<llvm::GetElementPtrInst>(NextVal))
651         if (GEP->use_empty())
652           GEP->eraseFromParent();
653     }
654     return;
655   }
656 
657   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
658 
659   // Do struct initialization; this code just sets each individual member
660   // to the approprate value.  This makes bitfield support automatic;
661   // the disadvantage is that the generated code is more difficult for
662   // the optimizer, especially with bitfields.
663   unsigned NumInitElements = E->getNumInits();
664   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
665 
666   if (E->getType()->isUnionType()) {
667     // Only initialize one field of a union. The field itself is
668     // specified by the initializer list.
669     if (!E->getInitializedFieldInUnion()) {
670       // Empty union; we have nothing to do.
671 
672 #ifndef NDEBUG
673       // Make sure that it's really an empty and not a failure of
674       // semantic analysis.
675       for (RecordDecl::field_iterator Field = SD->field_begin(),
676                                    FieldEnd = SD->field_end();
677            Field != FieldEnd; ++Field)
678         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
679 #endif
680       return;
681     }
682 
683     // FIXME: volatility
684     FieldDecl *Field = E->getInitializedFieldInUnion();
685 
686     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
687     if (NumInitElements) {
688       // Store the initializer into the field
689       EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
690     } else {
691       // Default-initialize to null.
692       EmitNullInitializationToLValue(FieldLoc, Field->getType());
693     }
694 
695     return;
696   }
697 
698   // Here we iterate over the fields; this makes it simpler to both
699   // default-initialize fields and skip over unnamed fields.
700   unsigned CurInitVal = 0;
701   for (RecordDecl::field_iterator Field = SD->field_begin(),
702                                FieldEnd = SD->field_end();
703        Field != FieldEnd; ++Field) {
704     // We're done once we hit the flexible array member
705     if (Field->getType()->isIncompleteArrayType())
706       break;
707 
708     if (Field->isUnnamedBitfield())
709       continue;
710 
711     // Don't emit GEP before a noop store of zero.
712     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
713         CGF.getTypes().isZeroInitializable(E->getType()))
714       break;
715 
716     // FIXME: volatility
717     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
718     // We never generate write-barries for initialized fields.
719     FieldLoc.setNonGC(true);
720 
721     if (CurInitVal < NumInitElements) {
722       // Store the initializer into the field.
723       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
724                                  Field->getType());
725     } else {
726       // We're out of initalizers; default-initialize to null
727       EmitNullInitializationToLValue(FieldLoc, Field->getType());
728     }
729 
730     // If the GEP didn't get used because of a dead zero init or something
731     // else, clean it up for -O0 builds and general tidiness.
732     if (FieldLoc.isSimple())
733       if (llvm::GetElementPtrInst *GEP =
734             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
735         if (GEP->use_empty())
736           GEP->eraseFromParent();
737   }
738 }
739 
740 //===----------------------------------------------------------------------===//
741 //                        Entry Points into this File
742 //===----------------------------------------------------------------------===//
743 
744 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
745 /// non-zero bytes that will be stored when outputting the initializer for the
746 /// specified initializer expression.
747 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
748   E = E->IgnoreParens();
749 
750   // 0 and 0.0 won't require any non-zero stores!
751   if (isSimpleZero(E, CGF)) return 0;
752 
753   // If this is an initlist expr, sum up the size of sizes of the (present)
754   // elements.  If this is something weird, assume the whole thing is non-zero.
755   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
756   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
757     return CGF.getContext().getTypeSize(E->getType())/8;
758 
759   // InitListExprs for structs have to be handled carefully.  If there are
760   // reference members, we need to consider the size of the reference, not the
761   // referencee.  InitListExprs for unions and arrays can't have references.
762   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
763     if (!RT->isUnionType()) {
764       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
765       uint64_t NumNonZeroBytes = 0;
766 
767       unsigned ILEElement = 0;
768       for (RecordDecl::field_iterator Field = SD->field_begin(),
769            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
770         // We're done once we hit the flexible array member or run out of
771         // InitListExpr elements.
772         if (Field->getType()->isIncompleteArrayType() ||
773             ILEElement == ILE->getNumInits())
774           break;
775         if (Field->isUnnamedBitfield())
776           continue;
777 
778         const Expr *E = ILE->getInit(ILEElement++);
779 
780         // Reference values are always non-null and have the width of a pointer.
781         if (Field->getType()->isReferenceType())
782           NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0);
783         else
784           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
785       }
786 
787       return NumNonZeroBytes;
788     }
789   }
790 
791 
792   uint64_t NumNonZeroBytes = 0;
793   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
794     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
795   return NumNonZeroBytes;
796 }
797 
798 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
799 /// zeros in it, emit a memset and avoid storing the individual zeros.
800 ///
801 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
802                                      CodeGenFunction &CGF) {
803   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
804   // volatile stores.
805   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
806 
807   // If the type is 16-bytes or smaller, prefer individual stores over memset.
808   std::pair<uint64_t, unsigned> TypeInfo =
809     CGF.getContext().getTypeInfo(E->getType());
810   if (TypeInfo.first/8 <= 16)
811     return;
812 
813   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
814   // we prefer to emit memset + individual stores for the rest.
815   uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
816   if (NumNonZeroBytes*4 > TypeInfo.first/8)
817     return;
818 
819   // Okay, it seems like a good idea to use an initial memset, emit the call.
820   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8);
821   unsigned Align = TypeInfo.second/8;
822 
823   llvm::Value *Loc = Slot.getAddr();
824   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
825 
826   Loc = CGF.Builder.CreateBitCast(Loc, BP);
827   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false);
828 
829   // Tell the AggExprEmitter that the slot is known zero.
830   Slot.setZeroed();
831 }
832 
833 
834 
835 
836 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
837 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
838 /// the value of the aggregate expression is not needed.  If VolatileDest is
839 /// true, DestPtr cannot be 0.
840 ///
841 /// \param IsInitializer - true if this evaluation is initializing an
842 /// object whose lifetime is already being managed.
843 //
844 // FIXME: Take Qualifiers object.
845 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
846                                   bool IgnoreResult) {
847   assert(E && hasAggregateLLVMType(E->getType()) &&
848          "Invalid aggregate expression to emit");
849   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
850          "slot has bits but no address");
851 
852   // Optimize the slot if possible.
853   CheckAggExprForMemSetUse(Slot, E, *this);
854 
855   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
856 }
857 
858 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
859   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
860   llvm::Value *Temp = CreateMemTemp(E->getType());
861   LValue LV = MakeAddrLValue(Temp, E->getType());
862   EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
863   return LV;
864 }
865 
866 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
867                                         llvm::Value *SrcPtr, QualType Ty,
868                                         bool isVolatile) {
869   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
870 
871   if (getContext().getLangOptions().CPlusPlus) {
872     if (const RecordType *RT = Ty->getAs<RecordType>()) {
873       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
874       assert((Record->hasTrivialCopyConstructor() ||
875               Record->hasTrivialCopyAssignment()) &&
876              "Trying to aggregate-copy a type without a trivial copy "
877              "constructor or assignment operator");
878       // Ignore empty classes in C++.
879       if (Record->isEmpty())
880         return;
881     }
882   }
883 
884   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
885   // C99 6.5.16.1p3, which states "If the value being stored in an object is
886   // read from another object that overlaps in anyway the storage of the first
887   // object, then the overlap shall be exact and the two objects shall have
888   // qualified or unqualified versions of a compatible type."
889   //
890   // memcpy is not defined if the source and destination pointers are exactly
891   // equal, but other compilers do this optimization, and almost every memcpy
892   // implementation handles this case safely.  If there is a libc that does not
893   // safely handle this, we can add a target hook.
894 
895   // Get size and alignment info for this aggregate.
896   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
897 
898   // FIXME: Handle variable sized types.
899 
900   // FIXME: If we have a volatile struct, the optimizer can remove what might
901   // appear to be `extra' memory ops:
902   //
903   // volatile struct { int i; } a, b;
904   //
905   // int main() {
906   //   a = b;
907   //   a = b;
908   // }
909   //
910   // we need to use a different call here.  We use isVolatile to indicate when
911   // either the source or the destination is volatile.
912 
913   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
914   const llvm::Type *DBP =
915     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
916   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
917 
918   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
919   const llvm::Type *SBP =
920     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
921   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
922 
923   if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
924     RecordDecl *Record = RecordTy->getDecl();
925     if (Record->hasObjectMember()) {
926       unsigned long size = TypeInfo.first/8;
927       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
928       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
929       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
930                                                     SizeVal);
931       return;
932     }
933   } else if (getContext().getAsArrayType(Ty)) {
934     QualType BaseType = getContext().getBaseElementType(Ty);
935     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
936       if (RecordTy->getDecl()->hasObjectMember()) {
937         unsigned long size = TypeInfo.first/8;
938         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
939         llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
940         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
941                                                       SizeVal);
942         return;
943       }
944     }
945   }
946 
947   Builder.CreateMemCpy(DestPtr, SrcPtr,
948                        llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
949                        TypeInfo.second/8, isVolatile);
950 }
951